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Abstract—This paper applied a PCA-K-means method to
exploit photo-thermal infrared imaging spectroscopy based
trace explosives with overlapping spectral absorption bands. We
intend to explore the underlying patterns that affect the
clustering performance using top principal components. We
also strive to investigate the effectiveness of the clustering
algorithm on different analytes and substrates. We reduced the
dimensions by applying the principal component analysis (PCA)
on the data to transform the original data to the top principal
components’ feature space. The data were revealed in the
feature space and formed into clusters. Then we used the
K-means based clustering algorithm to classify them into six
classes including RDX, PC, Copper/Steel, TNT, DNT, and PE.
After that, we conducted the performance evaluation. We found
that the F1 score of the classification of RDX, PC, Copper/Steel,
TNT, DNT, and PE is 85%, 39%, 71%, 99%, 92%, and 18%,
respectively. The results demonstrated that the proposed
algorithm can effectively reduce dimension and accurately
determined the classes of those analytes and substrates.

Keywords—classification; clustering; principal component
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I. INTRODUCTION

Trace analyte detection has become an emergent goal in
the fields of military, homeland security, and law
enforcement. It provides an early warning of concealed threats
and therefore can save people’s lives and protect the public
facilities. This technology includes remote detection systems
capable of detecting explosives and other hazardous materials
from a standoff distance. As the demand from military and
security markets has increased, it is imperative to develop
advanced remote trace detection systems to effectively detect
hidden trace explosives in public areas, such as suicide,
leave-behind, and vehicle-borne explosives in airports,
railway, ship, bus, truck, container,
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bridge, tunnel, tower, and terminal environments. These
remote trace detection systems are also extremely important to
identify explosives in the forensic field for crime-scene
reconstruction. Further, the remote trace detection systems are
also important in agricultural applications, such as monitoring
the soil, groundwater, soil gas, surface water, sediment that are
suspected of being contaminated.

There is an emerging thrust to replace the traditional
handheld explosive trace detectors with standoff sensing
systems at a safe distance. Improving survivability and
situational awareness has spurred a wide variety of recent
development of sensor technology. Most of them are
laser-based trace detection systems, such as laser-induced
breakdown spectroscopy (LIBS), Raman spectroscopy,
laser-induced-fluorescence  spectroscopy, and  Fourier
transform infrared (IR) spectroscopy. Unlike the above
traditional detection techniques, the photo-thermal infrared
imaging spectroscopy (PT-IRIS) technology can remotely
detect trace materials on relevant substrate surfaces from
significant standoff distances. In this technique, the surface of
interest is illuminated by a light with a specific infrared
wavelength and the thermal response of the surface is viewed
with an infrared camera [1]. Comparing the thermal image as a
function of excitation wavelength of the light to the collection
wavelength of surface residues would indicate the presence
and location of trace residues. In addition, by changing the
excitation wavelength of the light, other trace analytes of
interest, such as drugs and chemical agents could also be
imaged. Superior to other trace detection techniques, this
technology has the potential to generate thermal images of the
trace residues and the surface with a spatial resolution of
~lum.

However the ability to detect small amount of residues on
large relevant substrate can be very complicated in view of the
overlapping optical and thermal spectrum. The key challenge
of remote trace detection techniques is to distinguish surface
residues from the relevant substrate, such as glasses, paint, and
clothes, etc. While substrate materials are chemically different
from surface residues, they nonetheless have overlapping IR
spectrum. Things become more even worse if the substrate is
made of polymeric materials, since such material will absorb
the IR spectrum. These real-world challenges add
complications to the detection of surface residues.



The advancement in infrared (IR) and Raman
spectroscopy has produced numerous massive data, which has
generated an urgent need for new spectral analysis techniques.
The emerging photo-thermal infrared imaging spectroscopy
(PT-IRIS) technique which allows for further increase of the
spatial resolution from the current ~10 microns to ~1 micron
makes this data analysis demand more critical. This paper will
focus on the PT-IRIS data analysis which was used for the
application of trace analyte detection. The aim of trace analyte
detection is to distinguish illicit surface residues such as
explosives from the surface on which they rest. Until now, less
effort has been made to develop efficient machine learning
techniques to analyze the photo-thermal infrared data.

The rest of the paper is organized as follows. In Section II,
the high dimensional and overlapped data set is described. In
Section III, the proposed methodology is presented. A
combined principal component analysis (PCA)-K-means
clustering algorithm is explained. In Section IV, the analysis
and results are demonstrated. In Section V, the conclusions are
given.

II. PHOTO-THERMAL INFRARED IMAGING SPECTROSCOPY

This section will use a PCA-K-means method to exploit
PT-IRIS based trace explosives with overlapping spectral
absorption bands. We intend to explore the underlying
patterns that affect the clustering performance using top
principal components. We also strive to investigate the
effectiveness of the clustering algorithm on different analytes
and substrates.

A. Data Set

The advanced photo-thermal infrared imaging
spectroscopy (PT-IRIS) technique that can be used for
standoff detection application [1]. The two fundamental
components are infrared (IR) quantum cascade lasers (QCL)
and IR focal plane array detectors. Specifically, IR QCL is
used to illuminate the surface residues. If the excitation
wavelength of the light is resonant with the collection
wavelength of the surface residues, the residues of interest will
heat up by (~1°C). The IR focal plane array detectors are used
to provide imaging system.

The temperature increase at each laser pulse, denoted as
Tmax is defined as a function of excitation and collection
wavelengths. The normalization of Tmax to the average power
of'the laser pulse will then be used as feature vectors, as shown
in Fig. 1. Simulated samples include 5 analytes (TNT, DNT,
RDX, Polyethylene, and Polycarbonate) on 4 substrates
(Copper, Steel, Polyethylene, and Polycarbonate) using 28
excitation wavelengths (6.0 pm to 6.6 um and 7.0 pm to 7.7
um) and 26 collection wavelengths (8.0 um to 10.5 pm).
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Fig. 1 Data matrix with feature vectors. The Tmax values for
different excitation and collection wavelength combination were
made into feature vectors (columns).

The fundamental spectroscopic characteristics for the
PT-IRIS is shown in Fig. 2. It shows the IR absorbance spectra
of various materials at different frequency. Peaks in the curves
reflect unique “signatures” for each analyte. According to
Kirchhoff’s Law, the emissivity of a material and its
absorptivity are equivalent at thermal equilibrium. Thus, the
absorption spectrum can be used to accurately predict its
emission spectrum. In another word, if we can determine the
most important features (i.e. Tmax values) among the 728
features, which are correlated with the absorption spectrum of
a material, we can use the absorption spectrum to predict its
emission spectrum. Since the thermal emission from analyte
of interest and the surface have different spectral signatures,
the unique thermal emission spectrum can ultimately
determine the type of this material.
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Fig. 2 IR absorbance spectra of glass, polyethylene, white painted steel,
ammonium nitrate, RDX, TNT and sucrose (sugar).

Each pixel is a column in this data matrix, which includes
728 features. For each feature, it is a function of Tmax in terms
of different combinations of excitation wavelengths and
collection wavelengths. With 28 excitation wavelengths and
26 collection wavelengths, they would generate 728 different
combined features. Therefore, we may demonstrate the
photo-thermal signal matrix for all the 468 samples. This can
be seen by display ,the data set in false color plot ,which will
show visible or non-visible parts of the electromagnetic
spectrum, shown in Fig. 3. From left to right, the particle sizes
are 8 um, 12 um, 20 pm, 3 pm, 1.5 pm, and 5 pm. Each loop
takes 76 columns per particle size. Each column contains 728
features. In Fig. 3, the color is proportional to signal strength,
i.e. red represents high, and blue represents low.



For each analyte including TNT, DNT, and RDX, they will
be made of all 6 possible particle sizes, and two pixels in the
camera frame (i.e. columns) are on the particle, the two pixels
will rest on all 4 substrates (i.e. copper, steel, PC, and PE).
Thus, there will be a maximum of 48 samples for each analyte.
In addition, for each substrate including copper, steel, PC, and
PE, they will spread over the 6 particle sizes with two pixels
off each particle, and they interact with 5 analytes (TNT,
DNT, RDX, PC, and PE), so the maximum of substrate
samples is 60.
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Fig. 3 Six clusters consisting of the four analytes and two
substrates were formed using the K-means clustering
method.

PC can be used for both analyte and substrate, so the
maximum sample amount would be the total of possible
analyte and substrate samples, which is therefore 108. PC has
a strong signature. PE can also be used for both analyte and
substrate. There will be 108 samples at maximum. PE is
known as a poor thermal conductor, as a result the temperature
increase with illumination is nearly zero. Thus it does not have
its own signature.

Since the samples comprise both “on” and “off” particle
pixels, some samples may have analyte, some may have
substrate, but some complicated and overlapping sample can
happen by optically “through” a particle. The mixing IR
absorption/emission features reflects the primary challenge to
a useful detection technique in the real-world application.

III. RESEARCH METHODOLOGY

Feature selection is a very important pre-processing
technique for large scale pattern recognition problems,
especially when the number of available samples is relatively
small [2]-[4]. Feature selection is used to find a subset of
original features to facilitate optimization, clustering, and
classification without a significant loss of accuracy [5][6]. The
features contain relevant, irrelevant, and unused information.
However, irrelevant and redundant features are useless, which
may cause significant degradation in performance due to large
search space known as “the curse of dimensionality”. By
eliminating useless features in the pre-processing stage,
feature selection technique could help reduce computational

complexity and the effect of curse of dimensionality, and
improve the prediction accuracy [7]-[13].

A. Principle Component Analysis (PCA)

Principle component analysis (PCA) is quantitatively
rigorous method for achieving dimensional reduction before
applying the feature selection methods. It is capable of
revealing and identifying patterns in data [14]. The method
generates a new variable set, denoted as principal components.
Each principal component can be represented as a linear
equation of the original variables. Since all the principal
components are orthogonal to each other, so there will be no
redundant information. Several top ranking principal
components are often selected to form a new feature space.
The original data will be mapped to this new feature space in
the directions of the principal components. Although the PCA
can effectively reduce the number of dimensions by selecting
the top ranking principle components, PCA method is not able
to select a subset of features which are important to distinguish
the classes. It only guarantees that when you project each
observation on an axis (along a principle component) in a new
space, the variance of the new variable is the maximum among
all possible choices of that axis. This means that each feature is
considered separately, thereby ignoring feature dependencies,
which may lead to worse classification performance.

In the application of trace analyte detection where class
labels are often unavailable, the feature selection becomes
extremely difficult in such unsupervised learning scenario.
The feature selection technique is essentially a combinatorial
optimization problem which is computationally expensive.
The existing and most powerful unsupervised feature selection
technique is principle component analysis (PCA). It is often
useful to map data onto their principal components rather than
on the original x-y axis. In this way the underlying structure in
the data can be identified. We applied the PCA technique to
the data set to reveal the patterns in data, as well as reduce the
dimension of feature vectors (i.e. vectors containing the
principle components). First we deconstruct the set into
eigenvectors and eigenvalues. An eigenvector is a direction,
and an eigenvalue is a number, telling you how much variance
there is in the data in that direction. The amount of
eigenvectors/values is the same as the dimensions that the data
set has. The reason for this is that eigenvectors convert the data
into a new set of dimensions, and the number of dimensions
have to be equal to the original amount of dimensions. It is
worthwhile to investigate the PCA algorithm because it allows
us to exploit the correlation of most significant eigenvectors
and analyte types.



B. PCA-K-means Clustering Algorithm

PCA algorithm will be applying to reduce the dimensions,
and then the k-means clustering algorithm will be applied.

Steps K-means Clustering Algorithm

1 k initial "means" (k is an estimated value) are
randomly generated.

2 k clusters are formed by assigning an observation
to its nearest mean.

3 The centroids of k clusters become the new mean.

4 Repeat steps 2 and 3 until convergence.

IV. ANALYSIS AND RESULTS

A. PCA-K-means Clustering Results

We presented the principal component analysis (PCA)
results using a combination of top principal components
(PCs), i.e. PC1 and PC2. We displayed the data in PC1-PC2
axes, as shown in Fig. 4.
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Fig. 4 All the data projected onto PC1-PC2 space after using the
PCA method.

Then we applied the K-means clustering algorithm to
make them into 6 clusters. The number of analytes and
substrates in each of the six classes are shown in Table I.
Letter C represents the cluster. The rows represent TNT, DNT,
PE, PC, RDX, and Copper, respectively. The columns
represent Cluster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 5,
and Cluster 6.

Table I. Number of Samples in Classifiers after Using the PCA-K-means

Clustering Algorithm
Cl C2 C3 C4 (0] C6
TNT 0 10 0 36 0 0
DNT 0 6 0 0 36 0
PE 0 12 96 0 0 4
PC 0 104 0 0 0 0
RDX 34 0 0 0 0 12
Copper | 0 0 118 0 0 0

By counting the largest number of analytes/substrate in
each class, we can find the analyte/substrate dominating that
class. For each cluster, the majority analytes will determine
the class that this cluster belongs to. Therefore, we find Cluster
1 represents RDX, Cluster 2 represents PC, Cluster 3
represents Copper, Cluster 4 represents TNT, Cluster 5
represents DNT, and Cluster 6 represents PE. These labels are
shown in the tables in the following Clustering Analysis
section.

The classes are demonstrated in PC1-PC2 axes, as shown
in Fig. 5. To enhance the visualization efficiency, we adopt the
same color code as the PCA algorithm. Red dots represent
TNT, Green dots represent DNT, Yellow dots represents PE,
Cyan dots represent PC, Blue dots represents RDX, and Black
dots represent Copper/Steel. The centroids of the classes are
indicated by black crosses. Thus, it is easier to compare Fig. 4
and Fig. 5.
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Fig. 5 Six clusters consisting of the four analytes and two substrates
were formed using the K-means clustering method.

B. Clustering Analysis

We investigate popular clustering performance evaluation
which consists of probability of detection (POD), false alarm
rate (FAR), accuracy, precision, recall, and F1 score for each
residue of interest. F1 score is usually more useful than
accuracy, especially if there exists an uneven class
distribution. The procedure involves the determination of true
positive (TP), false negative (FN), false positive (FP), and
true negative (TN) of residues of interest. In the



pre-processing stage, based on Table I, six tables are Table VI. Labeling for RDX
generated for the six analytes in Table II-VII. Different colors

are Chosen for these metrics’ as Shown below_ Analyt Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
es (RDX) (PC) | (Copper) | (INT) | (DNT) | (PE)
TNT 0 10 0 36 0 0
TP DNT 0 6 0 0 36 0
PE 0 12 96 0 0 4
FN PC 0 104 0 0 0 0
FP RDX 34 0 0 0 0 12
TN Copper 0 0 118 0 0 0

Table VII. Labeling for Copper/Steel

Table II. Labeling for TNT Analyt | Class1 | Class2 Class 3 Class4 | Class5 | Class 6
es (RDX) | (PC) | (Copper) | (TNT) | (DNT) | (PE)

Analyt Class 1 Class 2 Class 3 Class4 | Class5 | Class 6 TNT 0 10 0 36 0 0

es (RDX) (PC) (Copper) (TNT) | (DNT) (PE) DNT 0 6 0 0 36 0

TNT 0 10 0 36 0 0 PE 0 12 96 0 0 4

DNT 0 6 0 0 36 0 PC 0 104 0 0 0 0

PE 0 12 96 0 0 4 RDX 34 0 0 0 0 12

PC 0 104 0 0 0 0 Copper 0 0 118 0 0 0
RDX 34 0 0 0 0 12
Copper 0 0 118 0 0 0

C. Clustering Performance Evaluation

We then conducted the clustering performance evaluation

Table III. Labeling for DNT by calculating the evaluation metrics, including the probability
Analyt | Class 1 Class 2 Class 3 Class4 | Class5 | Class 6 of qe.t ection (POD), false alarm .rate (FAR), accuracy,
es (®RDX) | (PC) | (Copper) | (INT) | (DNT) | (PE) precision, recall, and F1 score (the higher the better) for each
TNT 0 10 0 36 0 0 residue of interest. The above evaluation metrics are defined
DNT 0 6 0 0 36 0 as follows [9]:
PE L 12 96 0 0 4 Probability of Detection: POD = TP/(TP+FN)
PC 0 104 0 0 0 0 False Alarm Rate: FAR = FP/(FP+TN)
RDX 34 0 0 0 0 12 ..
Copper 0 0 118 0 0 0 Precision: P = TP/(TP+FP)

Recall: R = TP/(TP+FN)
Accuracy: Accuracy = (TP+TN)/(TP+FP+FN+TN)
F1 Score: F1 Score = 2 * Precision * Recall/(Precision +
Table IV. Labeling for PE Recall) o o

Regarding the precision measure, it indicates how often an
instance was predicted as positive that is actually positive. On

Analyt | Class1 | Class2 Class 3 Class4 | Class5 | Class 6 i
o (RDX) (PC) | (Copper) | (INT) | (ONT) | (PE) ‘Fhe other hand, a r'ecall measures'l}ow often a positive class
TNT 0 10 0 36 0 0 instance was predicted as a positive class instance by the
DNT 0 6 0 0 36 0 classifier. In imbalanced learning, the goal is to improve
PE 0 12 96 0 0 4 recall without a significant loss of precision. However, it is
PC 0 104 0 0 0 0 extremely challenging to accomplish this goal, since in order
RDX o 0 0 0 0 12 to increase the TP for the minority class, the number of FP is
Copper 0 0 118 0 0 0

also increased, which will result in a reduced precision.

The k-means clustering algorithm on the data on PC1 and
PC2 was performed. The clustering performance including
the probability of detection (POD), false alarm rate (FAR),
Table V. Labeling for PC accuracy, precision, recall and F1 score is conducted. The
performance results are shown in Table VIII. The six clusters
were determined by the majority analyte type in each cluster.

Analy Class 1 Class 2 Class 3 Class4 | Class5 | Class6 s

o (RDX) (PC) | (Copper) | (TNT) | (ONT) (PE) Accuragy can bF: 51gn1ﬁcantly affec‘.[ed by the number of
TNT 0 10 0 36 0 0 true negatives which in the': qppllcatlon of trace gnalyte
DNT 0 6 0 0 36 0 detection, are not as critical indicators as false negative and
PE 0 12 96 0 0 4 false positive. Therefore, F1 score is usually a better measure
PC 0 104 0 0 0 0 to evaluate if we need to seek a balance between precision and
RDX EL. 0 L L L 12 recall and the data has an uneven class distribution.

Copper 0 0 118 0 0 0

Virtually there is no signal from polyethylene at any
excitation wavelength or collection wavelength. Compared to
polyethylene (PE), copper, and steel, only polycarbonate (PC)



has its own “spectrum”. Spectral mixing problem becomes
worst when the trace analytes rest on such active substrate. It
will result in poor F1 score.

TABLE VIII. PCA-K-Means Clustering Performance on PC1 and PC2

Classl | Class2 | Class3 | Class4 | Class5 | Class6

(RDX) (PC) (Cop) | (INT) | (DNT) | (PE)
POD 74% 100% 100% 78% 86% 10%
FAR 7% 8% 27% 0 0 1%

Accuracy 97% 94% 79% 98% 98% 76%

Precision | 100% 24% 55% 100% 100% 75%

Recall 74% 100% 100% 98% 86% 10%

F1 Score 85% 39% 1% 99% 92% 18%

V. CONCLUSION

This paper applied a PCA-K-means method to exploit
PT-IRIS based trace explosives with overlapping spectral
absorption bands. We intend to explore the underlying
patterns that affect the clustering performance using top
principal components. We also strive to investigate the
effectiveness of the clustering algorithm on different analytes
and substrates. The principal component analysis (PCA) was
used to reduce the dimension of data space to the top principal
components feature (PC1-PC2) space, and thus the most
prominent features or patterns were revealed. Then we used
the K-mean clustering algorithm to classify them into four
analytes and two substrates. We used the performance
evaluation matrices to measure the accuracy of classification.
The experimental results demonstrated that the combination
of the principal component analysis and K-means clustering
algorithm are efficient for achieving dimensional reduction
and clustering on highly overlapped photo-thermal infrared
imaging data. The F1 score of the classification of RDX, PC,
Copper, TNT, DNT, and PE is 85%, 39%, 71%, 99%, 92%,
and 18%, respectively.
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