
A Distributed Orchestration Algorithm for Edge Computing

Resources with Guarantees

Gabriele Castellano†∗ Flavio Esposito† Fulvio Risso∗

†Computer Science, Saint Louis University, USA
∗Computer and Control Engineering, Politecnico di Torino, Italy

Email: †{gabriele.castellano, flavio.esposito}@slu.edu, ∗{gabriele.castellano, fulvio.risso}@polito.it

Abstract—Edge Computing brings flexibility and scalability of
virtualization technologies at the edge of the network, enabling
service providers to deploy new applications over a richer
network infrastructure. However, the coexistence of such variety
of applications on the same infrastructure exacerbates the already
challenging problem of coordinating resource allocation while
preserving the resource assignment optimality. In fact, (i) each
application can potentially require different optimization criteria
due to their heterogeneous requirements, and (ii) we may not
count on a centralized orchestrator due to the highly dynamic
nature of edge networks. To solve this problem, we present
DRAGON, a Distributed Resource AssiGnment and Orchestra-
tioN algorithm that seeks optimal partitioning of shared resources
between different applications running over a common edge
infrastructure. We designed DRAGON to guarantee both a bound
on convergence time and an optimal (1-1/e)-approximation with
respect to the Pareto optimal resource assignment. We evaluate
convergence and performance of DRAGON on a prototype
implementation, assessing the benefits compared to traditional
orchestration approaches.

I. INTRODUCTION

The emerging Edge Computing paradigm has enabled

service providers to supply a large variety of new

applications, which benefit from the presence of storage

and computing facilities at the edge of the network as well

as reduced latency toward end users. Moreover, virtualization

technologies enable isolation between different applications

that can simultaneously run on separated slices of a shared

physical infrastructure.

In cloud-based environments, the deployment of services

is often delegated to a centralized component, named Or-

chestrator [1], that usually exploits a one-size fits-all policy

(e.g., energy saving, number of used nodes, load balancing) to

decide (i) where to place service components, (ii) how many

resources have to be assigned to each of them [2] and (iii)

the set of metrics/events signaling that the service has to be

rescheduled (e.g., because of an unexpected load increase).

However, such a centralized approach may be sub-optimal

or not applicable at the edge of the network. First, such

environment may be characterized by high churn rates, unpre-

dictable changes in the network topology and even temporary

network partitions; this may favor distributed orchestration

approaches against a centralized orchestrator, which may not

be even reachable. Second, the largely heterogeneous set of ap-

plications running at the edge of the network may have diverse

and unpredictable objectives, not to mention the necessity to

react differently to the same event, such as a load increase. In

the above circumstance, some applications may scale up/out,

other may modify the service behavior (e.g., choose a more

aggressive video transcoder), other may migrate, and more;

the above behaviors are difficult to achieve with a one-size

fits-all orchestrator.

For instance, the optimization of a Content Distribution

Network (CDN) may require to monitor the round trip time

between users and the nearest cache, which can be used

to recognize occasional hot spots (e.g., flash crowd during

live events); this in turn requires optimizing the service by

relocating (and possibly duplicating) some caches. Vice versa,

an online gaming application featuring assisted migration for

user mobility may want to relocate part of the application [3]

to reduce latency, possibly identifying a convenient time frame

(e.g., after a checkpoint) for this operation.

Distributed content delivery and caching, Internet of Things,

disaster response, vehicle-to-everything automotive and video

acceleration are only some of the multitude of applications [4]

that can benefit from being deployed at the edge of the

network. However, coordinating such a plethora of applica-

tions, each one featuring different policies and deployment ap-

proaches, without relying on a centralized orchestrator, brings

to light several challenges. How could several processes, each

operating with different goals and policies, converge to a

globally optimal resource management over a shared edge in-

frastructure? How could we avoid violations of global policies

or feasibility constraints of several coexisting applications?

How can we guarantee convergence to a distributed resource

allocation agreement and performance optimality given the

NP-hard [5] nature of the service placement problem?

To answer these questions, we present DRAGON, an asyn-

chronous Distributed Resource AssiGnment and OrchestratioN

algorithm. DRAGON leverages the max-consensus literature

and the theory of submodular functions to enable a set of

applications, featuring diverse objectives and optimization

metrics, to reach an agreement on how infrastructure resources

have to be (temporary) assigned, without the necessity of a

centralized orchestrator. Our contributions are as follows:

Design contributions. We introduce the Applications-

Resources Assignment Problem and use linear programming

to model its objective and constraints (Sections III). Finding

a centralized optimal solution is often infeasible even if we

had a single optimizer. We use the solution to the centralized

problem as a baseline global optimal to show DRAGON’s

performance optimality guarantees.



Algorithmic contributions. We detail our DRAGON asyn-

chronous algorithm (Sections IV and V) and we show how it

provides guarantees on both convergence time and expected

resource assignment performance to a set of independent

(network management) applications (Section VI).

Evaluation contributions. We evaluate both performance

scalability and convergence properties of DRAGON, com-

paring them with the traditional one-size fits-all approaches.

Moreover, we assess DRAGON’s benefits analyzing as ref-

erence use cases (i) the problem of cache placement for a

CDN provider and (ii) the edge migration for mobile gaming

(Section VII). Our findings confirm the applicability of this ap-

proach in edge infrastructures and the performance advantages

over traditional one-size fits-all orchestration approaches.

II. RELATED WORK

Optimization of edge applications. Recent work [6]–[8]

proposes ad-hoc optimization, each one targeting a single edge

application separately. For instance, [6] optimizes the place-

ment of roadside units on new generation vehicular networks.

Instead, [7] focuses on the service placement problem in mo-

bile applications, where the dynamism of user’s location plays

a key role. Finally, [8] proposes an optimal allocation for high-

performance video streaming in 5G networks. While above

solutions enable optimization for isolated applications, at the

best of the author’s knowledge there have been no studies

about how such a variety of service embedding algorithms

can coexist on a shared infrastructure without undermining

the overall performance optimality.

Distributed resource assignment. Another related set of

solutions concerns the partitioning of shared resources. For in-

stance, Mesos [9] enables dynamic decisions on resource par-

titioning and allows the coexistence of diverse cluster comput-

ing frameworks, each one featuring different scheduling needs,

on top of the same cloud infrastructure. This solution exploits

a master that assigns resources dynamically by making offers

to demanding frameworks. However, mandating the existence

of such a component may not be suitable in a scenario where

services are executed on scattered compute nodes, e.g., at the

edge of the network, which feature arbitrary and unpredictable

topologies that evolve over time. In this context, we should

rely on solutions that provide decentralized consensus (e.g.,

Paxos [10] and Raft [11]) to reach agreement on resource

assignment. However, none of them simultaneously provides

(i) guarantees on convergence time and performance, and (ii)

a fully distributed approach.

III. PROBLEM DEFINITION AND MODELING

This section defines the (NP-hard) applications-resources

assignment problem by leveraging linear programming.

Let us model an application as a multiset — a set in which

element repetition is allowed — whose elements are selected

among Ns (abstract) services to be embedded on a shared

(physical) edge infrastructure. A service is an abstract instance

of a physical function, e.g., a load balancer, a video transcoder

or a content cache, which can be implemented by selecting the

best possible physical function among the Nf available ones.

In fact, functions may feature different characteristics such as

execution environment (virtual machine, container, dedicated

hardware), required resources, or the capability to provide a

specific level of QoS.

The infrastructure is partitioned in Nυ hosting nodes, each

one with potentially different physical capacities. We assume

that each function consumes a given amount of resources such

as CPU, storage, memory, network bandwidth, etc., which are

modeled with Nρ different types.

Finally, let us consider Na applications, all simultaneously

demanding resources from a shared edge infrastructure, each

one following a potentially different optimization strategy. We

assume that the application itself will select the best (feasi-

ble) functions that are required to implement its composing

services, then allocate them in the most appropriate location.

Our goal is to maximize a global utility U while finding

an infrastructure-bounded applications-resources assignment

that allows the deployment of each application. We define

an applications-resources assignment to be infrastructure-

bounded if the consumption of all assigned functions allocated

on each hosting node does not exceed the ρn available

resources on that node.

We model the applications-resources assignment problem

with an integer program; its binary decision variable xijn is

equal to one if an instance of function j has been assigned to

application i on hosting node n and to zero otherwise.

maximize

Na
∑

i=1

Nf
∑

j=1

Nυ
∑

n=1

Uijn(xi)xijn (1.1)

subject to

Na
∑

i=1

Nf
∑

j=1

xijncjk ≤ ρnk ∀k ∈ K, ∀n ∈ N (1.2)

Nf
∑

j=1

Nυ
∑

n=1

xijn =

Ns
∑

m=1

(σim)yi ∀i ∈ I (1.3)

Nf
∑

j=1





Nυ
∑

n=1

xijn



λmj ≥ yi ∀m ∈ M, ∀i ∈ I (1.4)

Nυ
∑

n=1

xijn ≤ 1 ∀j ∈ J , ∀i ∈ I (1.5)

Nf
∑

j=1

xij ≥ 1−Nfyi ∀i ∈ I (1.6a)

Nf
∑

j=1

xij ≤ 1Nfyi ∀i ∈ I (1.6b)

xijn ∈ {0, 1} ∀(i, j, n) ∈ I × J ×N (1.7a)

yi ∈ {0, 1} ∀i ∈ I (1.7b)

cjk ∈ N ∀(j, k) ∈ J ×K (1.7c)

ρnk ∈ N ∀(n, k) ∈ N ×K (1.7d)

λmj ∈ {0, 1} ∀(m, j) ∈ M×J (1.7e)

σim ∈ {0, 1} ∀(i,m) ∈ I ×M (1.7f)

where xi ∈ {0, 1}Nf×Nυ is the assignment vector for

application i, whose jth × nth element is xijn. The auxiliary

variables yi are equal to 1 if at least an instance of any



function has been assigned to application i, and 0 otherwise

(constraints 1.6a, 1.6b, 1.7b). The index sets are defined as

I , {1, . . . , Na}, M , {1, . . . , Ns}, J , {1, . . . , Nf},

K , {1, . . . , Nρ} and N , {1, . . . , Nυ}. The variable ρnk
represents the amount of resource k available on node n;

furthermore, we denote ρn ∈ N
N
n the capacity of node n ∈ N .

With cjk ∈ N we capture the cost of function j in terms

of resource k; thus, we name cj ∈ N
N
ρ the cost vector of

function j ∈ J . We set λmj = 1 if the abstract service m can

be implemented (i.e., deployed) through the function j, while

σim = 1 if m is needed by application i.
The utility function models the overall gain Uijn(xi), i.e.,

the utility that the system gains by assigning cj resources to

application i, allowing it to add the function j to its assignment

vector xi. Note that the gain does not depend merely from

the service itself; in fact, it depends (i) on which function

is used to instantiate a specific service and (ii) on which

node the chosen function is deployed. Note how constraint

(1.2) ensures that the solution is infrastructure-bounded, while

constraints (1.3 and 1.4) avoid partial allocations1. Finally,

constraint (1.5) prevents an application to get multiple in-

stances of the same function on different nodes.

IV. SINGLE-NODE DRAGON

In this section we introduce DRAGON (Distributed Re-

source AssiGnment and OrchestratioN), a novel approximation

algorithm that we designed to solve the NP-hard Problem 1

through a distributed approach.

Each application i runs a DRAGON agent, which starts

a voting procedure with the aim of acquiring the resources

needed to deploy its assignment vector xi, and participates to a

resource election protocol. Voting and elections are performed

at the node level. Applications that are “elected”, i.e., that

they win the distributed assignment problem, gain the right

to allocate their demanded amount of (virtual) resources on a

certain (physical) node. In the first phase, each agent performs

the election locally, based on its local state awareness. Then a

max-consensus based distributed agreement phase guarantees

the converge of the election process.

To describe all core mechanisms of our approach, we first

introduce a simplified Single-Node version (SN-DRAGON),

featuring a single hosting node on the underlying infrastruc-

ture. Note that, in SN-DRAGON, structures introduced in

Section III are simplified by the absence of the node index n.

To describe the algorithm, we give the following definitions:

Definition 1. (private utility function ui). Given a set I
of applications and a set J of functions, we define private

utility function of application i ∈ I, and we denote it with

ui : J → R, the utility uij ∈ R that application i gains

by adding function j ∈ J to its assignment vector xi, i.e.,

implementing one of its services through the function j.

1Note the coupling between constraint (1.4) and (1.3): if an application
takes a function j that is able to instantiate two distinct needed services m′

and m′′ (e.g., in case a function requires two instances of the same abstract
service), constraint (1.4) would be satisfied despite the application is missing
the additional function to implement either m′ or m′′.

Each application may have a different (conflicting) objective

and may have no incentive to disclose its utility; however, our

model, and so our algorithm, maximizes a global objective

(Equation 1.1), that in DRAGON is a policy. Since we assume

that a Pareto optimality is sought, the global utility is a

function of the applications private utilities, i.e.,

U i(xi) = f(ui(xi)), ∀i ∈ I.

DRAGON needs a vote vector that we define as follows.

Definition 2. (vote vector vi). Given a distributed voting

process among a set I of Na applications, we define vi ∈ R
Na

+

to be the vector of current winning votes known by application

i ∈ I. Each element viι is a positive real number representing

the vote ι ∈ I known by application i, if i thinks that ι is a

winner of the election phase. Otherwise, viι is 0.

Since applications compute resource assignments in a dis-

tributed fashion, they could possibly have different views until

an agreement on the election winner(s) is reached; we use the

apex i to refer to the vote vector as seen by application i
at each point in the agreement process. During the algorithm

description, for clarity, we omit the apex i when we refer to the

local vector (the same applies also for the following vectors).

Definition 3. (demanded resource vector ri). Given a voting

process among a set I of Na applications on Nρ different

types of shared resources, we define as demanded resource

vector ri ∈ N
Na×Nρ

+ , the vector of total resources currently

requested by each application; each element riι ∈ N
Nρ is the

amount of resources requested by application ι ∈ I with its

most recent vote viι known by i ∈ I.

Definition 4. (voting time vector ti). Given a set I of Na

applications participating to a distributed voting process, we

define as voting time vector ti ∈ R
Na

+ , the vector whose

element tiι represents the time stamp of the last vote viι known

by i ∈ I for application ι ∈ I.

We also give the following definition of neighborhood:

Definition 5. (neighborhood Īi). Given a set I of applica-

tions, we define neighborhood Īi ⊆ I \ {i} of application

i ∈ I, the subset of applications directly connected to i.

The notion of neighborhood is generalizable with the set of

agents reachable within a given latency upper bound. We are

now ready to describe SN-DRAGON (Algorithm 1).

Algorithm Overview. On each application i, the DRAGON

agent runs an Orchestration Phase (Algorithm 2) where an

optimal assignment, if any, is built and voted to participate in

the resource election. Votes here are updated in a distributed

election process. If any value of the vote vector vi is changed,

i sends its vectors vi, ri and ti to its (first-hop) neighbors, then

waits for a response coming from any number of them. During

the Agreement Phase, all vectors vi′ , ri
′

and ti
′

received

from neighbor i′ are used in combination with the local values

(Algorithm 5), to reach an agreement with i′.

Note that the assignment vector xi of each application i



Algorithm 1 SN-DRAGON for application i at iteration t

1: orchestration(v(t− 1), r(t− 1), ρ)
2: if ∃ι ∈ I : vι(t) 6= vι(t− 1) then
3: send(i′, t), ∀i′ ∈ Īi
4: receive(i′, t), ∀i′ ∈ Īi
5: agreement(i′, t), ∀i′ ∈ Īi

Algorithm 2 orchestration for application i at iteration t

Input: v(t− 1), r(t− 1), t(t− 1), ρ, c

Output: v(t), r(t), t(t)

1: if t 6= 0 then

2: v(t), r(t), t(t) = v(t− 1), r(t− 1), t(t− 1)

3: do

4: v̄i = vi(t)
5: if vi(t− 1) 6= 0 ∧ vi(t) = 0 then . outvoted
6: embedding(t) . find next xi maximizing ui

7: voting(xi, c) . vote xi using U

8: election(v(t), r(t), ρ)
9: while v̄i 6= vi(t) . repeat until not outvoted

does not need to be exchanged. Agents are aware of the

resource demand from their peers, but are unaware of the

details regarding which functions they wish to allocate.

The remainder of this section gives more details on the two

main phases of the SN-DRAGON algorithm.

A. Orchestration Phase

After the initialization of local vectors v(t), r(t) and t(t) for

the current iteration t (Algorithm 2, line 2), each DRAGON

agent uses Algorithm 2, line 8 to elect the current winners

according to the known votes updated at the last iteration. If

agent i has been outvoted (Algorithm 2, line 5), the algorithm

starts to iterate among (i) an embedding routine (Algorithm 2,

line 6), which computes the next suitable assignment vec-

tor xi maximizing i’s private utility, (ii) a voting routine

(Algorithm 2, line 7) where agent i votes for the resources

that follow the last computed assignment vector and (iii) the

election routine (Algorithm 2, line 8).

The iteration continues until agent i does not get outvoted

anymore (Algorithm 2, line 9). This may happen if either (i)

the selected assignment vector allows i to win the election or

(ii) there are no more suitable assignments xi (then no new

vote has been generated).

Remark. To guarantee convergence, DRAGON forbids out-

voted applications to re-vote with an higher utility value on

resources that they have lost in past rounds. Re-voting is,

however, allowed only on residual resources.

Note that an asynchronous agreement may never terminate

unless we forcefully timeout the consensus process. However,

we use the theory of max-consensus to show that the agree-

ment phase stops as long as we have reliable communication

and each vote traverses the network of agents at least once.

1) Embedding Routine: Either during the first iteration

(t = 0), or any time application i is outvoted, SN-DRAGON

invokes an embedding routine (Algorithm 2, line 6) that, based

on the private policies of i, computes the next best suitable

assignment vector xi. Therefore, this routine is in turn private

Algorithm 3 voting for application i at iteration t

Input: xi, c

Output: vi(t), ri(t), ti(t)

1: ti(t) = t . vote time
2: if xi 6= 0 then . valid assignment
3: rik(t) = Σjxijcjk, ∀k ∈ K . demanded resources
4: vi(t) = score(xi) . vote new assignment

Algorithm 4 election routine at iteration t

Input: v(t), r(t), ρ

Output: v(t)

1: ρ̄ = ρ . residual resources
2: W = ∅ . winner set
3: do

4: Ib = {i ∈ I| rik(t) ≤ ρ̄k, ∀k ∈ K} . valid candidates

5: ω = argmaxi∈Ib\W

{

vi(t)
‖ri(t)‖

}

. candidate with higher vote

6: W = W ∪ {ω} . add to winners
7: ρ̄k = ρ̄k − rωk, ∀k ∈ K . decrease residual resources
8: while Ib \W 6= ∅ . repeat until no candidate remains
9: vι = 0, ∀ι ∈ I \W . reset loser votes

for each application, and strictly dependent from the specific

nature of the application itself (each of them may follow a

different deployment strategy, seek optimization of specific

metrics and even feature additional deployment constraints).

2) Voting Routine: After a new assignment vector has been

built, each DRAGON agent runs a voting routine, updating the

time of its most recent vote; if the assignment vector is valid,

all demanded resources are updated and voted, through a score

function derived by the global utility (Algorithm 3). Although

the raw global utility itself may be used as score function to

compute votes, in Section V-A we give recommendation on

which function should be used to guarantee convergence and

optimal approximation bound (Section VI).

3) Election Routine: The last step of the Orchestration

Phase (Algorithm 2, line 8) is a resource election that decides

which applications are capable of allocating the demanded

resources on the shared hosting node (Algorithm 4). Based

on the most recent known votes v(t), the related resource

demands r(t) and the capacity ρ of the shared node, this

procedure selects applications by mean of a greedy approach.

At each step, it (i) discards the application whose demanded

resources ri exceed the residual node capacity and (ii) selects

the one with the highest ratio vote to demanded resources

(Algorithm 4, lines 4-5). The one elected is then added to

the winner set and the amount of resources assigned to the

new winner are removed from the residual set (Algorithm 4,

lines 6-7). The greedy election ends when either all candidates

result winners, or residual resources are not enough for any

of those remaining. Finally, votes of applications that did not

win the election are reset (Algorithm 4, line 9). In Section VI

we show that the greedy heuristic gives guarantees on the

optimal approximation.

B. Agreement Phase

Once received vectors vi′ , ri
′

and ti
′

from every i′ in its

neighborhood, each agent runs an Agreement Phase. During

this phase, applications make use of a consensus mechanism

to reach an agreement on their vote vector vi, hence on





any application that has been previously elected on node n,

during the election process described in Algorithm 4.

VI. CONVERGENCE AND PERFORMANCE GUARANTEES

In this section we present results on the convergence proper-

ties of our DRAGON distributed approximation algorithm. As

defined in Definition 6, by convergence we mean that a valid

solution to the applications-resources assignment problem is

found in a finite number of steps. Unfeasibility is also a

valid solution. Moreover, starting from well-known results on

submodular functions, in this section we show that DRAGON

guarantees an (1 − e−1)-approximation bound, and that this

bound is also optimal, i.e. there is no better guarantee, unless

NP ⊆ DTIME(nO(log logn)).

Note that, if (4) is used as score function, the election rou-

tine of DRAGON is equivalent to a greedy algorithm attempt-

ing to find, for each node n, the set of winner applications

Wn ⊆ I such that the set function zn : 2I → R, defined as

zn(Wn) =
∑

ω∈Wn

Vω(xω ,Wn, n), (5)

is maximized. By construction of V , we have that zn is

monotonically non-decreasing and z(∅) = 0.

Definition 7. (submodular function). A set function z : 2I →
R is submodular if and only if, ∀ι /∈ W ′ ⊂ W ′′ ⊆ I,

z(W ′′ ∪ {ι})− z(W ′′) ≤ z(W ′ ∪ {ι})− z(W ′). (6)

This means that the marginal utility of adding ι to the input

set, cannot increase due to the presence of additional elements.

Next we show that the total score zn (5) is submodular. Our

intuition behind its submodularity is that the score function

Vn can, at most, decrease due to the presence of additional

elements in Wn. Formally, we have:

Lemma VI.1. zn (5) is submodular.

Proof: Since W ′
n ⊂ W ′′

n , we have

min
ω∈W′′

n

{

‖rιn(t)‖
vωn(t)

‖rωn(t)‖

}

≤ min
ω∈W′

n

{

‖rιn(t)‖
vωn(t)

‖rωn(t)‖

}

,

and so, for (4),

Vι(xi,W
′′
n , n) ≤ Vι(xi,W

′
n, n). (7)

By definition of zn, the marginal gain of adding ι to Wn is

zn(Wn ∪ {ι})− zn(Wn) = Vι(xi,Wn, n), ∀ι /∈ Wn ⊆ I,

therefore, substituting in (7), we have the claim.

Convergence Guarantees. A necessary condition for con-

vergence in DRAGON is that all applications are aware of

which are the winning votes for an hosting node. This infor-

mation needs to traverse all applications in the communication

network (at least) once. Theorem VI.2 shows that a single

information traversal is also sufficient for convergence.

The communication network of a set of applications I is

modeled as an undirected graph, with unitary length edges

between each couple i′, i′′ ∈ I such that i′′ ∈ Īi′ and i′ ∈ Īi′′ ,

being Īi′ ⊆ I \ {i′} and Īi′′ ⊆ I \ {i′′} respectively the

neighborhood of i′ and i′′.

Theorem VI.2. (Convergence of synchronous DRAGON).

Consider an infrastructure of Nυ hosting nodes, whose re-

sources are shared among Na applications through an election

process with synchronized conflict resolution over a communi-

cation network with diameter D. If the communications occur

over a reliable channel and the function (5) maximized during

the election routine is submodular, then DRAGON converges

in a number of iterations bounded above by N2
aNυD.

Proof: (sketch) We first show by induction that agents

agree on the first k assignments in at most kNaD iterations.

Given the submodularity of zn, the assignment (i?1, n
?
1) with

the highest vote computed at iteration 1 can be outvoted at

most Na − 1 times, i.e., until every agents voted on node

n?
1 at least once. Since each time D iterations are needed

to propagate the vote, every agent will have agreed on the

highest vote vi?
1
n?
1

at most after NaD iterations. Let us suppose

that at iteration hNaD all agents agree on the first k-best

assignments. Since the next-best vote propagated at iteration

k + 1 can be outvoted at most Na − 1 times, it follows that

every agent will have agreed on (i?h+1, n
?
h+1) by iteration

hNaD + NaD. Then, together with (i?1, n
?
1) being agreed

to at NaD, every agent will have agreed on (i?k, n
?
k) within

kNaD iterations. In DRAGON each compute node may be

assigned to each application, then, in the worst case there is

a combination of NaNυ assignments. Therefore, agents reach

agreement in at most N2
aNυD iterations.

As a direct corollary of Theorem VI.2, we compute a bound

on the number of messages that applications have to exchange

in order to reach an agreement on resource assignments.

Because we only need to traverse the communication network

at most once for each combination applications per hosting

nodes (i, n) ∈ I ×N , the following result holds:

Corollary VI.2.1. (DRAGON Communication Overhead). The

number of messages exchanged to reach an agreement on

the resource assignment of Nυ nodes among Na non-failing

applications with reliable delay-tolerant channels using the

DRAGON algorithm is at most NmspN
2
aNυD, where D is

the diameter of the communication network and Nmsp is the

number of links in its minimum spanning tree.

Performance Guarantees. The election routine in DRAGON

is trivially extended with partial enumeration [13], leading to

the following two results (for brevity, the extension has been

omitted in Algorithm 4).

Theorem VI.3. (DRAGON Approximation Bound). DRAGON

extended with partial enumeration yields an (1 − e−1)-
approximation bound with respect to the optimal assignment.

Proof: (sketch) During the election routine, DRAGON

uses a greedy heuristic to assign node resources to a set of

winners Wn. The objective of the heuristic is to maximize

the value of the set function zn(Wn) without exceeding the

node capacity (knapsack constraint). From a recent result on



submodular functions [14], we know that a greedy approxima-

tion algorithm used to maximize a non decreasing submodular

set function subject to a knapsack constraint is bounded by

(1− e−1) if the algorithm is combined with the enumeration

technique due to [13]. Being the set function zn(Wn) positive,

monotone and non-decreasing, it remains to show that the

utility used by DRAGON is submodular, which comes from

Lemma VI.1; hence the claim holds.

Theorem VI.4. (DRAGON Approximation Optimality). The

DRAGON approximation bound of (1−e−1) is optimal, unless

NP ⊆ DTIME(nO(log logn)).

Proof: (sketch) To show that the approximation bound

given by DRAGON is optimal, we first show that the

applications-resources assignment problem addressed by

DRAGON can be reduced from the (NP-hard) budgeted

maximum coverage problem [13]. Given a collection S of

sets with associated costs defined over a domain of weighted

elements, and a budget L, find a subset S′ ⊆ S such that

the total cost of sets in S′ does not exceeds L, and the total

weight of elements covered by S′ is maximized. We reduce

the applications-resources assignment problem from the

budgeted maximum coverage problem by considering (i) S to

be the collection of all the possible set of applications, i.e.,

S = 2I , (ii) L to be the total amount of resources available

on the hosting node (in this particular case Nρ = 1), and (iii)

weight and costs to be votes and demanded resources of each

application. Since [13] shows that (1−e−1) is the best approx-

imation bound for the budgeted maximum coverage problem

unless NP ⊆ DTIME(nO(log logn)), the claim holds.

VII. EVALUATION

To validate the approach presented in this paper, we im-

plemented a prototype of DRAGON, that will be released

upon acceptance of the paper. Our evaluation focuses on

two major sets of results; we first assess both DRAGON’s

asynchronous convergence properties and performance; then

we provide evidence of the advantages derived by using

DRAGON analyzing two use cases: cache placement for a

CDN provider and edge process migration for mobile gaming.

A. DRAGON properties evaluation

We evaluate convergence and performance properties of

DRAGON over a simulated environment with 4 compute

nodes, each with a different amount of computing resources

(CPU, memory and storage). We run 6 diverse services,

whose implementation can be chosen among 9 different

functions; on average, each function uses about 13% of a

node capacity. These numbers, combined with the rest of our

parameter space, allowed us to test the algorithm behavior

after the hosting resources are saturated, even running a

moderate number of applications. All tests have been repeated

varying the number of concurrent applications.

Convergence Evaluation. DRAGON convergence properties

have been evaluated by measuring the time needed to reach

consensus and the total number of messages exchanged. To

stress the convergence of the algorithm, we simultaneously

deploy up to 20 applications2, i.e., all DRAGON agents begin

the execution at the same time. Figure 2ab shows our results

comparing three system policies: (i) services of an application

are preferably allocated on the lowest number of nodes; (ii)

services of an application are spread across as many nodes

as possible; (iii) no preference on the number of nodes is

given. For each configuration, we ran 25 instances, gradually

varying the average number of services per application (with

averages from 2.4 to 3.6 services). Plots show mean values; all

confidence intervals (not shown) were statistically significant.

In particular, Figure 2a shows the mean convergence times.

We found that, when a large number of applications interact,

encouraging the system to use fewer nodes significantly lowers

convergence time. Some consequences of this policy are (i) a

reduced probability to lose a node election and (ii) re-voting on

residual resources located on additional nodes is discouraged.

Hence, the highest convergence times have been registered

enforcing the usage of many nodes, while convergence is

slightly faster when applications are free to arbitrarily decide

the number of nodes to use.

The total number of exchanged messages follows a similar

behavior (Figure 2b). However, in this case the previous trend

is evident only when the number of applications is greater than

18 and the difference among values of different policies is not

marked as for convergence times. Thus, changing this policy

does not seem to significantly impact the number of messages

that DRAGON needs to exchange to reach convergence.

Performance Evaluation. Figure 2c compares DRAGON

performance for the same three system policies previously

introduced. The plot shows the percentage of applications suc-

cessfully deployed after the distributed assignment process. We

found that, when the number of concurrent applications stays

below 8, all requests are allocated, since the overall resource

demand is bounded by the total amount of available resources.

Above that threshold, the percentage of allocated bundles

starts to gradually decrease. All analyzed policies achieve

approximately the same average allocation ratio, with the only

exception of the “few-nodes-policy”, which obtains a lower

allocation ratio when the number of applications is between

8 and 12, although it shows the fastest convergence time

(Figure 2ab). This is because, when resources on the already

used nodes terminate, this policy discourages the usage of

residual resources available on other nodes. However, this

disadvantage disappears as the number of applications grows,

since the system implicitly introduces more allocation options.

This result suggests that DRAGON allocation ratio scales well

with the application concurrency regardless the system policy.

At last, to evaluate our performance in practice we com-

pared DRAGON with traditional orchestration approaches. In

particular, we compare against three one-size fits-all allo-

cation policies, i.e., a centralized orchestrator that uses the

same objective function to optimize the deployment of all

applications: (i) minimization of total power consumption,

2An application is composed by one or more services (Section III).



	0

	0.5

	1

	1.5

	2

	2.5

	3

	3.5

	4

4 6 8 10 12 14 16 18 20

c
o
n
v
e
rg
e
n
c
e
	t
im
e
	(
s
)

#	of	applications

arbitrary	#	of	used	nodes
support	usage	of	many	nodes
support	usage	of	few	nodes

(a) Convergence time.

	0

	200

	400

	600

	800

	1000

	1200

	1400

	1600

	1800

4 6 8 10 12 14 16 18 20

m
e
s
s
a
g
e
s

#	of	applications

arbitrary	#	of	used	nodes
support	usage	of	many	nodes
support	usage	of	few	nodes

(b) Total number of exchanged messages.

	0

	20

	40

	60

	80

	100

	2 	4 	6 	8 	10 	12 	14 	16 	18 	20

a
ll
o
c
a
te
d
	a
p
p
li
c
a
ti
o
n
s
	(
%
)

#	of	applications

arbitrary	#	of	used	nodes
support	usage	of	many	nodes
support	usage	of	few	nodes

(c) Percentage of allocated bundles.

	0

	200

	400

	600

	800

	1000

	1200

	1400

	1600

	4 	6 	8 	10 	12 	14 	16 	18 	20

s
u
m

	o
f	
a
p
p
li
c
a
ti
o
n
s
	Q

o
S

#	of	applications

reference	solution

DRAGON	(mean)

DRAGON	(error	region)

power	consumption

greedy

load	balancing

best	fit	policy

(d) Sum of deployed applications QoS.

Fig. 2: (ab) Convergence evaluation of DRAGON for different system policies. (cd) Performance evaluation of DRAGON comparing (c) different system
utilities and (d) DRAGON solutions against (i) three one-size fits-all common approaches and (ii) a reference solution obtained running a centralized solver.

	0

	20

	40

	60

	80

	100

	0 	5 	10 	15 	20 	25 	30 	35 	40

o
v
e
ra
ll
	m

is
s
	r
a
te
	(
%
)

time	(m)

users	concentration	(Gini	index)

load	balancing

traffic	based

application	(DRAGON)

(a) Miss rate over time.

	0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11

Static	balanced Traffic	based Application	(DRAGON)

m
is
s
	r
a
te
	d
is
tr
ib
u
ti
o
n

#	of	concurrent	applications

Miss	Rate:

less	than	0.1

from	0.1	to	0.2

from	0.2	to	0.4

from	0.4	to	0.7

greater	than	0.7

(b) Miss rate distributions.

B
AD

PO
O
R

FA
IR

G
O
O
D

TO
P

	0 	10 	20 	30 	40 	50

u
s
e
r	
Q
u
a
li
ty
	o
f	
E
x
p
e
ri
e
n
c
e
	(
M
O
S
)

time	(m)

user	moviments

latency	threshold

application	(DRAGON)

(c) QoE over time.

	0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11

Static	balanced Latency	threshold Application	(DRAGON)

Q
o
E
	d
is
tr
ib
u
ti
o
n

#	of	concurrent	applications

QoE:

Bad

Poor

Fair

Good

Top

(d) QoE distribution.

Fig. 3: (ab) Evaluation of a CDN cache provisioning application comparing different deployment strategies: (a) miss rate over time varying the geographical
users distribution; (b) distribution of measured miss rate varying the number of concurrent applications. (cd) Evaluation of a mobile gaming application for
different deployment strategies: (c) QoE over time for an user moving in different areas; (d) QoE distribution varying the number of concurrent applications.

(ii) greedy selection of the potentially highest performant

functions, (iii) load balancing among nodes. Figure 2d also

shows performance obtained switching between these three

policies based on which one fits best each application needs.

Additionally, we plot the reference solutions, obtained running

a centralized solver to the Problem 1. Values obtained with

this experiment set have been used as reference to evaluate

the other approaches.

Figure 2d compares solutions in terms of overall Quality of

Service, i.e., the sum of the QoS obtained by each application

successfully deployed3. Varying the number of concurrent

applications, for each configuration we ran DRAGON multiple

times. Results are shown with a 95% confidence interval. Cen-

tralized algorithms have been run once, as they give always the

same solution. Results show that allowing each application to

deploy its services according with its own objectives through

DRAGON provides a considerably higher QoS compared

to one-size fits-all approaches, despite being a distributed

algorithm. In particular, for less than 8 applications, i.e., before

the resources start to run out, DRAGON is always reference

solution, considered as optimal. For an higher number of dis-

tributed instances, as expected, the mean QoS starts to degrade

departing from the optimal. However, the total QoS continues

to grow, following the trend of the reference solution. This

result suggests that DRAGON effectively prefers new appli-

cations that introduce higher utilities to the overall solution.

Other findings from Figure 2d are summarized as follows.

(i) A common objective that minimizes the overall power con-

sumption provides poor total QoS, except for an high number

of applications, since this strategy accommodates the largest

3The QoS of each application have been modeled through its private utility.
This provides us a qualitative parameter to compare solutions. QoS values
have been normalized between 0 and 100 for each physical function.

number of requests. (ii) Greedly selecting the most performant

physical functions provides high values of overall QoS only

when there are few applications. Finally, (iii) switching among

different common strategies based on the one that fits best each

application does not necessarily provide an higher QoS. This

is because the adopted allocation strategies work well when

they are applied to all applications in the same way (e.g., load

balancing and power consumption minimization). Noticeable,

none of the one-size fits-all approaches is able to increase the

overall QoS after resources are saturated.

B. Reference use case evaluation

We now show the advantages brought by DRAGON when

adopted by an infrastructure provider that wants to deploy

application requests coming from multiple service providers,

without restricting them on the deployment approach. Our aim

is to show that, for example, a CDN provider that relies on a

third party infrastructure to serve a certain area may benefit

from using its own cache placement algorithm (e.g., [15]),

running over DRAGON, rather than depending on a one-size

fits-all embedding orchestrator.

We setup a simulated environment to evaluate two different

edge use cases from [3], [4]: (i) cache placement for a CDN

provider [4], and (ii) edge migration for mobile gaming [3].

In our tests, we compared the provided QoS resulting from

different deployment approaches, also varying the concurrency

level adding some concurrent applications, thus evaluating the

behavior when resources start to become scarse.

CDN Caches. A CDN provider provisions content caches

over an edge network where user density dynamically changes

across compute nodes. The objective of the provider is to

minimize the average miss-rate occurring on deployed caches.

The CDN application should react to events where a set of



users shifts from a node to another. In our tests we simulated a

set of 100 users moving over a network of 10 edge computing

nodes. To understand how users are distributed among nodes,

we also report the Gini index (an high index indicates that

most users are located near few host nodes). We summarize

our findings in a few take home messages:

(i) A one-size fits-all approach that places caches balancing the

resource consumption per node, achieves good performance

when users are well distributed, but the number of miss-

rate grows fast when the concentration increases (Figure 3a).

A similar result is obtained by statically partitioning the

resources among coexistent applications (Figure 3b) when their

number is high with respect to the available resources.

(ii) A one-size fits-all approach that places caches according

with the traffic load on each node, achieves optimal miss-rates

when users are concentrated on few nodes, while performance

is poor otherwise. This is because a low traffic amount on

a certain node does not necessarily mean that users are

consuming less variety of contents. Figure 3b shows a slight

degradation increasing the number of concurrent applications.

(iii) If the application can place caches based on current

miss-rate on each nodes, mandating resource partitioning to

DRAGON, optimal miss-rate both for low and high users con-

centration is achieved (Figure 3a). Moreover, note how Fig-

ure 3b does not show a noticeable QoS degradation increasing

the number of concurrent applications, showing the scalability

of our approach. This is because DRAGON seeks optimal

resource partitioning with regard to the application objectives.

Mobile Gaming. A gamer moves into an area served by

multiple edge nodes. Whereas the application may consider

relocating (part of) the game edge functions to better fulfill

the latency requirements, the relocation may happen in a

crucial phase of the game, causing undesirable service degra-

dation [3]. Therefore, if the deployment is managed by the

gaming application itself, it may recognize the time frame in

which a relocation is most appropriate (e.g., after the gamer

reaches a checkpoint or during the loading of a new level).

In our tests we simulated an user moving every 6 minutes

across a network of 10 edge nodes. We measured the Quality

of Experience perceived by the user based on latency and

packet loss, using the same Mean Opinion Score (MOS)

described in [16] for medium-paced games. Our findings are

summarized as follows (Figure 3cd):

(i) Statically partitioning resources between applications does

not scale (Figure 3d): the application may be unable to migrate

services on needed nodes, since resources are assigned to other

peers, despite not being currently uses.

(ii) If the resources are managed by a one-size fits-all or-

chestrator that minimizes the end-to-end latency, the user

often experiences a QoE level that we label as bad due to

some process relocation occurring during the game session

(Figure 3c). Figure 3d shows that the percentage of bad QoE

measurements even may increase with the concurrency.

(iii) If the relocation decision is taken by the application,

and resources are dynamically assigned with DRAGON, the

service is not migrated rapidly whenever the user moves away;

even if this may temporarily increase the latency, it prevents

undesirable service degradation during a game session and the

overall perceived QoE results improved (Figure 3c). Figure 3d
also shows that this approach scales well with the number of

concurrent applications.

VIII. CONCLUSION

This paper proposes DRAGON, a distributed bounded ap-

proximation algorithm that solves the problem of optimally

partitioning a set of resources between multiple edge appli-

cations. DRAGON allows such applications to coexist over

a shared infrastructure by means of a dynamic agreement on

which resources have to be (temporary) assigned to which

application. We used linear programming to define and model

the application-resources assignment problem, that DRAGON

solves in a distributed fashion providing guarantees on both

convergence time and performance. Our evaluation assesses

convergence and performance properties, comparing different

policies of our system. Moreover, we evaluate DRAGON over

two representative edge use cases, showing that an infras-

tructure provider may adopt it to enable their customers (i.e.,

service providers) to deploy applications through the preferred

embedding algorithm, without the restrictions deriving by

relying on a common one-size fits-all orchestrator.

REFERENCES

[1] ETSI, “NFV MANO.” [Online]. Available: https://goo.gl/XLffVJ
[2] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A

comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[3] V. Sciancalepore et al., “A double-tier MEC-NFV architecture: Design
and optimisation,” in Standards for Communications and Networking
(CSCN), 2016 IEEE Conference on. IEEE, 2016, pp. 1–6.

[4] T. Taleb et al., “On multi-access edge computing: A survey of the
emerging 5g network edge cloud architecture and orchestration,” IEEE
Communications Surveys & Tutorials, vol. 19, pp. 1657–1681, 2017.

[5] E. Amaldi et al., “On the computational complexity of the virtual net-
work embedding problem,” Electronic Notes in Discrete Mathematics,
vol. 52, pp. 213–220, 2016.

[6] S. Mehar et al., “An optimized roadside units (rsu) placement for delay-
sensitive applications in vehicular networks,” in Consumer Communi-
cations and Networking Conference (CCNC), 2015 12th Annual IEEE.
IEEE, 2015, pp. 121–127.

[7] T. Bahreini and D. Grosu, “Efficient placement of multi-component
applications in edge computing systems,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. ACM, 2017, p. 5.

[8] N.-S. Vo et al., “Optimal video streaming in dense 5g networks with
d2d communications,” IEEE Access, vol. 6, pp. 209–223, 2018.

[9] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center.” in NSDI, vol. 11, no. 2011, 2011, pp. 22–22.

[10] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[11] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm.” in USENIX Annual Technical Conference, 2014,
pp. 305–319.

[12] N. A. Lynch, Distributed algorithms. Elsevier, 1996.
[13] S. Khuller et al., “The budgeted maximum coverage problem,” Infor-

mation Processing Letters, vol. 70, no. 1, pp. 39–45, 1999.
[14] M. Sviridenko, “A note on maximizing a submodular set function subject

to a knapsack constraint,” Operations Research Letters, vol. 32, no. 1,
pp. 41–43, 2004.

[15] D. Karger et al., “Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,” in
Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing. ACM, 1997, pp. 654–663.

[16] M. Jarschel et al., “An evaluation of QoE in cloud gaming based on
subjective tests,” in Innovative mobile and internet services in ubiquitous
computing (imis), 2011 fifth international conference on. IEEE, 2011,
pp. 330–335.


