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Abstract—This paper applied a PCA-K-means method to 

exploit photo-thermal infrared imaging spectroscopy based 

trace explosives with overlapping spectral absorption bands. We 

intend to explore the underlying patterns that affect the 

clustering performance using top principal components. We also 

strive to investigate the effectiveness of the clustering algorithm 

on different analytes and substrates. We reduced the dimensions 

by applying the principal component analysis (PCA) on the data 

to transform the original data to the top principal components’ 

feature space. The data were revealed in the feature space and 

formed into clusters. Then we used the K-mean based clustering 

algorithm to classify them into six classes including RDX, PC, 

Copper/Steel, TNT, DNT, and PE. After that, we conducted the 

performance evaluation. We found that the F1 score of the 

classification of RDX, PC, Copper/Steel, TNT, DNT, and PE is 

85%, 39%, 71%, 99%, 92%, and 86%, respectively. The results 

demonstrated that the proposed algorithm can effectively reduce 

dimension and accurately determined the classes of those 

analytes and substrates. 
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I. INTRODUCTION 

Trace analyte detection has become an emergent goal in 
the fields of military, homeland security, and law enforcement. 
It provides an early warning of concealed threats and therefore 
can save people’s lives and protect the public facilities. This 
technology includes remote detection systems capable of 
detecting explosives and other hazardous materials from a 
standoff distance. As the demand from military and security 
markets has increased. promote research and development for 
efficient detection systems to face the problems of hidden 
explosives at public places, such as suicide, leave-behind, and 
vehicle-borne explosives in airports, railway, ship, bus, truck, 
container,  

 

 

 

 
 

 

bridge, tunnel, tower, terminal environments, and coach 
stations. Also, the development of analytical tools can identify 
explosive remains of tremendous importance in the forensic 
field for crime-scene reconstruction. In addition, the detection 
of explosives is also used in many peaceful applications. For 
example, it can be relevant in environmental areas to monitor 
the quality of soil, water, and groundwater suspected of being 
contaminated by explosives and their degradation products, in 
order to prevent poisoning of populations of humans and 
animals. 

There is an emerging thrust to potentially replace the 
traditional point detection of trace residues (which requires 
physical contact) with standoff sensing capability from a safe 
distance. Improving survivability and situational awareness 
has spurred a wide variety of recent development of sensor 
technology. Most of them are laser-based trace detection 
technologies, such as laser-induced breakdown spectroscopy 
(LIBS), Raman spectroscopy, laser-induced-fluorescence 
spectroscopy, and Fourier transform IR spectroscopy. The 
resonant infrared (IR) photothermal technology that can 
remotely detect trace explosives material on relevant substrate 
surfaces from significant standoff distances using photo-
thermal infrared (IR) imaging spectroscopy (PT-IRIS). In this 
technique, light from a specific infrared wavelength is directed 
to the surface of interest and the thermal response is viewed 
with an infrared camera [1]. Comparing the thermal image as 
a function of incident wavelength with the absorption 
spectrum of explosives reveals the presence and location of 
trace residues. By varying the incident wavelength, other 
analytes of interest (e.g., drugs and chemical agents) could also 
be imaged. Compared to other trace detection techniques, this 
technology has the potential to generate chemical images of 
the chemical composition of surfaces and bulk materials with 
a spatial resolution of ~1um. 

However the ability to detect small amounts of analytes 
across large relevant substrates is complicated by the optical 
and thermal analyte/substrate interactions. The key challenge 
of remote detection techniques is to distinguish materials such 
as explosives from the substrate materials on which they lay, 
such as glasses, paint, or clothes. While substrate materials are 
chemically distinct from explosives, they nonetheless have 
complicated and overlapping IR features with explosives. A 
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complication using polymeric materials, they tend to absorb 
throughout the IR. These universal considerations introduced 
by real-world surfaces complicate the detection and 
identification of explosive materials.  

The advancements in infrared (IR) and Raman 
spectroscopy have led to an explosive growth in stored or 
transient data and have generated an urgent need for new and 
automated methods of spectral data analysis. The emerging 
photo-thermal infrared imaging spectroscopy (PT-IRIS) 
technique which allows for further increase of the spatial 
resolution from the current ~10 microns to ~1 micron makes 
this data analysis demand more critical. This paper will focus 
on the PT-IRIS data analysis which was used for the 
application of trace analyte detection. The aim of trace analyte 
detection is to distinguish illicit analytes such as explosives 
from the substrates on which they rest. To date, there have 
been insignificant efforts to analyze the photo-thermal infrared 
data sets using computational intelligence techniques.  

The rest of the paper is organized as follows. In Section II, 
the high dimensional and overlapped data set is described. In 
Section III, the proposed methodology is presented. A 
combined principal component analysis (PCA)-K-means 
clustering algorithm is described. In Section IV, the analysis 
and results are presented. In Section V, the conclusions are 
given. 

 

II. PHOTO-THERMAL INFRARED IMAGING SPECTROSCOPY 

This section will use a PCA-K-means method to exploit 
PT-IRIS based trace explosives with overlapping spectral 
absorption bands. We intend to explore the underlying patterns 
that affect the clustering performance using top principal 
components. We also strive to investigate the effectiveness of 
the clustering algorithm on different analytes and substrates. 

A. Data Set 

 The advanced photo-thermal infrared imaging 
spectroscopy (PT-IRIS) technique that can be used for standoff 
detection application [1]. The two fundamental components 
are infrared (IR) quantum cascade lasers (QCL) and IR focal 
plane array detectors. Specifically, IR QCL is used to 
illuminate a surface potentially contain residues of interest. If 
the excitation wavelength of the light is resonant with 
collection wavelength of surface residues, the residues of 
interest will heat up by (~1oC). The IR focal plane array 
detectors are used for imaging.  

The temperature increase, Tmax is measured as a function 
of excitation and collection wavelengths at the end of a laser 
pulse. Tmax normalized to the average power of the laser pulse 
will then be used as feature vectors, as shown in Fig. 1. 
Simulated samples include 5 analytes (TNT, DNT, RDX, 
Polyethylene, and Polycarbonate) on 4 substrates (Copper, 
Steel, Polyethylene, and Polycarbonate) using 28 excitation 
wavelengths (6.0 μm to 6.6 μm and 7.0 μm to 7.7 μm) and 26 
collection wavelengths (8.0 μm to 10.5 μm).  

 

 

 
  
  

   
 

 

 

 

 

               

            

The fundamental spectroscopic characteristics for the PT-
IRIS is shown in Fig. 2. It shows the IR absorbance spectra of 
the residues of interest. Peaks in the curves reflect unique 
“signatures” for each analyte. According to Kirchhoff’s Law, 
the emissivity of a material and its absorptivity are equivalent 
at thermal equilibrium. Thus, the measured absorption 
spectrum of a material obtained at ambient temperature can be 
used to accurately predict its emission spectrum. In another 
word, if we can determine the most important features (i.e. 
Tmax values) among the 728 features, which are correlated 
with the absorption spectrum of a material, we can use the 
absorption spectrum to predict its emission spectrum. Since 
the thermal emission from analyte of interest and substrate 
materials have different spectral signatures, the unique thermal 
emission spectrum can ultimately determine the type of this 
material.  

 

 
  
  

  

 

 

 

 

Each pixel in the camera frame was a column in this data 
matrix, which includes 728 features. For each feature, it is a 
function of Tmax in terms of different excitation wavelengths 
and collection wavelengths. With 28 excitation wavelengths 
and 26 collection wavelengths, they would generate 728 
features. Therefore, we may demonstrate the photo-thermal 
signal matrix for all the 468 samples. This can be seen by 
display ,the data set in false color plot ,which will show visible 
or non-visible parts of the electromagnetic spectrum, shown in 
Fig. 3. From left to right, the particle sizes are 8 μm, 12 μm, 
20 μm, 3 μm, 1.5 μm, and 5 μm. Each loop takes 76 columns 
per particle size. Each column contains 728 features. In Fig. 3, 
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Fig. 1 Data matrix with feature vectors. Tmax values for each 

excitation and collection wavelength pair were arranged into a 

feature vector (column). 

Fig. 2 IR absorbance spectra of glass, polyethylene, white painted steel, 

ammonium nitrate, RDX, TNT and sucrose (sugar). 



  

the color of the data point is proportional to signal strength, i.e. 
red represents high, and blue represents low.  

For each analyte including TNT, DNT, and RDX, they will 
be made of all 6 possible particle sizes, and two pixels in the 
camera frame (i.e. columns) are on the particle,  the two pixels 
will rest on all 4 substrates (i.e. copper, steel, PC, and PE). 
Thus, there will be a maximum of 48 samples for each analyte. 
In addition, for each substrate including copper, steel, PC, and 
PE, they will spread over the 6 particle sizes with two pixels 
off each particle, and they interact with 5 analytes (TNT, DNT, 
RDX, PC, and PE), so the maximum of substrate samples is 
60.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC can be used for both analyte and substrate, so the 
maximum sample amount would be the total of possible 
analyte and substrate samples, which is therefore 108. PC has 
a strong signature.  PE can also be used for both analyte and 
substrate. There will be 108 samples at maximum. PE is 
known as a poor thermal conductor, as a result the temperature 
increase with illumination is nearly zero. Thus it does not have 
its own signature. 

Since the samples comprise both “on” and “off” particle 
pixels, some samples may have analyte, some may have 
substrate, but some complicated and overlapping sample can 
happen by optically “through” a particle. The mixing IR 
absorption/emission features reflects the primary challenge to 
a useful detection technique in the real-world application. 

 

III. RESEARCH METHODOLOGY 

Feature selection is a very important pre-processing 
technique for large scale pattern recognition problems, 
especially when the number of samples is relatively small [2]-
[4]. Feature selection techniques are designed to find a subset 
of relevant feature subset of the original features which can 
facilitate clustering, classification and retrieval [5][6]. A data 
set contains relevant, irrelevant, and redundant features. 
However, irrelevant and redundant features are not useful for 
classification, and they may even reduce the classification 

performance due to the large search space known as “the curse 
of dimensionality”. By eliminating irrelevant and redundant 
features, feature selection could helps in understanding data, 
reducing computation requirement, reducing the effect of 
curse of dimensionality and improving the predictor 
performance [7]-[13]. 

A. Principle Component Analysis (PCA) 

Principle component analysis (PCA) is quantitatively 
rigorous method for achieving dimensional reduction before 
applying the feature selection methods. It is a way of 
identifying patterns in data, and expressing the data in such a 
way as to highlight their similarities and differences [14]. The 
method generates a new set of variables, called principal 
components. Each principal component is a linear combination 
of the original variables. All the principal components are 
orthogonal to each other, so there is no redundant information. 
Several top ranking principal components will be selected to 
form a new feature space. The original samples will be 
transformed to this new feature space in the directions of the 
principal components. Although the PCA can effectively 
reduce the number of dimensions by selecting the top ranking 
principle components, PCA method is not able to select a 
subset of features which are important to distinguish the 
classes. It only guarantees that when you project each 
observation on an axis (along a principle component) in a new 
space, the variance of the new variable is the maximum among 
all possible choices of that axis. This means that each feature 
is considered separately, thereby ignoring feature 
dependencies, which may lead to worse classification 
performance. 

In the application of trace analyte detection, we consider 
the feature selection problem in unsupervised learning 
scenario, which is particularly difficult due to the absence of 
class labels that would guide the search for relevant 
information. The feature selection problem is essentially a 
combinatorial optimization problem which is computationally 
expensive. The existing and most powerful unsupervised 
feature selection technique is principle component analysis 
(PCA). It is often useful to map data onto their principal 
components rather than on the original x-y axis. In this way the 
underlying structure in the data can be revealed. We applied 
the PCA technique to the data set to reveal the patterns in data, 
as well as reduce the dimension of feature vectors (i.e. vectors 
containing the principle components). First we deconstruct the 
set into eigenvectors and eigenvalues. An eigenvector is a 
direction, and an eigenvalue is a number, telling you how 
much variance there is in the data in that direction. The amount 
of eigenvectors/values that exist equals the number of 
dimensions the data set has. The reason for this is that 
eigenvectors put the data into a new set of dimensions, and 
these new dimensions have to be equal to the original amount 
of dimensions. It is worthwhile to investigate the PCA 
algorithm because it allows us to exploit the correlation of 
most significant eigenvectors and analyte types. 
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Fig. 3 Six clusters consisting of the four analytes and two 

substrates were formed using the K-means clustering 

method. 
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B. PCA-K-means Clustering Algorithm 

PCA algorithm will be applying to reduce the dimensions, 
and then the k-means clustering algorithm will be applied.  

  

IV. ANALYSIS AND RESULTS 

A. PCA-K-means Clustering Results 

We presented the principal component analysis (PCA) 
results using a combination of top PCs, i.e. PC1 and PC2. We 
displayed the data in PC1-PC2 axes, as shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Then we applied the K-mean clustering algorithm to make 

them into 6 clusters. The number of analytes and substrates in 
each of the six classes are shown in Table I. Letter C represents 
the cluster. The rows represent TNT, DNT, PE, PC, RDX, and 
Copper, respectively. The columns represent Cluster 1, Cluster 
2, Cluster 3, Cluster 4, Cluster 5, and Cluster 6.  

 
 
 
 
 

Table I. Number of Samples in Classifiers after Using the PCA-K-means 

Clustering Algorithm 

 

By counting the largest number of analytes/substrate in 
each class, we can find the analyte/substrate dominating that 
class. For each cluster, the majority analytes will determine the 
class that this cluster belongs to. Therefore, we find Cluster 1 
represents RDX, Cluster 2 represents PC, Cluster 3 represents 
Copper, Cluster 4 represents TNT, Cluster 5 represents DNT, 
and Cluster 6 represents PE. These labels are shown in the 
tables in the following Clustering Analysis section. 

The classes are demonstrated in PC1-PC2 axes, as shown 
in Fig. 5. To enhance the visualization efficiency, the same 
color code is used in the k-means algorithm as in the PCA 
algorithm. Red dots represent TNT, Green dots represent 
DNT, Yellow dots represents PE, Cyan dots represent PC, 
Blue dots represents RDX, and Black dots represent 
Copper/Steel. The centroids of the classes are indicated by 
black crosses. Thus, it is easier to compare Fig. 4 and Fig. 5. 

 

 

 

 

 

 

 

B. Clustering Analysis 

We conducted the popular clustering performance 

evaluation which consists of probability of detection (POD), 

false alarm rate (FAR), accuracy, precision, recall, and F1 

score for each residue of interest. F1 score is usually more 

useful than accuracy, especially if there exists an uneven class 

distribution. The procedure involves the determination of true 

positive (TP), false negative (FN), false positive (FP), and true 

negative (TN) of residues of interest. In the pre-processing 

Steps K-means Clustering Algorithm 

1 k initial "means" (k is an estimated value) are 

randomly generated within the data domain. 

2 k clusters are created by associating every 

observation with the nearest mean. The partitions 

here represent the Voronoi diagram [8] generated 

by the means. 

3 The centroid of each of the k clusters becomes the 

new mean. 

4 Steps 2 and 3 are repeated until convergence has 

been reached. 

 C1 C2 C3 C4 C5 C6 

TNT 0 10 0 36 0 0 

DNT 0 6 0 0 36 0 

PE 0 12 96 0 0 4 

PC 0 104 0 0 0 0 

RDX 34 0 0 0 0 12 

Copper 0 0 118 0 0 0 

Fig. 5 Six clusters consisting of the four analytes and two 

substrates were formed using the K-means clustering method. 
Fig. 4 All the data projected onto PC1-PC2 space after using the 

PCA method. 



  

stage, based on Table I, six tables are generated for the six 

analytes in Table II-VII. Different colors are chosen for these 

metrics, as shown below. 

 

 TP 

 FN 

 FP 

 TN   

 
 

Table II.  Labeling for TNT 

 
Analyt

es 

Class 1 

(RDX) 

Class 2 

(PC) 

Class 3 

(Copper) 
Class 4 

(TNT) 

Class 5 

(DNT) 

Class 6 

(PE) 

TNT 0 FN 10 FN 0 FN 36 TP 0 FN 0 FN 

DNT 0 TN 6 TN 0 TN 0 FP 36 TN 0 TN 

PE 0 TN 12 TN 96 TN 0 FP 0 TN 4 TN 

PC 0 TN 104 TN 0  TN 0 FP 0 TN 0 TN 

RDX 34 TN 0 TN 0 TN 0 FP 0 TN 12 TN 

Copper 0 TN 0 TN 118 TN 0 FP 0 TN 0 TN 

 

 
Table III.  Labeling for DNT 

 

 

 

Table IV.  Labeling for PE 

 

 

 
 

Table V.  Labeling for PC 

 

 

 

Table VI.  Labeling for RDX 

 

 
Table VII.  Labeling for Copper/Steel 

 

C. Clustering Performance Evaluation 

We then conducted the clustering performance evaluation 

by calculating the evaluation metrics, including the probability 

of detection (POD), false alarm rate (FAR), accuracy, 

precision, recall, and F1 score (the higher the better) for each 

residue of interest. The above evaluation metrics are defined 

as follows [9]: 

Probability of Detection: POD = TP/(TP+FN)   

False Alarm Rate: FAR = FP/(FP+TN)   

Precision: P = TP/(TP+FP)    

Recall: R = TP/(TP+FN)     

Accuracy: Accuracy = (TP+TN)/(TP+FP+FN+TN)  

F1 Score: F1 Score = 2 * Precision * Recall/(Precision + 

Recall) 

From the equations, we see that precision measures how 

often an instance was predicted as positive that is actually 

positive, while recall measures how often a positive class 

instance in the data set was predicted as a positive class 

instance by the classifier. In imbalanced data set, the goal is 

to improve recall without hurting precision. These goals, 

however, are often conflicting, since in order to increase the 

TP for the minority class, the number of FP is also often 

increased, resulting in reduced precision. 

The k-means clustering algorithm on the data on PC1 and 

PC2 was performed. The clustering performance including 

the probability of detection (POD), false alarm rate (FAR), 

accuracy, precision, recall and F1 score is conducted. The 

performance results are shown in Table VIII. The six clusters 

were determined by the majority analyte type in each cluster. 

Accuracy can be significantly affected by the number of 

true negatives which in the application of trace analyte 

detection, are not as critical indicators as false negative and 

false positive. Therefore, F1 score is usually a better measure 

to evaluate if we need to seek a balance between precision and 

recall and the data has an uneven class distribution.  

Compared to polyethylene (PE), copper, and steel, only 

polycarbonate (PC) has its own “spectrum”. Spectral mixing 

Analyt
es 

Class 1 
(RDX) 

Class 2 
(PC) 

Class 3 
(Copper) 

Class 4 
(TNT) 

Class 5 

(DNT) 

Class 6 
(PE) 

TNT 0 TN 10 TN 0 TN 36 TN 0 FP 0 TN 

DNT 0 FN 6 FN 0 FN 0 FN 36 TP 0 FN 

PE 0 TN 12 TN 96 TN 0 TN 0 FP 4 TN 

PC 0 TN 104 TN 0  TN 0 TN 0 FP 0 TN 

RDX 34 TN 0 TN 0 TN 0 TN 0 FP 12 TN 

Copper 0 TN 0 TN 118 TN 0 TN 0 FP 0 TN 

Analyt

es 

Class 1 

(RDX) 

Class 2 

(PC) 

Class 3 

(Copper) 

Class 4 

(TNT) 

Class 5 

(DNT) 
Class 6 

(PE) 

TNT 0 TN 10 TN 0 TN 36 TN 0 TN 0 FP 

DNT 0 TN 6 TN 0 TN 0 TN 36 TN 0 FP 

PE 0 FN 12 FN 96 FN 0 FN 0 FN 4 TP 

PC 0 TN 104 TN 0  TN 0 TN 0 TN 0 FP 

RDX 34 TN 0 TN 0 TN 0 TN 0 TN 12 FP 

Copper 0 TN 0 TN 118 TN 0 TN 0 TN 0 FP 

Analy 

es 

Class 1 

(RDX) 
Class 2 

(PC) 

Class 3 

(Copper) 

Class 4 

(TNT) 

Class 5 

(DNT) 

Class 6 

(PE) 

TNT 0 TN 10 FP 0 TN 36 TN 0 TN 0 TN 

DNT 0 TN 6 FP 0 TN 0 TN 36 TN 0 TN 

PE 0 TN 12 FP 96 TN 0 TN 0 TN 4 FN 

PC 0 FN 104 TP 0  FN 0 FN 0 FN 0 FN 

RDX 34 TN 0 FP 0 TN 0 TN 0 TN 12 TN 

Copper 0 TN 0 FP 118 TN 0 TN 0 TN 0 TN 

Analyt

es 
Class 1 

(RDX) 

Class 2 

(PC) 

Class 3 

(Copper) 

Class 4 

(TNT) 

Class 5 

(DNT) 

Class 6 

(PE) 

TNT 0  FP 10  TN 0 TN 36  TN 0 TN 0 TN 

DNT 0  FP 6  TN 0 TN 0 TN 36  TN 0  TN 

PE 0  FP 12  TN 96  TN 0 TN 0 TN 4 FN 

PC 0  FP 104  TN 0  TN 0 TN 0 TN 0 TN 

RDX 34 TP 0  FN 0  FN 0  FN 0  FN 12  FN 

Copper 0  FP 0 TN 118 TN 0 TN 0 TN 0 TN 

Analyt 
es 

Class 1 
(RDX) 

Class 2 
(PC) 

Class 3 

(Copper) 

Class 4 
(TNT) 

Class 5 
(DNT) 

Class 6 
(PE) 

TNT 0 TN 10 TN 0 FP 36 TN 0 TN 0 TN 

DNT 0 TN 6 TN 0 FP 0 TN 36 TN 0 TN 

PE 0 TN 12 TN 96 FP 0 TN 0 TN 4 TN 

PC 0 TN 104 TN 0  FP 0 TN 0 TN 0 TN 

RDX 34 TP 0 TN 0 FP 0 TN 0 TN 12 TN 

Copper 0 FN 0 FN 118 TP 0 FN 0 FN 0 FN 



  

problem becomes worst when the trace analytes rest on such 

active substrate. It will result in poor F1 score. 
 

TABLE VIII.  PCA-K-Means Clustering Performance on PC1 and PC2 

 
 

V. CONCLUSION 

This paper applied a PCA-K-means method to exploit PT-

IRIS based trace explosives with overlapping spectral 

absorption bands. We intend to explore the underlying 

patterns that affect the clustering performance using top 

principal components. We also strive to investigate the 

effectiveness of the clustering algorithm on different analytes 

and substrates. The principal component analysis (PCA) was 

used to reduce the dimension of data space to the top principal 

components feature (PC1-PC2) space, and thus the most 

prominent features or patterns were revealed. Then we used 

the K-mean clustering algorithm to classify them into four 

analytes and two substrates. We used the performance 

evaluation matrices to measure the accuracy of classification. 

The experimental results demonstrated that the combination 

of the principal component analysis and K-means clustering 

algorithm are efficient for achieving dimensional reduction 

and clustering on highly overlapped photo-thermal infrared 

imaging data. The F1 score of the classification of RDX, PC, 

Copper, TNT, DNT, and PE is 85%, 39%, 71%, 99%, 92%, 

and 86%, respectively. 
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 Class1 

(RDX) 

Class2 

(PC) 

Class3 

(Cop) 

Class4 

(TNT) 

Class5 

(DNT) 

Class6 

(PE) 

POD 74% 100% 100% 78% 86% 10% 

FAR 7% 8% 27% 0 0 1% 

Accuracy 97% 94% 79% 98% 98% 76% 

Precision 100% 24% 55% 100% 100% 75% 

Recall 74% 100% 100% 98% 86% 10% 

F1 Score 85% 39% 71% 99% 92% 86% 


