
This paper is included in the Proceedings of the 

13th USENIX Symposium on Operating Systems Design 

and Implementation (OSDI ’18).

October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the 

13th USENIX Symposium on Operating Systems 

Design and Implementation 

is sponsored by USENIX.

Obladi: Oblivious Serializable  

Transactions in the Cloud

Natacha Crooks, The University of Texas at Austin; Matthew Burke, Ethan Cecchetti,  

Sitar Harel, Rachit Agarwal, and Lorenzo Alvisi, Cornell University

https://www.usenix.org/conference/osdi18/presentation/crooks



Obladi: Oblivious Serializable Transactions in the Cloud

Natacha Crooks?† Matthew Burke† Ethan Cecchetti†

Sitar Harel† Rachit Agarwal† Lorenzo Alvisi†

?University of Texas at Austin †Cornell University

Abstract
This paper presents the design and implementation of

Obladi, the first system to provide ACID transactions while

also hiding access patterns. Obladi uses as its building block

oblivious RAM, but turns the demands of supporting transac-

tions into a performance opportunity. By executing transac-

tions within epochs and delaying commit decisions until an

epoch ends, Obladi reduces the amortized bandwidth costs

of oblivious storage and increases overall system through-

put. These performance gains, combined with new oblivious

mechanisms for concurrency control and recovery, allow

Obladi to execute OLTP workloads with reasonable through-

put: it comes within 5× to 12× of a non-oblivious baseline on

the TPC-C, SmallBank, and FreeHealth applications. Latency

overheads, however, are higher (70× on TPC-C).

1 Introduction

This paper presents Obladi, the first cloud-based key value

store that supports transactions while hiding access patterns

from cloud providers. Obladi aims to mitigate the fundamen-

tal tension between the convenience of offloading data to the

cloud, and the significant privacy concerns that doing so cre-

ates. On the one hand, cloud services [3, 4, 48, 49, 62] offer

clients scalable, reliable IT solutions and present application

developers with feature-rich environments (transactional sup-

port, stronger consistency [23, 52], etc.). Medical practices,

for instance, increasingly prefer to use cloud-based software

to manage electronic health records (EHR) [17, 39]. On the

other hand, many applications that could benefit from cloud

services store personal data that can reveal sensitive informa-

tion even when encrypted or anonymized [53, 54, 74, 83]. For

example, charts accessed by oncologists can reveal not only

whether a patient has cancer, but also, depending on the fre-

quency of accesses (e.g., the frequency of chemotherapy ap-

pointments), indicate the cancer’s type and severity. Similarly,

travel websites have been suspected of increasing the price

of frequently searched flights [83]. Hiding access patterns—

that is, hiding not only the content of an object, but also when

and how frequently it is accessed, is thus often desirable.

Responding to this challenge, the systems community has

taken a fresh look at private data access. Recent solutions,

whether based on private information retrieval [2, 31],

Oblivious RAM [15, 44, 70], function sharing [83], or trusted

hardware [5, 7, 25, 44, 81], show that it is possible to support

complex SQL queries without revealing access patterns.

Obladi addresses a complementary issue: supporting ACID

transactions while guaranteeing data access privacy. This

combination raises unique challenges [5], as concurrency

control mechanisms used to enforce isolation, and techniques

used to enforce atomicity and durability, all make hiding

access patterns more problematic (§3).

Obladi takes as its starting point Oblivious RAM, which

provably hides all access patterns. Existing ORAM imple-

mentations, however, cannot support transactions. First, they

are not fault-tolerant. For security and performance, they

often store data in a client-side stash; durability requires the

stash content to be recoverable after a failure, and preserving

privacy demands hiding the stash’s size and contents,

even during failure recovery. Second, ORAM provides

limited or no support for concurrency [12, 70, 75, 86],

while transactional systems are expected to sustain highly

concurrent loads.

Obladi demonstrates that the demands of supporting transac-

tions can not only be met, but also turned into a performance

opportunity. Its key insight is that transactions actually afford

more flexibility than the single-value operations supported by

previous ORAMs. For example, serializability [61] requires

that the effects of transactions be reflected consistently in the

state of the database only after they commit. Obladi leverages

this flexibility to delay committing transactions until the end

of fixed-size epochs, buffering their execution at a trusted

proxy and enforcing consistency and durability only at epoch

boundaries. This delay improves ORAM throughput without

weakening privacy.

The ethos of delayed visibility is the core that drives Obladi’s

design. First, it allows Obladi to implement a multiversioned

database atop a single-versioned ORAM, so that read opera-

tions proceed without blocking, as with other multiversioned

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    727



databases [10], and intermediate writes are buffered locally:

only the last value of any key modified during an epoch

is written back to the ORAM. Delaying writes reduces the

number of ORAM operations needed to commit a transac-

tion, lowering amortized CPU and bandwidth costs without

increasing contention: Obladi’s concurrency control ensures

that delaying commits does not affect the set of values that

transactions executing within the same epoch can observe.

Second, it allows Obladi to securely parallelize Ring

ORAM [69], the ORAM construction on which it builds.

Obladi pipelines conflicting ORAM operations rather than

processing them sequentially, as existing ORAM implemen-

tations do. This parallelization, however, is only secure if the

write-back phase of the ORAM algorithm is delayed until

pre-determined times, namely, epoch boundaries.

Finally, delaying visibility gives Obladi the ability to

abort entire epochs in case of failure. Obladi leverages this

flexibility, along with the near-deterministic write-back

algorithm used by Ring ORAM, to drastically reduce the

information that must be logged to guarantee durability and

privacy-preserving crash recovery.

The results of a prototype implementation of Obladi

are promising. On three applications (TPC-C [80], Small-

Bank [22], and FreeHealth [42], a real medical application)

Obladi is within 5×-12× of the throughput of non-private

baselines. Latency is higher (70×), but remains reasonable

(in the hundreds of milliseconds).

To summarize, this paper makes three contributions:

1. It presents the design, implementation, and evaluation of

the first ACID transactional system that also hides access

patterns.

2. It introduces an epoch-based design that leverages the

flexibility of transactional workloads to increase overall

system throughput and efficiently recover from failures.

3. It provides the first formal security definition of a trans-

actional, crash-prone, and private database. Obladi uses

the UC-security framework [14], ensuring that security

guarantees hold under concurrency and composition.

Obladi also has several limitations. First, like most

ORAMs that regulate the interactions of multiple clients,

it relies on a local centralized proxy, which introduces

issues of fault-tolerance and scalability. Second, Obladi

does not currently support range or complex SQL queries.

Addressing the consistency challenge of maintaining

oblivious indices [5, 25, 89] in the presence of transactions

is a promising avenue for future work.

2 Threat and Failure Model

Obladi’s threat and failure assumptions aim to model

deployments similar to those of medical practices, where

doctors and nurses access medical records through an on-site

server, but choose to outsource the integrity and availability

of those records to a cloud storage service [17, 39].

Threat Model. Obladi adopts a trusted proxy threat

model [70, 75, 86]: it assumes multiple mutually-trusting

client applications interacting with a single trusted proxy in a

single shared administrative domain. The applications issue

transactions and the proxy manages their execution, sending

read and write requests on their behalf over an asynchronous

and unreliable network to an untrusted storage server. This

server is controlled by an honest-but-curious adversary that

can observe and control the timing of communication to

and from the proxy, but not the on-site communication

between application clients and the proxy. We extend our

threat model to a fully malicious adversary in our technical

report [20]. We consider attacks that leak information

by exploiting timing channel vulnerabilities in modern

processors [13, 36, 43] to be out of scope. Obladi guarantees

that the adversary will learn no information about: (i) the

decision (commit/abort) of any ongoing transaction; (ii) the

number of operations in an ongoing transaction; (iii) the type

of requests issued to the server; and (iv) the actual data they

access. Obladi does not seek to hide the type of application

that is currently executing (ex: OLTP vs OLAP).

Failure Model. Obladi assumes cloud storage is reliable,

but, unlike previous ORAMs, explicitly considers that both

application clients and the proxy may fail. These failures

should invalidate neither Obladi’s privacy guarantees nor the

Durability and Atomicity of transactions.

3 Towards Private Transactions

Many distributed, disk-based commercial database sys-

tems [8, 19, 58] separate concurrency control logic from

storage management: SQL queries and transactional

requests are regulated in a concurrency control unit and

are subsequently converted to simple read-write accesses

to key-value/file system storage. As ORAMs expose a

read-write address space to users, a logical first attempt

at implementing oblivious transactions would simply

replace the database storage with an arbitrary ORAM. This

black-box approach, however, raises both security concerns

(§3.1) and performance/functionality issues (§3.2)

Security guarantees can be compromised by simply enforc-

ing the ACID properties. Ensuring Atomicity, Isolation, and

Durability imposes additional structure on the order of in-

dividual reads and writes, introducing sources of information

leakage [5, 72] that do not exist in non-transactional ORAMs

(§3.1). Performance and functionality, on the other hand, are

hampered by the inability of current ORAMs to efficiently

support highly concurrent loads and guarantee Durability.

3.1 Security for Isolation and Durability

The mechanisms used to guarantee Isolation, Atomicity, and

Durability introduce timing correlations that directly leak

information about the data accessed by ongoing transactions.

Concurrency Control. Pessimistic concurrency controls

like two-phase locking [26] delay operations that would vi-

olate serializability: a write operation from transaction T1

728    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



cannot execute concurrently with any operation to the same

object from transaction T2. Such blocking can potentially

reveal sensitive information about the data, even when ex-

ecuting on top of a construction that hides access patterns:

a sudden drop in throughput could reveal the presence of a

deadlock, of a write-heavy transaction blocking the progress

of read transactions, or of highly contended items accessed by

many concurrent transactions. More aggressive concurrency

control schemes like timestamp ordering or multiversioned

concurrency control [1, 10, 34, 41, 66, 67, 87] allow trans-

actions to observe the result of the writes of other ongoing

transactions. These schemes improve performance in con-

tended workloads, but introduce the potential for cascading

aborts: if a transaction aborts, all transactions that observed

its write must also abort. If a write-heavy transaction Theavy

aborts, it may cause a large number of transactions to rollback,

again revealing information about Theavy and, perhaps more

problematically, about the set of objects that Theavy accessed.

Failure Recovery. When recovering from failure, Durabil-

ity requires preserving the effects of committed transactions,

while Atomicity demands removing any changes caused

by partially-executed transactions. Most commercial sys-

tems [50, 58, 59] preserve these properties through variants

of undo and redo logging. To guarantee Durability, write and

commit operations are written to a redo log that is replayed

after a failure. To guarantee Atomicity, writes performed by

partially-executed transactions are undone via an undo log,

restoring objects to their last committed state. Unfortunately,

this undo process can leak information: the number of undo

operations reveals the existence of ongoing transactions, their

length, and the number of operations that they performed.

3.2 Performance/functionality limitations

Current ORAMs align poorly with the need of modern

OLTP workloads, which must support large numbers of

concurrent requests; in contrast, most ORAMs admit little

to no concurrency [12, 70, 75, 86] (we benchmark the

performance of sequential Ring ORAM in Figure 10a).

More problematically, ORAMs provide no support for

fault-tolerance. Adding support for Durability presents two

main challenges. First, most ORAMs require the use of

a stash that temporarily buffers objects at the client and

requires that these objects be written out to server storage

in very specific ways (as we describe further in §4). This

process aligns poorly with guaranteeing Durability for

transactions. Consider for example a transaction T1 that

reads the version of object x written by T2 and then writes

object y. To recover the database to a consistent state, the

update to x should be flushed to cloud storage before the

update to y. It may however not be possible to securely flush

x from the stash before y. Second, ORAMs store metadata

at the client to ensure that cloud storage observes a request

pattern that is independent of past and currently executing

operations. As we show in §8, recovering this metadata after

a failure can lead to duplicate accesses that leak information.

3.3 Introducing Obladi

These challenges motivate the need to co-design the trans-

actional and recovery logic with the underlying ORAM data

structure. The design should satisfy three goals: (i) security—

the system should not leak access patterns; (ii) correctness—

Obladi should guarantee that transactions are serializable;

and (iii) performance—Obladi should scale with the number

of clients. The principle of workload independence underpins

Obladi’s security: the sequence of requests sent to cloud

storage shoud remain independent of the type, number, and

access set of the transactions being executed. Intuitively, we

want Obladi’s sequence of accesses to cloud storage to be

statistically indistinguishable from a sequence that can be

generated by an Obladi simulator with no knowledge of

the actual transactions being run by Obladi. If this condition

holds, then observing Obladi’s accesses cannot reveal to

the adversary any information about Obladi’s workload. We

formalize this intuition in our security definition in §9.

Much of Obladi’s novelty lies not in developing new con-

currency control or recovery mechanisms, but in identifying

what standard database techniques can be leveraged to

lower the costs of ORAM while retaining security, and what

techniques instead subtly break obliviousness.

To preserve workload independence while guaranteeing

good performance in the presence of concurrent requests,

Obladi centers its design around the notion of delayed

visibility. Delayed visibility leverages the observation that,

on the one hand, ACID consistency and Durability apply

only when transactions commit, and, on the other, commit

operations can be delayed. Obladi leverages this flexibility

to delay commit operations until the end of fixed-size epochs.

This approach allows Obladi to (i) amortize the cost of

accessing an ORAM over many concurrently executing re-

quests; (ii) recover efficiently from failures; and (iii) preserve

workload independence: the epochs’ deterministic structure

allows Obladi to decouple its externally observable behavior

from the specifics of the transactions being executed.

4 Background

Oblivious Remote Access Memory is a cryptographic

protocol that allows clients to access data outsourced to an un-

trusted server without revealing what is being accessed [29];

it generates a sequence of accesses to the server that is com-

pletely independent of the operations issued by the client. We

focus specifically on tree-based ORAMs, whose construc-

tions are more efficiently implementable in real systems: to

date, they have been implemented in hardware [27, 46] and

as the basis for blockchain ledgers [15] with reasonable over-

heads. Most tree-based ORAMs follow a similar structure:

objects (usually key-value pairs) are mapped to a random leaf

(or path) in a binary tree and physically reside (encrypted) in

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    729









returned by a read from cloud storage, no operation depends

on the execution of a write. Accordingly, Obladi organizes the

DH into a read phase and a write phase: it first reads all nec-

essary objects from cloud storage, before applying all writes.

Read Phase. Obladi splits each epoch’s read phase into

a fixed set of R fixed-sized read batches (bread) that are

forwarded to the ORAM executor at fixed intervals (∆epoch).

This deterministic structure allows Obladi to execute

dependent read operations without revealing the internal

control flow of the epoch’s transactions. Read operations are

assigned to the epoch’s next unfilled read batch. If no such

batch exists, the transaction is aborted. Conversely, before

a batch is forwarded to the ORAM executor, all remaining

empty slots are padded with dummy requests. Obladi further

deduplicates read operations that access the same key. As

we describe in §7, this step is necessary for security since

parallelized batches may leak information unless requests

all access distinct keys [12, 86]. Deduplicating requests also

benefits performance by increasing the number of operations

that can be served within a fixed-size batch.

Write Phase. While transactions execute, Obladi buffers

their write operations into a version cache that maintains

all object versions created by transactions in the epoch. At

the end of an epoch, transactions that have yet to finish

executing (recall that epochs terminate at fixed intervals) are

aborted and their operations are removed. The latest versions

of each object in the version cache according to the version

chain are then aggregated in a fixed-size write batch (bwrite)

that is forwarded to the ORAM executor, with additional

padding if necessary.

This entire process, including write buffering and dedupli-

cation, must not violate serializability. The DH guarantees

that write buffering respects serializability by directly serv-

ing reads from the version cache for objects modified in the

current epoch. It guarantees serializability in the presence

of duplicate requests by only including the last write of the

version chain in a write batch. Since Obladi’s epoch-based

design guarantees that transactions from a later epoch are

serialized after all transactions from an earlier epoch, interme-

diate object versions can be safely discarded. In this context,

MVTSO’s requirement that transactions observe the latest

committed write in the serialization order reduces to transac-

tions reading the tail of the previous epoch’s version chain.

In the presence of failures, Obladi guarantees serializability

and recoverability by enforcing epoch fate sharing: either

all transactions in an epoch are made durable or none are. If

a failure arises during epoch ei, the system simply recovers

to epoch ei−1, aborting all transactions in epoch ei. Once

again, this flexibility arises from Obladi delaying commit

notifications until epoch boundaries.

Example Execution. We illustrate the batching logic once

again with the help of Figure 5. Transactions t1, t2, t3 first

execute read operations. These operations are aggregated into

the first read batch of epoch i. The values returned by these

reads are then cached into the version cache. t2 then executes

a write operation, which Obladi also buffers into the version

cache. When executing r2(d0)), t3 reads object d directly

from the version cache (we discuss the security of this step in

the next section). Similarly, r1(a1) reads the buffered uncom-

mitted version of a. In contrast, Obladi schedules r1(b0) to

execute as part of the next read batch as b0 is not present in the

version cache. The read batch is then padded to its fixed bread

size and executed. t4 contains no read operations: its write

operations are simply executed and buffered at the version

cache. Obladi then finalizes the epoch by aborting all trans-

actions (and their dependencies) that have not yet finished

executing: t4 is consequently aborted. Finally, Obladi aggre-

gates the last version of every update into the write batch

(skipping version c1 of object c for instance, instead only

writing c2), before notifying clients of the commit decision.

6.3 Reducing Work

Obladi reduces work in two additional ways: it caches reads

within an epoch and allows Ring ORAM to execute write

operations without also executing dummy queries. While

these optimizations may appear straightforward, ensuring

that they maintain workload independence requires care.

Caching Reads. Ring ORAM maintains a client-side stash

(§4) that stores ORAM blocks until their eviction to cloud

storage. Importantly, a request for a block present in the

stash still triggers a dummy request: a dummy object is

still retrieved from each bucket along its path. While this

access may appear redundant at first, it is in fact necessary

to preserve workload independence: removing it removes

the guarantee that the set of paths that Obladi requests from

cloud storage is uniformly distributed. In particular, blocks

present in the stash are more likely to be mapped to paths

farther away from the one visited by the last evict path, as

they correspond to paths that could not be flushed: buckets

have limited space for real blocks and blocks mapped to

paths that only intersect near the top of the tree are less likely

to find a free slot to which they can be flushed. The degree

to which this effect skews the distribution leaks information

about the stash size, and, consequently, about the workload.

To illustrate, consider the execution in Figure 6. Objects

mapped to paths 1 and 2 (a, b, and f ) were not flushed from

the stash in the previous eviction of path 4. When these

objects are subsequently accessed, naively reading them

from the stash without performing dummy reads skews the

set of paths accessed toward the right subtree (paths 3 and 4)

Obladi securely mitigates some of this work by drawing

a novel distinction between objects that are in the stash as

a result of a logical access and those present because they

could not be evicted. The former can be safely accessed

without performing a dummy read, while the latter cannot.

Objects present in the stash following a logical access are

mapped to independently uniformly distributed paths. Ring

ORAM’s path invariant ensures that, without caching, the

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    733







8 Durability

Obladi guarantees durability at the granularity of epochs: af-

ter a crash, it recovers to the state of the last failure-free epoch.

Obladi adds two demands to the need of recovering to a con-

sistent state: recovery should leak no information about past

or future transactions, and it should be efficient, accessing

minimal data from cloud storage. Obladi guarantees the for-

mer by ensuring that recovery logic and data logged for recov-

ery maintain workload independence (§3). It strives towards

the latter by leveraging the determinism of Ring ORAM.

Consistency. Obladi recovery logic relies on two well-

known techniques: write-ahead logging [51] and shadow

paging [30]. Obladi mandates that transactions be durable

only at the end of an epoch; thus, on a proxy failure, all

ongoing transactions can be aborted, and the system reverted

to the previous epoch. To make this possible, Obladi must (i)

recover the proxy metadata lost during the proxy crash, and

(ii) ensure that the ORAM does not contain any of the aborted

transactions’ updates. To recover the metadata, Obladi logs

three data structures before declaring the epoch committed:

the position map, the permutation map, and the stash. The po-

sition map and the permutation map identify the position of

real objects in the ORAM tree (respectively, in a path and in

a bucket); logging them prevents the recovery logic from hav-

ing to scan the full ORAM to recover the position of buckets.

Logging the stash is necessary for correctness. As eviction

may be unable to flush the entire stash, some newly written

buckets may be present only in the stash, even at epoch bound-

aries. Failing to log the stash could thus lead to data loss.

To undo partially executed transactions, Obladi adapts the

traditional copy-on-write technique of shadow paging [30]:

rather than updating buckets in place, it creates new versions

of each bucket on every write. Obladi then leverages the

inherent determinism of Ring ORAM to reconstruct a

consistent snapshot of the ORAM at a given epoch. In Ring

ORAM, the current version of a bucket (i.e. the number of

times a bucket has been written) is a deterministic function of

the number of prior evict paths. The number of evict paths per

epoch is similarly fixed (evict paths happen every A accesses,

and epochs are of fixed size). Obladi can then trivially revert

the ORAM on failures by setting the evict path counter to

its value at the end of the last committed epoch. This counter

determines the number of evict paths that have occurred, and

consequently the object versions of the corresponding epoch.

Security. Obladi ensures that (i) the information logged for

durability remains independent of data accesses, and (ii) that

the interactions between the failed epoch, the recovery logic,

and the next epoch preserve workload independence.

Obladi addresses the first issue by encrypting the position

map and the contents of the permutations table. It similarly

encrypts the stash, but also pads it to its maximum size,

as determined in canonical Ring ORAM [69], to prevent

it from indicating skew (if a small number of objects are

accessed frequently, the stash will tend to be smaller).

The second concern requires more care: workload inde-

pendence must hold before, during, and after failures. Ring

ORAM guarantees workload independence through two in-

variants: the bucket invariant and the path invariant (§4).

Preserving bucket slots from being read twice between evic-

tions is straightforward. Obladi simply logs the invalid/valid

map to track which slots have already been read and recovers

it during recovery; there is no need for encryption, as the set

of slots read is public information. Ensuring that the ORAM

continues to observe a uniformly distributed set of paths is in-

stead more challenging. Specifically, read requests from par-

tially executed transactions can potentially leak information,

even when recovering to the previous epoch. Traditionally,

databases simply undo partially executed transactions, mark

them as aborted, and proceed as if they had never existed.

From a security standpoint, however, these transactions were

still observed by the adversary, and thus may leak informa-

tion. Consider a transaction accessing object a (mapped to

path 1) that aborts because of a proxy failure. Upon recovery,

it is likely that a client will attempt to access a again. As

the recovery logic restores the position map of the previous

epoch, that new operation on a will result in another access

to path 1, revealing that the initial access to path 1 was likely

real (rather than padded), as the probability of collisions be-

tween two uniformly chosen paths is low. To mitigate this

concern while allowing clients to request the same objects

after failure, Obladi durably logs the list of paths and slot

indices that it accesses, before executing the actual requests,

and replays those paths during recovery (remapping any real

blocks). While this process is similar to traditional database

redo logging [51], the goal is different. Obladi does not try to

reapply transactions (they have all aborted), but instead forces

the recovery logic to be deterministic: the adversary always

sees the paths from the aborted epoch repeated after a failure.

Optimizations. To minimize the overhead of checkpoint-

ing, Obladi checkpoints deltas of the position, permutation,

and valid/invalid map, and only periodically checkpoints

the full data structures. While the number of changes to the

permutation and valid/invalid maps directly follows from the

set of physical requests made to cloud storage, the size of the

delta for the position map reveals how many real requests

were included in an epoch—padded requests do not lead

to position map updates. Obladi thus pads the map delta to

the maximum number of entries that could have changed in

an epoch (i.e., the read batch size times the number of read

batches, plus the size of the single write batch).

9 System Security

We now outline Obladi’s security guarantees, deferring a

formal treatment to the associated technical report [20]. To

the best of our knowledge, we are the first to formalize the

notion of crashes in the context of oblivious RAM.

Model We express our security proof within the Universal

Composability (UC) framework [14], as it aligns well with

736    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the needs of modern distributed systems: a UC-secure system

remains UC-secure under concurrency or if composed with

other UC-secure systems. Intuitively, proving security in the

UC model proceeds as follows. First, we specify an ideal

functionality F that defines the expected functionality of

the protocol for both correctness and security. For instance,

Obladi requires that the execution be serializable, and that

only the frequency of read and write batches be learned.

We must ensure that the real protocol provides the same

functionality to honest parties while leaking no more

information than F would. To establish this, we consider

two different worlds: one where the real protocol interacts

with an adversary A, and one where F interacts with SA,

our best attempt at simulating A. A’s transcript—including

its inputs, outputs, and randomness—and SA’s output are

given to an environment E, which can also observe all

communications within each world. E’s goal is to determine

which world contains the real protocol. To prompt the

worlds to diverge, E can delay and reorder messages, and

even control external inputs (potentially causing failures).

Intuitively, E represents anything external to the protocol,

such as concurrently executing systems. We say that the real

protocol is secure if, for any adversary A, we can construct

SA such that E can never distinguish between the worlds.

Assumptions The security of Obladi relies on four

assumptions. (i) Canonical Ring ORAM is linearizable (ii)

MVTSO generates serializable executions. (iii) The network

will retransmit dropped packets. The adversary learns of the

retransmissions, but nothing more.

Ideal Functionality To define the ideal functionality FOb,

recall that the proxy is considered trusted while interactions

with the cloud storage are not. This allows FOb to replace

the proxy and intermediate between clients and the storage

server, performing the same functions as the proxy (we do not

try to hide the concurrency/batching logic). We must, how-

ever, define FOb to obliviously hide data values and access

patterns. To this end, when the proxy logic finalizes a batch,

FOb simply informs the storage server that it is executing a

read or write batch. Since FOb is a theoretical ideal, we allow

it to manage all storage internally, so it then updates its local

storage and furnishes the appropriate response to each client.

In this setup, modeling proxy crashes is straightforward.

Crashes can occur at any time and cause the proxy to lose all

state. So, on an external input to crash, FOb simply clears its

state. Since we accept thatAmay learn of proxy crashes,FOb

also sends a message to the storage server that it has crashed.

Proof Sketch The correctness of the system is straightfor-

ward, as FOb behaves much the same as the proxy.

To prove security, we must demonstrate that, for any

algorithm A defining the behavior of the storage server,

we can accurately simulate A’s behavior using only the

information provided by FOb. Note that the simulator SA

can run A internally, as A is simply an algorithm. Thus

we can define SA to operate as follows. When SA receives

Patients
PatientID
CreatorID
IsActive
[Metadata]

Users
UserID
Role
Login
[Metadata]

Episodes
EpisodeID
PatientID
CreatorID
[Metadata]

Episode
Contents

ContentID
EpisodeID
ContentType
XMLContent

Prescriptions
PrescriptionID
PatientID
DrugID
[Metadata]

Drugs
DrugID
Name
Interactions
[Metadata]

PMH
PMHID
PatientID
Type
[Metadata]

Figure 8: FreeHealth Database Architecture

notification of a batch, it constructs a parallel ORAM batch

from uniformly random accesses of the correct type. It

provides these accesses to A and produces A’s response.

The security of this simulation hinges on two key proper-

ties: (i) the caching and deduplication logic do not affect the

distribution of physical accesses, and (ii) the physical access

pattern of a parallelized batch is entirely determined by the

physical accesses proscribed by sequential Ring ORAM for

the same batch. The first follows from Ring ORAM’s guaran-

tee that each access will be an independent uniformly random

path—removing an independently-sampled element does not

change the distribution of the remaining set. The second fol-

lows from the parallelization procedure simply aggregating

all accesses and performing all reads followed by all writes.

These properties ensure that the random access pattern

produced by SA is identical to the access pattern produced

by the proxy when operating on real data. Thus the simulated

A must behave exactly as it would when provided with real

data, and produce indistinguishable output.

10 Implementation

Our prototype consists of 41,000 lines of Java code. We

use the Netty library for network communication (v4.1.20),

Google protobuffers for serialization (v3.5.1), the Bouncy

Castle library (v1.59) for encryption, and the Java MapDB

library (v3) for persistence. We additionally implement

a non-private baseline (NoPriv). NoPriv shares the same

concurrency control logic (TSO), but replaces the proxy

data handler with non-private remote storage. NoPriv neither

batches nor delays operations; it buffers writes at the local

proxy until commit, and serves writes locally when possible.

11 Evaluation

Obladi leverages the flexibility of transactional commits to

mitigate the overheads of ORAM. To quantify the benefits

and limitations of this approach, we ask:

1. How much does Obladi pay for privacy? (§11.1)

2. How do epochs affect these overheads? (§11.2)

3. Can Obladi recover efficiently from failures? (§11.3)

Experimental Setup The proxy runs on a c5.xlarge Ama-

zon EC2 instance (16 vCPUs, 32GB RAM), and the storage

on an m5.4xlarge instance (16 vCPUs, 64GB RAM). The

ORAM tree is configured with Z=100 and optimal values

of S and A (respectively, 196 and 168) [69]. We report the

average of three 90 seconds runs (30 seconds ramp-up/down).

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    737









[2] AGUILAR-MELCHOR, C., BARRIER, J., FOUSSE, L., AND KIL-

LIJIAN, M.-O. XPIR: Private Information Retrieval for Every-

one. Cryptology ePrint Archive, Report 2014/1025, 2014. http:

//eprint.iacr.org/2014/1025.

[3] AMAZON. S3: Simple storage service. https://aws.amazon.com/

s3/.

[4] AMAZON. Simple db. https://aws.amazon.com/simpledb/.

[5] ARASU, A., BLANAS, S., EGURO, K., KAUSHIK, R., KOSSMANN,

D., RAMAMURTHY, R., AND VENKATESAN, R. Orthogonal Security

With Cipherbase. In Conference on Innovative Data Systems Research

(CIDR) (2013).

[6] ARASU, A., EGURO, K., KAUSHIK, R., KOSSMANN, D., MENG,

P., PANDEY, V., AND RAMAMURTHY, R. Concerto: A High Concur-

rency Key-Value Store with Integrity. In ACM SIGMOD International

Conference on Management of Data (SIGMOD) (2017).

[7] BAJAJ, S., AND SION, R. TrustedDB: A Trusted Hardware Based

Database with Privacy and Data Confidentiality. In ACM SIGMOD

International Conference on Management of Data (SIGMOD) (2011).

[8] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J., KHORLIN,

A., LARSON, J., LEON, J.-M., LI, Y., LLOYD, A., AND YUSH-

PRAKH, V. Megastore: Providing Scalable, Highly Available Storage

for Interactive Services. In Conference on Innovative Data Systems

Research (CIDR) (2011).

[9] BEIMEL, A., ISHAI, Y., AND MALKIN, T. Reducing the servers’

computation in private information retrieval: PIR with preprocessing.

Journal of Cryptology (JOFC) 17, 2 (2004), 125–151.

[10] BERNSTEIN, P. A., AND GOODMAN, N. Multiversion Concurrency

Control — Theory and Algorithms. ACM Trans. Database Syst. 8, 4

(1983), 465–483.

[11] BINDSCHAEDLER, V., NAVEED, M., PAN, X., WANG, X., AND

HUANG, Y. Practicing Oblivious Access on Cloud Storage: The

Gap, the Fallacy, and the New Way Forward. In ACM Conference on

Computer and Communications Security (CCS) (2015).

[12] BOYLE, E., CHUNG, K.-M., AND PASS, R. Oblivious Parallel RAM

and Applications. In Theory of Cryptography Conference (TCC)

(2016).

[13] BULCK, J. V., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI,

B., PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM,

Y., AND STRACKX, R. Foreshadow: Extracting the Keys to the Intel

SGX Kingdom with Transient Out-of-Order Execution. In USENIX

Security Symposium (USENIX) (2018).

[14] CANETTI, R. Universally composable security: A new paradigm

for cryptographic protocols. In IEEE Symposium on Foundations of

Computer Science (FOCS) (2001).

[15] CECCHETTI, E., ZHANG, F., JI, Y., KOSBA, A., JUELS, A., AND

SHI, E. Solidus: Confidential Distributed Ledger Transactions via

PVORM. In ACM Conference on Computer and Communications

Security (CCS) (2017).

[16] CHOR, B., GILBOA, N., AND NAOR, M. Private information retrieval

by keywords, 1997.

[17] CLOUD, C. 5 advantages of a cloud-based EHR.

[18] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,

AND SEARS, R. Benchmarking Cloud Serving Systems with YCSB.

In ACM Symposium on Cloud Computing (SoCC) (2010).

[19] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,

C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER, C.,

HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,

LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN,

S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C.,

WANG, R., AND WOODFORD, D. Spanner: Google’s Globally Dis-

tributed Database. ACM Transactions on Computer Systems (TOCS)

31, 3 (2013), 8:1–8:22.

[20] CROOKS, N., BURKE, M., CECCHETTI, E., HAREL, S., AGARWAL,

R., AND ALVISI, L. Obladi: Oblivious Serializable Transactions in

the Cloud. CoRR abs/1809.10559 (2018).

[21] CROOKS, N., PU, Y., ALVISI, L., AND CLEMENT, A. Seeing is

Believing: A Client-Centric Specification of Database Isolation. In

ACM Symposium on Principles of Distributed Computing (PODC)

(2017).

[22] DIFALLAH, D. E., PAVLO, A., CURINO, C., AND CUDRE-

MAUROUX, P. OLTP-Bench: An Extensible Testbed for Bench-

marking Relational Databases.

[23] DYNAMODB. DynamoDB. https://aws.amazon.com/

dynamodb/.

[24] DYNAMODB. Encryption at rest. https://docs.aws.

amazon.com/amazondynamodb/latest/developerguide/

EncryptionAtRest.html.

[25] ESKANDARIAN, S., AND ZAHARIA, M. An Oblivious General-

Purpose SQL Database for the Cloud. CoRR abs/1710.00458 (2017).

[26] ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L.

The Notions of Consistency and Predicate Locks in a Database System.

Commun. ACM 19, 11 (1976), 624–633.

[27] FLETCHER, C. W., REN, L., KWON, A., AND V. DI, M. A Low-

Latency, Low-Area Hardware Oblivious RAM Controller. In Annual

IEEE Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM) (2015).

[28] FREEHEALTH.IO. FreeHealth EHR. https://freehealth.io/.

Accessed 2018-05-01.

[29] GOLDREICH, O., AND OSTROVSKY, R. Software protection and

simulation on oblivious RAMs. Journal of the ACM (JACM) 43, 3

(1996), 431–473.

[30] GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R.,

PRICE, T., PUTZOLU, F., AND TRAIGER, I. The Recovery Manager

of the System R Database Manager. ACM Computing Surveys (CSUR)

13, 2 (1981), 223–242.

[31] GUPTA, T., CROOKS, N., MULHERN, W., SETTY, S., ALVISI, L.,

AND WALFISH, M. Scalable and Private Media Consumption with

Popcorn. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI) (2016).

[32] INTEL. Intel Software Guard Extension - SGX. https://software.

intel.com/en-us/sgx.

[33] ISHAI, Y., KUSHILEVITZ, E., OSTROVSKY, R., AND SAHAI, A.

Batch Codes and Their Applications. In ACM Symposium on Theory

of Computing (STOC) (2004).

[34] JONES, E. P., ABADI, D. J., AND MADDEN, S. Low Overhead

Concurrency Control for Partitioned Main Memory Databases. In

ACM SIGMOD International Conference on Management of Data

(SIGMOD) (2010).

[35] KAPRITSOS, M., WANG, Y., QUEMA, V., CLEMENT, A., ALVISI,

L., AND DAHLIN, M. All about Eve: Execute-Verify Replication for

Multi-Core Servers. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI) (2012).

[36] KOCHER, P., HORN, J., FOGH, A., , GENKIN, D., GRUSS, D.,

HAAS, W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER,

T., SCHWARZ, M., AND YAROM, Y. Spectre Attacks: Exploiting

Speculative Execution. In IEEE Symposium on Security and Privacy

(SP) (2019).

[37] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND WONG,

E. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Transac-

tions on Computer Systems (TOCS) 27, 4 (2010), 7:1–7:39.

[38] KUNG, H. T., AND ROBINSON, J. T. On Optimistic Methods for

Concurrency Control. ACM Trans. Database Syst. 6, 2 (1981), 213–

226.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    741



[39] KUO, A. M.-H. Opportunities and challenges of cloud computing to

improve health care services. Journal of Medical Internet Research

(JMIR) 13, 3 (2011).

[40] KWON, A., CORRIGAN-GIBBS, H., DEVADAS, S., AND FORD, B.

Atom: Horizontally Scaling Strong Anonymity. In ACM Symposium

on Operating System Principles (SOSP) (2017).

[41] LARSON, P.-A., BLANAS, S., DIACONU, C., FREEDMAN, C., PA-

TEL, J. M., AND ZWILLING, M. High-performance Concurrency

Control Mechanisms for Main-memory Databases. In Proceedings of

the VLDB Endowment (PVLDB) (2011).

[42] LIBRE, M. FreeHealth EHR. https://https://freemedsoft.

com/fr/. Accessed 2018-05-01.

[43] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W.,

FOGH, A., HORN, J., MANGARD, S., KOCHER, P., GENKIN, D.,

YAROM, Y., AND HAMBURG, M. Meltdown: Reading Kernel Mem-

ory from User Space. In USENIX Security Symposium (USENIX)

(2018).

[44] LORCH, J., PARNO, B., MICKENS, J., RAYKOVA, M., AND SCHIFF-

MAN, J. Shroud: Ensuring Private Access to Large-Scale Data in the

Data Center. In Conference on File and Storage Technologies (FAST)

(2013).

[45] LUEKS, W., AND GOLDBERG, I. Sublinear Scaling for Multi-Client

Private Information Retrieval. In Financial Cryptography and Data

Security (FC) (2015).

[46] MAAS, M., LOVE, E., STEFANOV, E., TIWARI, M., SHI, E.,

ASANOVIC, K., KUBIATOWICZ, J., AND SONG, D. PHANTOM:

Practical Oblivious Computation in a Secure Processor. In ACM Con-

ference on Computer and Communications Security (CCS) (2013).

[47] MEHDI, S. A., LITTLEY, C., CROOKS, N., ALVISI, L., BRONSON,

N., AND LLOYD, W. I Can’t Believe It’s Not Causal! Scalable Causal

Consistency with No Slowdown Cascades. In USENIX Symposium

on Networked Systems Design and Implementation (NSDI) (2017).

[48] MICROSOFT. Azure tables. https://azure.microsoft.com/

en-us/services/storage/tables/.

[49] MICROSOFT. Documentdb - nosql service for json. https://azure.

microsoft.com/en-us/services/documentdb/.

[50] MICROSOFT. SQL Server. https://www.microsoft.com/

en-cy/sql-server/sql-server-2016.

[51] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H., AND

SCHWARZ, P. ARIES: A Transaction Recovery Method Supporting

Fine-granularity Locking and Partial Rollbacks Using Write-ahead

Logging. ACM Trans. Database Syst. 17, 1 (1992), 94–162.

[52] MONGODB. Agility, Performance, Scalibility. Pick three. https:

//www.mongodb.org/.

[53] NARAYANAN, A., AND SHMATIKOV, V. Robust De-anonymization

of Large Sparse Datasets. In IEEE Symposium on Security and Privacy

(SP) (2008).

[54] NARAYANAN, A., AND SHMATIKOV, V. Myths and fallacies of

“personally identifiable information”. Commun. ACM 53, 6 (June

2010), 24–26.

[55] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND

FLINN, J. Rethink the Sync. ACM Transactions on Computer Systems

(TOCS) 26, 3 (2008), 6:1–6:26.

[56] OLUMOFIN, F., AND GOLDBERG, I. Privacy-preserving Queries over

Relational Databases. In Privacy Enhancing Technologies Symposium

(PETS) (2010).

[57] ORACLE. InnoDB. https://dev.mysql.com/doc/refman/8.0/

en/innodb-storage-engine.html/.

[58] ORACLE. MySQL. https://www.mysql.com/.

[59] ORACLE. MySQL Cluster. https://www.mysql.com/products/

cluster/.

[60] PAPADIMITRIOU, A., BHAGWAN, R., CHANDRAN, N., RAMJEE, R.,

HAEBERLEN, A., SINGH, H., MODI, A., AND BADRINARAYANAN,

S. Big Data Analytics over Encrypted Datasets with Seabed. In

USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI) (2016).

[61] PAPADIMITRIOU, C. H. The Serializability of Concurrent Database

Updates. Journal of the ACM (JACM) 26, 4 (1979), 631–653.

[62] PLATFORM, G. C. Cloud spanner. http://cloud.google.com/

spanner/.

[63] POPA, R. A., REDFIELD, C. M. S., ZELDOVICH, N., AND BAL-

AKRISHNAN, H. CryptDB: Protecting Confidentiality with Encrypted

Query Processing. In ACM Symposium on Operating System Princi-

ples (SOSP) (2011).

[64] PORTS, D. R., LI, J., LIU, V., SHARMA, N. K., AND KRISHNA-

MURTHY, A. Designing Distributed Systems Using Approximate

Synchrony in Data Center Networks. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI) (2015).

[65] POSTGRESQL. http://www.postgresql.org/.

[66] REDDY, P. K., AND KITSUREGAWA, M. Speculative Locking Proto-

cols to Improve Performance for Distributed Database Systems. IEEE

Transactions on Knowledge and Data Engineering (TKDE) 16, 2

(2004), 154–169.

[67] REED, D. P. Implementing Atomic Actions on Decentralized Data

(Extended Abstract). In ACM Symposium on Operating System Prin-

ciples (SOSP) (1979).

[68] REED, D. P. Implementing Atomic Actions on Decentralized Data.

ACM Transactions on Computer Systems (TOCS) 1, 1 (1983), 3–23.

[69] REN, L., FLETCHER, C., KWON, A., STEFANOV, E., SHI, E., VAN

DIJK, M., AND DEVADAS, S. Constants Count: Practical Improve-

ments to Oblivious RAM. In USENIX Security Symposium (USENIX)

(2015).

[70] SAHIN, C., ZAKHARY, V., EL ABBADI, A., LIN, H., AND TESSARO,

S. TaoStore: Overcoming Asynchronicity in Oblivious Data Storage.

In IEEE Symposium on Security and Privacy (SP) (2016).

[71] SERVER, M. S. Always Encrypted. https://www.microsoft.

com/en-us/research/project/always-encrypted/.

[72] SHEFF, I., MAGRINO, T., LIU, J., MYERS, A. C., AND VAN RE-

NESSE, R. Safe Serializable Secure Scheduling: Transactions and the

Trade-Off Between Security and Consistency. In ACM Conference on

Computer and Communications Security (CCS) (2016).

[73] SHI, E., CHAN, T.-H. H., STEFANOV, E., AND LI, M. Oblivious

RAM with O((logN)3) Worst-Case Cost. In International Conference

on The Theory and Application of Cryptology and Information Security

(2011).

[74] SINGEL, R. Netflix spilled your Brokeback Mountain secret, lawsuit

claims. Wired (Dec. 2009). http://www.wired.com/images_

blogs/threatlevel/2009/12/doe-v-netflix.pdf.

[75] STEFANOV, E., AND SHI, E. ObliviStore: High Performance Oblivi-

ous Cloud Storage. In IEEE Symposium on Security and Privacy (SP)

(2013).

[76] STEFANOV, E., AND SHI, E. ObliviStore: High Performance Oblivi-

ous Distributed Cloud Data Store. In Network and Distributed System

Security Symposium (NDSS) (2013).

[77] STEFANOV, E., SHI, E., AND SONG, D. Towards Practical Oblivious

RAM.

[78] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C., REN, L.,

YU, X., AND DEVADAS, S. Path ORAM: An Extremely Simple

Oblivious RAM Protocol. In ACM Conference on Computer and

Communications Security (CCS) (2013).

[79] SU, C., CROOKS, N., DING, C., ALVISI, L., AND XIE, C. Bringing

Modular Concurrency Control to the Next Level. In ACM SIGMOD

International Conference on Management of Data (SIGMOD) (2017).

742    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[80] TRANSACTION PROCESSING PERFORMANCE COUNCIL. The TPC-

C home page. http://www.tpc.org/tpcc.

[81] TU, S., KAASHOEK, M. F., MADDEN, S., AND ZELDOVICH, N.

Processing Analytical Queries over Encrypted Data. In Proceedings

of the VLDB Endowment (PVLDB) (2013).

[82] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN, S.

Speedy Transactions in Multicore In-memory Databases. In ACM

Symposium on Operating System Principles (SOSP) (2013).

[83] WANG, F., YUN, C., GOLDWASSER, S., VAIKUNTANATHAN, V.,

AND ZAHARIA, M. Splinter: Practical Private Queries on Public

Data. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI) (2017).

[84] WEIKUM, G. Principles and Realization Strategies of Multilevel

Transaction Management. ACM Trans. Database Syst. 16, 1 (1991),

132–180.

[85] WILLIAMS, P., SION, R., AND CARBUNAR, B. Building Castles out

of Mud: Practical Access Pattern Privacy and Correctness on Untrusted

Storage. In ACM Conference on Computer and Communications

Security (CCS) (2008).

[86] WILLIAMS, P., SION, R., AND TOMESCU, A. PrivateFS: A Par-

allel Oblivious File System. In ACM Conference on Computer and

Communications Security (CCS) (2012).

[87] XIE, C., SU, C., LITTLEY, C., ALVISI, L., KAPRITSOS, M., AND

WANG, Y. High-performance ACID via Modular Concurrency Con-

trol. In ACM Symposium on Operating System Principles (SOSP)

(2015).

[88] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNAMURTHY,

A., AND PORTS, D. R. K. Building Consistent Transactions with

Inconsistent Replication. In ACM Symposium on Operating System

Principles (SOSP) (2015).

[89] ZHENG, W., DAVE, A., BEEKMAN, J. G., POPA, R. A., GONZA-

LEZ, J. E., AND STOICA, I. Opaque: An Oblivious and Encrypted

Distributed Analytics Platform. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI) (2017).

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    743




