A Distributed Orchestration Algorithm for Edge Computing
Resources with Guarantees

Gabriele Castellano’™*

Flavio EspositoT

Fulvio Risso*

TComputer Science, Saint Louis University, USA
*Computer and Control Engineering, Politecnico di Torino, Italy
Email: T{gabriele.castellano, flavio.esposito} @slu.edu, *{gabriele.castellano, fulvio.risso} @polito.it

Abstract—Edge Computing brings flexibility and scalability of
virtualization technologies at the edge of the network, enabling
service providers to deploy new applications over a richer
network infrastructure. However, the coexistence of such variety
of applications on the same infrastructure exacerbates the already
challenging problem of coordinating resource allocation while
preserving the resource assignment optimality. In fact, (i) each
application can potentially require different optimization criteria
due to their heterogeneous requirements, and (ii) we may not
count on a centralized orchestrator due to the highly dynamic
nature of edge networks. To solve this problem, we present
DRAGON, a Distributed Resource AssiGnment and Orchestra-
tioN algorithm that seeks optimal partitioning of shared resources
between different applications running over a common edge
infrastructure. We designed DRAGON to guarantee both a bound
on convergence time and an optimal (1-1/e)-approximation with
respect to the Pareto optimal resource assignment. We evaluate
convergence and performance of DRAGON on a prototype
implementation, assessing the benefits compared to traditional
orchestration approaches.

I. INTRODUCTION

The emerging Edge Computing paradigm has enabled
service providers to supply a large variety of new
applications, which benefit from the presence of storage
and computing facilities at the edge of the network as well
as reduced latency toward end users. Moreover, virtualization
technologies enable isolation between different applications
that can simultaneously run on separated slices of a shared
physical infrastructure.

In cloud-based environments, the deployment of services
is often delegated to a centralized component, named Or-
chestrator [1], that usually exploits a one-size fits-all policy
(e.g., energy saving, number of used nodes, load balancing) to
decide (i) where to place service components, (ii) how many
resources have to be assigned to each of them [2] and (iii)
the set of metrics/events signaling that the service has to be
rescheduled (e.g., because of an unexpected load increase).

However, such a centralized approach may be sub-optimal
or not applicable at the edge of the network. First, such
environment may be characterized by high churn rates, unpre-
dictable changes in the network topology and even temporary
network partitions; this may favor distributed orchestration
approaches against a centralized orchestrator, which may not
be even reachable. Second, the largely heterogeneous set of ap-
plications running at the edge of the network may have diverse
and unpredictable objectives, not to mention the necessity to
react differently to the same event, such as a load increase. In

the above circumstance, some applications may scale up/out,
other may modify the service behavior (e.g., choose a more
aggressive video transcoder), other may migrate, and more;
the above behaviors are difficult to achieve with a one-size
fits-all orchestrator.

For instance, the optimization of a Content Distribution
Network (CDN) may require to monitor the round trip time
between users and the nearest cache, which can be used
to recognize occasional hot spots (e.g., flash crowd during
live events); this in turn requires optimizing the service by
relocating (and possibly duplicating) some caches. Vice versa,
an online gaming application featuring assisted migration for
user mobility may want to relocate part of the application [3]
to reduce latency, possibly identifying a convenient time frame
(e.g., after a checkpoint) for this operation.

Distributed content delivery and caching, Internet of Things,
disaster response, vehicle-to-everything automotive and video
acceleration are only some of the multitude of applications [4]
that can benefit from being deployed at the edge of the
network. However, coordinating such a plethora of applica-
tions, each one featuring different policies and deployment ap-
proaches, without relying on a centralized orchestrator, brings
to light several challenges. How could several processes, each
operating with different goals and policies, converge to a
globally optimal resource management over a shared edge in-
frastructure? How could we avoid violations of global policies
or feasibility constraints of several coexisting applications?
How can we guarantee convergence to a distributed resource
allocation agreement and performance optimality given the
NP-hard [5] nature of the service placement problem?

To answer these questions, we present DRAGON, an asyn-
chronous Distributed Resource AssiGnment and OrchestratioN
algorithm. DRAGON leverages the max-consensus literature
and the theory of submodular functions to enable a set of
applications, featuring diverse objectives and optimization
metrics, to reach an agreement on how infrastructure resources
have to be (temporary) assigned, without the necessity of a
centralized orchestrator. Our contributions are as follows:
Design contributions. We introduce the Applications-
Resources Assignment Problem and use linear programming
to model its objective and constraints (Sections III). Finding
a centralized optimal solution is often infeasible even if we
had a single optimizer. We use the solution to the centralized
problem as a baseline global optimal to show DRAGON’s
performance optimality guarantees.

Algorithmic contributions. We detail our DRAGON asyn-
chronous algorithm (Sections IV and V) and we show how it
provides guarantees on both convergence time and expected
resource assignment performance to a set of independent
(network management) applications (Section VI).
Evaluation contributions. We evaluate both performance
scalability and convergence properties of DRAGON, com-
paring them with the traditional one-size fits-all approaches.
Moreover, we assess DRAGON’s benefits analyzing as ref-
erence use cases (i) the problem of cache placement for a
CDN provider and (ii) the edge migration for mobile gaming
(Section VII). Our findings confirm the applicability of this ap-
proach in edge infrastructures and the performance advantages
over traditional one-size fits-all orchestration approaches.

II. RELATED WORK

Optimization of edge applications. Recent work [6]-[8]
proposes ad-hoc optimization, each one targeting a single edge
application separately. For instance, [6] optimizes the place-
ment of roadside units on new generation vehicular networks.
Instead, [7] focuses on the service placement problem in mo-
bile applications, where the dynamism of user’s location plays
a key role. Finally, [8] proposes an optimal allocation for high-
performance video streaming in 5G networks. While above
solutions enable optimization for isolated applications, at the
best of the author’s knowledge there have been no studies
about how such a variety of service embedding algorithms
can coexist on a shared infrastructure without undermining
the overall performance optimality.

Distributed resource assignment. Another related set of
solutions concerns the partitioning of shared resources. For in-
stance, Mesos [9] enables dynamic decisions on resource par-
titioning and allows the coexistence of diverse cluster comput-
ing frameworks, each one featuring different scheduling needs,
on top of the same cloud infrastructure. This solution exploits
a master that assigns resources dynamically by making offers
to demanding frameworks. However, mandating the existence
of such a component may not be suitable in a scenario where
services are executed on scattered compute nodes, e.g., at the
edge of the network, which feature arbitrary and unpredictable
topologies that evolve over time. In this context, we should
rely on solutions that provide decentralized consensus (e.g.,
Paxos [10] and Raft [11]) to reach agreement on resource
assignment. However, none of them simultaneously provides
(i) guarantees on convergence time and performance, and (ii)
a fully distributed approach.

III. PROBLEM DEFINITION AND MODELING

This section defines the (NP-hard) applications-resources
assignment problem by leveraging linear programming.

Let us model an application as a multiset — a set in which
element repetition is allowed — whose elements are selected
among N (abstract) services to be embedded on a shared
(physical) edge infrastructure. A service is an abstract instance
of a physical function, e.g., a load balancer, a video transcoder
or a content cache, which can be implemented by selecting the

best possible physical function among the Ny available ones.
In fact, functions may feature different characteristics such as
execution environment (virtual machine, container, dedicated
hardware), required resources, or the capability to provide a
specific level of QoS.

The infrastructure is partitioned in N,, hosting nodes, each
one with potentially different physical capacities. We assume
that each function consumes a given amount of resources such
as CPU, storage, memory, network bandwidth, etc., which are
modeled with IV, different types.

Finally, let us consider N, applications, all simultaneously
demanding resources from a shared edge infrastructure, each
one following a potentially different optimization strategy. We
assume that the application itself will select the best (feasi-
ble) functions that are required to implement its composing
services, then allocate them in the most appropriate location.

Our goal is to maximize a global utility U while finding
an infrastructure-bounded applications-resources assignment
that allows the deployment of each application. We define
an applications-resources assignment to be infrastructure-
bounded if the consumption of all assigned functions allocated
on each hosting node does not exceed the p, available
resources on that node.

We model the applications-resources assignment problem
with an integer program; its binary decision variable x;;;, is
equal to one if an instance of function j has been assigned to
application 7 on hosting node n and to zero otherwise.

No Ny N,
maximize Z Z Z Uijn(wi)afijn (1.1)
i1=1j=1n=1
subject to

N, Ny

S " wijneir < ok Vk €K, ¥ne N (1.2)

i=1j=1

Ny Ny N

Z Z Tijn = Z (oim) Vi VieT (1.3)

j=1ln=1 m=1

Ny [N,

> (Z asjn> Amj > i vmeM, Viel (1.4)

j=1 \n=1

Ny

> @i <1 VieJ,VieT (1.5)

n=1

Ny

> wij >1- Nyyi VieZ (1.6a)

j=1

Ny

> @ij < 1Npy; VieZ (1.6b)

j=1
xijn € {0,1} V(i,j,m) €L X T x N (1.7a)
yi € {0,1} Vi€ T (1.7b)
cjr €N V(j,k) €T xK (1.7¢)
pnk €N V(n,k) EN X K (1.7d)
Amj € {0,1} V(m,j) € M x J (1.7¢)
oim € {0,1} Y(i,m) € T x M (1.76)

where x; € {0,1}Nr*Nv is the assignment vector for
application i, whose ;" x nt" element is Zijn. The auxiliary
variables y; are equal to 1 if at least an instance of any

function has been assigned to application 4, and 0 otherwise
(constraints 1.6a, 1.6b, 1.7b). The index sets are defined as
T2 {1,...,N,J, M 2 {1,....,N;}, T & {1,...,Ns},
K& {1,...,N,} and N' £ {1,...,N,}. The variable p,
represents the amount of resource k available on node n;
furthermore, we denote p,, € N2 the capacity of node n € N.
With ¢;r € N we capture the cost of function j in terms
of resource k; thus, we name c; € Nf)\/ the cost vector of
function j € J. We set A,,; = 1 if the abstract service m can
be implemented (i.e., deployed) through the function j, while
oim = 1 if m is needed by application <.

The utility function models the overall gain U, (x;), i.e.,
the utility that the system gains by assigning c; resources to
application 7, allowing it to add the function j to its assignment
vector x;. Note that the gain does not depend merely from
the service itself; in fact, it depends (i) on which function
is used to instantiate a specific service and (ii) on which
node the chosen function is deployed. Note how constraint
(1.2) ensures that the solution is infrastructure-bounded, while
constraints (1.3 and 1.4) avoid partial allocations'. Finally,
constraint (1.5) prevents an application to get multiple in-
stances of the same function on different nodes.

IV. SINGLE-NODE DRAGON

In this section we introduce DRAGON (Distributed Re-
source AssiGnment and OrchestratioN), a novel approximation
algorithm that we designed to solve the NP-hard Problem 1
through a distributed approach.

Each application ¢ runs a DRAGON agent, which starts
a voting procedure with the aim of acquiring the resources
needed to deploy its assignment vector x;, and participates to a
resource election protocol. Voting and elections are performed
at the node level. Applications that are ‘“elected”, i.e., that
they win the distributed assignment problem, gain the right
to allocate their demanded amount of (virtual) resources on a
certain (physical) node. In the first phase, each agent performs
the election locally, based on its local state awareness. Then a
max-consensus based distributed agreement phase guarantees
the converge of the election process.

To describe all core mechanisms of our approach, we first
introduce a simplified Single-Node version (SN-DRAGON),
featuring a single hosting node on the underlying infrastruc-
ture. Note that, in SN-DRAGON, structures introduced in
Section III are simplified by the absence of the node index n.

To describe the algorithm, we give the following definitions:

Definition 1. (private utility function w;). Given a set T
of applications and a set J of functions, we define private
utility function of application i € I, and we denote it with
u;: J — R, the utility u;; € R that application i gains
by adding function j € J to its assignment vector x;, i.e.,
implementing one of its services through the function j.

'Note the coupling between constraint (1.4) and (1.3): if an application
takes a function j that is able to instantiate two distinct needed services m’
and m'’ (e.g., in case a function requires two instances of the same abstract
service), constraint (1.4) would be satisfied despite the application is missing
the additional function to implement either m’ or m’.

Each application may have a different (conflicting) objective
and may have no incentive to disclose its utility; however, our
model, and so our algorithm, maximizes a global objective
(Equation 1.1), that in DRAGON is a policy. Since we assume
that a Pareto optimality is sought, the global utility is a
function of the applications private utilities, i.e.,

Ui(z:) = f(ui(z:)), Vi€ L.
DRAGON needs a vote vector that we define as follows.

Definition 2. (vote vector v'). Given a distributed voting
process among a set T of N, applications, we define v* € R_,A_]“
to be the vector of current winning votes known by application
i € L. Each element v' is a positive real number representing
the vote . € I known by application 1, if © thinks that . is a
winner of the election phase. Otherwise, v’ is 0.

Since applications compute resource assignments in a dis-
tributed fashion, they could possibly have different views until
an agreement on the election winner(s) is reached; we use the
apex ¢ to refer to the vote vector as seen by application 4
at each point in the agreement process. During the algorithm
description, for clarity, we omit the apex ¢ when we refer to the
local vector (the same applies also for the following vectors).

Definition 3. (demanded resource vector r*). Given a voting
process among a set I of N, applications on N, different
types of shared resources, we define as demanded resource
vector r* € N +“XNP, the vector of total resources currently
requested by each application; each element r* € NN is the
amount of resources requested by application v € T with its
most recent vote v' known by i € T.

Definition 4. (voting time vector t'). Given a set T of N,
applications participating to a distributed voting process, we
define as voting time vector t' € RYe, the vector whose
element t! represents the time stamp of the last vote v! known
by i € T for application | € T.

We also give the following definition of neighborhood:

Definition 5. (neighborhood I1;). Given a set T of applica-
tions, we define neighborhood I; C T \ {i} of application
1 € I, the subset of applications directly connected to 1.

The notion of neighborhood is generalizable with the set of
agents reachable within a given latency upper bound. We are
now ready to describe SN-DRAGON (Algorithm 1).
Algorithm Overview. On each application 4, the DRAGON
agent runs an Orchestration Phase (Algorithm 2) where an
optimal assignment, if any, is built and voted to participate in
the resource election. Votes here are updated in a distributed
election process. If any value of the vote vector v* is changed,
i sends its vectors v%, ¢ and * to its (first-hop) neighbors, then
waits for a response coming from any number of them. During
the Agreement Phase, all vectors v', 7 and ' received
from neighbor 4" are used in combination with the local values
(Algorithm 5), to reach an agreement with 7’.

Note that the assignment vector x; of each application @

Algorithm 1 SN-DRAGON for application 4 at iteration ¢

Algorithm 3 voting for application 4 at iteration ¢

orchestration(v(t — 1), r(t — 1), p)

if 3veZ: v (t)#wv(t—1) then
send(¥, t), Vi’ € Z;

receive(i/, t), Vi’ € T; _

agreement (i, t), Vi’ € Z;

A

Algorithm 2 orchestration for application 7 at iteration ¢
Imput: v(t — 1), r(t —1), t(t—1), p, ¢
Output: v(t), r(t), t(t)

1: if ¢ # O then

2 'U(t), T(t)’ t(t) = U(t - 1)7 T(t - 1)’ t(t - 1)

3: do

4 U; = ’Ui(t)

5 if v;(t—1)#0 A v;(t) =0 then > outvoted
6: embedding(t) > find next &; maximizing w;
7: voting(z;, ¢) > vote @; using U
8 election(v(t), r(t), p)

9: while v; # v;(t) > repeat until not outvoted

does not need to be exchanged. Agents are aware of the
resource demand from their peers, but are unaware of the
details regarding which functions they wish to allocate.

The remainder of this section gives more details on the two
main phases of the SN-DRAGON algorithm.

A. Orchestration Phase

After the initialization of local vectors v(t), r(t) and ¢(¢) for
the current iteration ¢ (Algorithm 2, line 2), each DRAGON
agent uses Algorithm 2, line 8 to elect the current winners
according to the known votes updated at the last iteration. If
agent ¢ has been outvoted (Algorithm 2, line 5), the algorithm
starts to iterate among (i) an embedding routine (Algorithm 2,
line 6), which computes the next suitable assignment vec-
tor x; maximizing ¢’s private utility, (ii) a voting routine
(Algorithm 2, line 7) where agent 7 votes for the resources
that follow the last computed assignment vector and (iii) the
election routine (Algorithm 2, line 8).

The iteration continues until agent ¢ does not get outvoted
anymore (Algorithm 2, line 9). This may happen if either (i)
the selected assignment vector allows ¢ to win the election or
(ii) there are no more suitable assignments x; (then no new
vote has been generated).

Remark. To guarantee convergence, DRAGON forbids out-
voted applications to re-vote with an higher utility value on
resources that they have lost in past rounds. Re-voting is,
however, allowed only on residual resources.

Note that an asynchronous agreement may never terminate
unless we forcefully timeout the consensus process. However,
we use the theory of max-consensus to show that the agree-
ment phase stops as long as we have reliable communication
and each vote traverses the network of agents at least once.

1) Embedding Routine: FEither during the first iteration
(t = 0), or any time application i is outvoted, SN-DRAGON
invokes an embedding routine (Algorithm 2, line 6) that, based
on the private policies of ¢, computes the next best suitable
assignment vector ;. Therefore, this routine is in turn private

Input: x;, c
Output: v;(t),7;(t), t;(t)

1: ti(t) =t

2: if x; # 0 then

3: Tik(t) = Ejacijcjk, Vk e K
4: v;(t) = score(x;)

> vote time

> valid assignment

> demanded resources
> vote new assignment

Algorithm 4 election routine at iteration ¢
Input: v(t), r(t), p
Output: v(t)
lp=p
22W=0
do

> residual resources
> winner set

Ty ={i € Z| rar(t) < pr, Yk € K}
-~ v; (t)
W = argmax;ec 7, \w W}

3:

4 > valid candidates
5:

6: W=wWu{w}

7.

8:

9:

> candidate with higher vote

> add to winners
> decrease residual resources
> repeat until no candidate remains
> reset loser votes

Pk =Pk —Twk, VEEK
while Z, \ W # @
v, =0, Ve e Z\W

for each application, and strictly dependent from the specific
nature of the application itself (each of them may follow a
different deployment strategy, seek optimization of specific
metrics and even feature additional deployment constraints).

2) Voting Routine: After a new assignment vector has been
built, each DRAGON agent runs a voting routine, updating the
time of its most recent vote; if the assignment vector is valid,
all demanded resources are updated and voted, through a score
function derived by the global utility (Algorithm 3). Although
the raw global utility itself may be used as score function to
compute votes, in Section V-A we give recommendation on
which function should be used to guarantee convergence and
optimal approximation bound (Section VI).

3) Election Routine: The last step of the Orchestration
Phase (Algorithm 2, line 8) is a resource election that decides
which applications are capable of allocating the demanded
resources on the shared hosting node (Algorithm 4). Based
on the most recent known votes v(t), the related resource
demands 7(t) and the capacity p of the shared node, this
procedure selects applications by mean of a greedy approach.
At each step, it (i) discards the application whose demanded
resources r; exceed the residual node capacity and (ii) selects
the one with the highest ratio vote to demanded resources
(Algorithm 4, lines 4-5). The one elected is then added to
the winner set and the amount of resources assigned to the
new winner are removed from the residual set (Algorithm 4,
lines 6-7). The greedy election ends when either all candidates
result winners, or residual resources are not enough for any
of those remaining. Finally, votes of applications that did not
win the election are reset (Algorithm 4, line 9). In Section VI
we show that the greedy heuristic gives guarantees on the
optimal approximation.

B. Agreement Phase

Once received vectors v®, r' and ¢ from every 4’ in its
neighborhood, each agent runs an Agreement Phase. During
this phase, applications make use of a consensus mechanism
to reach an agreement on their vote vector v*, hence on

Algorithm 5 agreement with application i’ at iteration ¢ node 1 node 2 node 3 node 4
Input: v(t), (1), £(t), v (1), v (1), £ (¢)

Output: v(t), »(t), t(t) |app#2| |app#3| | app. #3 | |app#5|
1: for all . € Z do

2 if t,(t) < tfl (f) then > received newer vote | PR i | | app. e | ‘_deF_)__#ff]:_' [DB # |
3 v (t) = Ufzgt) Election results per node app. #5

4 re(t) =7, (t), VkEK 1 winners

5 t.(t) =t, (t) [losers

the overall resources assignment (Algorithm 5). By adapting
the definition of consensus [12] to the applications-resources
assignment problem, we define our own notion of consensus
(election) as follows:

Definition 6. (consensus (election)). Let us consider a set T
of N, applications sharing a computing edge infrastructure
through an election routine driven by, for each application i €
Z, the vote vector vi(t) IS]RN“, the demanded resource vector

ri(t) € Rf“XNp and the voting time vector t(t) € NNe, Let
e: Rf“,NN“XNP — 2T be the election function, that given
a vote vector v and the demanded resources r gives a set of
winners. Given the consensus algorithm for application i at

iteration t + 1, Vv € T,

Vit +1) = ol (), rie+1) =r (1),
with i’ = arg max{t’ (t)}, 2)
i€ U i}
consensus (election) among the applications is said to be
achieved if 3t € N such that, ¥Vt > t and Vi, € T,

{ e(v(t), 7' () = e(v’ (), 7" (1))
'vf(t) #0 < L€ e(v’"(t))7 Ve,

3)

i.e., on all applications the election function computes the
same winner set and only winner votes are non zero.

Being DRAGON asynchronous by design, at each iteration
t the agreement phase can start even if agents have received
a vote message from only a subset of their neighbors.

V. MULTI-NODE DRAGON ALGORITHM

In this section we extend the SN-DRAGON approximation
algorithm by proposing a distributed multi-node solution to
Problem 1, that we merely call DRAGON. All data structures
given in the previous section are extended with a new index
n € N, where N is the set of compute nodes and |N| = N,,.
For example, the vote vector in Definition 2 is extended with
v’ € RY*N where each element v, is the last vote of
application ¢ € Z on node n € N as known by i.

As in SN-DRAGON, DRAGON iterates between an Orches-
tration Phase and an Agreement Phase. While the Agreement
Phase is identical, despite being repeated for each node n €
N, some procedures of the Orchestration Phase are extended.

During the Orchestration Phase of DRAGON, an embed-
ding routine selects, for each service needed by the application,
both the function 7 € J that should be used to implement it
and the node n € A where j should be placed. The voting
routine is repeated once for each node involved in the current
assignment x;, so that a vote v;,(t) is generated for every n.

Fig. 1: Example of false winners after an election routine: application #2
prevents #1 to allocate needed resources on node 1, although #2 cannot be
deployed, since it lost elections on node 2.

Remark. In DRAGON an assignment x; is considered valid
only if application i wins all elections on each node n involved
in the assignment x;. If any election is lost, DRAGON resets
the vote vector and a new assignment is built from scratch to
avoid suboptimal assignments.

In DRAGON, the election routine features a conflict reso-
lution named election-recount, which handles potential sub-
optimality deriving as a result of elections. Consider the
assignment scenario in Figure 1; most resources of node 1
have been assigned to app. #2, thus preventing the deployment
of app. #1; however, #2 having lost the election on node
2, releases its previous vote on node 1 at the next iteration.
Therefore, app. #1 could be considered a winner.

The election-recount subroutine copes with this problem by
identifying which applications should be removed from the
election so that the solution results optimized (the description
of the subroutine is omitted due to lack of space).

A. Recommendations on the score function

DRAGON?’s score function is a policy. Many policies may
work well in practice, but in some cases they may lead
to arbitrarily bad performance. As we will see in the next
section, DRAGON guarantees both convergence and a given
performance lower bound as long as the function maximized
during the election routine is submodular. In this section
we give recommendation on the score function V' that each
application should use during the voting routine described in
Algorithm 3 to satisfy this property. Analytic results are shown
in the next section.

Let Ui (i) = X;U;jn(2;)xijn be the overall node utility
of application ¢ on node n. To guarantee convergence of the
election process, we let each peer ¢ communicate its vote on
node n obtained from the score function:

“4)

where W,, C 7 is the current winner set for node n, ie.,
Vun(t) # 0 Yw € W, and S;,, is defined as

Vi(xi, Wn,n) = wrélw {Uin(2;),Sin(w)},

—+o00
S' w) = Vwn
in() {“‘i"(t) el

Since Uy, (x;) > 0 by definition, if ¢ computes each vote with
the function V, it follows that, V(i,n) € ZxXN, V;(x;,n) > 0.
Note how, if it is not the first time that ¢ votes on n, the vote
vin(t) generated at iteration ¢ never results as an outvote of

if 7 never voted on n,

otherwise.

any application that has been previously elected on node n,
during the election process described in Algorithm 4.

VI. CONVERGENCE AND PERFORMANCE GUARANTEES

In this section we present results on the convergence proper-
ties of our DRAGON distributed approximation algorithm. As
defined in Definition 6, by convergence we mean that a valid
solution to the applications-resources assignment problem is
found in a finite number of steps. Unfeasibility is also a
valid solution. Moreover, starting from well-known results on
submodular functions, in this section we show that DRAGON
guarantees an (1 — e~ !)-approximation bound, and that this
bound is also optimal, i.e. there is no better guarantee, unless
NP C DTIME(nCUoglogn)),

Note that, if (4) is used as score function, the election rou-
tine of DRAGON is equivalent to a greedy algorithm attempt-
ing to find, for each node n, the set of winner applications
W,, C T such that the set function z, : 227 — R, defined as

Z Vw(ww,Wn,n), (5)

wWEWY,

Zn(Wn) =

is maximized. By construction of), we have that z, is
monotonically non-decreasing and z(&) = 0.

Definition 7. (submodular function). A set function z : 27 —
R is submodular if and only if, Vo ¢ W C W" C T,

W' U{}) — (W) <z2(W U {}) — (). (6)

This means that the marginal utility of adding ¢ to the input
set, cannot increase due to the presence of additional elements.
Next we show that the total score z,, (5) is submodular. Our
intuition behind its submodularity is that the score function
V, can, at most, decrease due to the presence of additional
elements in W,,. Formally, we have:

Lemma VL1. z, (5) is submodular.

Proof: Since W), C W)/, we have

t
min Ven (1)

i, L 220 < o (o) 220,
and so, for (4),
Vi(@i, Wy in) < V(@i Wy, n). (7N
By definition of z,,, the marginal gain of adding ¢ to W, is
2n(Wn U{t}) = 2n(Wn) = V(@i Wn,n), Ve ¢ Wn C I,

therefore, substituting in (7), we have the claim. [|
Convergence Guarantees. A necessary condition for con-
vergence in DRAGON is that all applications are aware of
which are the winning votes for an hosting node. This infor-
mation needs to traverse all applications in the communication
network (at least) once. Theorem VI.2 shows that a single
information traversal is also sufficient for convergence.

The communication network of a set of applications Z is
modeled as an undirected graph, with unitary length edges
between each couple ¢', " € Z such that i" € Z; and i’ € Z;»,

being Zy C T\ {i'} and Z;» C T\ {i"} respectively the
neighborhood of ¢ and 7”.

Theorem VIL.2. (Convergence of synchronous DRAGON).
Consider an infrastructure of N, hosting nodes, whose re-
sources are shared among N, applications through an election
process with synchronized conflict resolution over a communi-
cation network with diameter D. If the communications occur
over a reliable channel and the function (5) maximized during
the election routine is submodular, then DRAGON converges
in a number of iterations bounded above by N2N,,D.

Proof: (sketch) We first show by induction that agents
agree on the first & assignments in at most kN, D iterations.
Given the submodularity of z,, the assignment (i, ny) with
the highest vote computed at iteration 1 can be outvoted at
most N, — 1 times, i.e., until every agents voted on node
nj at least once. Since each time D iterations are needed
to propagate the vote, every agent will have agreed on the
highest vote v;,,; at most after N, D iterations. Let us suppose
that at iteration hN,D all agents agree on the first k-best
assignments. Since the next-best vote propagated at iteration
k + 1 can be outvoted at most N, — 1 times, it follows that
every agent will have agreed on (i}, ,,ny, ;) by iteration
hNyD + N,D. Then, together with (i},n}) being agreed
to at N, D, every agent will have agreed on (i},n}) within
kN,D iterations. In DRAGON each compute node may be
assigned to each application, then, in the worst case there is
a combination of N, N,, assignments. Therefore, agents reach
agreement in at most N2N,, D iterations.]

As a direct corollary of Theorem VI.2, we compute a bound
on the number of messages that applications have to exchange
in order to reach an agreement on resource assignments.
Because we only need to traverse the communication network
at most once for each combination applications per hosting
nodes (i,n) € Z x N, the following result holds:

Corollary V1.2.1. (DRAGON Communication Overhead). The
number of messages exchanged to reach an agreement on
the resource assignment of N,, nodes among N, non-failing
applications with reliable delay-tolerant channels using the
DRAGON algorithm is at most NmspNgNUD, where D is
the diameter of the communication network and Ny, is the
number of links in its minimum spanning tree.

Performance Guarantees. The election routine in DRAGON
is trivially extended with partial enumeration [13], leading to
the following two results (for brevity, the extension has been
omitted in Algorithm 4).

Theorem VI.3. (DRAGON Approximation Bound). DRAGON
extended with partial enumeration yields an (1 — e™1)-
approximation bound with respect to the optimal assignment.

Proof: (sketch) During the election routine, DRAGON
uses a greedy heuristic to assign node resources to a set of
winners W,,. The objective of the heuristic is to maximize
the value of the set function z,(W,,) without exceeding the
node capacity (knapsack constraint). From a recent result on

submodular functions [14], we know that a greedy approxima-
tion algorithm used to maximize a non decreasing submodular
set function subject to a knapsack constraint is bounded by
(1 — e™1) if the algorithm is combined with the enumeration
technique due to [13]. Being the set function z, (W,,) positive,
monotone and non-decreasing, it remains to show that the
utility used by DRAGON is submodular, which comes from
Lemma VI.1; hence the claim holds. [|

Theorem VI.4. (DRAGON Approximation Optimality). The
DRAGON approximation bound of (1—e~1) is optimal, unless
NP C DTIME(nOUcglogn)),

Proof: (sketch) To show that the approximation bound
given by DRAGON is optimal, we first show that the
applications-resources assignment problem addressed by
DRAGON can be reduced from the (NP-hard) budgeted
maximum coverage problem [13]. Given a collection S of
sets with associated costs defined over a domain of weighted
elements, and a budget L, find a subset S’ C S such that
the total cost of sets in S’ does not exceeds L, and the total
weight of elements covered by S’ is maximized. We reduce
the applications-resources assignment problem from the
budgeted maximum coverage problem by considering (i) S to
be the collection of all the possible set of applications, i.e.,
S = 27, (ii) L to be the total amount of resources available
on the hosting node (in this particular case N, = 1), and (iii)
weight and costs to be votes and demanded resources of each
application. Since [13] shows that (1—e~1) is the best approx-
imation bound for the budgeted maximum coverage problem
unless NP C DTIM E(n©(oglogn)) the claim holds. ®

VII. EVALUATION

To validate the approach presented in this paper, we im-
plemented a prototype of DRAGON, that will be released
upon acceptance of the paper. Our evaluation focuses on
two major sets of results; we first assess both DRAGON’s
asynchronous convergence properties and performance; then
we provide evidence of the advantages derived by using
DRAGON analyzing two use cases: cache placement for a
CDN provider and edge process migration for mobile gaming.

A. DRAGON properties evaluation

We evaluate convergence and performance properties of
DRAGON over a simulated environment with 4 compute
nodes, each with a different amount of computing resources
(CPU, memory and storage). We run 6 diverse services,
whose implementation can be chosen among 9 different
functions; on average, each function uses about 13% of a
node capacity. These numbers, combined with the rest of our
parameter space, allowed us to test the algorithm behavior
after the hosting resources are saturated, even running a
moderate number of applications. All tests have been repeated
varying the number of concurrent applications.

Convergence Evaluation. DRAGON convergence properties
have been evaluated by measuring the time needed to reach
consensus and the total number of messages exchanged. To

stress the convergence of the algorithm, we simultaneously
deploy up to 20 applications?, i.e., all DRAGON agents begin
the execution at the same time. Figure 2ab shows our results
comparing three system policies: (i) services of an application
are preferably allocated on the lowest number of nodes; (ii)
services of an application are spread across as many nodes
as possible; (iii) no preference on the number of nodes is
given. For each configuration, we ran 25 instances, gradually
varying the average number of services per application (with
averages from 2.4 to 3.6 services). Plots show mean values; all
confidence intervals (not shown) were statistically significant.

In particular, Figure 2a shows the mean convergence times.
We found that, when a large number of applications interact,
encouraging the system to use fewer nodes significantly lowers
convergence time. Some consequences of this policy are (i) a
reduced probability to lose a node election and (ii) re-voting on
residual resources located on additional nodes is discouraged.
Hence, the highest convergence times have been registered
enforcing the usage of many nodes, while convergence is
slightly faster when applications are free to arbitrarily decide
the number of nodes to use.

The total number of exchanged messages follows a similar
behavior (Figure 2b). However, in this case the previous trend
is evident only when the number of applications is greater than
18 and the difference among values of different policies is not
marked as for convergence times. Thus, changing this policy
does not seem to significantly impact the number of messages
that DRAGON needs to exchange to reach convergence.
Performance Evaluation. Figure 2¢ compares DRAGON
performance for the same three system policies previously
introduced. The plot shows the percentage of applications suc-
cessfully deployed after the distributed assignment process. We
found that, when the number of concurrent applications stays
below 8, all requests are allocated, since the overall resource
demand is bounded by the total amount of available resources.

Above that threshold, the percentage of allocated bundles
starts to gradually decrease. All analyzed policies achieve
approximately the same average allocation ratio, with the only
exception of the “few-nodes-policy”, which obtains a lower
allocation ratio when the number of applications is between
8 and 12, although it shows the fastest convergence time
(Figure 2ab). This is because, when resources on the already
used nodes terminate, this policy discourages the usage of
residual resources available on other nodes. However, this
disadvantage disappears as the number of applications grows,
since the system implicitly introduces more allocation options.
This result suggests that DRAGON allocation ratio scales well
with the application concurrency regardless the system policy.

At last, to evaluate our performance in practice we com-
pared DRAGON with traditional orchestration approaches. In
particular, we compare against three one-size fits-all allo-
cation policies, i.e., a centralized orchestrator that uses the
same objective function to optimize the deployment of all
applications: (i) minimization of total power consumption,

2 An application is composed by one or more services (Section III).

1600

IS

mmmm arbitrary # of used nodes
mmm support usage of many nodes
support usage of few nodes

mmmm arbitrary # of used nodes
mmm support usage of many nodes
support usage of few nodes

N w
N w

-
n

convergence time (s)

-

o
[

4 6 8 10 18 20

of applications
(b) Total number of exchanged messages.

4 6 8 10 12 14 12 14 16

of applications
(a) Convergence time.

16

allocated applications (%)

1400

©
3

=y

3
o
3
3

@
S
3

IS
S

o
S

reference solution ——
DRAGON (mean) —S—
DRAGON (error region)
power consumption
greedy
load balancing
best fit policy —S—
18

sum of applications

&
S
3

N
>

—&— arbitrary # of used nodes

—4— support usage of many nodes
support usage of few nodes

14

N
S
3

0 0

16 18 20 4 6 8 10 12 14 16 20

of applications

(d) Sum of deployed applications QoS.

2 4 6 8 10

of applications
(c) Percentage of allocated bundles.

12

Fig. 2: (ab) Convergence evaluation of DRAGON for different system policies. (cd) Performance evaluation of DRAGON comparing (c) different system
utilities and (d) DRAGON solutions against (i) three one-size fits-all common approaches and (ii) a reference solution obtained running a centralized solver.

Traffic based

Static balanced

Application (DRAGON)

Miss Rate:
greater than 0.7 B
from 0.4 t0 0.7
from 0.2 t0 0.4
from 0.1 to 0.2
less than 0.1 &

1357911

100

users concentration (Gini index) 100%

load balancing

——— traffic based
application (DRAGON)

@
3

80%

o
3
=
3
X

»
S
IS
S
X

overall miss rate (%)
miss rate distribution

20 20%

15 25 30 35

1357911
of concurrent aoolications

(b) Miss rate distributions.

0 13570911
time (m)

(a) Miss rate over time.

user Quality of Experience (MOS)

Static balanced Latency threshold Application (DRAGON)

user moviments
latency threshold
application (DRAGON)

n
{

100%

%
3

\
\
\
i\
\

o
'O,
%

%
QoE distribution

P

T
T

20%

n
[¢}
%

0%
40 1357911 1357911 13570911

of concurrent applications

(d) QoE distribution.

0
time (m)

(c) QoE over time.

Fig. 3: (ab) Evaluation of a CDN cache provisioning application comparing different deployment strategies: (a) miss rate over time varying the geographical
users distribution; (b) distribution of measured miss rate varying the number of concurrent applications. (cd) Evaluation of a mobile gaming application for
different deployment strategies: (c) QoE over time for an user moving in different areas; (d) QoE distribution varying the number of concurrent applications.

(ii) greedy selection of the potentially highest performant
functions, (iii) load balancing among nodes. Figure 2d also
shows performance obtained switching between these three
policies based on which one fits best each application needs.
Additionally, we plot the reference solutions, obtained running
a centralized solver to the Problem 1. Values obtained with
this experiment set have been used as reference to evaluate
the other approaches.

Figure 2d compares solutions in terms of overall Quality of
Service, i.e., the sum of the QoS obtained by each application
successfully deployed®. Varying the number of concurrent
applications, for each configuration we ran DRAGON multiple
times. Results are shown with a 95% confidence interval. Cen-
tralized algorithms have been run once, as they give always the
same solution. Results show that allowing each application to
deploy its services according with its own objectives through
DRAGON provides a considerably higher QoS compared
to one-size fits-all approaches, despite being a distributed
algorithm. In particular, for less than 8 applications, i.e., before
the resources start to run out, DRAGON is always reference
solution, considered as optimal. For an higher number of dis-
tributed instances, as expected, the mean QoS starts to degrade
departing from the optimal. However, the total QoS continues
to grow, following the trend of the reference solution. This
result suggests that DRAGON effectively prefers new appli-
cations that introduce higher utilities to the overall solution.

Other findings from Figure 2d are summarized as follows.
(i) A common objective that minimizes the overall power con-
sumption provides poor total QoS, except for an high number
of applications, since this strategy accommodates the largest

3The QoS of each application have been modeled through its private utility.
This provides us a qualitative parameter to compare solutions. QoS values
have been normalized between 0 and 100 for each physical function.

number of requests. (ii) Greedly selecting the most performant
physical functions provides high values of overall QoS only
when there are few applications. Finally, (iii) switching among
different common strategies based on the one that fits best each
application does not necessarily provide an higher QoS. This
is because the adopted allocation strategies work well when
they are applied to all applications in the same way (e.g., load
balancing and power consumption minimization). Noticeable,
none of the one-size fits-all approaches is able to increase the
overall QoS after resources are saturated.

B. Reference use case evaluation

We now show the advantages brought by DRAGON when
adopted by an infrastructure provider that wants to deploy
application requests coming from multiple service providers,
without restricting them on the deployment approach. Our aim
is to show that, for example, a CDN provider that relies on a
third party infrastructure to serve a certain area may benefit
from using its own cache placement algorithm (e.g., [15]),
running over DRAGON, rather than depending on a one-size
fits-all embedding orchestrator.

We setup a simulated environment to evaluate two different
edge use cases from [3], [4]: (i) cache placement for a CDN
provider [4], and (ii) edge migration for mobile gaming [3].
In our tests, we compared the provided QoS resulting from
different deployment approaches, also varying the concurrency
level adding some concurrent applications, thus evaluating the
behavior when resources start to become scarse.

CDN Caches. A CDN provider provisions content caches
over an edge network where user density dynamically changes
across compute nodes. The objective of the provider is to
minimize the average miss-rate occurring on deployed caches.
The CDN application should react to events where a set of

users shifts from a node to another. In our tests we simulated a
set of 100 users moving over a network of 10 edge computing
nodes. To understand how users are distributed among nodes,
we also report the Gini index (an high index indicates that
most users are located near few host nodes). We summarize
our findings in a few take home messages:
(i) A one-size fits-all approach that places caches balancing the
resource consumption per node, achieves good performance
when users are well distributed, but the number of miss-
rate grows fast when the concentration increases (Figure 3a).
A similar result is obtained by statically partitioning the
resources among coexistent applications (Figure 3b) when their
number is high with respect to the available resources.
(ii) A one-size fits-all approach that places caches according
with the traffic load on each node, achieves optimal miss-rates
when users are concentrated on few nodes, while performance
is poor otherwise. This is because a low traffic amount on
a certain node does not necessarily mean that users are
consuming less variety of contents. Figure 3b shows a slight
degradation increasing the number of concurrent applications.
(iii) If the application can place caches based on current
miss-rate on each nodes, mandating resource partitioning to
DRAGON, optimal miss-rate both for low and high users con-
centration is achieved (Figure 3a). Moreover, note how Fig-
ure 3b does not show a noticeable QoS degradation increasing
the number of concurrent applications, showing the scalability
of our approach. This is because DRAGON seeks optimal
resource partitioning with regard to the application objectives.
Mobile Gaming. A gamer moves into an area served by
multiple edge nodes. Whereas the application may consider
relocating (part of) the game edge functions to better fulfill
the latency requirements, the relocation may happen in a
crucial phase of the game, causing undesirable service degra-
dation [3]. Therefore, if the deployment is managed by the
gaming application itself, it may recognize the time frame in
which a relocation is most appropriate (e.g., after the gamer
reaches a checkpoint or during the loading of a new level).
In our tests we simulated an user moving every 6 minutes
across a network of 10 edge nodes. We measured the Quality
of Experience perceived by the user based on latency and
packet loss, using the same Mean Opinion Score (MOS)
described in [16] for medium-paced games. Our findings are
summarized as follows (Figure 3cd):
(i) Statically partitioning resources between applications does
not scale (Figure 3d): the application may be unable to migrate
services on needed nodes, since resources are assigned to other
peers, despite not being currently uses.
(ii) If the resources are managed by a one-size fits-all or-
chestrator that minimizes the end-to-end latency, the user
often experiences a QoE level that we label as bad due to
some process relocation occurring during the game session
(Figure 3c). Figure 3d shows that the percentage of bad QoE
measurements even may increase with the concurrency.
(iii) If the relocation decision is taken by the application,
and resources are dynamically assigned with DRAGON, the
service is not migrated rapidly whenever the user moves away;

even if this may temporarily increase the latency, it prevents
undesirable service degradation during a game session and the
overall perceived QoE results improved (Figure 3c). Figure 3d
also shows that this approach scales well with the number of
concurrent applications.

VIII. CONCLUSION

This paper proposes DRAGON, a distributed bounded ap-
proximation algorithm that solves the problem of optimally
partitioning a set of resources between multiple edge appli-
cations. DRAGON allows such applications to coexist over
a shared infrastructure by means of a dynamic agreement on
which resources have to be (temporary) assigned to which
application. We used linear programming to define and model
the application-resources assignment problem, that DRAGON
solves in a distributed fashion providing guarantees on both
convergence time and performance. Our evaluation assesses
convergence and performance properties, comparing different
policies of our system. Moreover, we evaluate DRAGON over
two representative edge use cases, showing that an infras-
tructure provider may adopt it to enable their customers (i.e.,
service providers) to deploy applications through the preferred
embedding algorithm, without the restrictions deriving by
relying on a common one-size fits-all orchestrator.

REFERENCES

[1] ETSI, “NFV MANO.” [Online]. Available: https://goo.gl/XL{fV]

[2] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518-532, 2016.

[3] V. Sciancalepore et al., “A double-tier MEC-NFV architecture: Design
and optimisation,” in Standards for Communications and Networking
(CSCN), 2016 IEEE Conference on. IEEE, 2016, pp. 1-6.

[4] T. Taleb et al., “On multi-access edge computing: A survey of the
emerging 5g network edge cloud architecture and orchestration,” IEEE
Communications Surveys & Tutorials, vol. 19, pp. 1657-1681, 2017.

[5] E. Amaldi et al., “On the computational complexity of the virtual net-
work embedding problem,” Electronic Notes in Discrete Mathematics,
vol. 52, pp. 213-220, 2016.

[6] S. Mehar et al., “An optimized roadside units (rsu) placement for delay-
sensitive applications in vehicular networks,” in Consumer Communi-
cations and Networking Conference (CCNC), 2015 12th Annual IEEE.
IEEE, 2015, pp. 121-127.

[71 T. Bahreini and D. Grosu, “Efficient placement of multi-component
applications in edge computing systems,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. ACM, 2017, p. 5.

[8] N.-S. Vo et al., “Optimal video streaming in dense 5g networks with
d2d communications,” IEEE Access, vol. 6, pp. 209-223, 2018.

[9]1 B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center.” in NSDI, vol. 11, no. 2011, 2011, pp. 22-22.

[10] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18-25, 2001.

[11] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm.” in USENIX Annual Technical Conference, 2014,
pp. 305-319.

[12] N. A. Lynch, Distributed algorithms. Elsevier, 1996.

[13] S. Khuller et al., “The budgeted maximum coverage problem,” Infor-
mation Processing Letters, vol. 70, no. 1, pp. 39—45, 1999.

[14] M. Sviridenko, “A note on maximizing a submodular set function subject
to a knapsack constraint,” Operations Research Letters, vol. 32, no. 1,
pp. 4143, 2004.

[15] D. Karger et al., “Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,” in
Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing. ACM, 1997, pp. 654-663.

[16] M. Jarschel et al., “An evaluation of QoE in cloud gaming based on
subjective tests,” in Innovative mobile and internet services in ubiquitous
computing (imis), 2011 fifth international conference on. IEEE, 2011,
pp. 330-335.

