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Abstract

We propose stochastic optimization algorithms that can find local minima faster
than existing algorithms for nonconvex optimization problems, by exploiting the
third-order smoothness to escape non-degenerate saddle points more efficiently.
More specifically, the proposed algorithm only needs eO(✏�10/3) stochastic gradi-
ent evaluations to converge to an approximate local minimum x, which satisfies
krf(x)k2  ✏ and �min(r2

f(x)) � �
p
✏ in unconstrained stochastic optimiza-

tion, where eO(·) hides logarithm polynomial terms and constants. This improves
upon the eO(✏�7/2) gradient complexity achieved by the state-of-the-art stochastic
local minima finding algorithms by a factor of eO(✏�1/6). Experiments on two
nonconvex optimization problems demonstrate the effectiveness of our algorithm
and corroborate our theory.

1 Introduction

We study the following unconstrained stochastic optimization problem

min
x2Rd

f(x) = E⇠⇠D[F (x; ⇠)], (1.1)

where F (x; ⇠) : Rd ! R is a stochastic function and ⇠ is a random variable sampled from a fixed
distributionD. In particular, we are interested in nonconvex optimization where the expected function
f(x) is not convex. This kind of nonconvex optimization is ubiquitous in machine learning, especially
deep learning [24]. Finding a global minimum of nonconvex problem (1.1) is generally NP hard [18].
Nevertheless, for many nonconvex optimization problems in machine learning, a local minimum is
adequate and can be as good as a global minimum in terms of generalization performance, such as in
deep learning [10, 13].

In this paper, we aim to design efficient stochastic optimization algorithms that can find an approxi-
mate local minimum of (1.1), i.e., an (✏, ✏H)-second-order stationary point x defined as follows

krf(x)k2  ✏, and �min

�
r2

f(x)
�
� �✏H , (1.2)

⇤Equal contribution.
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where ✏, ✏H 2 (0, 1). Notably, when ✏H =
p
L2✏ for Hessian Lipschitz f with parameter L2, (1.2)

is equivalent to the definition of ✏-second-order stationary point [28]. Algorithms based on cubic
regularized Newton’s method [28] and its variants [1, 7, 12, 23, 33, 31] have been proposed to find
such approximate local minima. However, all of them need to solve the cubic problems exactly [28] or
approximately [1, 7] in each iteration, which poses a rather heavy computational overhead. Another
line of research employs the negative curvature direction to find the local minimum by combining
accelerated gradient descent and negative curvature descent [8, 2], which yet becomes impractical
in large scale and high dimensional machine learning problems due to the frequent computation of
negative curvature in each iteration.

To alleviate the computational burden of local minimum finding algorithms, there has emerged
a fresh line of research [34, 5, 21] that tries to achieve the iteration complexity as the state-of-
the-art second-order methods, while only utilizing first-order oracles. The key observation is that
first-order methods with noise injection [15, 20] are essentially an equivalent way to extract the
negative curvature direction around saddle points [34, 5]. Together with the Stochastically Controlled
Stochastic Gradient (SCSG) method [25], the aforementioned methods [34, 5] converge to an (✏,

p
✏)-

second-order stationary point (an approximate local minimum) within eO(✏�7/2) stochastic gradient
evaluations, where eO(·) hides logarithm polynomial factors and constants. In this work, motivated
by [9] which employed the third-order smoothness of f in deterministic nonconvex optimization to
find a first-order stationary point, we explore the benefits of third-order smoothness in finding an
approximate local minimum in the stochastic nonconvex optimization. In particular, we propose a
stochastic optimization algorithm, named as FLASH, which only utilizes first-order oracles and finds
the (✏, ✏H)-second-order stationary point within eO(✏�10/3) stochastic gradient evaluations. Note
that our gradient complexity matches that of the state-of-the-art stochastic optimization algorithm
SCSG [25] for finding first-order stationary points. At the core of our algorithm is an exploitation of
the third-order smoothness of the objective function f which enables us to choose a larger step size
in the negative curvature descent stage, and therefore leads to a faster convergence rate. The main
contributions of our work are as follows

• We show that the third-order smoothness of the nonconvex function can lead to a faster escape from
saddle points in the stochastic optimization. We characterize, for the first time, the improvement
brought by third-order smoothness in finding the approximate local minimum.

• We propose an efficient stochastic algorithm for general stochastic objective functions and prove
faster convergence rates for finding local minima. More specifically, for stochastic optimization,
our algorithm converges to an approximate local minimum with only eO(✏�10/3) stochastic gradient
evaluations.

• In each outer iteration, our proposed algorithm only performs either one step of negative curvature
descent, or an epoch of SCSG, which saves a lot of gradient and negative curvature computations
compared with existing algorithms.

Notation For a vector x = (x1, ..., xd)> 2 Rd, we denote the `q norm as kxkq = (
P

d

i=1 |xi|q)1/q
for 0 < q < +1. For a matrixA = [Aij ] 2 Rd⇥d, we use kAk2 and kAkF to denote the spectral
and Frobenius norm. For a three-way tensor T 2 Rd⇥d⇥d and vector x 2 Rd, we denote their
inner product as hT ,x⌦3i. For a symmetric matrixA, let �max(A) and �min(A) be the maximum,
minimum eigenvalues of matrix A. We use A ⌫ 0 to denote A is positive semidefinite. For two
sequences {an} and {bn}, we denote an = O(bn) if an  C bn for some constant C independent of
n. The notation eO(·) hides logarithmic factors. Additionally, we denote an . bn (an & bn) if an is
less than (larger than) bn up to a constant.

2 Related Work

In this section, we discuss related work for finding approximate second-order stationary points
in nonconvex optimization. In general, existing literature can be divided into the following three
categories.

Hessian-based: The pioneer work of [28] proposed the cubic regularized Newton’s method to
find an (✏, ✏H)-second-order stationary point in O

�
max{✏�3/2

, ✏
�3
H

}
�
iterations. Curtis et al. [12]

showed that the trust-region Newton method can achieve the same iteration complexity as the cubic
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regularization method. Recently, Kohler and Lucchi [23], Xu et al. [33] showed that by using
subsampled Hessian matrix instead of the entire Hessian matrix in cubic regularization method and
trust-region method, the iteration complexity can still match the original exact methods under certain
conditions. Zhou et al. [36] improved the second-order oracle complexity (including gradient and
Hessian evaluations) by proposing a variance-reduced Cubic regularization method. However, these
methods need to compute the Hessian matrix and solve a very expensive subproblem either exactly
or approximately in each iteration, which can be computationally intractable for high-dimensional
problems.

Hessian-vector product-based: Through different approaches, Carmon et al. [8] and Agarwal et al.
[1] independently proposed algorithms that are able to find (✏,

p
✏)-second-order stationary points

within eO(✏�7/4) full gradient and Hessian-vector product evaluations. By making an additional
assumption of the third-order smoothness on the objective function and combining the negative
curvature descent with the “convex until proven guilty” algorithm, Carmon et al. [9] proposed
an algorithm that is able to find an (✏,

p
✏)-second-order stationary point within eO(✏�5/3) full

gradient and Hessian-vector product evaluations.2 For nonconvex finite-sum optimization problems,
Agarwal et al. [1] proposed an algorithm which is able to find approximate local minima within
eO(n✏�3/2+n

3/4
✏
�7/4) stochastic gradient and stochastic Hessian-vector product evaluations, where

n is the number of component functions. Reddi et al. [30] proposed an algorithm, which combines
first-order and second-order methods to find approximate (✏, ✏H)-second-order stationary points, and
requires eO

�
n
2/3

✏
�2 + n✏

�3
H

+ n
3/4

✏
�7/2
H

�
stochastic gradient and stochastic Hessian-vector product

evaluations. In the general stochastic optimization setting, Allen-Zhu [2] proposed an algorithm
named Natasha2, which is based on variance reduction and negative curvature descent, and is able to
find (✏,

p
✏)-second-order stationary points with at most eO(✏�7/2) stochastic gradient and stochastic

Hessian-vector product evaluations. Tripuraneni et al. [31] proposed a stochastic cubic regularization
algorithm to find (✏,

p
✏)-second-order stationary points and achieved the same runtime complexity

as [2].

Gradient-based: For general nonconvex problems, Ghadimi and Lan [16] proposed a randomized
stochastic gradient method and established the complexity of this method for finding a first-order
stationary point. Levy [26], Jin et al. [20, 21] showed that it is possible to escape from saddle points
and find local minima only using gradient evaluations plus random perturbation. The best-known
runtime complexity of these methods is eO

�
✏
�7/4

�
when ✏H =

p
✏ [21]. For nonconvex finite-sum

problems, Allen-Zhu and Li [5] proposed a first-order negative curvature finding method called
Neon2 and combined it with the stochastic variance reduced gradient (SVRG) method [22, 29, 3, 25],
leading to an algorithm that finds (✏, ✏H)-second-order stationary points within eO

�
n
2/3

✏
�2 + n✏

�3
H

+

n
3/4

✏
�7/2
H

+ n
5/12

✏
�2

✏
�1/2
H

�
stochastic gradient evaluations. For nonconvex stochastic optimization

problems, a variant of stochastic gradient descent (SGD) [15] is proved to find the (✏,
p
✏)-second-

order stationary point within O(✏�4poly(d)) stochastic gradient evaluations. More recently, Xu and
Yang [34], Allen-Zhu and Li [5] turned the first-order stationary point finding method SCSG [25] into
approximate local minima finding algorithms, which only involves stochastic gradient computation.
The runtime complexity of these algorithms is eO(✏�10/3 + ✏

�2
✏
�3
H

). In order to further save gradient
and negative curvature computations, [35] considered the number of saddle points encountered in the
algorithm and proposed the gradient descent with one-step escaping algorithm (GOSE) that saves
negative curvature computation. However, none of the above algorithms explore the third-order
smoothness of the nonconvex objective function.

3 Preliminaries

In this section, we present definitions that will be used in our algorithm design and later theoretical
analysis.

Definition 3.1 (Smoothness). A differentiable function f is L1-smooth, if for any x, y 2 Rd:

krf(x)�rf(y)k2  L1kx� yk2.

2As shown in [9], the second-order accuracy parameter ✏H can be set as ✏2/3 and the total runtime complexity
remains the same, i.e., eO(✏�5/3).
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Definition 3.2 (Hessian Lipschitz). A twice-differentiable function f is L2-Hessian Lipschitz, if for
any x, y 2 Rd:

kr2
f(x)�r2

f(y)k2  L2kx� yk2.

Note that Hessian-Lipschitz is also referred to as the second-order smoothness. The above two
smoothness conditions are widely used in nonconvex optimization problems [28]. In this paper,
we will further explore the effectiveness of third-order derivative Lipschitz condition in nonconvex
optimization. We use a three-way tensor r3

f(x) 2 Rd⇥d⇥d to denote the third-order derivative of a
function, which is formally defined below.
Definition 3.3 (Third-order Derivative). The third-order derivative of function f : Rd ! R is a
three-way tensor r3

f(x) 2 Rd⇥d⇥d which is defined as

[r3
f(x)]ijk =

@

@xi@xj@xk

f(x),

for i, j, k = 1, . . . , d and x 2 Rd.

Next we introduce the definition of third-order smoothness for function f , which implies that the
third-order derivative will not change rapidly.
Definition 3.4 (Third-order Derivative Lipschitz). A thrice-differentiable function f hasL3-Lipschitz
third-order derivative, if for any x, y 2 Rd:

kr3
f(x)�r3

f(y)kF  L3kx� yk2.

The above definition has been introduced in [6], and the third-order derivative Lipschitz is also
referred to as third-order smoothness in [9]. One can also use another equivalent notion of third-order
derivative Lipschitz condition used in [9]. Note that the third-order Lipschitz condition is critical
in our algorithms and theoretical analysis in later sections. In the sequel, we will use third-order
derivative Lipschitz and third-order smoothness interchangeably.
Definition 3.5 (Optimal Gap). For a function f , we define the optimal gap �f at point x0 as

f(x0)� inf
x2Rd

f(x)  �f .

Without loss of generality, we assume �f < +1.
Definition 3.6 (Geometric Distribution). For a random integer X , define X has a geometric distribu-
tion with parameter p, denoted as Geom(p), if it satisfies that

P(X = k) = p
k(1� p), 8k = 0, 1, . . . .

Definition 3.7 (Sub-Gaussian Stochastic Gradient). For any x 2 Rd and random variable ⇠ 2 D, the
stochastic gradient rF (x; ⇠) is sub-Gaussian with parameter � if it satisfies

E

exp

✓
krF (x; ⇠)�rf(x)k22

�2

◆�
 exp(1).

In addition, we introduce Tg to denote the time complexity of stochastic function value and gradient
evaluation, i.e., (F (x; ⇠i),rF (x; ⇠i)) for ⇠i 2 D, and Th to denote the time complexity of stochastic
Hessian-vector product evaluation, i.e., r2

F (x; ⇠i)v for a given vector v and ⇠i 2 D.

4 Exploiting Third-order Smoothness

In this section we will show how to employ the third-order smoothness of the objective function
to make better use of the negative curvature direction for escaping saddle points. We first give an
enlightening explanation on why third-order smoothness helps in general nonconvex optimization
problems. Then we present our main algorithm which is able to utilize the third-order smoothness to
take a larger step size for general stochastic optimization.

In order to find local minima in nonconvex problems, different kinds of approaches have been
explored to escape from saddle points. One of these approaches is to use negative curvature direction
[27] to escape from saddle points, which has been explored in many existing studies [8, 11, 2].
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According to recent work by [34, 5], one can extract the negative curvature direction by only using
stochastic gradient evaluations, which makes the negative curvature descent approach more appealing.

We first consider a simple case to illustrate how to utilize the third-order smoothness when taking a
negative curvature descent step. For nonconvex optimization problems, an ✏-first-order stationary
point bx can be found by using first-order methods such as gradient descent. If bx is not an (✏, ✏H)-
second-order stationary point defined in (1.2), then there must exist a unit vector bv such that

bv>r2
f(bx) bv  �✏H

2
.

As studied in [8, 34, 5], one can take a negative curvature descent step along the direction of bv to
escape from the saddle point bx, i.e.,

ey = argmin
y2{u,w}

f(y), u = bx� e↵ bv, w = bx+ e↵ bv, (4.1)

where e↵ is the step size. Suppose the function f is L1-smooth and L2-Hessian Lipschitz, then the
step size can be set as e↵ = O(✏H/L2) and the negative curvature descent step (4.1) is guaranteed to
attain the following function value decrease,

f(ey)� f(bx) = �O

✓
✏
3
H

L2
2

◆
. (4.2)

Inspired by the previous work [9], we aim to achieve more function value decrease than (4.2) by
incorporating an additional assumption that the objective function has L3-Lipschitz third-order
derivatives (third-order smoothness). More specifically, we adjust the negative curvature descent step
in (4.1) as follows,

by = argmin
y2{u,w}

f(y), u = bx� ↵ bv, w = bx+ ↵ bv, (4.3)

where ↵ = O(
p
✏H/L3 ) is the adjusted step size which can be much larger than the step size e↵ in

(4.1) when ✏H is sufficiently small. The adjusted negative curvature descent step (4.3) is guaranteed
to decrease the function value by a larger decrement, i.e.,

f(by)� f(bx) = �O

✓
✏
2
H

L3

◆
. (4.4)

Compared with (4.2), the decrement in (4.4) can be substantially larger. In other words, if we make
the additional assumption of the third-order smoothness, the negative curvature descent with larger
step size will make more progress toward decreasing the function value. Note that [9] focuses on
deterministic optimization, while our work is focused on the stochastic optimization. Here we need
to carefully design our algorithm to improve the computational complexity in the stochastic setting.

In the following, we will present an algorithm for stochastic nonconvex optimization which exploits
the benefits of third-order smoothness to escape from saddle points . Recall the general stochastic
optimization problem in (1.1). In this setting, one cannot have access to the full gradient or Hessian
information. Instead, only stochastic gradient and stochastic Hessian-vector product evaluations are
accessible. As a result, we have to employ stochastic optimization methods to calculate the negative
curvature direction. There exist two kinds of methods to calculate the negative curvature direction bv
for the general stochastic problem. The first kind is an online PCA method, i.e., Oja’s algorithm [4],
which uses Hessian-vector product evaluations and can be seen as a stochastic variant of FastPCA
[14]. Another method is the online version of the Neon algorithm, denote as Neon2online [5], which
only requires stochastic gradient evaluations.

By using either Oja’s algorithm or Neon2online, there exists an algorithm, denoted by ApproxNC-
Stochastic, which uses stochastic gradient evaluations or stochastic Hessian-vector product evaluations
to find the negative curvature direction for general stochastic nonconvex optimization problem (1.1).
Specifically, ApproxNC-Stochastic returns a unit vector bv that satisfies bv>r2

f(x) bv  �✏H/2
provided �min(r2

f(x)) < �✏H , otherwise it will return bv = ?. Based on ApproxNC-Stochastic,
we present our negative curvature descent algorithm in Algorithm 1.

Note that the Rademacher random variable ⇣ is an important feature in Algorithm 1. As we cannot
access the full objective function value in stochastic setting, we use a Rademacher variable (⇣ = �1 or
⇣ = 1 with probability 1/2) in our algorithm to decide the direction of negative curvature descent step.
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Algorithm 1 NCD3-Stochastic (f , x, {Li}3i=1, �, ✏H )

1: Set ↵ =
p
3✏H/L3

2: bv  ApproxNC-Stochastic(f,x, L1, L2, �, ✏H)
3: if bv 6= ?
4: generate a Rademacher random variable ⇣
5: by  x+ ⇣ ↵ bv
6: return by
7: else
8: return ?

Therefore, with the step size ↵ = O(
p
✏H/L3) for the negative curvature descent step, Algorithm

1 can make greater progress in expectation when �min(r2
f(x)) < �✏H , and we summarize this

property as follows.
Lemma 4.1. Let f(x) = E⇠⇠D[F (x; ⇠)] and each stochastic function F (x; ⇠) is L1-smooth, L2-
Hessian Lipschitz continuous, and the third derivative of f(x) is L3-Lipschitz. Set ✏H 2 (0, 1) and
step size as ↵ =

p
3✏H/L3. If the input x of Algorithm 1 satisfies �min(r2

f(x)) < �✏H , then
with probability 1 � �, Algorithm 1 will return by such that E⇣ [f(x) � f(by)] � 3✏2

H
/8L3, where

� 2 (0, 1) and E⇣ denotes the expectation over the Rademacher random variable ⇣. Furthermore, if
we choose �  ✏H/(3✏H + 8L2), it holds that

E[f(by)� f(x)]  � ✏
2
H

8L3
,

where E is over all randomness of the algorithm, and the total runtime is eO
��
L
2
1/✏

2
H

�
Th

�
if

ApproxNC-Stochastic adopts online Oja’s algorithm, and eO
��
L
2
1/✏

2
H

�
Tg

�
if ApproxNC-Stochastic

adopts Neon2online.

5 Fast Local Minima Finding Algorithm

In this section, we present our main algorithm to find approximate local minima for nonconvex
stochastic optimization problems, based on the negative curvature descent algorithms proposed in
previous section.

To find the local minimum, we use SCSG [25], which is the state-of-the-art stochastic optimization
algorithm, to find a first-order stationary point and then apply Algorithm 1 to escape the saddle point
using negative curvature direction. The proposed method is presented in Algorithm 2, We use a
subsampled stochastic gradientrfS(x) in the outer loop (Line 4) of Algorithm 2, which is defined
as rfS(x) = 1/|S|

P
i2S rF (x; ⇠i).

As shown in Algorithm 2, we use subsampled gradient to check whether xk�1 is a first-order
stationary point. Suppose the stochastic gradient rF (x; ⇠) satisfies the gradient sub-Gaussian
condition (3.7) and the batch size |Sk| is large enough, then krf(xk�1)k2 > ✏/4 holds with high
probability if krfSk(xk�1)k2 > ✏/2. Similarly, krf(xk�1)k2  ✏ holds with high probability if
krfSk(xk�1)k2  ✏/2.

Note that each iteration of the outer loop in Algorithm 2 consists of two cases: (1) if the norm
of subsampled gradient rfSk(xk�1) is small, then we run one subroutine NCD3-Stochastic, i.e.,
Algorithm 1; and (2) if the norm of rfSk(xk�1) is large, then we run one epoch of SCSG algorithm.
This design can reduce the number of negative curvature calculations. There are two major differences
between Algorithm 2 and existing algorithms in [34, 5]: (1) the step size of negative curvature descent
step in Algorithm 2 is larger; and (2) the minibatch size in each epoch of SCSG in Algorithm 2 can
be set to 1 instead of being related to the accuracy parameters ✏ and ✏H , while the minibatch size in
each epoch of SCSG in the existing algorithms [34, 5] has to depend on ✏ and ✏H .

Now we present the following theorem which spells out the runtime complexity of Algorithm 2.
Theorem 5.1. Let f(x) = E⇠⇠D[F (x; ⇠)]. Suppose the third derivative of f(x) is L3-Lipschitz,
and each stochastic function F (x; ⇠) is L1-smooth and L2-Hessian Lipschitz continuous. Suppose
that the stochastic gradientrF (x; ⇠) satisfies the gradient sub-Gaussian condition with parameter
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Algorithm 2 Fast Local minimA finding with third-order SmootHness (FLASH-Stochastic)
1: Input: f , x0, L1, L2, L3, �, ✏, ✏H , b,K
2: Set B  eO(�2

/✏
2), ⌘ = b

2/3
/(3L1B

2/3)
3: for k = 1, 2, ...,K
4: uniformly sample a batch Sk ⇠ D with |Sk| = B

5: gk  rfSk(xk�1)
6: if kgkk2 > ✏/2
7: generate Tk ⇠ Geom(B/(B + b))

8: y(k)
0  xk�1

9: for t = 1, ..., Tk

10: randomly pick It ⇢ D with |It| = b

11: ⌫(k)
t�1  rfIt(y

(k)
t�1)�rfIt(y

(k)
0 ) + gk

12: y(k)
t

 y(k)
t�1 � ⌘⌫(k)

t�1
13: end for
14: xk  y(k)

Tk

15: else
16: xk  NCD3-Stochastic(f,xk�1, {Li}3i=1, �, ✏H)
17: if xk = ?
18: return xk�1

19: end for

�. Set batch size B = eO(�2
/✏

2) and ✏H & ✏
2/3. If Algorithm 2 adopts online Oja’s algorithm to

compute the negative curvature, then Algorithm 2 finds an (✏, ✏H)-second-order stationary point with
probability at least 1/3 in runtime

eO
✓✓

L1�
4/3�f

✏10/3
+

L3�
2�f

✏2✏2
H

◆
Tg +

✓
L
2
1L3�f

✏4
H

◆
Th

◆
.

If Algorithm 2 adopts Neon2online, then it finds an (✏, ✏H)-second-order stationary point with proba-
bility at least 1/3 in runtime

eO
✓✓

L1�
4/3�f

✏10/3
+

L3�
2�f

✏2✏2
H

+
L
2
1L3�f

✏4
H

◆
Tg

◆
.

Remark 5.2. Although the runtime complexity in Theorem 5.1 holds with a constant probability,
one can repeatedly run Algorithm 2 for at most log(1/�) times to achieve a high probability result
with probability at least 1� �.

Remark 5.3. Theorem 5.1 suggests that the runtime complexity of Algorithm 2 is eO(✏�10/3 +
✏
�2

✏
�2
H

+✏
�4
H

) to find an (✏, ✏H)-second-order stationary point. Compared with eO(✏�10/3+✏
�2

✏
�3
H

+
✏
�5
H

) runtime complexity achieved by the state-of-the-art [5], the runtime complexity of Algorithm 2
is improved upon the state-of-the-art in the second and third terms. If we set ✏H =

p
✏, the runtime of

Algorithm 2 is eO(✏�10/3) and that of the state-of-the-art stochastic local minima finding algorithms
[2, 31, 34, 5] becomes eO(✏�7/2), thus Algorithm 2 outperforms the state-of-the-art algorithms by a
factor of eO(✏�1/6).

Remark 5.4. Note that we can set ✏H to a smaller value, i.e., ✏H = ✏
2/3, and the total runtime

complexity of Algorithm 2 remains eO(✏�10/3). It is also worth noting that the runtime complexity of
Algorithm 2 matches that of the state-of-the-art stochastic optimization algorithm (SCSG) [25] which
only finds first-order stationary points but does not impose the third-order smoothness assumption.

6 Experiments

In this section, we conduct numerical experiment on two nonconvex optimization problems, i.e.,
matrix sensing and deep autoencoder. All the experiments are carried on Amazon AWS p2.xlarge
nodes with NVIDIA GK210 GPUs, and we use Pytorch 0.3.0 to implement all the algorithms.
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(c) Varying NC Step Size
(d = 50)
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(d) Varying NC Step Size,
(d = 100)
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(e) AE-1, Training
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(f) AE-1, Test
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(g) AE-2, Training
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(h) AE-2, Test

Figure 1: Numerical results for matrix sensing and deep autoencoder. (a)-(b) Convergence of different
algorithms for matrix sensing: objective function value versus the number of oracle calls. (c)-(d)
Different negative curvature step size comparison of FLASH for matrix sensing. (e)-(h) Convergence
of different algorithms for two deep autoencoders: Training loss versus the number of oracle calls
and test loss versus the number of oracle calls.

Matrix Sensing We consider the symmetric matrix sensing problem, which is defined as:

min
U2Rd⇥r

f(U) =
1

2m

mX

i=1

�
hAi,UU>i � bi

�2
, (6.1)

where the matrices {Ai}i=1,...,m are known sensing matrices, bi = hAi,M⇤i is the i-th observation,
and M⇤ = U⇤(U⇤)> is an unknown low-rank matrix, which needs to be recovered. For the data
generation, we consider two matrix sensing problems: (1) d = 50, r = 3, and (2) d = 100, r = 3,
then generate m = 20d sensing matrices A1, . . . ,Am, where each element of the sensing matrix Ai

follows i.i.d. standard normal distribution, and the unknown low-rank matrixM⇤ asM⇤ = U⇤(U⇤)>,
where U⇤ 2 Rd⇥r is randomly generated, and thus bi = hAi,M⇤i. Next we randomly initialize a
vector u0 2 Rd satisfying ku0k2 < �max(M⇤) and set the initial input U0 asU0 = [u0, 0, . . . , 0].
Deep AutoencoderWe also perform experiments of training a deep autoencoder on MNIST dataset
[19]. The MNIST dataset contains images of handwritten digits, including 60, 000 training examples
and 10, 000 test examples. Each image has 28 ⇥ 28 pixels. We consider two autoencoders: (1) a
fully connected encoder with layers of size (28 ⇥ 28)-1024-512-256-32 and a symmetric decoder
(AE-1) and (2) a fully connected encoder with layers of size (28⇥ 28)-1024-512-256-128-56-32 and
a symmetric decoder (AE-2);. The code layer with 32 units are linear and we use softplus function as
the activation function for other layers. We use mean squared error (MSE) as the loss function.

We evaluate our algorithm FLASH-Stochastic (FLASH for short) together with the following state-
of-the-art stochastic optimization algorithms for nonconvex problems: (1) stochastic gradient descent
(SGD); (2) SGD with momentum (SGD-m); (3) noisy stochastic gradient descent (NSGD) [15]; (4)
Stochastically Controlled Stochastic Gradient (SCSG) [25]; (5) NEgative-curvature-Originated-from-
Noise (Neon) [34]; (6) NEgative-curvature-Originated-from-Noise 2 (Neon2) [5]. A fixed gradient
mini-batch size of 100 is used for all the algorithms. We apply Oja’s algorithm with a Hessian
mini-batch size of 100 to calculate the negative curvature in FLASH. We perform a grid search
over step sizes for each method. For the negative curvature step size ↵, we choose ↵ = O(✏H/L2

for Neon, Neon2 and ↵ = O(
p
✏H/L3) for our algorithm FLASH according to the corresponding

theories, where ✏H = 0.001, and tune the constant parameter in the negative curvature step size by
grid search. We report the objective function value versus oracle calls on matrix sensing and training
loss versus oracle calls on matrix sensing and deep autoencoder.
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The experimental results of the above two nonconvex problems are shown in Figure 1. For the matrix
sensing problem, in Figure 1(a)-1(b), we observe that without adding noise or using second-order
information, SGD, SGD-m and SCSG are not able to escape from saddle points. Our algorithm and
NSGD, Neon, Neon2 can escape from saddle points, and our algorithm converges to the unknown
matrix faster than NSGD, Neon, Neon2. As we can see from Figure 1(e)-1(h), for deep autoencoder,
compared with SGD, SGD-m, NSGD, SCSG, Neon and Neon2, our algorithm escapes from saddle
points faster and converges faster. Our algorithm outperforms Neon and Neon2 on both problems
and validates our theoretical analysis that negative curvature step with a larger step size is helpful
in stochastic nonconvex optimization problems. We also compare the convergence behavior of our
algorithm with different step sizes for negative curvature descent. We first set initial step size ↵ = 0.2
(for negative curvature descent) and then decrease the step size by a factor of 0.1 each time, while the
other parameters remain the same. We can see from Figure 1(c) and 1(d) that our algorithm FLASH
converges faster with larger step sizes for negative curvature descent, which validates our theories on
third-order smoothness can be helpful in the nonconvex stochastic optimization.

7 Conclusions

In this paper, we investigated the benefit of third-order smoothness of nonconvex objective functions
in stochastic optimization. We illustrated that third-order smoothness can help faster escape saddle
points, by proposing a new negative curvature descent algorithms with improved theoretical guarantee.
Based on the proposed negative curvature descent algorithm, we further proposed a practical stochastic
optimization algorithm with improved run time complexity that finds local minima for stochastic
nonconvex optimization problems.
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