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Abstract—This paper applied a PCA-K-means method to 

exploit photo-thermal infrared imaging spectroscopy based 

trace explosives with overlapping spectral absorption bands. We 

intend to explore the underlying patterns that affect the 

clustering performance using top principal components. We 

also strive to investigate the effectiveness of the clustering 

algorithm on different analytes and substrates. We reduced the 

dimensions by applying the principal component analysis (PCA) 

on the data to transform the original data to the top principal 

components’ feature space. The data were revealed in the 

feature space and formed into clusters. Then we used the 

K-means based clustering algorithm to classify them into six 

classes including RDX, PC, Copper/Steel, TNT, DNT, and PE. 

After that, we conducted the performance evaluation. We found 

that the F1 score of the classification of RDX, PC, Copper/Steel, 

TNT, DNT, and PE is 85%, 39%, 71%, 99%, 92%, and 18%, 

respectively. The results demonstrated that the proposed 

algorithm can effectively reduce dimension and accurately 

determined the classes of those analytes and substrates. 
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I. INTRODUCTION 

Trace analyte detection has become an emergent goal in 
the fields of military, homeland security, and law 
enforcement. It provides an early warning of concealed threats 
and therefore can save people’s lives and protect the public 
facilities. This technology includes remote detection systems 
capable of detecting explosives and other hazardous materials 
from a standoff distance. As the demand from military and 
security markets has increased, it is imperative to develop 
advanced remote trace detection systems to effectively detect 
hidden trace explosives in public areas, such as suicide, 
leave-behind, and vehicle-borne explosives in airports, 
railway, ship, bus, truck, container,  

 

 

 

 
 

 

 

bridge, tunnel, tower, and terminal environments. These 
remote trace detection systems are also extremely important to 
identify explosives in the forensic field for crime-scene 
reconstruction. Further, the remote trace detection systems are 
also important in agricultural applications, such as monitoring 
the soil, groundwater, soil gas, surface water, sediment that are 
suspected of being contaminated. 

There is an emerging thrust to replace the traditional 
handheld explosive trace detectors with standoff sensing 
systems at a safe distance. Improving survivability and 
situational awareness has spurred a wide variety of recent 
development of sensor technology. Most of them are 
laser-based trace detection systems, such as laser-induced 
breakdown spectroscopy (LIBS), Raman spectroscopy, 
laser-induced-fluorescence spectroscopy, and Fourier 
transform infrared (IR) spectroscopy. Unlike the above 
traditional detection techniques, the photo-thermal infrared 
imaging spectroscopy (PT-IRIS) technology can remotely 
detect trace materials on relevant substrate surfaces from 
significant standoff distances. In this technique, the surface of 
interest is illuminated by a light with a specific infrared 
wavelength and the thermal response of the surface is viewed 
with an infrared camera [1]. Comparing the thermal image as a 
function of excitation wavelength of the light to the collection 
wavelength of surface residues would indicate the presence 
and location of trace residues. In addition, by changing the 
excitation wavelength of the light, other trace analytes of 
interest, such as drugs and chemical agents could also be 
imaged. Superior to other trace detection techniques, this 
technology has the potential to generate thermal images of the 
trace residues and the surface with a spatial resolution of 
~1um. 

However the ability to detect small amount of residues on 
large relevant substrate can be very complicated in view of the 
overlapping optical and thermal spectrum. The key challenge 
of remote trace detection techniques is to distinguish surface 
residues from the relevant substrate, such as glasses, paint, and 
clothes, etc. While substrate materials are chemically different 
from surface residues, they nonetheless have overlapping IR 
spectrum. Things become more even worse if the substrate is 
made of polymeric materials, since such material will absorb 
the IR spectrum. These real-world challenges add 
complications to the detection of surface residues.  
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The advancement in infrared (IR) and Raman 
spectroscopy has produced numerous massive data, which has 
generated an urgent need for new spectral analysis techniques. 
The emerging photo-thermal infrared imaging spectroscopy 
(PT-IRIS) technique which allows for further increase of the 
spatial resolution from the current ~10 microns to ~1 micron 
makes this data analysis demand more critical. This paper will 
focus on the PT-IRIS data analysis which was used for the 
application of trace analyte detection. The aim of trace analyte 
detection is to distinguish illicit surface residues such as 
explosives from the surface on which they rest. Until now, less 
effort has been made to develop efficient machine learning 
techniques to analyze the photo-thermal infrared data.  

The rest of the paper is organized as follows. In Section II, 
the high dimensional and overlapped data set is described. In 
Section III, the proposed methodology is presented. A 
combined principal component analysis (PCA)-K-means 
clustering algorithm is explained. In Section IV, the analysis 
and results are demonstrated. In Section V, the conclusions are 
given. 

 

II. PHOTO-THERMAL INFRARED IMAGING SPECTROSCOPY 

This section will use a PCA-K-means method to exploit 
PT-IRIS based trace explosives with overlapping spectral 
absorption bands. We intend to explore the underlying 
patterns that affect the clustering performance using top 
principal components. We also strive to investigate the 
effectiveness of the clustering algorithm on different analytes 
and substrates. 

A. Data Set 

 The advanced photo-thermal infrared imaging 
spectroscopy (PT-IRIS) technique that can be used for 
standoff detection application [1]. The two fundamental 
components are infrared (IR) quantum cascade lasers (QCL) 
and IR focal plane array detectors. Specifically, IR QCL is 
used to illuminate the surface residues. If the excitation 
wavelength of the light is resonant with the collection 
wavelength of the surface residues, the residues of interest will 
heat up by (~1oC). The IR focal plane array detectors are used 
to provide imaging system.  

The temperature increase at each laser pulse, denoted as 
Tmax is defined as a function of excitation and collection 
wavelengths. The normalization of Tmax to the average power 
of the laser pulse will then be used as feature vectors, as shown 
in Fig. 1. Simulated samples include 5 analytes (TNT, DNT, 
RDX, Polyethylene, and Polycarbonate) on 4 substrates 
(Copper, Steel, Polyethylene, and Polycarbonate) using 28 
excitation wavelengths (6.0 μm to 6.6 μm and 7.0 μm to 7.7 
μm) and 26 collection wavelengths (8.0 μm to 10.5 μm).  

 

 

 

 

 

 
   
    
 

 

 

 

 

               

            

The fundamental spectroscopic characteristics for the 
PT-IRIS is shown in Fig. 2. It shows the IR absorbance spectra 
of various materials at different frequency. Peaks in the curves 
reflect unique “signatures” for each analyte. According to 
Kirchhoff’s Law, the emissivity of a material and its 
absorptivity are equivalent at thermal equilibrium. Thus, the 
absorption spectrum can be used to accurately predict its 
emission spectrum. In another word, if we can determine the 
most important features (i.e. Tmax values) among the 728 
features, which are correlated with the absorption spectrum of 
a material, we can use the absorption spectrum to predict its 
emission spectrum. Since the thermal emission from analyte 
of interest and the surface have different spectral signatures, 
the unique thermal emission spectrum can ultimately 
determine the type of this material.  

 

  
   
  

 

 

 

 

 

 

 

 

Each pixel is a column in this data matrix, which includes 
728 features. For each feature, it is a function of Tmax in terms 
of different combinations of excitation wavelengths and 
collection wavelengths. With 28 excitation wavelengths and 
26 collection wavelengths, they would generate 728 different 
combined features. Therefore, we may demonstrate the 
photo-thermal signal matrix for all the 468 samples. This can 
be seen by display ,the data set in false color plot ,which will 
show visible or non-visible parts of the electromagnetic 
spectrum, shown in Fig. 3. From left to right, the particle sizes 
are 8 μm, 12 μm, 20 μm, 3 μm, 1.5 μm, and 5 μm. Each loop 
takes 76 columns per particle size. Each column contains 728 
features. In Fig. 3, the color is proportional to signal strength, 
i.e. red represents high, and blue represents low.  

Fig. 1 Data matrix with feature vectors. The Tmax values for 
different excitation and collection wavelength combination were 

made into feature vectors (columns). 

Fig. 2 IR absorbance spectra of glass, polyethylene, white painted steel, 

ammonium nitrate, RDX, TNT and sucrose (sugar). 
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False Color Plot of the 1st Synthetic Data Set
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For each analyte including TNT, DNT, and RDX, they will 
be made of all 6 possible particle sizes, and two pixels in the 
camera frame (i.e. columns) are on the particle,  the two pixels 
will rest on all 4 substrates (i.e. copper, steel, PC, and PE). 
Thus, there will be a maximum of 48 samples for each analyte. 
In addition, for each substrate including copper, steel, PC, and 
PE, they will spread over the 6 particle sizes with two pixels 
off each particle, and they interact with 5 analytes (TNT, 
DNT, RDX, PC, and PE), so the maximum of substrate 
samples is 60.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC can be used for both analyte and substrate, so the 
maximum sample amount would be the total of possible 
analyte and substrate samples, which is therefore 108. PC has 
a strong signature.  PE can also be used for both analyte and 
substrate. There will be 108 samples at maximum. PE is 
known as a poor thermal conductor, as a result the temperature 
increase with illumination is nearly zero. Thus it does not have 
its own signature. 

Since the samples comprise both “on” and “off” particle 
pixels, some samples may have analyte, some may have 
substrate, but some complicated and overlapping sample can 
happen by optically “through” a particle. The mixing IR 
absorption/emission features reflects the primary challenge to 
a useful detection technique in the real-world application. 

 

III. RESEARCH METHODOLOGY 

Feature selection is a very important pre-processing 
technique for large scale pattern recognition problems, 
especially when the number of available samples is relatively 
small [2]-[4]. Feature selection is used to find a subset of 
original features to facilitate optimization, clustering, and 
classification without a significant loss of accuracy [5][6]. The 
features contain relevant, irrelevant, and unused information. 
However, irrelevant and redundant features are useless, which 
may cause significant degradation in performance due to large 
search space known as “the curse of dimensionality”. By 
eliminating useless features in the pre-processing stage, 
feature selection technique could help reduce computational 

complexity and the effect of curse of dimensionality, and 
improve the prediction accuracy [7]-[13]. 

A. Principle Component Analysis (PCA) 

Principle component analysis (PCA) is quantitatively 
rigorous method for achieving dimensional reduction before 
applying the feature selection methods. It is capable of 
revealing and identifying patterns in data [14]. The method 
generates a new variable set, denoted as principal components. 
Each principal component can be represented as a linear 
equation of the original variables. Since all the principal 
components are orthogonal to each other, so there will be no 
redundant information. Several top ranking principal 
components are often selected to form a new feature space. 
The original data will be mapped to this new feature space in 
the directions of the principal components. Although the PCA 
can effectively reduce the number of dimensions by selecting 
the top ranking principle components, PCA method is not able 
to select a subset of features which are important to distinguish 
the classes. It only guarantees that when you project each 
observation on an axis (along a principle component) in a new 
space, the variance of the new variable is the maximum among 
all possible choices of that axis. This means that each feature is 
considered separately, thereby ignoring feature dependencies, 
which may lead to worse classification performance. 

In the application of trace analyte detection where class 
labels are often unavailable, the feature selection becomes 
extremely difficult in such unsupervised learning scenario. 
The feature selection technique is essentially a combinatorial 
optimization problem which is computationally expensive. 
The existing and most powerful unsupervised feature selection 
technique is principle component analysis (PCA). It is often 
useful to map data onto their principal components rather than 
on the original x-y axis. In this way the underlying structure in 
the data can be identified. We applied the PCA technique to 
the data set to reveal the patterns in data, as well as reduce the 
dimension of feature vectors (i.e. vectors containing the 
principle components). First we deconstruct the set into 
eigenvectors and eigenvalues. An eigenvector is a direction, 
and an eigenvalue is a number, telling you how much variance 
there is in the data in that direction. The amount of 
eigenvectors/values is the same as the dimensions that the data 
set has. The reason for this is that eigenvectors convert the data 
into a new set of dimensions, and the number of dimensions 
have to be equal to the original amount of dimensions. It is 
worthwhile to investigate the PCA algorithm because it allows 
us to exploit the correlation of most significant eigenvectors 
and analyte types. 
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Fig. 3 Six clusters consisting of the four analytes and two 

substrates were formed using the K-means clustering 

method. 
. 
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B. PCA-K-means Clustering Algorithm 

PCA algorithm will be applying to reduce the dimensions, 
and then the k-means clustering algorithm will be applied.  

  

IV. ANALYSIS AND RESULTS 

A. PCA-K-means Clustering Results 

We presented the principal component analysis (PCA) 
results using a combination of top principal components 
(PCs), i.e. PC1 and PC2. We displayed the data in PC1-PC2 
axes, as shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Then we applied the K-means clustering algorithm to 

make them into 6 clusters. The number of analytes and 
substrates in each of the six classes are shown in Table I. 
Letter C represents the cluster. The rows represent TNT, DNT, 
PE, PC, RDX, and Copper, respectively. The columns 
represent Cluster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 5, 
and Cluster 6.  

 
 
 
 
 
 
 

Table I. Number of Samples in Classifiers after Using the PCA-K-means 

Clustering Algorithm 

 

By counting the largest number of analytes/substrate in 
each class, we can find the analyte/substrate dominating that 
class. For each cluster, the majority analytes will determine 
the class that this cluster belongs to. Therefore, we find Cluster 
1 represents RDX, Cluster 2 represents PC, Cluster 3 
represents Copper, Cluster 4 represents TNT, Cluster 5 
represents DNT, and Cluster 6 represents PE. These labels are 
shown in the tables in the following Clustering Analysis 
section. 

The classes are demonstrated in PC1-PC2 axes, as shown 
in Fig. 5. To enhance the visualization efficiency, we adopt the 
same color code as the PCA algorithm. Red dots represent 
TNT, Green dots represent DNT, Yellow dots represents PE, 
Cyan dots represent PC, Blue dots represents RDX, and Black 
dots represent Copper/Steel. The centroids of the classes are 
indicated by black crosses. Thus, it is easier to compare Fig. 4 
and Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

B. Clustering Analysis 

We investigate popular clustering performance evaluation 

which consists of probability of detection (POD), false alarm 

rate (FAR), accuracy, precision, recall, and F1 score for each 

residue of interest. F1 score is usually more useful than 

accuracy, especially if there exists an uneven class 

distribution. The procedure involves the determination of true 

positive (TP), false negative (FN), false positive (FP), and 

true negative (TN) of residues of interest. In the 

Steps K-means Clustering Algorithm 

1 k initial "means" (k is an estimated value) are 

randomly generated. 

2 k clusters are formed by assigning an observation 

to its nearest mean.  

3 The centroids of k clusters become the new mean. 

4 Repeat steps 2 and 3 until convergence. 

 C1 C2 C3 C4 C5 C6 

TNT 0 10 0 36 0 0 

DNT 0 6 0 0 36 0 

PE 0 12 96 0 0 4 

PC 0 104 0 0 0 0 

RDX 34 0 0 0 0 12 

Copper 0 0 118 0 0 0 

Fig. 5 Six clusters consisting of the four analytes and two substrates 

were formed using the K-means clustering method. 

Fig. 4 All the data projected onto PC1-PC2 space after using the 

PCA method. 



  

pre-processing stage, based on Table I, six tables are 

generated for the six analytes in Table II-VII. Different colors 

are chosen for these metrics, as shown below. 

 

 TP 

 FN 

 FP 

 TN   

 
 

Table II.  Labeling for TNT 

 
Analyt

es 

Class 1 

(RDX) 

Class 2 

(PC) 

Class 3 

(Copper) 
Class 4 

(TNT) 

Class 5 

(DNT) 

Class 6 

(PE) 

TNT 0  10  0  36  0  0  

DNT 0  6  0  0  36  0  

PE 0  12  96  0  0  4  

PC 0  104  0   0  0  0  

RDX 34  0  0  0  0  12  

Copper 0  0 118  0  0  0  

 

 
Table III.  Labeling for DNT 

 

 

 

Table IV.  Labeling for PE 

 

 

 
 

Table V.  Labeling for PC 

 

 

 

Table VI.  Labeling for RDX 

 

 
Table VII.  Labeling for Copper/Steel 

 

C. Clustering Performance Evaluation 

We then conducted the clustering performance evaluation 

by calculating the evaluation metrics, including the probability 

of detection (POD), false alarm rate (FAR), accuracy, 

precision, recall, and F1 score (the higher the better) for each 

residue of interest. The above evaluation metrics are defined 

as follows [9]: 

Probability of Detection: POD = TP/(TP+FN)   

False Alarm Rate: FAR = FP/(FP+TN)   

Precision: P = TP/(TP+FP)    

Recall: R = TP/(TP+FN)     

Accuracy: Accuracy = (TP+TN)/(TP+FP+FN+TN)  

F1 Score: F1 Score = 2 * Precision * Recall/(Precision + 

Recall) 

Regarding the precision measure, it indicates how often an 

instance was predicted as positive that is actually positive. On 

the other hand, a recall measures how often a positive class 

instance was predicted as a positive class instance by the 

classifier. In imbalanced learning, the goal is to improve 

recall without a significant loss of precision. However, it is 

extremely challenging to accomplish this goal, since in order 

to increase the TP for the minority class, the number of FP is 

also increased, which will result in a reduced precision. 

The k-means clustering algorithm on the data on PC1 and 

PC2 was performed. The clustering performance including 

the probability of detection (POD), false alarm rate (FAR), 

accuracy, precision, recall and F1 score is conducted. The 

performance results are shown in Table VIII. The six clusters 

were determined by the majority analyte type in each cluster. 

Accuracy can be significantly affected by the number of 

true negatives which in the application of trace analyte 

detection, are not as critical indicators as false negative and 

false positive. Therefore, F1 score is usually a better measure 

to evaluate if we need to seek a balance between precision and 

recall and the data has an uneven class distribution.  

Virtually there is no signal from polyethylene at any 

excitation wavelength or collection wavelength. Compared to 

polyethylene (PE), copper, and steel, only polycarbonate (PC) 
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Class 1 
(RDX) 

Class 2 
(PC) 

Class 3 
(Copper) 

Class 4 
(TNT) 

Class 5 

(DNT) 

Class 6 
(PE) 

TNT 0  10  0  36  0  0  

DNT 0  6  0  0  36  0  

PE 0  12  96  0  0  4  

PC 0  104  0   0  0  0  

RDX 34  0  0  0  0 12  

Copper 0  0  118  0  0  0  
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Copper 0  0  118  0  0  0 
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Analyt 
es 

Class 1 
(RDX) 

Class 2 
(PC) 

Class 3 

(Copper) 

Class 4 
(TNT) 

Class 5 
(DNT) 

Class 6 
(PE) 

TNT 0  10  0  36  0  0  

DNT 0  6  0  0  36  0  
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Copper 0  0  118  0  0  0  



  

has its own “spectrum”. Spectral mixing problem becomes 

worst when the trace analytes rest on such active substrate. It 

will result in poor F1 score. 
 

TABLE VIII.  PCA-K-Means Clustering Performance on PC1 and PC2 

 
 

V. CONCLUSION 

This paper applied a PCA-K-means method to exploit 

PT-IRIS based trace explosives with overlapping spectral 

absorption bands. We intend to explore the underlying 

patterns that affect the clustering performance using top 

principal components. We also strive to investigate the 

effectiveness of the clustering algorithm on different analytes 

and substrates. The principal component analysis (PCA) was 

used to reduce the dimension of data space to the top principal 

components feature (PC1-PC2) space, and thus the most 

prominent features or patterns were revealed. Then we used 

the K-mean clustering algorithm to classify them into four 

analytes and two substrates. We used the performance 

evaluation matrices to measure the accuracy of classification. 

The experimental results demonstrated that the combination 

of the principal component analysis and K-means clustering 

algorithm are efficient for achieving dimensional reduction 

and clustering on highly overlapped photo-thermal infrared 

imaging data. The F1 score of the classification of RDX, PC, 

Copper, TNT, DNT, and PE is 85%, 39%, 71%, 99%, 92%, 

and 18%, respectively. 

ACKNOWLEDGMENT 

This work was supported by the National Science 

Foundation (NSF) grants: HRD #1505509, HRD #1533479, 

and DUE #1654474. 

 

REFERENCES 

[1] C. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, 

J.Stepnowski, and R. McGill, “Advances in standoff detection of trace 

explosives by infrared photo-thermal imaging,” Proc. SPIE 7664, 
Detection and Sensing of Mines, Explosive Objects, and Obscured 

Targets XV, 76641J, 2010. 

[2] L. Zhang, Q. Zhang, B. Du, X. Huang, Y. Y. Tang, and D. Tao, 
“Simultaneous spectral-spatial feature selection and extraction for 

hyperspectral images,” IEEE Transactions on Cybernetics, vol. 48, no. 
1, pp. 16-28, 2018. 

[3] M. Liu, C. Xu, Y. Luo, C. Xu, Y. Wen, and D. Tao, “Cost-sensitive 

feature selection by optimizing f-measures,” IEEE Transactions on 
Image Processing, vol. 27, no. 3, pp. 1323-1335, 2018. 

[4] X. Wen, L. Shao, W. Fang, and Y. Xue, “Efficient feature selection and 

classification for vehicle detection,” IEEE Transactions on Circuits 
and Systems for Video Technology, vol. 25, no. 3, pp. 508-517, 2015. 

[5] M. Dash and H. Liu, “Feature selection for classification,” Intell. Data 

Anal., vol. 1, no. 1-4, pp. 131-156, 1997. 
[6] A. Unler and A. Murat, “A discrete particle swarm optimization method 

for feature selection in binary classification problems,” Eur. J. Oper. 

Res., vol. 206, no. 3, pp. 528–539, Nov. 2010. 
[7] N. Zhang and K. Leatham, “Feature selection based on SVM in 

photo-thermal infrared (IR) imaging spectroscopy classification with 

limited training samples”, WSEAS Transactions on Signal Processing, 
ISSN / E-ISSN: 1790-5052 / 2224-3488, vol. 13, Art. #33, pp. 285-292, 

2017. 

[8] N. Zhang, J. Xiong, J. Zhong, and K. Leatham, “Gaussian process 
regression method for classification for high-dimensional data with 

limited samples”, The 8th International Conference on Information 

Science and Technology (ICIST 2018), Cordoba, Granada, and Seville, 
Spain, June 30-July 6, 2018. 

[9] N. Zhang, J. Xiong, J. Zhong, and L. A. Thompson, “Feature selection 

method using BPSO-EA with ENN classifier”, The 8th International 
Conference on Information Science and Technology (ICIST 2018), 

Cordoba, Granada, and Seville, Spain, June 30-July 6, 2018. 

[10] N. Zhang and L. A. Thompson, “An intelligent clustering algorithm for 

high dimensional and highly overlapped photo-thermal infrared 

imaging data,” Fall 2016 ASEE Mid-Atlantic Regional Conference, 

Hofstra University, Hempstead, NY, October 21-22, 2016. 
[11] N. Zhang, “Cost-sensitive spectral clustering for photo-thermal infrared 

imaging data,” 2016 Sixth International Conference on Information 

Science and Technology (ICIST), Dalian, pp. 358 – 361, May 6-8, 
China, 2016.  

[12] J. F. Ramirez Rochac and N. Zhang, “Reference clusters based feature 

extraction approach for mixed spectral signatures with dimensionality 
disparity,” 10th Annual IEEE International Systems Conference (IEEE 

SysCon 2016), Orlando, Florida, pp. 1 – 5, April 18-21, 2016.  

[13] J. F. Ramirez Rochac and N. Zhang, “Feature extraction in 
hyperspectral imaging using adaptive feature selection approach,” The 

Eighth International Conference on Advanced Computational 

Intelligence (ICACI2016), Chiang Mai, Thailand, pp. 36-40, 2016. 
[14] L. I. Smith, A Tutorial on Principal Components Analysis, 2002. 

 

 Class1 

(RDX) 

Class2 

(PC) 

Class3 

(Cop) 

Class4 

(TNT) 

Class5 

(DNT) 

Class6 

(PE) 

POD 74% 100% 100% 78% 86% 10% 

FAR 7% 8% 27% 0 0 1% 

Accuracy 97% 94% 79% 98% 98% 76% 

Precision 100% 24% 55% 100% 100% 75% 

Recall 74% 100% 100% 98% 86% 10% 

F1 Score 85% 39% 71% 99% 92% 18% 


