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Abstract—We present a Gaussian process regression (GPR) 

algorithm with variable models to adapt to numerous pattern 

recognition data for classification. The algorithms of the 

Gaussian process regression (GPR) models including the 

rational quadratic GPR, squared exponential GPR, matern 5/2 

GPR, and exponential GPR are described. The response plot, 

predicted vs. actual plot, and residuals plot of these GPR models 

are demonstrated. In addition, a comprehensive comparison of 

classification performance among rational quadratic GPR, 

squared exponential GPR, matern 5/2 GPR, and exponential 

GPR is presented in terms of various model statistics. 

Furthermore, the classification error rates of these four GPR 

based models are in comparison to the extended nearest 

neighbor (ENN), classic k-nearest Neighbor (KNN), naive Bayes, 

linear discriminant analysis (LDA), and the classic multilayer 

perceptron (MLP) neural network. The excellent experimental 

results demonstrated that the Gaussian process regression 

models provide a very promising feature selection solution to 

numerous pattern recognition problems. The algorithm is able 

to learn from the global distribution, therefore improving 

pattern recognition performance. 

 
Keywords— Gaussian process regression (GPR);high-dimensional 

data; classification 

 

I. INTRODUCTION 

Recent advances in modern technologies, such as 
photo-thermal infrared (IR) imaging spectroscopy technology 
in the application of remote explosive detection, 4D CT-scans 
technology, and DNA microarrays have produced numerous 
massive and imbalanced data. The needs of classification 
ubiquitously exist in real-world data-intensive applications, 
ranging from civilian applications such as cancer diagnoses 
and outlier detection in stock market time series, to homeland 
security or defense related applications such as remote 
explosive detection, illegal drug detection, and abnormal 
behavior recognition.  

In the situation when the dimensionality of data is high but 
with few data, feature selection usually becomes imperative to 
the learning algorithms because high-dimensional data tends to 
negatively affect the efficiency of most learning algorithms. 
Feature selection is an efficient dimensionality reduction 
technique that selects an optimal subset of the original features 
that provide the best predictive power in modeling the data.  

 
 

 

 

They are the most distinct features that can be used to 
differentiate samples into different classes.  

There are a large number of state-of-the-art feature 
selection methods. A simultaneous spectral-spatial feature 
selection and extraction algorithm was proposed for 
hyperspectral images spectral-spatial feature representation 
and classification. However, it lacks of kernel version and thus 
its performance on complex datasets is unknown [1]. A 
regularized regression based feature selection classifier was 
modified into a cost-sensitive classifier by generating and 
assigning different costs to each class.  Features will be 
selected according to the classifier with optimal F-measure in 
order to solve the class imbalance problem [2]. A feature 
selection algorithm using AdaBoost was presented to deal with 
Haar-like features for vehicle detection. The normalized 
feature set is used to cross validate the RBF-SVM classifier to 
select the optimal parameters [3]. A support vector machine 
(SVM) based classifier is designed to identify abnormal 
residual functional capacities in athletes suffering from 
concussion. The total accuracy of the classifier using 10 
prominent features on a multichannel EEG data set was 77.1% 
[4]. However, these methods require a lot of training data to 
estimate the underlying function and their accuracy need to be 
improved. Therefore, it is imperative to develop a new 
algorithm to adapt to the high-dimensional but relatively small 
samples for classification. We will use the banknote 
authentication data set and other 19 other data sets as a 
demonstration.  

The rest of the paper is organized as follows. In Section II, 
the Gaussian process regression (GPR) models including the 
rational quadratic GPR, squared exponential GPR, matern 5/2 
GPR, and exponential GPR are described. In Section III, the 
banknote authentication data set is introduced. In Section IV, 
the response plot, predicted vs. actual plot, and residuals plot 
of these GPR models are demonstrated. In addition, a 
comprehensive comparison of classification performance 
among rational quadratic GPR, squared exponential GPR, 
matern 5/2 GPR, and exponential GPR is presented in terms of 
various model statistics. Furthermore, the classification error 
rates of these four GPR based models are in comparison to the 
ENN [5], classic KNN, naive Bayes, linear discriminant 
analysis (LDA), and the classic multilayer perceptron (MLP) 
neural network. In Section V, the paper is concluded. 
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II. TYPES OF GAUSSIAN PROCESS REGRESSION ALGORITHMS 

Gaussian process regression (GPR) models are 
nonparametric kernel-based probabilistic models with a finite 
collection of random variables with a multivariate distribution. 
Every linear combination is evenly distributed.  The concept of 
Gaussian processes is named after Carl Friedrich Gauss 
because it is based on the notion of the Gaussian distribution to 
be an infinite-dimensional generalization of multivariate 
normal distributions. Gaussian processes are utilized in 
statistical modeling, regression to multiple target values, and 
analyzing mapping in higher dimensions. For each GPR model 
we will be (1) Training a data set with GPR models such as 
Rational Quadratic GPR, Squared Exponential GPR, Matern 
5/2 GPR, and Exponential GPR (2) Plotting the behavior of 
each algorithm figuring out the RSME, R-Squared Value, 
MSE, MAE, Prediction Speed, Training Time, and (3) 
Analyzing the results of each Gaussian process regression to 
see the similarities and differences of the data. The purpose of 
these trials is to see if we can find some interesting behaviors, 
so we can find different methods to optimize GPR models. 
Shown below are the different behaviors of each GPR. 

A. Rational Quadratic GPR 

 The Rational Quadratic GPR kernel allows us to model 
data varying at multiple scales. The Rational Quadratic GPR 
algorithm is used in spatial statistics, geostatistics, machine 
learning, image analysis, and other fields where multivariate 
statistical analysis is conducted on metric spaces. The 
algorithm of the rational quadratic GPR is illustrated as 
follows. 

 The inferential results are dependent on the values of the 
hyperparameters θ defining the model's behavior. It is 
commonly used to define the statistical covariance between 
measurements made at two points, which are d units distant 
from each other. The covariance only depends on distances 
between points, which are stationary. If the distance is 
Euclidean distance, the rational quadratic covariance function 
is called isotropic. The advantage of the Rational Quadratic 
GPR algorithm is on the large data sets if the interpolating 
functions are smooth the results are less likely to produce error. 
If the functions have any discontinuities length scale will end 
up being extremely short and posterior mean will have 'ringing' 
effects. If the data set is more than two-dimensions, it may be 
hard to detect errors. The obvious sign there are errors in 
higher dimensions is the length scale never becomes smaller. 
This is a classic sign of model misspecification. 
 
B. Squared Exponential GPR 

Square Exponential GPR is a function space expression of 
a radial basis function regression model with infinitely many 
basis functions. The Squared Exponential GPR is identical to 
the Exponential GPR except that the Euclidean distance is 
squared. A fascinating feature utilizing the Square Exponential 
GPR is it replaces inner products of basis functions with 
kernels. The advantage to this feature is handling large data 
sets in higher dimensions will unlikely produce huge errors. 
Also, it handles discontinuities well. The algorithm of the 
squared exponential GPR is illustrated as follows. 

 

C. Matern 5/2 GPR 

The Matern 5/2 kernel takes spectral densities of the 

stationary kernel and create Fourier transforms of RBF kernel. 

The Matern 5/2 kernel does not have concentration of measure 

problems for high dimensional spaces. Sample functions from 

Matérn 5/2 forms are |ν – 1| times differentiable. Thus, the 

hyperparameter ν can control the degree of smoothness. The 

algorithm of the matern 5/2 GPR is illustrated as follows.  

Algorithm of the Rational Quadratic GPR 

Input: 

1. A training data set of the form: 

   {(xi,yi); i=1,2,...,n} 

     where xi ∈ Rd and yi ∈ R 

2. A linear regression model of the form: 

      y=xTβ+ε 

Procedure: 

1. Let the given training data set of n points be in the form of:  

   {(xi,yi); i=1,2,...,n} 

    where xi ∈ Rd and yi ∈ R 

2. A linear regression model of the form: 

      y=xTβ+ε 

3.  The linear regression model, where K(X, X) is 

parametrized looks as follows: 

 

  K(X, X)=(

𝒌(𝒙𝟏, 𝒙𝟏) 𝒌(𝒙𝟏, 𝒙𝟐) … 𝒌(𝒙𝟏, 𝒙𝒏)

𝒌(𝒙𝟐, 𝒙𝟏) 𝒌(𝒙𝟐, 𝒙𝟐) … 𝒌(𝒙𝟐, 𝒙𝒏)
⋮ ⋮ ⋮ ⋮

𝒌(𝒙𝒏, 𝒙𝟏) 𝒌(𝒙𝒏, 𝒙𝟐) … 𝒌(𝒙𝒏, 𝒙𝒏)

) 

 

4.  The Rational GPR Model becomes: 

𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) = 𝜎𝑓
2(1 +

𝑟2

2 ∝ 𝜎𝑙
2) 

where: 

𝑟 = √(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗). 

θ is the maximum a posteriori estimates. 𝜎𝑓 is the signal standard 

deviation. ∝ is the non-negative parameter of the covariance.  

Algorithm of the Square Exponential GPR 

Input 1 and 2 and Procedure 1-3 are the same as the Rational 

Quadratic GPR. 

Procedure 4.  The Square Exponential GPR Model becomes: 

𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) = 𝜎𝑓
2 exp [−

1

2

(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗)

𝜎𝑙
2 ] 

where: 

𝑟 = √(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗) 

Algorithm of the Matern 5/2GPR 

Input 1 and 2 and Procedure 1-3 are the same as the Rational 

Quadratic GPR. 

Procedure 4.  The Matern 5/2 GPR Model becomes: 

𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) = 𝜎𝑓
2  (1 +

√3𝑟

𝜎𝑙
) exp(−

√3𝑟

𝜎𝑙
) 

where: 

𝑟 = √(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗) 



  

D. Exponential GPR 

Exponential GPR is identical to the Squared Exponential 

GPR except that the Euclidean distance is not squared. 

Exponential GPR replaces inner products of basis functions 

with kernels slower than the Squared Exponential GPR. The 

Exponential GPR handles smooth functions well with 

minimal errors, but with discontinuities it does not handle 

well. The algorithm of the median exponential GPR is 

illustrated as follows.  

 

III. DATA SET 

In Section IV A-D, the banknote authentication data set 
from the UCI Machine Learning Repository [6] will be used to 
demonstration the simulation results of the regression models, 
as shown. There are 1,372 observations with 4 input variables 
and 1 output variable. The banknote authentication 
classification involves identifying and classifying counterfeit 
Banknotes from authentic ones using features or attributes 
collected from a photograph. It is a binary classification 
problem, i.e. class (0 for authentic, 1 for inauthentic). In 
addition, in Section IV E, we will use 19 other data sets from 
the UCI Machine Learning Repository to compare the error 
rate of Gaussian process regression (GPR) models with other 
methods.  

IV. EXPERIMENTAL RESULTS 

A.  Explore Data and Results in Response Plot 

After a regression model is trained, the regression model 
results can be displayed by the response plot, i.e. the predicted 
response versus record number. Holdout or cross-validation is 
used, thus each prediction is obtained using a model that was 
trained without using the corresponding observation. 
Therefore, these predictions are the predictions on the held-out 
observations. 80% of the data is used to train the network and 
the remaining 20% data points are used as the testing data. 

The response plot of rational quadratic GPR, squared 
exponential GPR, matern 5/2 GPR, and exponential GPR are 
shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 4, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Predicted vs. Actual Response 

The Predicted vs. Actual plot is used to check model 
performance after training a model. Use this plot to understand 
how well the regression model makes predictions for different 
response values.  

When the plot is open, the predicted response of our model 
is plotted against the actual, true response. A perfect regression 
model has a predicted response equal to the true response, so 
all the points lie on a diagonal line. The vertical distance from 
the line to any point is the error of the prediction for that point. 
A good model has small errors, and so the predictions are 
scattered near the line. Usually a good model has points 
scattered roughly symmetrically around the diagonal line. If 
we can see any clear patterns in the plot, it is likely that we can 
improve the model.  

The predicted vs. actual plot of rational quadratic GPR, 
squared exponential GPR, matern 5/2 GPR, and exponential 
GPR are shown in Fig. 5, Fig. 6, Fig. 7, and Fig. 8, 
respectively. 

Algorithm of the Exponential GPR 

Input 1 and 2 and Procedure 1-3 are the same as the Rational 

Quadratic GPR. 

Procedure 4.  The Exponential GPR Model becomes: 

𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) = 𝜎𝑓
2 exp(−

𝑟

𝜎𝑙
)                                                

where: 

𝑟 = √(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗) 

Fig. 3 The response plot of Matern 5/2 GPR. 

Fig. 4 The response plot of Exponential GPR. 

Fig. 1 The response plot of rational quadratic GPR. 

Fig. 2 The response plot of squared exponential GPR. 

. 

. 



  

Fig. 12 The residuals plot of exponential GPR. 

Fig. 9 The residuals plot of rational quadratic GPR. 

Fig. 10 The residuals plot of squared exponential GPR. 

Fig. 11 The residuals plot of matern 5/2 GPR. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
C. Evaluate Model Using Residuals Plot 

We further evaluate the model performance by using the 
residuals plot after training a model. The residuals plot 
displays the difference between the predicted and true 
responses. Usually a good model has residuals scattered 
roughly symmetrically around 0. If we can see any clear 
patterns in the residuals, it is likely that we can improve the 
model. We especially look for the following patterns: 

 Residuals are not symmetrically distributed around 0. 

 Residuals change significantly in size from left to right 
in the plot. 

 Outliers occur, that is, residuals that are much larger 
than the rest of the residuals. 

 Clear, nonlinear pattern appears in the residuals. 
The residual plots of rational quadratic GPR, squared 

exponential GPR, matern 5/2 GPR, and exponential GPR are 
shown in Fig. 9, Fig. 10, Fig. 11, and Fig. 12, respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Model Statistics 

The model parameters are very useful and important to 
evaluate the performance of different models. For each 
Gaussian process regression (GPR) algorithm, after the 
network has been well trained, we evaluate the performance of 
each featured subset. The comprehensive comparison is shown 
in Table 1. 

 

 

 

 RSME R-Sq MSE MAE Train 

Time 

(sec) 

Rational 

Quadratic 

0.166 0.89 0.0274 0.0704 58 

Square 

Exponential 

0.181 0.87 0.0326 0.934 8.3 

Matern 5/2 0.172 0.88 0.0295 0.0794 10 

Exponential 0.165 0.89 0.0271 0.0698 21 

Table 1 Comparison of Gaussian Process Regression (GPR) Models 

on Bank Note Dataset 

Fig. 5 The Predicted vs. Actual plot 

of linear SVM. 

Fig. 6 The Predicted vs. Actual plot 

of quadratic SVM. 

Fig. 7 The Predicted vs. Actual plot of 

cubic SVM. 

Fig. 8 The Predicted vs. Actual plot 

of coarse Gaussian SVM. 



  

The performance of difference GPR based models are 
compared using the following model statistics.  

 RMSE (Root mean square error). The RMSE is always 
positive and its units match the units of the response. Look 
for smaller values of the RMSE. 

 R-Squared. Coefficient of determination. R-squared is 
always smaller than 1 and usually larger than 0. It 
compares the trained model with the model where the 
response is constant and equals the mean of the training 
response. If the model is worse than this constant model, 
then R-Squared is negative. Look for an R-Squared close 
to 1. 

 MSE (Mean squared error). The MSE is the square of the 
RMSE. Look for smaller values of the MSE.  

 MAE (Mean absolute error). The MAE is always positive 
and similar to the RMSE, but less sensitive to outliers. 
Look for smaller values of the MAE. 

 

E. Error Rate Comparison of Gaussian Process Regression 
(GPR) models with Other Methods 

We further apply our GPR classifiers to 19 real world 

datasets from UCI Machine Learning Repository [7]. Table 2 

presents the classification error rates in percentage for these 19 

UCI datasets in comparison to the ENN, classic KNN, naive 

Bayes, linear discriminant analysis (LDA), and the classic 

multilayer perceptron (MLP) neural network. It shows that 

ENN always performs better than KNN, and in 17 out of these 

19 datasets.  

V. CONCLUSION 

We propose a Gaussian process regression (GPR) 

algorithm with variable models to adapt to numerous pattern 

recognition data for classification. For each GPR algorithm it 

reveals classification accuracy and minimum feature number 

objectives. After the network has been well trained, we 

evaluate the performance of each featured subset. The 

response plot, predicted vs. actual plot, and residuals plot of 

rational quadratic GPR, squared exponential GPR, matern 5/2 

GPR, and exponential GPR are demonstrated. In addition, a 

comprehensive comparison of these models is performed in 

terms of root mean square error, R-squared, mean squared 

error, and mean absolute error. Furthermore, the classification 

error rates of these four GPR based models are in comparison 

to the extended nearest neighbor (ENN), classic k-nearest 

Neighbor (KNN), naive Bayes, linear discriminant analysis 

(LDA), and the classic multilayer perceptron (MLP) neural 

network. The excellent experimental results demonstrated that 

the Gaussian process regression models provide a very 

promising feature selection solution to numerous pattern 

recognition problems. The algorithm is able to learn from the 

global distribution, therefore improving pattern recognition 

performance. 
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Dataset Rational 

Quadratic 

Square 

Exponential 

Matern 

5/2 

Exponential ENN KNN Naïve 

Bayes 

LDA Neural 

Network 

Ionosphere 0.363 

± 

2.18 

0.345 

± 

1.98 

0.357 

± 

2.07 

0.393 

± 

2.19 

17.35 

± 

2.69 

18.55 

± 

2.94 

19.83 

± 

2.86 

20.68 

± 

3.00 

18.48 

± 

2.90 

Vowel 0.476 

± 

2.77 

0.539 

± 

3.22 

0.487 

± 

2.57 

0.552 

± 

3.58 

8.50 

± 

1.92 

11. 73 

± 

2.80 

43.90 

± 

2.98 

40.94 

± 

1.97 

45.17 

± 

3.15 

 

Sonar 0.332 

± 

2.56 

0.338 

± 

2.62 

0.333 

± 

2.52 

0.312 

± 

2.38 

22.67 

± 

3.97 

22.49 

± 

4.06 

29.22 

± 

4.16 

33.75 

± 

5.11 

27.24 

± 

4.37 

Wine 0.170 

± 

1.38 

0.170 

± 

1.30 

0.166 

± 

1.36 

0.162 

± 

1.32 

4.49 

± 

2.16 

7.08 

± 

2.20 

5.07 

± 

1.71 

2.58 

± 

0.59 

7.21 

± 

2.88 

Breast 

Cancer 

0.377 

± 

1.61 

0.378 

± 

1.63 

0.372 

± 

1.56 

0.330 

± 

1.35 

4.04 

± 

0.87 

4.44 

± 

1.07 

5.76 

± 

1.04 

5.68 

± 

1.18 

4.57 

± 

1.17 

Haberman 0.421 

± 

3.38 

0.424 

± 

3.51 

0.425 

± 

3.54 

0.423 

± 
3 .61 

31.32 

± 

6.53 

32.13 

± 

5.79 

36.65 

± 

10.85 

34.63 

± 

9.92 

37.40 

± 

10.58 

Breast 

Tissue 

0.160 

± 

1.11 

0.170 

± 

1.38 

0.178 

± 

1.78 

0.170 

± 

1.78 

36.71 

± 

6.37 

42.40 

± 

6.19 

44.02 

± 

6.18 

41.24 

± 

6.60 

67.62 

± 

5.22 

Movement 

Libras 

1.52 

± 

0.92 

1.82 

± 

1.52 

1.60 

± 

1.02 

1.62 

± 

1.02 

26.3 

± 

2.88 

 

 

32.16 

± 

2.97 

45.41 

± 

3.39 

39.90 

± 

3.31 

40.87 

± 

4.34 

Mammogr

aphic 

Masses 

0.318 

± 

1.44 

0.318 

± 

1.78 

0.312 

± 

1.44 

0.322 

± 

1.55 

21.16 
± 

1.43 

22.27 

± 

1.55 

18.96 

± 

1.57 

19.17 

± 

1.72 

49.40 

± 

0.29 

Segmentati

on 

0.237 

± 

1.78 

0.235 

± 

1.71 

0.245 

± 

1.79 

0.267 

± 

1.23 

24.71 

± 

3.07 

27.85 

± 

3.04 

12.64 

± 

2.93 

12.79 

± 

2.88 

23.06 

± 

5.95 

ILPD 0.423 

± 

0.362 

0.458 

± 

3.62 

0.439 

± 

3.58 

0.467 

± 

7.58 

40.0 

± 

3.58 

40.91 

± 

3.68 

26.87 

± 

2.69 

29.64 

± 

3.39 

32.09 

± 

3.53 

Pimma 

Indians 

Diabetes 

0.423 

± 

3.44 

0.423 

± 

2.44 

0.439 

± 

2.44 

0.413 

± 

3.44 

31.22 

± 

2.15 

33.08 

± 

2.69 

29.44 

± 

2.19 

28.29 

± 

2.01 

25.38 

± 

2.77 

Knowledge 0.523 

± 

3.48 

0.477 

± 

2.46 

0.439 

± 

2.43 

0.413 

± 

3.22 

23.93 

± 

4.69 

27.11 

± 

4.45 

12.66 

± 

2.45 

6.97 

± 

2.53 

14.42 

± 

3.86 

Vertebral 26.43 

± 

1.44 

22.01 

± 

2.48 

26.22 

± 

2.44 

23.56 

± 

3.11 

35.1 

± 

4.83 

37.64 

± 

5.06 

47.93 

± 

3.41 

36.88 

± 

4.83 

45.11 

± 

3.12 

Magic 0.411 

± 

1.44 

0.323 

± 

1.64 

0.339 

± 

2.44 

0.567 

± 

2.44 

20.10 

± 

0.33 

 

20.42 

± 

0.36 

25.69 

± 

0.61 

23.30 

± 

0.34 

29.62 

± 

0.38 

Pen Digits 0.423 

± 

1.44 

0.423 

± 

2.45 

0.439 

± 

2.55 

0.413 

± 

3.55 

0.74 

± 

0.15 

0.94 

± 

0.17 

15.38 

± 

0.41 

11.22 

± 

0.52 

11.65 

± 

0.70 

Faults 0.413 

± 

2.44 

0.113 

± 

2.44 

0.344 

± 

2.44 

0.413 

± 

3.44 

0.91 

± 

0.52 

1.65 

± 

0.86 

0.00 

± 

0.00 

0.00 

± 

0.00 

0.00 

± 

0.00 

Letter 12.17 

± 

0.38 

11.70 

± 

0.15 

20.170 

± 

0.38 

20.17 

± 

0.22 

5.60 

± 

0.25 

7.44 

± 

0.25 

40.09 

± 

0.47 

29.80 

± 

0.37 

28.33 

± 

0.52 

Spam 0.219 

± 

1.27 

0.239 

± 

1.57 

0.231 

± 

1.44 

0.217 

± 

1.23 

10.08 

± 

0.59 

 

11.52 

± 

0.63 

11.52 

± 

0.78 

9.64 

± 

0.61 

15.32 

± 

1.02 

Table 2 Error Rate Comparison of Gaussian Process Regression (GPR) models with Other Methods 


