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Abstract—We present a Gaussian process regression (GPR)
algorithm with variable models to adapt to numerous pattern
recognition data for classification. The algorithms of the
Gaussian process regression (GPR) models including the
rational quadratic GPR, squared exponential GPR, matern 5/2
GPR, and exponential GPR are described. The response plot,
predicted vs. actual plot, and residuals plot of these GPR models
are demonstrated. In addition, a comprehensive comparison of
classification performance among rational quadratic GPR,
squared exponential GPR, matern 5/2 GPR, and exponential
GPR is presented in terms of various model statistics.
Furthermore, the classification error rates of these four GPR
based models are in comparison to the extended nearest
neighbor (ENN), classic k-nearest Neighbor (KNN), naive Bayes,
linear discriminant analysis (LDA), and the classic multilayer
perceptron (MLP) neural network. The excellent experimental
results demonstrated that the Gaussian process regression
models provide a very promising feature selection solution to
numerous pattern recognition problems. The algorithm is able
to learn from the global distribution, therefore improving
pattern recognition performance.

Keywords— Gaussian process regression (GPR);high-dimensional
data; classification

I. INTRODUCTION

Recent advances in modern technologies, such as
photo-thermal infrared (IR) imaging spectroscopy technology
in the application of remote explosive detection, 4D CT-scans
technology, and DNA microarrays have produced numerous
massive and imbalanced data. The needs of classification
ubiquitously exist in real-world data-intensive applications,
ranging from civilian applications such as cancer diagnoses
and outlier detection in stock market time series, to homeland
security or defense related applications such as remote
explosive detection, illegal drug detection, and abnormal
behavior recognition.

In the situation when the dimensionality of data is high but
with few data, feature selection usually becomes imperative to
the learning algorithms because high-dimensional data tends to
negatively affect the efficiency of most learning algorithms.
Feature selection is an efficient dimensionality reduction
technique that selects an optimal subset of the original features
that provide the best predictive power in modeling the data.

They are the most distinct features that can be used to
differentiate samples into different classes.

There are a large number of state-of-the-art feature
selection methods. A simultaneous spectral-spatial feature
selection and extraction algorithm was proposed for
hyperspectral images spectral-spatial feature representation
and classification. However, it lacks of kernel version and thus
its performance on complex datasets is unknown [1]. A
regularized regression based feature selection classifier was
modified into a cost-sensitive classifier by generating and
assigning different costs to each class. Features will be
selected according to the classifier with optimal F-measure in
order to solve the class imbalance problem [2]. A feature
selection algorithm using AdaBoost was presented to deal with
Haar-like features for vehicle detection. The normalized
feature set is used to cross validate the RBF-SVM classifier to
select the optimal parameters [3]. A support vector machine
(SVM) based classifier is designed to identify abnormal
residual functional capacities in athletes suffering from
concussion. The total accuracy of the classifier using 10
prominent features on a multichannel EEG data set was 77.1%
[4]. However, these methods require a lot of training data to
estimate the underlying function and their accuracy need to be
improved. Therefore, it is imperative to develop a new
algorithm to adapt to the high-dimensional but relatively small
samples for classification. We will use the banknote
authentication data set and other 19 other data sets as a
demonstration.

The rest of the paper is organized as follows. In Section I,
the Gaussian process regression (GPR) models including the
rational quadratic GPR, squared exponential GPR, matern 5/2
GPR, and exponential GPR are described. In Section III, the
banknote authentication data set is introduced. In Section IV,
the response plot, predicted vs. actual plot, and residuals plot
of these GPR models are demonstrated. In addition, a
comprehensive comparison of classification performance
among rational quadratic GPR, squared exponential GPR,
matern 5/2 GPR, and exponential GPR is presented in terms of
various model statistics. Furthermore, the classification error
rates of these four GPR based models are in comparison to the
ENN [5], classic KNN, naive Bayes, linear discriminant
analysis (LDA), and the classic multilayer perceptron (MLP)
neural network. In Section V, the paper is concluded.


mailto:nzhang@udc.edu
file:///C:/Users/NIAN/Desktop/Nian/UDCbackup/Papers/ISNN2017/Final%20Submission/xjcq123@sohu.com
mailto:zhongandy@sohu.com

II. TYPES OF GAUSSIAN PROCESS REGRESSION ALGORITHMS

Gaussian process regression (GPR) models are
nonparametric kernel-based probabilistic models with a finite
collection of random variables with a multivariate distribution.
Every linear combination is evenly distributed. The concept of
Gaussian processes is named after Carl Friedrich Gauss
because it is based on the notion of the Gaussian distribution to
be an infinite-dimensional generalization of multivariate
normal distributions. Gaussian processes are utilized in
statistical modeling, regression to multiple target values, and
analyzing mapping in higher dimensions. For each GPR model
we will be (1) Training a data set with GPR models such as
Rational Quadratic GPR, Squared Exponential GPR, Matern
5/2 GPR, and Exponential GPR (2) Plotting the behavior of
each algorithm figuring out the RSME, R-Squared Value,
MSE, MAE, Prediction Speed, Training Time, and (3)
Analyzing the results of each Gaussian process regression to
see the similarities and differences of the data. The purpose of
these trials is to see if we can find some interesting behaviors,
so we can find different methods to optimize GPR models.
Shown below are the different behaviors of each GPR.

A. Rational Quadratic GPR

The Rational Quadratic GPR kernel allows us to model
data varying at multiple scales. The Rational Quadratic GPR
algorithm is used in spatial statistics, geostatistics, machine
learning, image analysis, and other fields where multivariate
statistical analysis is conducted on metric spaces. The
algorithm of the rational quadratic GPR is illustrated as
follows.

Algorithm of the Rational Quadratic GPR

Input:
1. A training data set of the form:
{Ceiyi); 1=1,2,...,n}
where xi € RYand yi € R
2. A linear regression model of the form:
y=Xf+te
Procedure:
1. Let the given training data set of n points be in the form of:
{(xi,yi); i=1,2,...,n}
where x; € R¥and yi € R

2. A linear regression model of the form:
y=x"f+e

3. The linear regression model, where K(X, X) is

parametrized looks as follows:

k(xl'xl) k(xl‘xz) k(xllxn)
K(X, X): k(xZ:' xl) k(xZ:l xZ) k(xZ:l xn)
k(xn' xl) k(xn' xZ) k(xnl xn)

4. The Rational GPR Model becomes:
2
T
_ .2
k(xl-,x]-|t9) = of 1+ W)

where:

r= \/(xl - xj)T(xi - ;).

0 is the maximum a posteriori estimates. oy is the signal standard
deviation. « is the non-negative parameter of the covariance.

The inferential results are dependent on the values of the
hyperparameters 6 defining the model's behavior. It is
commonly used to define the statistical covariance between
measurements made at two points, which are d units distant
from each other. The covariance only depends on distances
between points, which are stationary. If the distance is
Euclidean distance, the rational quadratic covariance function
is called isotropic. The advantage of the Rational Quadratic
GPR algorithm is on the large data sets if the interpolating
functions are smooth the results are less likely to produce error.
If the functions have any discontinuities length scale will end
up being extremely short and posterior mean will have 'ringing'
effects. If the data set is more than two-dimensions, it may be
hard to detect errors. The obvious sign there are errors in
higher dimensions is the length scale never becomes smaller.
This is a classic sign of model misspecification.

B. Squared Exponential GPR

Square Exponential GPR is a function space expression of
a radial basis function regression model with infinitely many
basis functions. The Squared Exponential GPR is identical to
the Exponential GPR except that the Euclidean distance is
squared. A fascinating feature utilizing the Square Exponential
GPR is it replaces inner products of basis functions with
kernels. The advantage to this feature is handling large data
sets in higher dimensions will unlikely produce huge errors.
Also, it handles discontinuities well. The algorithm of the
squared exponential GPR is illustrated as follows.

Algorithm of the Square Exponential GPR

Input 1 and 2 and Procedure 1-3 are the same as the Rational
Quadratic GPR.
Procedure 4. The Square Exponential GPR Model becomes:
T
1(x —x) (% —x;
k(xi,%10) = o7 exp [_5( l ]2;2( )
1

where:

r= \/(x, - x]-)T(x,- - x;)

C. Matern 5/2 GPR

The Matern 5/2 kernel takes spectral densities of the
stationary kernel and create Fourier transforms of RBF kernel.
The Matern 5/2 kernel does not have concentration of measure
problems for high dimensional spaces. Sample functions from
Matérn 5/2 forms are [v — 1| times differentiable. Thus, the
hyperparameter v can control the degree of smoothness. The
algorithm of the matern 5/2 GPR is illustrated as follows.

Algorithm of the Matern 5/2GPR

Input 1 and 2 and Procedure 1-3 are the same as the Rational
Quadratic GPR.
Procedure 4. The Matern 5/2 GPR Model becomes:

V3r V3r
k(xi,%;10) = of? (1 + T) exp(— T)
1 1

where:

r= J(xi - x]-)T(xi - x;)




D. Exponential GPR

Exponential GPR is identical to the Squared Exponential
GPR except that the Euclidean distance is not squared.
Exponential GPR replaces inner products of basis functions
with kernels slower than the Squared Exponential GPR. The
Exponential GPR handles smooth functions well with
minimal errors, but with discontinuities it does not handle
well. The algorithm of the median exponential GPR is
illustrated as follows.

Algorithm of the Exponential GPR

Input 1 and 2 and Procedure 1-3 are the same as the Rational
Quadratic GPR.

Procedure 4. The Exponential GPR Model becomes:
r

k(xi,%;10) = of? exp(— )

where:

r= \/(xl - xj)T(xl- - x;)

III. DATA SET

In Section IV A-D, the banknote authentication data set
from the UCI Machine Learning Repository [6] will be used to
demonstration the simulation results of the regression models,
as shown. There are 1,372 observations with 4 input variables
and 1 output variable. The banknote authentication
classification involves identifying and classifying counterfeit
Banknotes from authentic ones using features or attributes
collected from a photograph. It is a binary classification
problem, i.e. class (0 for authentic, 1 for inauthentic). In
addition, in Section IV E, we will use 19 other data sets from
the UCI Machine Learning Repository to compare the error
rate of Gaussian process regression (GPR) models with other
methods.

IV. EXPERIMENTAL RESULTS

A. Explore Data and Results in Response Plot

After a regression model is trained, the regression model
results can be displayed by the response plot, i.e. the predicted
response versus record number. Holdout or cross-validation is
used, thus each prediction is obtained using a model that was
trained without wusing the corresponding observation.
Therefore, these predictions are the predictions on the held-out
observations. 80% of the data is used to train the network and
the remaining 20% data points are used as the testing data.

The response plot of rational quadratic GPR, squared
exponential GPR, matern 5/2 GPR, and exponential GPR are
shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 4, respectively.
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Fig. 1 The response plot of rational quadratic GPR.
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Fig. 2 The response plot of squared exponential GPR.
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Fig. 3 The response plot of Matern 5/2 GPR.

Predictions: model 1.4

10 RS T R ]

0.8

Response (Columns)

OF ¢ivhnEIwLTES AT L ms

0 200 400 600 800 1000 1200 1400
Record number

Fig. 4 The response plot of Exponential GPR.

B. Predicted vs. Actual Response

The Predicted vs. Actual plot is used to check model
performance after training a model. Use this plot to understand
how well the regression model makes predictions for different
response values.

When the plot is open, the predicted response of our model
is plotted against the actual, true response. A perfect regression
model has a predicted response equal to the true response, so
all the points lie on a diagonal line. The vertical distance from
the line to any point is the error of the prediction for that point.
A good model has small errors, and so the predictions are
scattered near the line. Usually a good model has points
scattered roughly symmetrically around the diagonal line. If
we can see any clear patterns in the plot, it is likely that we can
improve the model.

The predicted vs. actual plot of rational quadratic GPR,
squared exponential GPR, matern 5/2 GPR, and exponential
GPR are shown in Fig. 5, Fig. 6, Fig. 7, and Fig. 8§,
respectively.
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Fig. 5 The Predicted vs. Actual plot
of linear SVM.
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Fig. 7 The Predicted vs. Actual plot of
cubic SVM.
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Fig. 6 The Predicted vs. Actual plot
of quadratic SVM.
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Fig. 8 The Predicted vs. Actual plot
of coarse Gaussian SVM.

C. Evaluate Model Using Residuals Plot

We further evaluate the model performance by using the
residuals plot after training a model. The residuals plot
displays the difference between the predicted and true
responses. Usually a good model has residuals scattered

roughly symmetrically around

0. If we can see any clear

patterns in the residuals, it is likely that we can improve the
model. We especially look for the following patterns:

Residuals are not symmetrically distributed around 0.
Residuals change significantly in size from left to right

in the plot.

e  Qutliers occur, that is, residuals that are much larger
than the rest of the residuals.
e  (lear, nonlinear pattern appears in the residuals.
The residual plots of rational quadratic GPR, squared
exponential GPR, matern 5/2 GPR, and exponential GPR are

shown in Fig. 9, Fig. 10, Fig. 11
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, and Fig. 12, respectively.
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Fig. 9 The residuals plot of rational quadratic GPR.
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Fig. 10 The residuals plot of squared exponential GPR.
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Fig. 11 The residuals plot of matern 5/2 GPR.
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Fig. 12 The residuals plot of exponential GPR.

D. Model Statistics

The model parameters are very useful and important to
evaluate the performance of different models. For each
Gaussian process regression (GPR) algorithm, after the
network has been well trained, we evaluate the performance of

each featured subset. The comprehensive comparison is shown
in Table 1.

Table 1 Comparison of Gaussian Process Regression (GPR) Models
on Bank Note Dataset

RSME R-Sq MSE MAE Train

Time
(sec)

Rational 0.166 0.89 0.0274 0.0704 58

Quadratic

Square 0.181 0.87 0.0326 0.934 8.3

Exponential

Matern 5/2 0.172 0.88 0.0295 0.0794 10

Exponential 0.165 0.89 0.0271 0.0698 21




The performance of difference GPR based models are
compared using the following model statistics.

e RMSE (Root mean square error). The RMSE is always
positive and its units match the units of the response. Look
for smaller values of the RMSE.

e R-Squared. Coefficient of determination. R-squared is
always smaller than 1 and usually larger than 0. It
compares the trained model with the model where the
response is constant and equals the mean of the training
response. If the model is worse than this constant model,
then R-Squared is negative. Look for an R-Squared close
to 1.

e  MSE (Mean squared error). The MSE is the square of the
RMSE. Look for smaller values of the MSE.

e MAE (Mean absolute error). The MAE is always positive
and similar to the RMSE, but less sensitive to outliers.
Look for smaller values of the MAE.

E. Error Rate Comparison of Gaussian Process Regression
(GPR) models with Other Methods

We further apply our GPR classifiers to 19 real world
datasets from UCI Machine Learning Repository [7]. Table 2
presents the classification error rates in percentage for these 19
UCT datasets in comparison to the ENN, classic KNN, naive
Bayes, linear discriminant analysis (LDA), and the classic
multilayer perceptron (MLP) neural network. It shows that
ENN always performs better than KNN, and in 17 out of these
19 datasets.

V. CONCLUSION

We propose a Gaussian process regression (GPR)
algorithm with variable models to adapt to numerous pattern
recognition data for classification. For each GPR algorithm it
reveals classification accuracy and minimum feature number
objectives. After the network has been well trained, we
evaluate the performance of each featured subset. The
response plot, predicted vs. actual plot, and residuals plot of
rational quadratic GPR, squared exponential GPR, matern 5/2
GPR, and exponential GPR are demonstrated. In addition, a
comprehensive comparison of these models is performed in
terms of root mean square error, R-squared, mean squared
error, and mean absolute error. Furthermore, the classification
error rates of these four GPR based models are in comparison
to the extended nearest neighbor (ENN), classic k-nearest
Neighbor (KNN), naive Bayes, linear discriminant analysis
(LDA), and the classic multilayer perceptron (MLP) neural
network. The excellent experimental results demonstrated that
the Gaussian process regression models provide a very
promising feature selection solution to numerous pattern
recognition problems. The algorithm is able to learn from the
global distribution, therefore improving pattern recognition
performance.
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Table 2 Error Rate Comparison of Gaussian Process Regression (GPR) models with Other Methods

Dataset Rational Square Matern | Exponential ENN KNN Naive LDA Neural
Quadratic Exponential 5/2 Bayes Network
Tonosphere 0.363 0.345 0.357 0.393 17.35 18.55 19.83 20.68 18.48
t + + t + + + t t
2.18 1.98 2.07 2.19 2.69 2.94 2.86 3.00 2.90
Vowel 0.476 0.539 0.487 0.552 8.50 11.73 43.90 40.94 45.17
+ + + + + t t t t
2.77 322 2.57 3.58 1.92 2.80 2.98 1.97 3.15
Sonar 0.332 0.338 0.333 0.312 22.67 22.49 29.22 33.75 27.24
t + + + + + + t t
2.56 2.62 2.52 2.38 3.97 4.06 4.16 5.11 4.37
Wine 0.170 0.170 0.166 0.162 4.49 7.08 5.07 2.58 7.21
+ + + + + + + + +
1.38 1.30 1.36 1.32 2.16 2.20 1.71 0.59 2.88
Breast 0.377 0.378 0.372 0.330 4.04 4.44 5.76 5.68 4.57
Cancer * * * + + + * + +
1.61 1.63 1.56 1.35 0.87 1.07 1.04 1.18 1.17
Haberman 0.421 0.424 0.425 0.423 31.32 32.13 36.65 34.63 37.40
+ + + + + + + + +
3.38 351 3.54 3.61 6.53 5.79 10.85 9.92 10.58
Breast 0.160 0.170 0.178 0.170 36.71 42.40 44.02 41.24 67.62
Tissue t + + t + + t t t
1.11 1.38 1.78 1.78 6.37 6.19 6.18 6.60 5.22
Movement 1.52 1.82 1.60 1.62 26.3 32.16 45.41 39.90 40.87
Libras + + + + + + + + +
0.92 1.52 1.02 1.02 2.88 297 3.39 331 4.34
Mammogr 0.318 0.318 0.312 0.322 21.16 22.27 18.96 19.17 49.40
aphic t + + t + t t t t
Masses 1.44 1.78 1.44 1.55 1.43 1.55 1.57 1.72 0.29
Segmentati 0.237 0.235 0.245 0.267 2471 27.85 12.64 12.79 23.06
on t t t + + t t + +
1.78 1.71 1.79 1.23 3.07 3.04 2.93 2.88 5.95
ILPD 0.423 0.458 0.439 0.467 40.0 40.91 26.87 29.64 32.09
+ + + + + + + + +
0.362 3.62 3.58 7.58 3.58 3.68 2.69 3.39 3.53
Pimma 0.423 0.423 0.439 0.413 31.22 33.08 29.44 28.29 25.38
Indians t t t t t t t t t
Diabetes 3.44 2.44 2.44 3.44 2.15 2.69 2.19 2.01 2.77
Knowledge 0.523 0.477 0.439 0.413 23.93 27.11 12.66 6.97 14.42
t + + t + + t t t
3.48 2.46 2.43 3.22 4.69 4.45 2.45 2.53 3.86
Vertebral 26.43 22.01 26.22 23.56 35.1 37.64 47.93 36.88 45.11
t t t t t t t t t
1.44 2.48 2.44 3.11 4.83 5.06 3.41 4.83 3.12
Magic 0.411 0.323 0.339 0.567 20.10 20.42 25.69 23.30 29.62
t + + t + + t t t
1.44 1.64 2.44 2.44 0.33 0.36 0.61 0.34 0.38
Pen Digits 0.423 0.423 0.439 0.413 0.74 0.94 15.38 11.22 11.65
t t t t t t t t t
1.44 2.45 2.55 3.55 0.15 0.17 0.41 0.52 0.70
Faults 0.413 0.113 0.344 0.413 0.91 1.65 0.00 0.00 0.00
t + + t + + t t t
2.44 2.44 2.44 3.44 0.52 0.86 0.00 0.00 0.00
Letter 12.17 11.70 20.170 20.17 5.60 7.44 40.09 29.80 28.33
t + + t t t t t t
0.38 0.15 0.38 0.22 0.25 0.25 0.47 0.37 0.52
Spam 0.219 0.239 0.231 0.217 10.08 11.52 11.52 9.64 15.32
t + + t t + t t t
1.27 1.57 1.44 1.23 0.59 0.63 0.78 0.61 1.02




