
Restricted Nonparametric Mixtures models for
Disease Clustering
Modelli di mistura non parametrici limitati per la
clustering di malattia

Abel Rodrı́guez and Tatiana Xifara

Abstract Identifying disease clusters (areas with an unusually high incidence of a
particular disease) is a common problem in epidemiology and public health. We
describe a Bayesian nonparametric mixture model for disease clustering that con-
strains clusters to be made of contiguous areal units. This is achieved by modifying
the exchangeable partition probability function associated with the Ewen’s sampling
distribution. The model is illustrated using data on US lung cancer rates.
Abstract Identificare cluster di malattie (aree con incidenza insolitamente alta di
una particolare malattia) è un problema comune in epidemiologia e in materia di
sanità pubblica. Descriviamo un modello mistura Bayesiano nonparametrico per il
clustering di malattie che forza i cluster ad essere composti da unità di aree con-
tigue. Tale obiettivo è ottenuto modificando la funzione di probabilità di partizione
scambiabile associata alla formula di campionamento di Ewens. Il modello è il-
lustrato analizzando i dati sul tasso di incidenza di tumori polmonari negli Stati
Uniti.

Key words: Disease clustering, Areal Data; Nonparametric Bayes; Noisy Ex-
change Algorithm

1 Introduction

A disease cluster is a higher-than-expected incidence of a particular disease or dis-
order occurring in close proximity in terms of both time and geography. Although
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communicable diseases (those that can be spread from one person to another, such
as flu or HIV) often occur in clusters, clusters of non-communicable disease are rare
and their presence might indicate the presence of a harmful environmental factor or
other hazard. Therefore identification of cancer clusters is a key task in epidemiol-
ogy and public health.

A strand of the statistics literature on disease clustering focuses on methods for
confirmatory cluster analysis, which are concerned with determining whether the
rate of disease in a pre-specified area (which usually contains some putative health
hazard) is higher than expected (e.g., Stone, 1988, Tango, 1995, Morton-Jones et al.,
1999). See also Besag and Newell, 1991, who call them focused tests. In contrast,
the focus of this paper is on methods for de novo identification of clusters in datasets
in which the presence of the clusters is not known. Methods based on scan statistics
(e.g., Weinstock, 1981, Kulldorff, 1997, Tango and Takahashi, 2005) a well known
example of this type of approaches.

Methods for disease clustering can also be classified according to whether they
are designed to work with point-referenced or spatially aggregated (areal) data. In
the case of point-referenced data, it is common to distinguish between distance-
based methods (Whittemore et al., 1987, Besag and Newell, 1991 and Tango, 1995,
among others), which derive tests based on the distribution of the time/distance be-
tween locations on which events occurred, and quadrat-based methods (e.g, Open-
shaw et al., 1987, Kulldorff and Nagarwalla, 1995), which study the variability of
case counts in certain subsets of the region of interest (called quadrats). In the case
of areal data, frequency tests similar to those used in quadrat-based methods are
frequently used (e.g., see Potthoff and Whittinghill, 1966a and Potthoff and Whit-
tinghill, 1966b). Bayesian methods for disease clustering in spatially aggregated
data have been proposed by Knorr-Held and Raßer (2000), Green and Richardson
(2002), Wakefield and Kim (2013) and Anderson et al. (2013). Other recent contri-
butions to the field include the work of Moraga and Montes (2011), Charras-Garrido
et al. (2012), Heinzl and Tutz (2014) and Wang and Rodrı́guez (2014). Kulldorff
et al. (2003), Waller et al. (2006) and Goujon-Bellec et al. (2011) present detailed
comparisons of various methods for disease clustering.

It is worth noting that the main goals of disease clustering methods are similar
but distinct from those of disease mapping. Typically, disease mapping applications
deal with the estimation of smooth covariate-adjusted risk measures, but do not aim
at identifying discontinuities in the risk function. On the other hand, the whole point
of methods for de novo identification of cancer cluster is to pinpoint such disconti-
nuities. Of course, these two objectives are not necessarily opposed (e.g., see Knorr-
Held and Raßer, 2000, Green and Richardson, 2002 and Anderson et al., 2013), but
most techniques designed for disease mapping are not useful in the context of dis-
ease clustering.

In this paper we develop a Bayesian approach for de novo identification of disease
clusters in areal data. Our approach uses a restricted version of the Exchangeable
Partition Probability Function (EPPF) associated with the Dirichlet process (Fer-
guson, 1973; Blackwell and MacQueen, 1973; Antoniak, 1974; Lee et al., 2013;
Rodrı́guez and Quintana, 2015) as a prior on the partition of areal units. This re-
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stricted prior is designed to enforce clusters made of adjacent spatial units. Our

approach is related to those developed in Fuentes-Garcı́a et al. (2010) and Martı́nez

et al. (2014) in the context of change-point detection in time series analysis. Indeed,

our model can be seen as generalizing Fuentes-Garcı́a et al. (2010) and Martı́nez

et al. (2014) to work for situations in which the EPPF is restricted to partitions

driven by general neighborhood graphs.

As motivation, consider data on mortality rates from lung cancer in the 48 con-

tiguous U.S. plus the District of Columbia in 2000 (see Figure 1). These mortality

data are based on death certificates that are filed by certifying physicians. They are

collected and maintained by the U.S.Ṅational Center for Health Statistics (http://

www.cdc.gov/nchs) as part of the U.S. National Vital Statistics System. The data

are available from the Surveillance, Epidemiology, and End Results (SEER) pro-

gram of the National Cancer Institute (http://seer.cancer.gov/seerstat). Figure 1 sug-

gests that mortality rates for lung cancer are particular high across the Appalachia

region (the cultural region comprising the central and southern portions of the Ap-

palachian mountain range and extending from the Southern tier of New York to

northern Alabama, Mississippi and Georgia). These observed high mortality rates

are consistent with the relatively high smoking rates in the region.

The remaining of the paper is organized as follows: Section 2 presents our model

and discusses its properties. Section 3 describes our computational approach. Sec-

tion 4 presents an application of our model to the US lung cancer mortality data

presented above. Finally, Section 5 discusses the limitations of our model as well as

future research directions.

[1.83,2.99]
(2.99,4.14]
(4.14,5.3]
(5.3,6.45]
(6.45,7.6]
(7.6,8.76]

Fig. 1 Observed statewide mortality rates for lung cancer in the US during the year 2000.
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2 A spatial clustering model for count data

Let yi and hi represent the observed number of cases (e.g. disease incidents or
deaths) and the susceptible population in region i = 1, . . . ,n, respectively (in our
motivating example n = 49). As is standard in the literature on disease mapping and
clustering, we assume that data comes from a Poisson distribution

yi | λi ∼ Poi(λi), i = 1, . . . ,n, (1)

where the intensity λi is of the form logλi = loghi +xT
i θ i and xi is the set of covari-

ates associated with region i. When no covariates are available we simply let xi = 1
for all i, so that exp{θi} corresponds to the disease rate associated with region i.

In addition, we assume that a neighborhood structure among the regions has
been defined, and that it is encoded through a known n× n adjacency matrix W
such that wi,i′ = 1 if regions i and i′ are neighbors and wi,i′ = 0 otherwise. In this
way, the neighborhood of any region i, denoted by ∂ i can be easily defined as
∂ i =

{
i′ : wi,i′ = 1

}
. Because we are interested in spatially connected clusters where

two regions can belong to a cluster only if they are adjacent, in this paper we focus
exclusively on first-order neighborhood structures in which wi,i′ = 1 if and only if
regions i and i′ share a border. For example, in our motivating example, our first
order neighborhood implies that wi,i′ = 1 when i = California and i′ = Oregon, but
wi,i′ = 0 when i = California and i′ = New Mexico.

2.1 A prior model for spatial clustering

We are interested in clustering regions according to their underlying rates. To ac-
complish this we let θ i = ϑ ξi , where ξ = (ξ1, . . . ,ξn) is a vector of indicators taking
values {1,2, . . . ,K} that encode a partition ρn = {S1, . . .SK} of the n observations
into K clusters (e.g., see Table 1), and ϑ 1, . . . ,ϑ K are the parameters associated with
each of these K clusters.

K ξ Groups in the partition ρ3

1 (1,1,1) S1 = {y1,y2,y3}
2 (1,1,2) S1 = {y1,y2}, S2 = {y3}
2 (1,2,1) S1 = {y1,y3}, S2 = {y2}
2 (1,2,2) S1 = {y1}, S2 = {y2,y3}
3 (1,2,3) S1 = {y1}, S2 = {y2}, S3 = {y3}

Table 1 All possible partitions associated with n = 3 geographical areas

A simple set of priors that fit into this framework correspond to setting ϑ 1, . . . ,ϑ K
to be an independent and identically distributed sequence (e.g., ϑk ∼ N(µ,Σ)) and
ξ to follow an Ewen’s distribution,
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p(ξ | α) =
Γ (α)

Γ (α +n)
α

K(ξ )
K(ξ )

∏
k=1

Γ (mk (ξ )) , (2)

where K (ξ ) is the number of unique values among ξ1, . . . ,ξn (i.e. the number
of clusters in the partition), mk(ξ ) = ∑

n
i=1 I(ξi = k) = |Sk| is the size of the k-

th cluster, and I(·) denotes the indicator function. This specification corresponds
to a well-known Dirichlet process mixture of Poisson kernels, which is relatively
simple to estimate. Indeed, note that the full conditional distribution for ξi given
ξ
(−i) = (ξ1, . . . ,ξi−1,ξi+1, . . . ,ξn) reduces to

p
(

ξi | ξ (−i),α
)

∝

mk

(
ξ
(−i)
)

k ≤ K
(

ξ
(−i)
)
,

α k = K
(

ξ
(−i)
)
+1,

(3)

where, in the same spirit as before, K
(

ξ
(−i)
)

and mk

(
ξ
(−i)
)

represent the number
of partitions and the size of the k-th partition remaining after eliminating observa-
tion i from the set. The simple form of the full conditional prior distribution (usually
called the Chinese restaurant process) means that deriving a Markov chain Monte
Carlo algorithm to estimate the parameters of the model is relatively straightfor-
ward. However, this Dirichlet process mixture model ignores the spatial information
available through W.

In order to incorporate this spatial information into our clustering procedure we
modify the Ewen’s distribution in (2) so that partitions that include non-connected
clusters receive zero probability a priori. This is done by truncating (2) so that

p(ξ | α) =
αK(ξ )

C(α)

{
K(ξ )

∏
k=1

Γ (mk (ξ ))

}
I(Q(ξ ) = 0) , (4)

where

Q(ξ ) =
n

∑
i=1

I

{
∑
i′ 6=i

I(ξi′ = ξi)> 0

}
I

{
∑

i′∈∂ i
I(ξi′ = ξi) = 0

}
is the total number of regions such that they are not in a singleton cluster (note
that qi = I

{
∑i′ 6=i I(ξi′ = ξi)> 0

}
equals zero if and only if region i is a sin-

gleton) and none of its neighbors belong to the same cluster (note that zi =
I{∑i′∈∂ i I(ξi′ = ξi) = 0} equals zero if and only if none of its neighbors belong to
the same cluster), and

C(α) = ∑
ξ
′:Q(ξ ′)=0

α
K(ξ

′)


K(ξ

′)

∏
k=1

Γ
(
mk
(
ξ
′))

is an appropriate normalizing constant. We highlight that C(α) can in principle be
written as a polynomial of order K on α , but the exact form of (most of) the poly-
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nomial coefficients is generally unknown because of the restriction on the set of
partitions that are included in the sum.

Note that, unlike the Ewen’s distribution, the truncated prior distribution on ξ

described in (4) is not exchangeable. Nonetheless, the full conditional distribu-
tions associated with this prior also follow a relatively simple form, simplifying
the design of Markov chain Monte Carlo algorithms for posterior inference (see
Section 3). This is clearer if we think in terms of the partitions implied by ξ . As
with the Dirichlet process, we can find the conditional distribution ξi | ξ (−i) by re-
moving observation i from the partition ρn = {S1, . . . ,SK} to generate a partition
ρ
(−i)
n−1 =

{
S(−i)

1 , . . . ,S(−i)
K(−i)

}
, and then reallocating observation i to either one of the

existing K(−i) clusters or to a new singleton cluster. (Note that we use the −i super-
script to indicate that the i-th observation has been removed). Hence, the prior full
conditional probability that observation i is placed in cluster k, p(ξi = k | ξ (−i)), is
simply

p
(

ξi = k | ξ (−i),α
)

∝
α

K(ξ
(−i))

C(α) ∏
K
(

ξ
(−i)
)

k′=1 Γ

(
mk′
(

ξ
(−i)
)
+ I(k′ = k)

)
k ≤ K

(
ξ
(−i)
)
, ∑i′∈∂ i I(ξi] = k)> 0,

0 k ≤ K
(

ξ
(−i)
)
, ∑i′∈∂ i I(ξi] = k) = 0,

α
1+K(ξ

(−i))
C(α) ∏

K
(

ξ
(−i)
)

k=1 Γ

(
mk

(
ξ
(−i)
))

k = K
(

ξ
(−i)
)
+1,

which simplifies to

p(ξi = k | ξ (−i),α) ∝


mk

(
ξ
(−i)
)

k ≤ K
(

ξ
(−i)
)
, ∑i′∈∂ i I(ξi′ = k)> 0,

0 k ≤ K
(

ξ
(−i)
)
, ∑i′∈∂ i I(ξi′ = k) = 0,

α k = K
(

ξ
(−i)
)
+1.

(5)

Note that this expression is very similar to the full conditional distribution in (3),
with the main difference being that region has zero probability of being allocated
to any non-singleton cluster that are not represented among its neighbors. Hence,
we call this prior a restricted Chinese Restaurant process. As in the regular Chinese
Restaurant process, α controls the a priori expected number of clusters, with larger
values of α favoring an allocation in which all observations are assigned to singleton
clusters, and values of α close to zero favoring a single cluster. Because α plays such
a critical role in the behavior of the model in the sequel we treat it as an unknown
hyperparameter and assign it a Gamma prior distribution with parameters aα and
bα .
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3 Computation

Even with the constraints associated with connected clusters, the number of pos-
sible partitions grows very fast with n, making explicit evaluation of the posterior
distribution unfeasible in most realistic scenarios. Hence, we focus on developing
Markov chain Monte Carlo (MCMC) algorithms Robert and Casella (2005) for pos-
terior inference in our spatial clustering model.

For simplicity we focus on the case where no covariates are available (i.e., xi = 1
for all i) and a Gaussian prior on ϑk ∼N(µ,σ2) with hyperpriors µ ∼N(κ,φ 2) and
σ2 ∼ IGam(aσ ,bσ ), and fixed hyperparameters κ , φ 2, aσ and bσ . Firstly, note that
the full conditional posterior for ξi is

p
(

ξi = k | yi,ξ
(−i),α,{ϑk},µ,σ2

)
∝

mk

(
ξ
(−i)
)

p(yi | ϑk) k ≤ K
(

ξ
(−i)
)
, ∑i′∈∂ i I(ξi′ = k)> 0,

0 k ≤ K
(

ξ
(−i)
)
, ∑i′∈∂ i I(ξi′ = k) = 0,

α p
(

yi | ϑK
(

ξ
(−i)
)
+1

)
k = K

(
ξ
(−i)
)
+1,

where ϑ
K
(

ξ
(−i)
)
+1
∼ N(µ,σ2) and

p(yi | ϑ) =
exp{−hi exp(ϑ)}(hi exp(ϑ))yi

yi!
.

Secondly, the parameters ϑ1, . . . ,ϑK(ξ ) are conditionally independent a posteriori
with

p(ϑk | y,ξ ,µ,σ) ∝ exp

{
−
(
ϑk− (µ +σ2

∑i:{ξi=k} yi)
)2

2σ2 − exp{ϑk} ∑
i:{ξi=k}

hi

}
.

Since this posterior distribution does not belong to a tractable family, we sample
ϑk using a slice sampler (Damien et al., 1999). The algorithm proceeds by introduc-
ing independent exponentially distributed auxiliary variables u1, . . . ,uK(ξ ). The full
conditional posterior density for uk reduces to a truncated exponential distribution

p(uk | ϑk) ∝ exp{−uk}I

(
uk > exp{ϑk} ∑

i:{ξi=k}
hi

)
,

while the full conditional posterior for ϑk from
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p(ϑk | uk,µ,σ
2) ∝

exp

{
−
(
ϑk− (µ +σ2

∑i:{ξi=k} yi)
)2

2σ2

}
I

(
ϑk < loguk− log ∑

i:{ξi=k}
hi

)
.

The full conditional posterior for µ which reduces to a normal distribution

N

(
σ2κ +φ 2

∑
K(ξ )
k=1 ϑk

σ2 +φ 2K (ξ )
,

σ2φ 2

σ2 +φ 2K (ξ )

)

and the full conditional of σ2 which reduces to an inverse Gamma distribution,

IGam

(
aσ ,bσ +

∑
K(ξ )
k=1 (ϑk−µ)2

2

)
.

Finally, we consider sampling the hyperparameter α . From (4) the posterior for
α is given by

p(α | ξ ) ∝ p(α)
αK(ξ )

C(α)

{
K(ξ )

∏
k=1

Γ (mk (ξ ))

}
I(Q(ξ ) = 0) , (6)

where p(α) is a Gamma prior with fixed parameters aα and bα . This posterior distri-
bution is doubly intractable: not only it does not belong to any well-known family,
but it cannot even be evaluated in closed form because the normalizing constant
C(α) involves a sum over an exponentially large number of terms. To address this
difficulty we use the Noisy Exchange Algorithm (NEA) (Alquier et al., 2016) to
allow inference on this doubly intractable distribution.

Our implementation of NEA uses a random walk Metropolis-Hastings algorithm
with log-normal proposals, log{α∗} ∼ N

(
log{α} ,ω2

)
, and replaces the ratio of

intractable constants C(α)
C(α∗) in the acceptance probability with an unbiased estimator

obtained using Bridge Sampling (Gelman and Meng, 1998),

C(α)

C(α∗)
≈ 1

N

N

∑
j=1

[α]K(ξ ′j)

[α∗]K(ξ ′j)
.

The samples ξ
′
1, . . . ,ξ

′
N used in this approximation are dependent but approximately

identically distributed samples from (4), and they are obtained by running (for each
iteration of our algorithm) a second MCMC algorithm based on the full conditionals
in (5).
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4 Illustration

We applied our model to the U.S. lung cancer mortality data presented in Figure
1. Our analysis uses the following values for the hyperparameters, κ = 5,φ = 0.1,
aσ = bσ = 2 and aα = bα = 1. Figure 2 shows the prior distribution on the number
of clusters implied by our restricted hierarchical model. All estimates are based on
30,000 samples obtained after a burn-in period of 10,000 iterations. When sampling
α we used ω2 = 0.25 as the variance of the random walk (leading to an acceptance
rate of roughly 44%), and N = 100 samples obtained after a short burnin period
of 100 iterations to estimate the ratio of normalizing constants. Convergence was
checked by examining trace plots of the log-posterior distribution, the number of
clusters represented in the data, and the hyperparameter α . There is no evidence
of lack of convergence, although the autocorrelation for some of the parameters is
relatively high.

1 2 3 4 5 6 7 8 9 10 11 12

0.0

0.1

0.2

0.3

0.4

Fig. 2 Prior distribution on the number of unique clusters, p(ξ ) =
∫

p(ξ | α)p(α | aα ,bα ). Values
were obtained by simulation.

Figure 3(a) presents our Monte Carlo estimates of p(ξi = ξi′ | y), the posterior
probability that any pair of states belong to the same cluster (note that states have
been reordered to facilitate interpretation). The posterior distribution over partitions
is quite concentrated and favors somewhere between 8 and 12 clusters. Some as-
pects of the partition in which there is substantial uncertainty include whether Idaho
should belong to a “southern” cluster together with Utah, Colorado, New Mexico
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Texas, or to a “northern” cluster with Wyoming, Wisconsin, the Dakotas, Montana,
Nebraska, Minnesota, Kansas and Michigan, whether California and Arizona be-
long to a cluster with Nevada, Oregon and Washington, or to a cluster of their own,
and whether Delaware should be included in a small cluster with Pennsylvania,
Ohio and Indiana, or with a bigger one including most of the North West and New
England.

The probabilities in 3(a) can be used to find a point estimate of the partition,
ξ̂ = (ξ̂1, . . . , ξ̂n), by minimizing the expected cost function Û(ξ̂ ) = E

{
U(ξ̂ ,ξ ) | y

}
,

where

U(ξ̂ ,ξ ) =
n

∑
i=1

n

∑
i′=i+1

η1I(ξi = ξi′)I(ξ̂i 6= ξ̂i′)+η2I(ξi 6= ξi′)I(ξ̂i = ξ̂i′)

(see Lau and Green, 2007 for further details). The ratio η1/η2 controls the relative
cost of separating states that in truth belong to the same cluster and the cost of
placing together two states that in truth belong to different clusters. In our analysis
we take η1/η2 = 1, which yields a point estimate with 9 clusters (see Figure 3(b)).
One of those clusters involves West Virginia and Kentucky (two states that we had
identified as having particularly high mortality rates for lung cancer), with the rest of
the Appalachian region being clustered with other Southern states. Following on our
discussion on uncertainty, note that this point estimates sets California and Arizona
with Nevada, Oregon and Washington, Idaho with the southern cluster of states, and
Delaware with most of the North East and New England.

Finally, Figure 4 presents the posterior means for the mortality rates generated
by our model. Although there are similarities with Figure 1, our estimates provide
further smoothing of the rates.

5 Discussion

We have introduced a new model for disease clustering based on a restricted Ewen’s
distribution, and derived a Metropolis-Hastings algorithm to estimate it. Aside for
disease clustering, the model can potentially be applied in other settings where clus-
tering of lattice data is desired (e.g., in image segmentation).

There are two extensions of this model that we plan to pursue elsewhere. The
first one is to extend the construction to models based on restrictions of other stick-
breaking priors (such as the Pitman-Yor process, e.g., see Pitman, 1996). The second
one is to consider for general forms for the prior p(ϑ1, . . . ,ϑK | ξ ) that allows us to
incorporates the spatial information encoded in W not only on the partition struc-
ture, but also on the coefficients associated with each cluster.
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(a) Posterior probability that two states are assigned to the same cluster

(b) Point estimate of the cluster structure

Fig. 3 Posterior estimates of the cluster structure associated withe U.S. lung cancer mortality data.
Vertical lines in panel (a) correspond to the point estimate presented in panel (b).
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Fig. 4 Posterior means for the disease rates, exp{θi}, for the U.S. lung cancer mortality data.


