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Abstract—This paper applied a PCA-K-means method to
exploit photo-thermal infrared imaging spectroscopy based
trace explosives with overlapping spectral absorption bands. We
intend to explore the underlying patterns that affect the
clustering performance using top principal components. We also
strive to investigate the effectiveness of the clustering algorithm
on different analytes and substrates. We reduced the dimensions
by applying the principal component analysis (PCA) on the data
to transform the original data to the top principal components’
feature space. The data were revealed in the feature space and
formed into clusters. Then we used the K-mean based clustering
algorithm to classify them into six classes including RDX, PC,
Copper/Steel, TNT, DNT, and PE. After that, we conducted the
performance evaluation. We found that the F1 score of the
classification of RDX, PC, Copper/Steel, TNT, DNT, and PE is
85%, 39%, 71%, 99%, 92%, and 86 %, respectively. The results
demonstrated that the proposed algorithm can effectively reduce
dimension and accurately determined the classes of those
analytes and substrates.
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I. INTRODUCTION

Trace analyte detection has become an emergent goal in
the fields of military, homeland security, and law enforcement.
It provides an early warning of concealed threats and therefore
can save people’s lives and protect the public facilities. This
technology includes remote detection systems capable of
detecting explosives and other hazardous materials from a
standoff distance. As the demand from military and security
markets has increased. promote research and development for
efficient detection systems to face the problems of hidden
explosives at public places, such as suicide, leave-behind, and
vehicle-borne explosives in airports, railway, ship, bus, truck,
container,
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bridge, tunnel, tower, terminal environments, and coach
stations. Also, the development of analytical tools can identify
explosive remains of tremendous importance in the forensic
field for crime-scene reconstruction. In addition, the detection
of explosives is also used in many peaceful applications. For
example, it can be relevant in environmental areas to monitor
the quality of soil, water, and groundwater suspected of being
contaminated by explosives and their degradation products, in
order to prevent poisoning of populations of humans and
animals.

There is an emerging thrust to potentially replace the
traditional point detection of trace residues (which requires
physical contact) with standoff sensing capability from a safe
distance. Improving survivability and situational awareness
has spurred a wide variety of recent development of sensor
technology. Most of them are laser-based trace detection
technologies, such as laser-induced breakdown spectroscopy
(LIBS), Raman spectroscopy, laser-induced-fluorescence
spectroscopy, and Fourier transform IR spectroscopy. The
resonant infrared (IR) photothermal technology that can
remotely detect trace explosives material on relevant substrate
surfaces from significant standoff distances using photo-
thermal infrared (IR) imaging spectroscopy (PT-IRIS). In this
technique, light from a specific infrared wavelength is directed
to the surface of interest and the thermal response is viewed
with an infrared camera [1]. Comparing the thermal image as
a function of incident wavelength with the absorption
spectrum of explosives reveals the presence and location of
trace residues. By varying the incident wavelength, other
analytes of interest (e.g., drugs and chemical agents) could also
be imaged. Compared to other trace detection techniques, this
technology has the potential to generate chemical images of
the chemical composition of surfaces and bulk materials with
a spatial resolution of ~1um.

However the ability to detect small amounts of analytes
across large relevant substrates is complicated by the optical
and thermal analyte/substrate interactions. The key challenge
of remote detection techniques is to distinguish materials such
as explosives from the substrate materials on which they lay,
such as glasses, paint, or clothes. While substrate materials are
chemically distinct from explosives, they nonetheless have
complicated and overlapping IR features with explosives. A



complication using polymeric materials, they tend to absorb
throughout the IR. These universal considerations introduced
by real-world surfaces complicate the detection and
identification of explosive materials.

The advancements in infrared (IR) and Raman
spectroscopy have led to an explosive growth in stored or
transient data and have generated an urgent need for new and
automated methods of spectral data analysis. The emerging
photo-thermal infrared imaging spectroscopy (PT-IRIS)
technique which allows for further increase of the spatial
resolution from the current ~10 microns to ~1 micron makes
this data analysis demand more critical. This paper will focus
on the PT-IRIS data analysis which was used for the
application of trace analyte detection. The aim of trace analyte
detection is to distinguish illicit analytes such as explosives
from the substrates on which they rest. To date, there have
been insignificant efforts to analyze the photo-thermal infrared
data sets using computational intelligence techniques.

The rest of the paper is organized as follows. In Section II,
the high dimensional and overlapped data set is described. In
Section III, the proposed methodology is presented. A
combined principal component analysis (PCA)-K-means
clustering algorithm is described. In Section IV, the analysis
and results are presented. In Section V, the conclusions are
given.

II. PHOTO-THERMAL INFRARED IMAGING SPECTROSCOPY

This section will use a PCA-K-means method to exploit
PT-IRIS based trace explosives with overlapping spectral
absorption bands. We intend to explore the underlying patterns
that affect the clustering performance using top principal
components. We also strive to investigate the effectiveness of
the clustering algorithm on different analytes and substrates.

A. Data Set

The advanced photo-thermal infrared imaging
spectroscopy (PT-IRIS) technique that can be used for standoff
detection application [1]. The two fundamental components
are infrared (IR) quantum cascade lasers (QCL) and IR focal
plane array detectors. Specifically, IR QCL is used to
illuminate a surface potentially contain residues of interest. If
the excitation wavelength of the light is resonant with
collection wavelength of surface residues, the residues of
interest will heat up by (~1°C). The IR focal plane array
detectors are used for imaging.

The temperature increase, Tmax is measured as a function
of excitation and collection wavelengths at the end of a laser
pulse. Tmax normalized to the average power of the laser pulse
will then be used as feature vectors, as shown in Fig. 1.
Simulated samples include 5 analytes (TNT, DNT, RDX,
Polyethylene, and Polycarbonate) on 4 substrates (Copper,
Steel, Polyethylene, and Polycarbonate) using 28 excitation
wavelengths (6.0 um to 6.6 um and 7.0 pum to 7.7 um) and 26
collection wavelengths (8.0 pm to 10.5 um).
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Fig. 1 Data matrix with feature vectors. Tmax values for each
excitation and collection wavelength pair were arranged into a
feature vector (column).

The fundamental spectroscopic characteristics for the PT-
IRIS is shown in Fig. 2. It shows the IR absorbance spectra of
the residues of interest. Peaks in the curves reflect unique
“signatures” for each analyte. According to Kirchhoff’s Law,
the emissivity of a material and its absorptivity are equivalent
at thermal equilibrium. Thus, the measured absorption
spectrum of a material obtained at ambient temperature can be
used to accurately predict its emission spectrum. In another
word, if we can determine the most important features (i.e.
Tmax values) among the 728 features, which are correlated
with the absorption spectrum of a material, we can use the
absorption spectrum to predict its emission spectrum. Since
the thermal emission from analyte of interest and substrate
materials have different spectral signatures, the unique thermal
emission spectrum can ultimately determine the type of this
material.
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Fig. 2 IR absorbance spectra of glass, polyethylene, white painted steel,
ammonium nitrate, RDX, TNT and sucrose (sugar).

Each pixel in the camera frame was a column in this data
matrix, which includes 728 features. For each feature, it is a
function of Tmax in terms of different excitation wavelengths
and collection wavelengths. With 28 excitation wavelengths
and 26 collection wavelengths, they would generate 728
features. Therefore, we may demonstrate the photo-thermal
signal matrix for all the 468 samples. This can be seen by
display ,the data set in false color plot ,which will show visible
or non-visible parts of the electromagnetic spectrum, shown in
Fig. 3. From left to right, the particle sizes are 8 um, 12 um,
20 pm, 3 pm, 1.5 pm, and 5 um. Each loop takes 76 columns
per particle size. Each column contains 728 features. In Fig. 3,



the color of the data point is proportional to signal strength, i.e.
red represents high, and blue represents low.

For each analyte including TNT, DNT, and RDX, they will
be made of all 6 possible particle sizes, and two pixels in the
camera frame (i.e. columns) are on the particle, the two pixels
will rest on all 4 substrates (i.e. copper, steel, PC, and PE).
Thus, there will be a maximum of 48 samples for each analyte.
In addition, for each substrate including copper, steel, PC, and
PE, they will spread over the 6 particle sizes with two pixels
off each particle, and they interact with 5 analytes (TNT, DNT,
RDX, PC, and PE), so the maximum of substrate samples is
60.
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Fig. 3 Six clusters consisting of the four analytes and two
substrates were formed using the K-means clustering
method.

PC can be used for both analyte and substrate, so the
maximum sample amount would be the total of possible
analyte and substrate samples, which is therefore 108. PC has
a strong signature. PE can also be used for both analyte and
substrate. There will be 108 samples at maximum. PE is
known as a poor thermal conductor, as a result the temperature
increase with illumination is nearly zero. Thus it does not have
its own signature.

Since the samples comprise both “on” and “off” particle
pixels, some samples may have analyte, some may have
substrate, but some complicated and overlapping sample can
happen by optically “through” a particle. The mixing IR
absorption/emission features reflects the primary challenge to
a useful detection technique in the real-world application.

III. RESEARCH METHODOLOGY

Feature selection is a very important pre-processing
technique for large scale pattern recognition problems,
especially when the number of samples is relatively small [2]-
[4]. Feature selection techniques are designed to find a subset
of relevant feature subset of the original features which can
facilitate clustering, classification and retrieval [5][6]. A data
set contains relevant, irrelevant, and redundant features.
However, irrelevant and redundant features are not useful for
classification, and they may even reduce the classification

performance due to the large search space known as “the curse
of dimensionality”. By eliminating irrelevant and redundant
features, feature selection could helps in understanding data,
reducing computation requirement, reducing the effect of
curse of dimensionality and improving the predictor
performance [7]-[13].

A. Principle Component Analysis (PCA)

Principle component analysis (PCA) is quantitatively
rigorous method for achieving dimensional reduction before
applying the feature selection methods. It is a way of
identifying patterns in data, and expressing the data in such a
way as to highlight their similarities and differences [14]. The
method generates a new set of variables, called principal
components. Each principal component is a linear combination
of the original variables. All the principal components are
orthogonal to each other, so there is no redundant information.
Several top ranking principal components will be selected to
form a new feature space. The original samples will be
transformed to this new feature space in the directions of the
principal components. Although the PCA can effectively
reduce the number of dimensions by selecting the top ranking
principle components, PCA method is not able to select a
subset of features which are important to distinguish the
classes. It only guarantees that when you project each
observation on an axis (along a principle component) in a new
space, the variance of the new variable is the maximum among
all possible choices of that axis. This means that each feature
is considered separately, thereby ignoring feature
dependencies, which may lead to worse -classification
performance.

In the application of trace analyte detection, we consider
the feature selection problem in unsupervised learning
scenario, which is particularly difficult due to the absence of
class labels that would guide the search for relevant
information. The feature selection problem is essentially a
combinatorial optimization problem which is computationally
expensive. The existing and most powerful unsupervised
feature selection technique is principle component analysis
(PCA). 1t is often useful to map data onto their principal
components rather than on the original x-y axis. In this way the
underlying structure in the data can be revealed. We applied
the PCA technique to the data set to reveal the patterns in data,
as well as reduce the dimension of feature vectors (i.e. vectors
containing the principle components). First we deconstruct the
set into eigenvectors and eigenvalues. An eigenvector is a
direction, and an eigenvalue is a number, telling you how
much variance there is in the data in that direction. The amount
of eigenvectors/values that exist equals the number of
dimensions the data set has. The reason for this is that
eigenvectors put the data into a new set of dimensions, and
these new dimensions have to be equal to the original amount
of dimensions. It is worthwhile to investigate the PCA
algorithm because it allows us to exploit the correlation of
most significant eigenvectors and analyte types.



B. PCA-K-means Clustering Algorithm

PCA algorithm will be applying to reduce the dimensions,
and then the k-means clustering algorithm will be applied.

Steps K-means Clustering Algorithm

1 k initial "means" (k is an estimated value) are
randomly generated within the data domain.

2 k clusters are created by associating every
observation with the nearest mean. The partitions
here represent the Voronoi diagram [8] generated
by the means.

3 The centroid of each of the k clusters becomes the
new mean.

4 Steps 2 and 3 are repeated until convergence has
been reached.

IV. ANALYSIS AND RESULTS

A. PCA-K-means Clustering Results

We presented the principal component analysis (PCA)
results using a combination of top PCs, i.e. PC1 and PC2. We
displayed the data in PC1-PC2 axes, as shown in Fig. 4.
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Fig. 4 All the data projected onto PC1-PC2 space after using the
PCA method.

Then we applied the K-mean clustering algorithm to make
them into 6 clusters. The number of analytes and substrates in
each of'the six classes are shown in Table I. Letter C represents
the cluster. The rows represent TNT, DNT, PE, PC, RDX, and
Copper, respectively. The columns represent Cluster 1, Cluster
2, Cluster 3, Cluster 4, Cluster 5, and Cluster 6.

Table I. Number of Samples in Classifiers after Using the PCA-K-means

Clustering Algorithm
Cl C2 C3 C4 C5 C6
TNT 0 10 0 36 0 0
DNT 0 6 0 0 36 0
PE 0 12 96 0 0 4
PC 0 104 0 0 0 0
RDX 34 0 0 0 0 12
Copper | 0 0 118 0 0 0

By counting the largest number of analytes/substrate in
each class, we can find the analyte/substrate dominating that
class. For each cluster, the majority analytes will determine the
class that this cluster belongs to. Therefore, we find Cluster 1
represents RDX, Cluster 2 represents PC, Cluster 3 represents
Copper, Cluster 4 represents TNT, Cluster 5 represents DNT,
and Cluster 6 represents PE. These labels are shown in the
tables in the following Clustering Analysis section.

The classes are demonstrated in PC1-PC2 axes, as shown
in Fig. 5. To enhance the visualization efficiency, the same
color code is used in the k-means algorithm as in the PCA
algorithm. Red dots represent TNT, Green dots represent
DNT, Yellow dots represents PE, Cyan dots represent PC,
Blue dots represents RDX, and Black dots represent
Copper/Steel. The centroids of the classes are indicated by
black crosses. Thus, it is easier to compare Fig. 4 and Fig. 5.
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Fig. 5 Six clusters consisting of the four analytes and two
substrates were formed using the K-means clustering method.

B. Clustering Analysis

We conducted the popular clustering performance
evaluation which consists of probability of detection (POD),
false alarm rate (FAR), accuracy, precision, recall, and F1
score for each residue of interest. F1 score is usually more
useful than accuracy, especially if there exists an uneven class
distribution. The procedure involves the determination of true
positive (TP), false negative (FN), false positive (FP), and true
negative (TN) of residues of interest. In the pre-processing



stage, based on Table I, six tables are generated for the six
analytes in Table II-VII. Different colors are chosen for these

Table VI. Labeling for RDX

metrics, as shown below. Analyt | Class 1 Class 2 Class 3 Class4 | Class5 | Class 6
es (RDX) (PC) | (Copper) | (INT) | (DNT) | (PE)
TNT 0 FP 10 TN 0 TN 36 TN 0 TN 0 TN
TP DNT 0 FP 6 TN 0 TN 0 TN 36 TN 0 TN
FN PE 0 FP 12 TN 96 TN 0 TN 0 TN 4 FN
PC 0 FP | 104 TN | 0 IN 0TN 0TN 0TN
Fp RDX | 347TP 0 FN 0 FN 0FN [ 0FN [ 12 FN
TN Copper 0 FP 0 TN 118 TN 0 TN 0 TN 0 TN
Table VII. Labeling for Copper/Steel
Table II. Labeling for TNT Analyt | Class1 | Class2 | Class3 | Class4 | Class5 | Class 6
es (RDX) (PC) (Copper) | (INT) (DNT) (PE)
Analyt Class 1 Class 2 Class 3 Class4 | ClassS | Class 6 TNT 0TN 10 TN 0 FP 36 TN 0 TN 0 TN
es (RDX) (PC) | (Copper) | (INT) | (ONT) | (PE) DNT 0TN 6 TN 0 FP 0TN | 36TN | 01N
TNT 0 FN 10 FN 0 FN 36 TP 0 FN 0 FN PE 0 TN 12 TN 96 FP 0 TN 0 TN 4 TN
DNT 0TN 6 TN 0 TN 0 FP 36 TN 0 TN PC 0 TN 104 TN 0 FP 0 TN 0 TN 0 TN
PE 0TN 12 TN 96 TN 0 FP 0 TN 4 TN RDX 34 TP 0 TN 0 FP 0 TN 0 TN 12 TN
PC 0TN | 104TN | 0 TN 0 FP 0IN | O0TN Copper | OEN 0 FN 118 TP 0 FN 0 FN 0 FN
RDX 34 TN 0 TN 0 TN 0 FP 0 TN 12 TN
Copper 0TN 0TN 118 TN 0 FP 0 TN 0 TN
C. Clustering Performance Evaluation
We then conducted the clustering performance evaluation
Table III. Labeling for DNT by calculating the evaluation metrics, including the probability
Analyt | Class1 | Class2 | Class3 | Class4 | Class5 | Class 6 of quectlon (POD), false alarm ‘rate (FAR), accuracy,
es (RDX) | (PC) | (Copper) | (INT) | (DNT) | (PE) precision, recall, and F1 score (the higher the better) for each
TNT 0 TN 10 TN 0 TN 36TN | OFP 0 TN residue of interest. The above evaluation metrics are defined
DNT 0 FN 6 FN 0 FN OFN [ 36TP | OFN as follows [9]:
PE OTN | 12TN | 96TN | O0TN 0 EP 4 TN Probability of Detection: POD = TP/(TP+FN)
RPSX ;LT_}NN 1841,11:11\1 % TTII\\II g % g g 102?1\1 F alse. zfllarm Rate: FAR = FP/(FP+TN)
Copper | OTN 0TN | 1I8TN | O1IN 0 FP 0 TN Precision: P = TP/(TP+FP)
Recall: R = TP/(TP+FN)
Accuracy: Accuracy = (TP+TN)/(TP+FP+FN-+TN)
F1 Score: F1 Score = 2 * Precision * Recall/(Precision +
Table IV. Labeling for PE Recall) ) o
From the equations, we see that precision measures how
often an instance was predicted as positive that is actually
Ar::lyt (C;S;;; C(I;E:S)Z (gl)?;ei) ((:%‘EST;‘ %}\SIST? C:;:;f positive, yvhile recall measures hqw often a positive class
TNT 0TN | 10TN 0TN 36TN | 0TN 0 FP instance in the data set was predicted as a positive class
DNT 0 TN 6 TN 0 TN 0TN | 36 TN 0 FP instance by the classifier. In imbalanced data set, the goal is
PE 0 FN 12 FN 96 FN 0 FN 0 FN 4 TP to improve recall without hurting precision. These goals,
RF;)CX 3041;1\12 184TLN %TTE 8% gg 102FFI;> however, are often conflicting, since in order to increase the
Copper | 07N N T O By O TP for the mln(?rlty class, the numl?er of FP is also often
increased, resulting in reduced precision.
The k-means clustering algorithm on the data on PC1 and
PC2 was performed. The clustering performance including
the probability of detection (POD), false alarm rate (FAR),
Table V. Labeling for PC accuracy, precision, recall and F1 score is conducted. The
performance results are shown in Table VIII. The six clusters
were determined by the majority analyte type in each cluster.
eASnaly 8;?;;; C(]lfscs)z (gl)a;;; ) ((:%,?\?ST;‘ %‘;\SIST? C(lgzs)é Accuracy can be significantly affected by the number of
TNT 0TN 10FP 0TN 36TN | 01N 0 TN true negatives which in the application of trace analyte
DNT 0 TN 6 FP 0 TN 0 TN 36 TN 0 TN detection, are not as critical indicators as false negative and
PE 0 TN 12 FP 96 TN 0TN 0TN 4FN false positive. Therefore, F1 score is usually a better measure
R];;)CX 3(LP%NN 184FFI[’P (()) TFE g % g % 1021;"NN to evaluate if we need to seek a balance between precision and
Copper N I HEETNRNOEN RN N recall and the data has an uneven class distribution.

Compared to polyethylene (PE), copper, and steel, only
polycarbonate (PC) has its own “spectrum”. Spectral mixing



problem becomes worst when the trace analytes rest on such
active substrate. It will result in poor F1 score.

TABLE VIII. PCA-K-Means Clustering Performance on PC1 and PC2

Classl | Class2 | Class3 | Class4 | Class5 | Class6
(RDX) | (PC) | (Cop) | (INT) | (DNT) | (PE)
POD 74% 100% 100% 78% 86% 10%
FAR 7% 8% 27% 0 0 1%
Accuracy | 97% 94% 79% 98% 98% 76%
Precision | 100% 24% 55% 100% 100% 75%
Recall 74% 100% 100% 98% 86% 10%
F1 Score 85% 39% 71% 99% 92% 86%

V. CONCLUSION

This paper applied a PCA-K-means method to exploit PT-
IRIS based trace explosives with overlapping spectral
absorption bands. We intend to explore the underlying
patterns that affect the clustering performance using top
principal components. We also strive to investigate the
effectiveness of the clustering algorithm on different analytes
and substrates. The principal component analysis (PCA) was
used to reduce the dimension of data space to the top principal
components feature (PC1-PC2) space, and thus the most
prominent features or patterns were revealed. Then we used
the K-mean clustering algorithm to classify them into four
analytes and two substrates. We used the performance
evaluation matrices to measure the accuracy of classification.
The experimental results demonstrated that the combination
of the principal component analysis and K-means clustering
algorithm are efficient for achieving dimensional reduction
and clustering on highly overlapped photo-thermal infrared
imaging data. The F1 score of the classification of RDX, PC,
Copper, TNT, DNT, and PE is 85%, 39%, 71%, 99%, 92%,
and 86%, respectively.
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