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Abstract

We present an overview of GProM, a generic provenance middleware for relational databases. The sys-

tem supports diverse provenance and annotation management tasks through query instrumentation, i.e.,

compiling a declarative frontend language with provenance-specific features into the query language of

a backend database system. In addition to introducing GProM, we also discuss research contributions

related to GProM including the first provenance model and capture mechanism for transaction prove-

nance, a unified framework for answering why- and why-not provenance questions, and provenance-

aware query optimization. Furthermore, by means of the example of post-mortem debugging of transac-

tions, we demonstrate how novel applications of provenance are made possible by GProM.

1 Introduction

Provenance, information about the origin of data and the queries and/or updates that produced it, is critical for

debugging queries and transactions, auditing, establishing trust in data, and many other use cases. For example,

consider a relation storing employee salaries. The relation is subjected to complex transactional updates such

as calculating tax, applying tax deductions, multipling rates with working hours, and so on. How can we know

whether the information in the current version of the relation is correct? If one employee’s salary is incorrect,

how do we know which update(s) or data caused that error? Data provenance, by providing a full record of the

derivation history of data, makes it possible to identify the causes of such errors.

A persistent challenge in database provenance research has been to build efficient provenance-aware databases.

That is, to design and implement systems that automatically capture provenance information for database op-

erations and allow this information to be queried. In this work, we give an introduction to GProM (Generic

Provenance Middleware), a system that enriches database backends with support for provenance. The system is

available as open source software at https://github.com/IITDBGroup/gprom. At its core, GProM

is a compiler that translates a frontend language (e.g., SQL with new language constructs for requesting and

managing provenance) into queries expressed in the language of a database backend that generate a relational

encoding of data annotated with provenance. Below we briefly discuss some of GProM’s unique features.

• Exploiting backend databases for provenance capture and storage: GProM represents provenance in

the data model of the backend database. To capture provenance for an operation, the system constructs a

query expressed in the language of the database backend which returns this type of provenance encoding.

This technique, which we refer to as instrumentation, enables us to exploit the advanced storage and query

execution capabilities of modern database systems.
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name state major N[X]

Alice IL CS v

Bob NY CS x

Peter IL CS y

Fran IL Math z

→
SELECT state

FROM student

WHERE major = ’CS’
→

state N[X]

IL v + y

NY x

↓Encode ↓Instrumentation ↓Encode

name state major

Alice IL CS

Bob NY CS

Peter IL CS

Fran IL Math

→

SELECT state,

name AS P(name),

state AS P(state),

major AS P(major)

FROM student

WHERE major = ’CS’

→
state P(name) P(state) P(major)

IL Alice IL CS

IL Peter IL CS

NY Bob NY CS

Figure 1: Provenance instrumentation example: compute provenance polynomials for a query

• On demand provenance capture for a large class of operations: GProM supports provenance capture

for queries, updates, and transactions. To the best of our knowledge it is the only system that can capture

provenance for transactions. In contrast to many other systems which capture provenance eagerly for all

operations no matter whether this provenance is needed or not, GProM only captures provenance if it is

explicitly requested by a user or application.

• Treating provenance requests as queries: The user interacts with GProM through a declarative fron-

tend language enriched with language constructs for requesting and managing provenance. Provenance

requests are treated as queries which allows them to be combined with other language constructs. Thus,

the full expressive power of the frontend language is available for querying provenance.

• Low-overhead and non-invasive: GProM was designed to minimize the performance impact for opera-

tions when no provenance is requested. Obviously, it would be impossible to reconstruct provenance for

past operations unless some information is maintained. GProM relies on the temporal and auditing logging

capabilities supported by many DBMS to capture sufficient information to be able to reconstruct prove-

nance for past queries, transactions, and updates on demand. This approach has the advantage of being

non-invasive, i.e., no changes to an application’s SQL code are required to enable provenance capture.

• Extensibility: GProM was designed from the ground up with extensibility in mind - support for new

provenance models, database backends, frontend languages, and optimizations can be added with ease.

This has enabled us to support a large number of diverse provenance and annotation management tasks.

The remainder of this paper is organized as follows. We explain the instrumentation approach underlying

GProM in Section 2. In Section 3, we give a more technical introduction to GProM. Section 4 covers major

contributions to provenance research related to GProM. We discuss post-mortem transaction debugging, one

of the novel applications of provenance made possible by GProM, in Section 5. We conclude in Section 6.

The research on GProM is enabled by the many fundmental contributions to provenance research made by the

database community. For reasons of space it is beyond the scope of this paper to acknowledge these important

contributions. We refer the interested reader to one of the many excellent surveys on provenance [4, 8, 6, 5, 12].

2 Instrumentation - Exploiting a DBMS for Provenance Storage and Capture

The de facto standard for database provenance [9] is to model provenance as annotations on data and to define

a query semantics that determines how annotations propagate. Under such a semantics, each output tuple t of a
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query Q is annotated with its provenance, i.e., a combination of input tuple annotations that explains how these

inputs were used by Q to derive t. For instance, using provenance polynomials, each tuple is annotated with

a, typically unique, variable representing this tuple. Under this model, annotations are propagated such that

every query result tuple is annotated with a polynomial over the variables representing the input tuples in the

output’s provenance. The addition and multiplication operations in such polynomials encode how these inputs

have been combined to derive the output. Addition represents alternative use of inputs (e.g., union or projection)

and multiplication represents conjunctive use (e.g., join). Relations annotated with provenance polynomials are

a specific type of K-relations, relations where tuples are annotated with elements from a commutative semiring

such as the semiring of provenance polynomials (denoted as N[X]). Relational algebra over K-relations is

defined based on the addition and multiplication operations of the semiring.

For example, consider a query listing all states that have CS students. The query and example N[X]-relations

encoding the input and output are shown at the top of Figure 1. The query result (IL) is annotated with v + y

which indicates that this tuple is part of the result as long as either v or x exist in the input (students Alice or Pe-

ter). As we will discuss in Section 4.1, the semiring provenance model which originally was defined for queries

can be extended to also support transactional updates. GProM targets any type of provenance or other informa-

tion that can be modelled as annotations. Current database systems do not natively support the propagation of

annotations through operations. There are two approaches for making a database system provenance-aware. Ei-

ther we extend the system’s query execution engine to support these features natively or we encode provenance

annotations using the data model supported by the database and instrument operations to propagate provenance

annotations. GProM and many other database provenance systems such as Perm [7], LogicBlox, Orchestra,

and ExSPAN apply the second approach. Using a relational encoding of provenance annotations, these systems

compile queries with annotated semantics into relational queries that produce this encoding of provenance an-

notations. We refer to this reduction from annotated to standard relational semantics as instrumentation. The

instrumentation approach can either be implemented as a compilation process in a middleware application or as

a query rewrite layer within a DBMS that instruments queries before they are passed to the system’s optimizer

(e.g., the Perm system [7] is an extension of PostgreSQL with support for capturing and querying provenance).

In GProM we have opted for a middleware implementation to be able to support multiple database backends.

An example of instrumentation is shown at the bottom of Figure 1. The input query with annotated semantics

is instrumented to produce a relational encoding of provenance polynomial annotations. In this example, we use

an encoding pioneered in Perm [7] which represents a tuple t annotated with polynomial k as follows. The

polynomial is refactored into a sum of products where variables in each monomial (individual product in the

sum) are ordered based on the occurrence of the relations in the query. A polynomial normalized in this fashion is

then encoded as a set of tuples where each tuple in such a set represents one monomial. A variable is represented

by the values of the tuple annotated with this variable in the input. Here P denotes a renaming function which

is used to create names for attributes that store provenance. For instance, an attribute student.name would

be renamed as prov student name. Note that this is only one of the representations supported in GProM,

e.g., the user can alternatively request the system to use tuple identifiers to encode variables. Furthermore,

annotations are generated on the fly in this example. This, however, is not a requirement. The instrumentation

approach works perfectly well for inputs which have provenance associated with them.

3 System Overview

We now give a more detailed and technical overview of GProM. Figure 2 shows the high-level architecture of

GProM. A user interacts with the system by sending a query written in a frontend language using one of the

system’s client interfaces (e.g., using a CLI). Frontend languages are declarative query languages that have been

enriched with new language constructs for requesting and querying provenance. A frontend-specific parser trans-

lates an incoming query into a more suitable internal representation, e.g., relational algebra. The result is then
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GProM SQL

PROVENANCE OF 

(SELECT * FROM ...

Provenance
Rewriter

Oracle

Oracle Postgres

Datalog Frontend

Instrumentation
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Target Code Generation

CLI JDBC libgprom Java Bindings
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Q(X) :- R(X,Y).

WHY(Q(Peter))

Figure 2: GProM Architecture
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(a) L1: Provenance is captured using an annotated version of relational

algebra which is first translated into relational algebra over a relational

encoding of annotated relations and then into SQL code.
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(b) L2: In addition to the steps of (a), this pipeline uses reenactment [2]

to compile annotated updates into annotated queries.

Q(X) :- R(X,Y).

WHY(Q(1)).

Q(X) :- Fire(X,Y,Z).

Fire(X,Y,Z) :- …
Parser

Provenance 
Instrumentation

Provenance 

Request

Datalog

with Provenance Requests Datalog

Datalog to 
Algebra 

Translation

Relational

Algebra

DB

(c) L3: Computing provenance graphs for Datalog queries [10] based on

a rewriting called firing rules. The instrumented Datalog program is first

compiled into relational algebra and then into SQL.

Figure 3: Instrumentation pipelines for provenance: (a) L1:

SQL queries, (b) L2: transactions, (c) L3: Datalog

processed by one or more instrumentation components which translate parts of a query containing provenance

features by rewriting such parts to generate a relational encoding of provenance. Instrumentation is typically

broken down into a multi-step compilation process which has the advantage that components implementing a

compilation step can be utilized for multiple provenance tasks. GProM also features a generic optimizer that

can be applied to any such compilation step (see Section 4.3). The output of instrumentation is then processed

by a backend specific code generation module, e.g., translating relational algebra into Postgres’s SQL dialect.

The generated code is sent to the backend for execution using a backend connector. Connectors either use a

native C-library or a JDBC driver to connect to the backend system. GProM was designed from the ground

up to be as modular and extensible as possible. Most components of the system including the frontend parser,

instrumentation and optimization components, code generators, and connectors are pluggable.

3.1 Frontends

So far we have implemented two frontends in GProM: 1) an SQL dialect with provenance features and 2) a

Datalog frontend with support for requesting explanations (provenance) for existing and missing query answers.

Importantly, the SQL dialect also supports other types of annotations such as temporal data and uncertainty.

Our general philosophy in designing these language extensions was to make provenance requests proper query

constructs that can be used in almost any place where regular queries are allowed. Importantly, this enables the

full expressive power of the frontend language to be used for querying provenance information.

3.2 Instrumentation Pipelines

To implement a particular provenance task, e.g., compile a provenance request written in GProM’s SQL dialect

into Postgres’s SQL dialect, the instrumentation components of GProM are arranged into a so-called instrumen-

tation pipeline. Figure 3 shows some of the pipelines currently supported by GProM:

• L1. Provenance for SQL Queries: The pipeline from Figure 3a generates a relational encoding of

provenance annotations such as the one shown in Figure 1.

• L2. Provenance for Transactions: Figure 3b shows a pipeline that retroactively captures provenance for

transactions. In addition to the steps from Figure 3a, this pipeline uses a compilation step called reenact-
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ment. Reenactment translates transactional histories with annotated semantics into equivalent temporal

queries with annotated semantics. We will discuss this pipeline in more detail in Section 4.1.

• L3. Provenance for Datalog: This pipeline (Figure 3c) produces provenance graphs that explain which

successful and failed rule derivations of a Datalog program are relevant for (not) deriving a (missing) query

result. A provenance request is compiled into a program that computes the edge relation of the provenance

graph. This program is then translated into SQL. See Section 4.2 for a more detailed discussion.

Note that a frontend may support multiple pipelines. User requests written in the language of the frontend

are automatically dispatched to the pipeline that is responsible for handling this type of request. For instance,

the SQL frontend uses several pipelines including the pipelines L1 and L2 described above. If a user requests

the provenance for a query then this request will be handled by pipeline L1 whereas if the user requests the

provenance of a transaction then this request will be dispatched to pipeline L2.

3.3 Backends and Client Interfaces

GProM can be accessed through its native commandline shell (CLI), through a library (libgrom), using a Java

API, or through the system’s JDBC driver which wraps a vendor specific JDBC driver. GProM supports code

generation for the SQL dialects of Oracle, Postgres, and SQLite as well as for LogiQL, LogicBlox’s Datalog

dialect. Backend connectors have been implemented for Oracle, Postgres, SQLite, and MonetDB.

4 Research Contributions

In addition to building a platform to support diverse provenance needs, our work on GProM has laid out the

basis for future research related to data provenance. At the same time, building GProM required us to cover

new ground in provenance research. In the following, we cover three major research contributions: tracking

provenance of transactions, unifying why- and why-not provenance, and provenance-aware query optimization.

4.1 Provenance for Transactions and Reenactment

One major limitation of database provenance approaches is their lack of support for tracking provenance of trans-

actional updates. This has prevented the use of provenance for applications such as debugging of transactions

and auditing. For instance, consider the following scenario. A company uses a database to store mission-critical

data and an attacker has compromised one of the database user accounts. Provenance for transactions would

allow us to determine what data was accessed by the attacker through this account. Furthermore, it would allow

us to determine what data was affected directly or indirectly by updates run by the compromised account (e.g., a

reporting query returns an incorrect result because of the attacker has modified data). To address this shortcom-

ing, we have developed MV-semirings (multi-version semirings), the first provenance model for transactions,

and reenactment, a technique for retroactively capturing the provenance of past transactions using queries.

The MV-semiring model extends the semiring annotation framework [9] to account for tuple derivations

under transactional updates [2, 1]. For any semiring K, we can construct an MV-semiring Kν . For instance,

N[X]ν is the MV-version of the provenance polynomial semiring N[X]. An annotation from an MV-semiring Kν

is a symbolic expression over elements from K recording the derivation history of a tuple. These expressions use

version annotations to enclose part of the provenance of a tuple to encode that the tuple version corresponding

to this part of the provenance was processed by a certain update at a certain time. A version annotation Xid
T,ν(k)

denotes that an operation of type X (update U , insert I , delete D, or commit C) that was executed at time

ν − 1 (we assume a totally ordered time domain that is used to identify versions) by transaction T affected a

previous version of a tuple with identifier id and previous provenance k. The nesting of version annotations in
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the MV-semiring annotation of a tuple records the sequence of updates that lead to the creation of the current

version of the tuple. We have defined update operations and a transactional semantics for MV-semiring databases

that is backward compatible to snapshot isolation (SI) and read committed snapshot isolation (RC-SI) for bag

semantics databases. In the resulting semantics, each tuple in a version of a database produced by a history of

transactions is annotated with its complete derivation history according to a SI or RC-SI history. Our model

also supports provenance for queries, i.e., the provenance a query result cannot just be traced back to the inputs

of the query, but also reaches back into the transactional history that produced these inputs. Furthermore, our

model preserves a major advantage of the semiring framework: it generalizes set and bag semantics as well as

other types of annotations expressible in the semiring framework such as incomplete databases. That is, we can

determine the bag semantics database that is the result of a given snapshot isolation history from the annotated

database for this history. We make use of this property to build a transactional debugger (see Section 5).

Example 4.1. Consider a tuple version t from an N[X]ν-relation R (the MV-version of provenance polynomials)

that was created by a SI history. Assume that in the current version of relation R, tuple t is annotated with

C2

T1,6
(I2T1,4

(x2)). This annotation records that the tuple was produced by an insert (I) executed by transaction

T1 at time 3 and was assigned a tuple identifier 2. Transaction T1 committed at time 5 after which this version of

tuple t became visible to other transactions. This is encoded by the outer version annotation: C2

T1,6
. Note that

we assign a time stamp ν + 1 to tuples created by an update or commit executed at time ν. We assign a fresh

variable (x2 in the example) to tuples created by an insert using a VALUES clause. Inserted tuples are assigned

new tuple ids (id 2, shown as a superscript in the version annotation).

We have demonstrated [2, 1] that MV-semiring databases inherit many of the beneficial properties of K-

relations (the semiring annotation framework) and are a strict generalization of K-relations in the following

sense: given a semiring K, the corresponding MV-semiring Kν is also a semiring. That means that we can apply

the standard query semantics for K-relations to query a Kν-relation. Furthermore, the K-relation corresponding

to an Kν-relation R can be extracted from R by applying a semiring homomorphism UNV which evaluates

the symbolic expression that is a Kν annotation by interpreting version annotation as functions from K to K.

Importantly, any semiring homomorphism h : K1 → K2 can be lifted to a homomorphism K1
ν → K2

ν which

in addition to queries also commutes with transactional histories. Such a lifted homomorphism replaces K1

elements in an annotation with K2 elements according to h. For example, consider how to derive a bag semantics

annotation from the N[X]ν annotation from the example above (C2

T1,6
(I2T1,4

(x2))). In the K-relational model,

bag semantics is modelled by annotating tuples with their multiplicity (the semiring N of natural numbers). We

first apply UNV to get the provenance polynomial for tuple t. Both commit and insert annotations are interpreted

as the identity function for N[X]. Thus, UNV(C2

T1,6
(I2T1,4

(x2))) = x2. Now further assume that tuple t appears

with multiplicity 2 in the input, i.e., we apply a homomorphism N[X] → N based on the valuation x2 = 2 and

get 2. That is, in the current version of relation R, the tuple t from the example appears with multiplicity 2.

The interested reader is referred to [2, 1] for the definition of update operations and transactional semantics for

MV-databases as well as a more formal discussion of the properties of MV-semiring structures.

We have proven that if we extend our query model with a new operator that creates version annotations, then

any update, transaction, or (partial) history in our model can be equivalently expressed as a query, e.g., from an

update u we can derive a query R(u) which returns the same database state as the original update u (if executed

over the same input). We call such queries reenactment queries. The equivalence of an operation and its reenact-

ment query under annotated semantics has an important implication: instead of computing provenance eagerly

during transaction execution we can compute it retroactively by running reenactment queries. Since our model

generalizes bag-semantics snapshot isolation, we can use reenactment to recreate a database state valid at a par-

ticular time by simply running a query - including database states that were only visible within one transaction.

We have implemented support for transaction provenance in GProM based on reenactment. The instrumentation

pipeline implementing transaction provenance is shown in Figure 3b. In addition to supporting provenance cap-

ture for past transactions using the auditing logging and time travel capabilities of modern DBMS, this pipeline
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also allows a hypothetical sequence of updates to be evaluated using reenactment.

Example 4.2. Assume a user is interested in evaluating the effect of a hypothetical update over the current

version of a bag semantics relation Emp(name,salary) which increases the salary of all employees by $500

if their current salary is less than $1000. For simplicity, assume that the user is not interested in provenance (we

use semiring N instead of N[X]ν). This request is expressed using GProM’s REENACT statement:

REENACT(UPDATE Emp SET salary = salary + 500 WHERE salary < 1000;);

To reenact this update over the current version of relation Emp, GProM would construct a reenactment

query which returns the new state of Emp produced by the hypothetical update. This state is computed as a

union between the set of tuples that would not be updated (do not fulfill the update’s condition) and the updated

versions of tuples that fulfill the update’s condition (we have to increase their salary by 500):

SELECT * FROM Emp WHERE NOT(salary < 1000)

UNION ALL

SELECT name, salary + 500 AS salary, b FROM Emp WHERE salary < 1000;

4.2 Unifying Why and Why-not Provenance

The problems of explaining why a tuple is in the result of a query or why it is missing from the result, i.e., why

and why-not provenance, have been studied extensively. However, these two problems (computing provenance

and explaining missing answers) have been treated mostly in isolation. An important observation is that for

queries with negation, the two problems coincide: to explain why a tuple t is not in the result of a query

Q, we can equivalent ask why t is in the result of ¬Q. Thus, a provenance model for queries with negation

should naturally be able to support why-not questions. While there are extensions of the semiring model for set

difference, which encodes a form of negation, the problem is that in general ¬Q may not be safe. Thus, to unify

the two worlds of why and why-not provenance we need a provenance model that permits unsafe queries. We

have introduced in [10] a graph-based provenance model for first-order (FO) queries expressed as non-recursive

Datalog queries with negation. We apply the closed world assumption to deal with unsafe queries.

Our approach for computing provenance according to this model is based on the observation that typically

only a part of provenance, which we call an explanation, is actually relevant for answering a user’s provenance

question about the existence or absence of a result. An explanation for a why (why-not) question should justify

the existence (absence) of a result as the success (failure) to derive the result through the rules of the query.

Furthermore, it should explain how the existence (absence) of tuples in the database caused the derivation to

succeed (fail). The main driver of our approach is a rewriting of Datalog rules that captures successful and failed

rule derivations. This rewriting replaces the rules of a program with so-called firing rules. To efficiently compute

an explanation, we generate a Datalog program consisting of a set of firing rules that computes the relevant part

of the provenance bottom-up. Evaluating this program over a given instance returns the egde relation of the

explanation (provenance graph).

We have implemented this approach in GProM as Pipeline L3 (shown in Figure 3c). The user provides a why

or why-not question and the corresponding Datalog query as an input. For this pipeline, we use GProM’s Datalog

frontend, which provides language constructs for expressing provenance requests. For instance, WHY(Q(a))

would instruct GProM to explain why Q(a) is a query result. The system instruments the input program (query)

to capture provenance relevant to the user question based on the firing rule rewriting mentioned above. This

program is translated into relational algebra and the resulting algebra expression is then translated into SQL

and sent to the backend databases to compute the edge relation of the explanation for the provenance question.

Based on this edge relation, we render a provenance graph e.g., the graphs shown in Figure 5 and 6.

Example 4.3. Consider the train connections relation shown in Figure 4 and Datalog query r1 that computes

which cities can be reached with exactly one transfer, but not directly. A user might wonder why it is possible
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r1 : Q(X,Y) :- Train(X,Z),

Train(Z,Y),

not Train(X,Y).

Relation Train

fromCity toCity

new york washington dc

new york chicago

chicago seattle

seattle chicago

washington dc seattle

s c

nw

Result of query Q

X Y

washington dc chicago

new york seattle

seattle seattle

chicago chicago

Figure 4: Example train connection database and query
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Figure 5: Provenance graph for WHY(Q(n,s))
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g1
1
(s, n) g2

1
(n, n)

T (n, n)

Figure 6: Provenance graph for WHYNOT(Q(s,n))

to reach Seattle from New York with one intermediate stop but not directly (WHY(Q(n,s))) or why it is not

possible to reach Seattle from New York in the same fashion (WHYNOT(Q(s,n)). The provenance graph in Figure 5

explains, for the question WHY(Q(n,s)), how Seattle can be reached from New York via one intermediate hop,

but not directly. Here, we use the following abbreviations: T = Train, n = New York, s = Seattle, w = Washington

DC, and c = Chicago. In the example instance, there are two ways to reach Seattle from New York in this fashion:

stopping either in Washington DC or in Chicago. These options correspond to two successful derivations of rule

r1 with X=n, Y=s, and Z=w (or Z=c, respectively). The provenance graphs produced by GProM contain three

types of nodes: tuple nodes (ovals), rule nodes (rectangles), and goal nodes (rounded rectangles). The color of

a node denotes its success (green) or failure (red), e.g., Q(n, s) is labelled successful, because this tuple exists

in the query result. In Figure 5 there are two rule nodes denoting the two successful derivations of Q(n, s) by

rule r1. The provenance graph for question WHYNOT(Q(s,n)) (Figure 6) explains why it is not true that New

York can be reached from Seattle with exactly one transfer, but not directly. The tuple Q(s, n) is missing from

the query result, because all potential ways to derive this tuple through r1 have failed. In this example, there

are four failed derivations - each choosing one of the four cities present in the database as an intermediate stop.

For instance, we cannot reach New York from Seattle via Washington DC (the first failed rule derivation from

the left in Figure 6), because there exists no connection from Seattle to Washington DC (a tuple node T(s, w) in

red), and WashingtonDC to New York (a tuple node T(w, n) in red). Note that the goal ¬T(s, n) is successful

and, thus, is not part of the explanation (successful goals do not contribute to failed derivations).

4.3 Provenance-aware Query Optimization

The instrumentation approach implemented in GProM has the distinct advantage that it does not require any

changes to the backend database system. However, because of the intrinsic complexity and unusual structure

of instrumented queries, even sophisticated database optimizers are often producing suboptimal plans for such

queries. DBMS optimizers have to trade optimization time for query performance. Thus, optimizations that

do not benefit common workloads are typically not considered. To address this problem, we have developed

a heuristic and cost-based optimization framework for instrumentation pipelines [16]. A unique feature of

our optimizer is that it is plan-space and query language agnostic and, thus, can be applied to optimize any

instrumentation pipeline in GProM. Our experimental results demonstrate that this approach is quite effective,

improving performance by several orders of magnitude for diverse provenance tasks.

Recall that an instrumentation pipeline is a multistep compilation process. To optimize this process we can

either target an intermediate language that is the result of a compilation step or the compilation step itself.

As an example for the first type of optimization, consider a compilation step that outputs relational algebra,

e.g., Pipelines L1 and L3 from Figure 3. We can optimize the generated algebra expression using algebraic
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equivalences before passing it on to the next stage of the pipeline. In [16], we focus on relational algebra since it

is an intermediate language used by almost all pipelines supported by GProM. We investigate algebraic equiva-

lences that are beneficial for instrumentation, but which are usually not applied by database optimizers. We call

this type of optimizations provenance-specific algebraic transformations (PATs). For instance, pull up projec-

tions that create provenance annotations and remove unnecessary duplicate elimination and window operators.

To be able to support rules whose conditions depend on non-local information and to simplify definition of rules,

we infer properties such as candidate keys for the algebra operators of a query. For example, a duplicate elimi-

nation operator δ is redundant if its input relation is duplicate free, i.e., if it has at least one super key. Whether

this is the case depends not only the operator itself, but also on its context: the subtree below the operator in this

case. One of the properties we infer is a set keys of super keys for an operator’s output. Given this property, a

PAT rule that removes duplicate eliminations is trivially expressed as: rewrite δ(R) as R if keys(R) 6= ∅.

For the second type of optimization mentioned above consider the compilation step from Pipeline L1 that

translates relational algebra with annotated semantics into relational algebra. If we know two equivalent ways of

translating an operator with annotated semantics into relational algebra, then we can choose the translation that

maximizes performance. We refer to this type of optimizations as instrumentation choices (ICs). For instance,

we introduce two ways for instrumenting an aggregation for provenance capture: 1) using a join [7] to pair

the aggregation output with provenance from the aggregation’s input; 2) using window functions (SQL’s OVER

clause) to directly compute the aggregation functions over inputs annotated with provenance.

Since some PATs are not always beneficial and for some ICs there is no clearly superior choice, there is a need

for cost-based optimization (CBO). We have developed a CBO for instrumentation pipelines that can be applied

to any pipeline no matter what compilation steps and intermediate languages are used. This is made possible

by decoupling the plan space exploration from actual plan generation. Figure 7 shows how our cost-based

optimizer is integrated with GProM. Our CBO treats an instrumentation pipeline as a blackbox function which

it calls repeatedly to produce backend dialect queries (plans). Plans are sent to the backend for planning and

cost estimation. We refer to one execution of the pipeline as an iteration. It is the responsibility of the pipeline’s

components to signal to the optimizer the existence of optimization choices (called choice points) through the

optimizers callback API. The optimizer responds to a call from one of these components by instructing it which

of the available options to choose. We keep track of which choices had to be made, which options exist for

each choice point, and which options were chosen. This information is sufficient to enumerate the plan space

by making different choices during each iteration. Our approach provides great flexibility in terms of supported

optimization decisions, e.g., we can choose whether to apply a PAT or select which ICs to use. Adding an

optimization choice only requires adding a few LOC to inform the optimizer about the availability of options.

4.4 Further Contributions and Research that Utilizes GProM

In addition to the three major contributions outlined above, GProM has been the basis of many additional

research thrusts. In [15], we have demonstrated how to improve interoperability between GProM and other

provenance-aware systems. Specifically, we have extended Pipeline L1 from Section 3.2 to translate provenance
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generated by GProM into the W3C PROV standard format (https://www.w3.org/TR/prov-overview/)

and how to propagate provenance imported as PROV through queries. Reenactment enables changes to data to be

virtualized - instead of running an update we can instead just record the update statement and evaluate its effect

in a non-destructive manner using reenactment. Based on this idea we have presented our vision of provenance-

aware versioned dataworkspaces (PVDs) [13] which are virtual copies of a database with non-linear version

histories (like the ones supported by version control systems) which can be used for exploratory purposes. We

have identified historical what-if queries [3] as another use case for reenactment. Using reenactment, we can

efficiently determine the effect of hypothetical changes to past update operations on the current database state.

For instance, we can answer queries such as “How would the revenue of our company be affected if we would

have charged 10% interest for account overdraws instead of 7%”. In [11] we have introduced an approximate

summarization technique for why and why-not provenance extending our previous work on Datalog provenance

in GProM. Using a sampling-based method, we overcome the main roadblock for explaining missing answers -

the prohibitively large size of why-not provenance for databases of realistic size.

5 Post-mortem Debugging of Transactions

Aside from providing a solid platform for research on provenance and related fields, GProM and the research

fueling the system have also enabled novel applications of provenance that would not have been possible before.

In this section, we introduce postmortem debugging of transactions as an important example for this type of

application. Debugging transactions and understanding their execution is of immense importance for developing

OLAP applications, to trace causes of errors in production systems, and to audit the operations of a database.

Debugging transactions, just like debugging of parallel programs, is hard because errors may only materialize

under certain interleavings of operations. This problem is aggravated by the wide-spread use of lower isolation

levels. Nonetheless, even for serializable histories an error may only arise for some execution orders. To debug

an error, we have to reproduce the interleaving of operations which lead to the error. This problem can be

addressed by supporting post-mortem debugging for transactions, i.e., enabling a user to retroactively inspect

transaction executions to understand how the statements of a transaction affected the database state. While

there are debuggers for procedural extensions of SQL, e.g., Microsoft’s T-SQL Debugger (http://msdn.

microsoft.com/en-us/library/cc645997.aspx), these debuggers treat SQL statements as black

boxes, i.e., they do not expose the dataflow within an SQL statement. Even more important, they do not support

post-mortem debugging of transaction executions within their original environment.

Supporting post-mortem debugging for transactions is quite challenging, because past database states are

transient and the dataflow within and across SQL statements is opaque. While temporal databases provide ac-

cess to past database versions, this is limited to committed versions. In [14], we present a non-destructive,

post-mortem debugger for transactions that relies on GProM’s reenactment techniques to reproduce the inter-

mediate states of relations seen by the operations of a transaction. The approach uses provenance to expose

data-dependencies between tuple versions and to explain which statements of a transaction affected a tuple ver-

sion. Advanced debuggers for programming languages allow code to be changed during a debugging session to

test a potential fix for a bug. We exploit the fact that GProM supports reenactment of hypothetical transactions to

support such what-if scenarios, i.e., changes to a transaction’s SQL statements. Being based on GProM’s reen-

actment functionality, our approach uses the temporal database and audit logging capabilities available in many

DBMS and does not require any modifications to the underlying database system nor transactional workload.

Example 5.1. Transaction T shown in Figure 9 adds a bonus to bank accounts ($500 for premium customers

and $300 for standard customers) and gives premium status to all accounts whose balance is larger than $1000.

Figure 9 also shows the state of the account relation before and after the update. For instance, after the execution

of Transaction T , Gray’s account enjoys premium status. However, Gary has only received a $300 bonus, the

bonus for standard accounts. Our debugger can be used to inspect the internal states of the transaction that
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discuss post-mortem debugging of transactions as one exciting use case of the system. Finally, we highlight

interesting future work and discuss ongoing research efforts that benefit from GProM.
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