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Abstract

We study finite-sum nonconvex optimization problems, where the objective func-
tion is an average of n nonconvex functions. We propose a new stochastic gradient
descent algorithm based on nested variance reduction. Compared with conventional
stochastic variance reduced gradient (SVRG) algorithm that uses two reference
points to construct a semi-stochastic gradient with diminishing variance in each it-
eration, our algorithm uses K + 1 nested reference points to build a semi-stochastic
gradient to further reduce its variance in each iteration. For smooth nonconvex
functions, the proposed algorithm converges to an e-approximate first-order station-
ary point (i.e., |[VF(x)||2 < €) within O(n A €72 4 ¢ 73 A n'/2e72)! number of
stochastic gradient evaluations. This improves the best known gradient complexity
of SVRG O(n + n?/3¢=2) and that of SCSG O(n A e 2 + ¢~ 10/3 An?/3¢=2), For
gradient dominated functions, our algorithm also achieves better gradient complex-
ity than the state-of-the-art algorithms. Thorough experimental results on different
nonconvex optimization problems back up our theory.

1 Introduction

We study the following nonconvex finite-sum problem
i PO = -3 10 (1)
min X) = — i (X .
xe]Rd n Pt 7 9’

where each component function f; : R — R has L-Lipschitz continuous gradient but may be
nonconvex. A lot of machine learning problems fall into (1.1) such as empirical risk minimization
(ERM) with nonconvex loss. Since finding the global minimum of (1.1) is general NP-hard [16], we
instead aim at finding an e-approximate stationary point x, which satisfies ||V F(x)||2 < ¢, where
VF(x) is the gradient of F'(x) at x, and € > 0 is the accuracy parameter.

In this work, we mainly focus on first-order algorithms, which only need the function value and
gradient evaluations. We use gradient complexity, the number of stochastic gradient evaluations,

'O(-) hides the logarithmic factors, and a A b means min(a, b).
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to measure the convergence of different first-order algorithms.” For nonconvex optimization, it is
well-known that Gradient Descent (GD) can converge to an e-approximate stationary point with
O(n - €=2) [31] number of stochastic gradient evaluations. It can be seen that GD needs to calculate
the full gradient at each iteration, which is a heavy load when n > 1. Stochastic Gradient Descent
(SGD) has O(e~*) gradient complexity to an e-approximate stationary point under the assumption
that the stochastic gradient has a bounded variance [15]. While SGD only needs to calculate a mini-
batch of stochastic gradients in each iteration, due to the noise brought by stochastic gradients, its
gradient complexity has a worse dependency on e. In order to improve the dependence of the gradient
complexity of SGD on n and € for nonconvex optimization, variance reduction technique was firstly
proposed in [40, 18, 45, 10, 29, 6] for convex finite-sum optimization. Representative algorithms
include Stochastic Average Gradient (SAG) [40], Stochastic Variance Reduced Gradient (SVRG) [18],
SAGA [10], Stochastic Dual Coordinate Ascent (SDCA) [44] and Finito [11], to mention a few. The
key idea behind variance reduction is that the gradient complexity can be saved if the algorithm use
history information as reference. For instance, one representative variance reduction method is SVRG,
which is based on a semi-stochastic gradient that is defined by two reference points. Since the the
variance of this semi-stochastic gradient will diminish when the iterate gets closer to the minimizer, it
therefore accelerates the convergence of stochastic gradient method. The convergence of SVRG under
nonconvex setting was first analyzed in [13, 43], where F’ is still convex but each component function
fi can be nonconvex. The analysis for the general nonconvex function F' was done by [37, 5], which
shows that SVRG can converge to an e-approximate stationary point with O(n?/3 - €~2) number
of stochastic gradient evaluations. This result is strictly better than that of GD. Recently, Lei et al.
[25] proposed a Stochastically Controlled Stochastic Gradient (SCSG) based on variance reduction,
which further reduces the gradient complexity of SVRG to O(n A €2 + ¢~ 19/3 A (n?/3¢=2)). This
result outperforms both GD and SGD strictly. To the best of our knowledge, this is the state-of-art
gradient complexity under the smoothness (i.e., gradient lipschitz) and bounded stochastic gradient
variance assumptions. A natural and long standing question is:

Is there still room for improvement in nonconvex finite-sum optimization without making additional
assumptions beyond smoothness and bounded stochastic gradient variance?

In this paper, we provide an affirmative answer to the above question, by showing that the dependence
on 7 in the gradient complexity of SVRG [37, 5] and SCSG [25] can be further reduced. We propose
a novel algorithm namely Stochastic Nested Variance-Reduced Gradient descent (SNVRG). Similar
to SVRG and SCSG, our proposed algorithm works in a multi-epoch way. Nevertheless, the technique
we developed is highly nontrivial. At the core of our algorithm is the multiple reference points-based
variance reduction technique in each iteration. In detail, inspired by SVRG and SCSG, which uses
two reference points to construct a semi-stochastic gradient with diminishing variance, our algorithm
uses K + 1 reference points to construct a semi-stochastic gradient, whose variance decays faster
than that of the semi-stochastic gradient used in SVRG and SCSG.

1.1 Our Contributions

Our major contributions are summarized as follows:

e We propose a stochastic nested variance reduction technique for stochastic gradient method, which
reduces the dependence of the gradient complexity on n compared with SVRG and SCSG.

e We show that our proposed algorithm is able to achieve an e-approximate stationary point with

O(n A e 2 + e 3 A n'/2672) stochastic gradient evaluations, which outperforms all existing
first-order algorithms such as GD, SGD, SVRG and SCSG.

e Asaby-product, when F'is a 7-gradient dominated function, a variant of our algorithm can achieve
an e-approximate global minimizer (i.e., F'(x) — miny F(y) <€) within O(n A e ! + 7(n A
Te~1)1/2) stochastic gradient evaluations, which also outperforms the state-of-the-art.

>While we use gradient complexity as in [25] to present our result, it is basically the same if we use
incremental first-order oracle (IFO) complexity used by [37]. In other words, these are directly comparable.



1.2 Additional Related Work

Since it is hardly possible to review the huge body of literature on convex and nonconvex optimization
due to space limit, here we review some additional most related work on accelerating nonconvex
(finite-sum) optimization.

Acceleration by high-order smoothness assumption With

only Lipschitz continuous gradient assumption, Carmon et al.

[9] showed that the lower bound for both deterministic and /3
stochastic algorithms to achieve an e-approximate stationary

point is Q(e~2). With high-order smoothness assumptions, -
i.e., Hessian Lipschitzness, Hessian smoothness etc., a series

of work have shown the existence of acceleration. For in- 3 — sosa
stance, Agarwal et al. [1] gave an algorithm based on Fast-PCA - _—— SNVRG
which can achieve an e-approximate stationary point with gra- ! ‘ "
dient complexity O (ne=3/2 4+ n3/4¢=7/4) Carmon et al. [7, 8]

showed two algorithms based on finding exact or inexact neg- Figure 1: Comparison of gradient
ative curvature which can achieve an e-approximate stationary complexities.

point with gradient complexity O (ne~"/%). In this work, we

only consider gradient Lipschitz without assuming Hessian Lipschitz or Hessian smooth. Therefore,
our result is not directly comparable to the methods in this category.

Gradient
Complexity

Acceleration by momentum The fact that using momentum is able to accelerate algorithms has been
shown both in theory and practice in convex optimization [34, 30, 17, 22, 14, 31, 28, 2]. However,
there is no evidence that such acceleration exists in nonconvex optimization with only Lipschitz
continuous gradient assumption [15, 26, 33, 27, 23]. If F satisfies A-strongly nonconvex, i.e.,
V2F = —)I, Allen-Zhu [3] proved that Natasha 1, an algorithm based on nonconvex momentum, is
able to find an e-approximate stationary point in O(n?/3L?/3\1/3¢=2). Later, Allen-Zhu [3] further
showed that Natasha 2, an online version of Natasha 1, is able to achieve an e-approximate stationary

point within O(e~325) stochastic gradient evaluations®.

After our paper was submitted to NIPS and released on arXiv, a paper [12] was released on arXiv after
our work, which independently proposes a different algorithm and achieves the same convergence
rate for finding an e-approximate stationary point.

To give a thorough comparison of our proposed algorithm with existing first-order algorithms for
nonconvex finite-sum optimization, we summarize the gradient complexity of the most relevant
algorithms in Table 1. We also plot the gradient complexities of different algorithms in Figure 1
for nonconvex smooth functions. Note that GD and SGD are always worse than SVRG and SCSG
according to Table 1. In addition, GNC-AGD and Natasha2 needs additional Hessian Lipschitz
condition. Therefore, we only plot the gradient complexity of SVRG, SCSG and our proposed
SNVRG in Figure 1.

Notation: Let A = [A;;] € R4*? be a matrix and x = (21, ...,74) ' € R? be a vector. I denotes an
identity matrix. We use || v||2 to denote the 2-norm of vector v € R%. We use (-, -) to represent the
inner product of two vectors. Given two sequences {a,, } and {b, }, we write a,, = O(b,,) if there
exists a constant 0 < C' < +o0 such that a,, < C'b,,. We write a,, = Q(b,,) if there exists a constant

0 < C < 400, such that a,, > C'b,,. We use notation O(-) to hide logarithmic factors. We also make
use of the notation f,, < g, (fn 2 gn) if fp is less than (larger than) g,, up to a constant. We use

productive symbol H?:a ¢; to denote c,Cq41 - - . Cp. Moreover, if a > b, we take the product as 1.
We use |- | as the floor function. We use log(z) to represent the logarithm of x to base 2. a A bis a
shorthand notation for min(a, b).

2 Preliminaries

In this section, we present some definitions that will be used throughout our analysis.

3In fact, Natasha 2 is guaranteed to converge to an (e, /€)-approximate second-order stationary point with
O(e~325) gradient complexity, which implies the convergence to an e-approximate stationary point.



Table 1: Comparisons on gradient complexity of different algorithms. The second column shows the
gradient complexity for a nonconvex and smooth function to achieve an e-approximate stationary
point (i.e., ||[VF(x)|l2 < ¢€). The third column presents the gradient complexity for a gradient
dominant function to achieve an e-approximate global minimizer (i.e., F'(x) — miny F'(x) < ¢€). The
last column presents the space complexity of all algorithms.

Algorithm nonconvex gradient dominant Hessian Lipschitz
GD 0] E%) O(n) No
SGD O(%) O(%) No
SVRG [37] o) O(n + n2/3) No
SCSG [25] O(zim A 25)  O(nnz+r(nnz)™?) No
GNC-AGD [8] Q(ﬁ) N/A Needed
Natasha 2 [3] O(==s) N/A Needed
SNVRG (this paper) 5(}3 A ”iz/z) 5(71/\ It+7(nA 2)1/2) No

Definition 2.1. A function f is L-smooth, if for any x,y € R?, we have
IVf(x) = Vi)l < Llx =y 2.1

An equivalent definition of L-smoothness is that for any x, h € R¢, we have
L
fx+h) < f(x) + (VF(x),h) + S [Ih[3. 22)
Definition 2.2. A function f is A-strongly convex, if for any x,y € R9, we have

FOct ) 2 Fx) + (V1(0),b) + 5 [l @3

Definition 2.3. A function F' with finite-sum structure in (1.1) is said to have stochastic gradients
with bounded variance o2, if for any x, we have

Ei|Vfi(x) = VE(x)|3 < ¢, (2.4)
where i a random index uniformly chosen from [n] and E; denotes the expectation over such i.

o2 is called the upper bound on the variance of stochastic gradients [25].

Definition 2.4. We say a function f is lower-bounded by f* if for any x € R?, f(x) > f*.

We also consider a class of functions namely gradient dominated functions [35], which is formally
defined as follows:

Definition 2.5. We say function f is 7-gradient dominated if for any x € R?, we have
Fx) = f(x") < 7 IVF)3, 2.5)
where x* € R¢ is the global minimum of f.

Note that gradient dominated condition is also known as the Polyak-Lojasiewicz (P-L) condition [35],
and is not necessarily convex. It is weaker than strong convexity as well as other popular conditions
that appear in the optimization literature [19].

3 The Proposed Algorithm

In this section, we present our nested stochastic variance reduction algorithm, namely, SNVRG.

One-epoch-SNVRG: We first present the key component of our main algorithm, One-epoch-
SNVRG, which is displayed in Algorithm 1. The most innovative part of Algorithm [ attributes to the
K + 1 reference points and K + 1 reference gradients. Note that when K = 1, Algorithm | reduces
to one epoch of SVRG algorithm [18, 37, 5]. To better understand our One-epoch SNVRG algorithm,



Algorithm 1 One-epoch-SNVRG(x, F, K, M, {T;},{B;}, B)
1: Input: initial point x, function F', loop number K, step size parameter M, loop parameters
T;,1 € [K], batch parameters By, € [K], base batch size B > 0.

() exo,gél) +—0,0<I<K
Un1formly generate index set I C [n]
g ¢ 1/BT.c; Vilxo)

VO%ZZ 080
X1 —Xo—l/(loM)~V0

fort =1, ...7]_[{; T, —1do
r=min{j:0=(t mod [[;",,,7}),0<j<K}
{x M } + Update_ reference_points({xtl 1} x¢,7),0 <I< K.
{gtl)} — Update reference_gradlents({g b {xtl)} r),0<I<K.
Vi & Zz:o 8¢ 2
X1 & Xp — 1/(10M) © Vi

: end for

. Xout ¢ uniformly random choice from {x;}, where 0 < ¢t < HZI; T

=TI, T
: Output: [Xoy, X7

=B

P?Ph‘?.\.“{‘ﬂ??t’!\.’

_.
e

—_—

—_—
AN

17: Function: Update_ reference_points({x(()i()ihx,r)
18: x,(jle)w <—x(()i()i,0 <[<r-— 1;)(,(1?W +—xr<I<K
19: return {xnew}

20: Function: Update_ 1reference_grad1ents({gO 1, {xn ew s T)

210 gl gl o<t <r

22: forr <l < K do

23:  Uniformly generate index set I C [n]
24 giow — /B Y [VSilxiar) = Vilxien)]
25: end for

26: return {g.sle)w

it would be helpful to revisit the original SVRG which is a special case of our algorithm. For the
finite-sum optimization problem in (1.1), the original SVRG takes the following updating formula

Xpp1 =X — Ve = X — (VF(X) + Vi, (x¢) = Vi, (X)),

where 1 > 0 is the step size, ¢; is a random index uniformly chosen from [n] and X is a snapshot for

x; after every T iterations. There are two reference points in the update formula at x;: ( ) =

and xg ) = x;. Note that X is updated every T} iterations, namely, X is set to be x; only when (

mod T3) = 0. Moreover in the semi- stochastic gradient v, there are also two reference gradients
and we denote them by g = VF(x) and g =Vfi,(xt) = Vfi,(X) =V, (xgl)) —-Vfi, (XEO)).
Back to our One-epoch-SNVRG, we can define similar reference points and reference gradients as
that in the special case of SVRG. Specifically, fort =0, .. ., H{; T; — 1, each point x; has K 4 1

reference points {xgl)}, 1=0,...,K, whichis set to be xgl) = x, with index ¢! defined as
= { J H Ty. (3.1)
Hk o Ted 2
Specially, note that we have x§0) = x( and XEK) =x;forallt=0,..., Hfil T; — 1. Similarly, x;

also has K + 1 reference gradients { ggl) }, which can be defined based on the reference points {xgl) }

1 1 _
g’ =52 Vhit), =5 S VA) - VA= 1 K (o)

i€l iel;



where I, I; are random index sets with |I| = B,|I;| = B, and are uniformly generated from
[n] without replacement. Based on the reference points and reference gradients, we then update

Xer1 = X¢ — 1/(10M) - vy, where vy = leio ggl) and M is the step size parameter. The illustration
of reference points and gradients of SNVRG is displayed in Figure 2.

We remark that it would be a huge waste for us to re-evaluate ggl) at each iteration. Fortunately, due

to the fact that each reference point is only updated after a long period, we can maintain ggl) = gil_)l

and only need to update ggl) when xgl) has been updated as is suggested by Line 24 in Algorithm 1.
SNVRG: Using One-epoch-SNVRG (Algorithm 1) as a build-  Reference point X)EO)

ing block, we now present our main algorithm: Algorithm 2
for nonconvex finite-sum optimization to find an e-approximate
stationary point. At each iteration of Algorithm 2, it executes For ¢y =1,...,Th
One-epoch-SNVRG (Algorithm 1) which takes z;_ as its input Reference point xl(fl)
and outputs [y, zs]. We choose your as the output of Algorithm | Reference gradient g(l)
2 uniformly from {y;},fors =1,...,S. : ¢

(0)

Reference gradient g

SNVRG-PL: In addition, when function F'in (1.1) is gradient —F01:r tie 1=1,....Tr_4

dominated as defined in Definition 2.5 (P-L condition), it has , (K-1)
been proved that the global minimum can be found by SGD Reference point X; (K1)
[19], SVRG [37] and SCSG [25] very efficiently. Following Reference gradient g,

a similar trick used in [37], we present Algorithm 3 on top of For tg =1,..., Tk
Algorithm 2, to find the global minimum in this setting. We call | (K)

. . . o Reference point X;
Algorithm 3 SNVRG-PL, because gradient dominated condition ’

is also known as Polyak-Lojasiewicz (PL) condition [35].

Reference gradient giK)

. . K
Space complexity: We briefly compare the space complexity update ()
between our algorithms and other variance reduction based algo- Xi4+1 = Xt — 1 2y
rithms. SVRG and SCSG needs O(d) space complexity to store | 1=0

one reference gradient, SAGA [10] needs to store reference gra-

dients for each component functions, and its space complexity is )

O(nd) without using any trick. For our algorithm SNVRG, we Flgure 2: IH“St?aUOH of reference
need to store K reference gradients, thus its space complexity ~POINts and gradients.

is O(Kd). In our theory, we will show that KX = O(loglog n). Therefore, the space complexity of

our algorithm is actually O(d), which is almost comparable to that of SVRG and SCSG.

Algorithm 2 SNVRG Algorithm 3 SNVRG-PL
1: Input: initial point zy, function F, K, M, 1: Input: initial point zy, function F', K, M,
{T1}, {B,}, batch B, S. {11}, {B;}, batch B, S, U.
2: fors=1,...,Sdo 2: foru=1,...,U do
3:  denote P = (F,K,M,{T,},{B:}, B) 3:  denote Q = (F, K, M,{T,},{B;}, B, S)
4: [ys,2s) <One-epoch-SNVRG(z;_1,P) 4: 2z, = SNVRG(z,_1, Q)
5: end for 5: end for
6: Output: Uniformly choose you from {ys}. 6: Output: z,, = zy.

4 Main Theory

In this section, we provide the convergence analysis of SNVRG.

4.1 Convergence of SNVRG

We first analyze One-epoch-SNVRG (Algorithm 1) and provide a particular choice of parameters.

Lemma 4.1. Suppose that each f; is L-smooth, in Algorithm 1, suppose B > 2 and let the number
of nested loops be K = loglog B. Choose the step size parameter as M = 6L. For the loop and
batch parameters, let T} = 2, By = 6% . B and

j'vl — 22172, Bl — 6K—l+1 . B/221717



for all 2 <[ < K. Then the output of Algorithm 1 [Xy, X7 satisfies

L o?
E||VF (Xou) |3 < 0(31/2 E[F(x0) — F(xr)] + 5 1(B < n)) 4.1)
within 1V (7B log® B) stochastic gradient computations, where 7' = Hfil T3, C' = 600 is a constant
and 1(-) is the indicator function.

The following theorem shows the gradient complexity for Algorithm 2 to find an e-approximate
stationary point with a constant base batch size B.

Theorem 4.2. Suppose that each f; is L-smooth and F has bounded variance with ¢2. In Algorithm
2,let B =nA(2C0%/e?), S = 1V (2CLAR/(B'/?¢?)) and C = 600. The rest parameters
(K, M,{B},{T;}) are chosen the same as in Lemma 4.1. Then the output y, of Algorithm 2
satisfies E||V F (you)||3 < €2 with less than

2 2 LA 2 1/2
0<1og3 (%/\n) [02/\714— i [02/\71} D 4.2)
€ € € €

stochastic gradient computations, where Ap = F(zg) — F™*.

Remark 4.3. If we treat 02, L and Ar as constants, and assume ¢ < 1, then (4.2) can be simplified
to O(e=3 A n'/2e=2). This gradient complexity is strictly better than O(e~19/3 A n2/3¢=2), which is
achieved by SCSG [25]. Specifically, when n < 1/€2, our proposed SNVRG is faster than SCSG
by a factor of n'/6; when n > 1/€2, SNVRG is faster than SCSG by a factor of e~'/3. Moreover,

SNVRG also outperforms Natasha 2 [3] which attains 6(673'25) gradient complexity and needs the
additional Hessian Lipschitz condition.

4.2 Convergence of SNVRG-PL

We now consider the case when F' is a 7-gradient dominated function. In general, we are able to find
an e-approximate global minimizer of F' instead of only an e-approximate stationary point. Algorithm
3 uses Algorithm 2 as a component.

Theorem 4.4. Suppose that each f; is L-smooth, F' has bounded variance with 2 and F is a 7-
gradient dominated function. In Algorithm 3, let the base batch size B = n A (4Cy702/€), the
number of epochs for SNVRG S = 1V (2C;7L/B"/?) and the number of epochs U = log(2Ar /e).
The rest parameters (K, M, {B;},{T;}) are chosen as the same in Lemma 4.1. Then the output Zgy
of Algorithm 3 satisfies E[F(zoul) — F*] < e within

1/2

O<log3 (n/\TUQ)logAF[n/\TUZ—i—TL[n/\W] /]> 4.3)
€ € € €

stochastic gradient computations, where Ap = F'(zg) — F*

Remark 4.5. If we treat 0%, L and Ay as constants, then the gradient complexity in (4.3) turns

into O(n A 7e~1 4 7(n A e )}/2). Compared with nonconvex SVRG [38] which achieves

5(71 + mn?/3) gradient complexity, our SNVRG-PL is strictly better than SVRG in terms of the

first summand and is faster than SVRG at least by a factor of '/ in terms of the second summand.
Compared with a more general variant of SVRG, namely, the SCSG algorithm [25], which attains

6(n ATe !+ 7(n AT 1)?/3) gradient complexity, SNVRG-PL also outperforms it by a factor of
(n A Te 1)1/S,

If we further assume that F is A-strongly convex, then it is easy to verify that F' is also 1/(2))-gradient
dominated. As a direct consequence, we have the following corollary:

Corollary 4.6. Under the same conditions and parameter choices as Theorem 4.4. If we additionally
assume that F' is A-strongly convex, then Algorithm 3 will outputs an e-approximate global minimizer

within
. by 2 A 271/2
O(n/\a+/i-{n/\o} ) (4.4)
€ €

stochastic gradient computations, where x = L/\ is the condition number of F'.



Remark 4.7. Corollary 4.6 suggests that when we regard \ and o2 as constants and set ¢ < 1,

Algorithm 3 is able to find an e-approximate global minimizer within O(n + n*/2k) stochastic
gradient computations, which matches SVRG-lep in Katyusha X [4]. Using catalyst techniques [28]

or Katyusha momentum [2], it can be further accelerated to O(n + n®/*\/k), which matches the
best-known convergence rate [42, 4].

5 Experiments

In this section, we compare our algorithm SNVRG with other baseline algorithms on training a
convolutional neural network for image classification. We compare the performance of the following
algorithms: SGD; SGD with momentum [36] (denoted by SGD-momentum); ADAM[20]; SCSG [25].
It is worth noting that SCSG is a special case of SNVRG when the number of nested loops K = 1.
Due to the memory cost, we did not compare GD and SVRG which need to calculate the full gradient.
Although our theoretical analysis holds for general K nested loops, it suffices to choose K = 2 in
SNVRG to illustrate the effectiveness of the nested structure for the simplification of implementation.
In this case, we have 3 reference points and gradients. All experiments are conducted on Amazon
AWS p2.xlarge servers which comes with Intel Xeon ES CPU and NVIDIA Tesla K80 GPU (12G
GPU RAM). All algorithm are implemented in Pytorch platform version 0.4.0 within Python 3.6.4.

Datasets We use three image datasets: (1) The MNIST dataset [41] consists of handwritten digits
and has 50, 000 training examples and 10, 000 test examples. The digits have been size-normalized
to fit the network, and each image is 28 pixels by 28 pixels. (2) CIFAR10 dataset [21] consists of
images in 10 classes and has 50, 000 training examples and 10, 000 test examples. The digits have
been size-normalized to fit the network, and each image is 32 pixels by 32 pixels. (3) SVHN dataset
[32] consists of images of digits and has 531, 131 training examples and 26, 032 test examples. The
digits have been size-normalized to fit the network, and each image is 32 pixels by 32 pixels.

CNN Architecture We use the standard LeNet [24], which has two convolutional layers with 6 and
16 filters of size 5 respectively, followed by three fully-connected layers with output size 120, 84 and
10. We apply max pooling after each convolutional layer.

Implementation Details & Parameter Tuning We did not use the random data augmentation which
is set as default by Pytorch, because it will apply random transformation (e.g., clip and rotation) at
the beginning of each epoch on the original image dataset, which will ruin the finite-sum structure
of the loss function. We set our grid search rules for all three datasets as follows. For SGD, we
search the batch size from {256, 512,1024, 2048} and the initial step sizes from {1,0.1,0.01}.
For SGD-momentum, we set the momentum parameter as 0.9. We search its batch size from
{256,512, 1024, 2048} and the initial learning rate from {1,0.1,0.01}. For ADAM, we search the
batch size from {256, 512, 1024, 2048} and the initial learning rate from {0.01, 0.001,0.0001}. For

SCSG and SNVRG, we choose loop parameters {7;} which satisfy B; - H;Zl T; = B automatically.

In addition, for SCSG, we set the batch sizes (B, B;) = (B, B/b), where b is the batch size
ratio parameter. We search B from {256,512, 1024,2048} and we search b from {2,4,8}. We
search its initial learning rate from {1,0.1,0.01}. For our proposed SNVRG, we set the batch
sizes (B, By, B2) = (B, B/b, B/b?), where b is the batch size ratio parameter. We search B from
{256,512,1024, 2048} and b from {2, 4, 8}. We search its initial learning rate from {1,0.1,0.01}.
Following the convention of deep learning practice, we apply learning rate decay schedule to each
algorithm with the learning rate decayed by 0.1 every 20 epochs. We also conducted experiments
based on plain implementation of different algorithms without learning rate decay, which is deferred
to the appendix.

We plotted the training loss and test error for different algorithms on each dataset in Figure 3. The
results on MNIST are presented in Figures 3(a) and 3(d); the results on CIFAR1O0 are in Figures 3(b)
and 3(e); and the results on SVHN dataset are shown in Figures 3(c) and 3(f). It can be seen that
with learning rate decay schedule, our algorithm SNVRG outperforms all baseline algorithms, which
confirms that the use of nested reference points and gradients can accelerate the nonconvex finite-sum
optimization.

We would like to emphasize that, while this experiment is on training convolutional neural networks,
the major goal of this experiment is to illustrate the advantage of our algorithm and corroborate our
theory, rather than claiming a state-of-the-art algorithm for training deep neural networks.
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Figure 3: Experiment results on different datasets with learning rate decay. (a) and (d) depict the
training loss and test error (top-1 error) v.s. data epochs for training LeNet on MNIST dataset. (b)
and (e) depict the training loss and test error v.s. data epochs for training LeNet on CIFAR10 dataset.
(c) and (f) depict the training loss and test error v.s. data epochs for training LeNet on SVHN dataset.

6 Conclusions and Future Work

In this paper, we proposed a stochastic nested variance reduced gradient method for finite-sum
nonconvex optimization. It achieves substantially better gradient complexity than existing first-order
algorithms. This partially resolves a long standing question that whether the dependence of gradient
complexity on n for nonconvex SVRG and SCSG can be further improved. There is still an open
question: whether O(n A €2 + ¢~3 An'/2e72) is the optimal gradient complexity for finite-sum and
stochastic nonconvex optimization problem? For finite-sum nonconvex optimization problem, the
lower bound has been proved in Fang et al. [12], which suggests that our algorithm is near optimal up
to a logarithmic factor. However, for general stochastic problem, the lower bound is still unknown.
We plan to derive such lower bound in our future work. On the other hand, our algorithm can also be
extended to deal with nonconvex nonsmooth finite-sum optimization using proximal gradient [39].
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