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Abstract

Phase retrieval refers to the problem of recovering

real- or complex-valued vectors from magnitude

measurements. The best-known algorithms for

this problem are iterative in nature and rely on

so-called spectral initializers that provide accu-

rate initialization vectors. We propose a novel

class of estimators suitable for general nonlinear

measurement systems, called linear spectral esti-

mators (LSPEs), which can be used to compute

accurate initialization vectors for phase retrieval

problems. The proposed LSPEs not only provide

accurate initialization vectors for noisy phase re-

trieval systems with structured or random mea-

surement matrices, but also enable the derivation

of sharp and nonasymptotic mean-squared error

bounds. We demonstrate the efficacy of LSPEs

on synthetic and real-world phase retrieval prob-

lems, and show that our estimators significantly

outperform existing methods for structured mea-

surement systems that arise in practice.

1. Introduction

Phase retrieval refers to the problem of recovering an un-

known N -dimensional signal vector x ∈ HN , with H being

the set of either real (R) or complex (C) numbers, from the

following nonlinear measurement process:

y = f(Ax+ ez) + ey. (1)

Here, the measurement vector y ∈ R
M contains M real-

valued observations, for example measured through the non-

linear function f(z) = |z|2 that operates element-wise on

vectors, A ∈ HM×N is a given measurement matrix, and

the vectors ez ∈ HM and ey ∈ R
N model signal and mea-

surement noises, respectively. In contrast to the majority of
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existing results on phase retrieval that assume randomness

in the measurement matrix A, we focus on the practical sce-

nario in which the measurement matrix A is deterministic,

but the signal vector x to be recovered as well as the two

noise sources ez and ey are random.

1.1. Phase Retrieval

Phase retrieval has been studied extensively over the last

decades (Gerchberg & Saxton, 1972; Fienup, 1982) and

finds use in a range of applications, including imaging (Fo-

gel et al., 2016; Yeh et al., 2015; Holloway et al., 2016), mi-

croscopy (Kou et al., 2010; Faulkner & Rodenburg, 2004),

and X-ray crystallography (Harrison, 1993; Miao et al.,

2008; Pfeiffer et al., 2006). Phase retrieval problems were

solved traditionally using alternating projection methods,

such as the Gerchberg-Saxton (Gerchberg & Saxton, 1972)

and Fienup (Fienup, 1982) algorithms. More recent results

have shown that semidefinite programming enables the de-

sign of algorithms with performance guarantees (Candès

et al., 2013; Candès & Li, 2014; Candès et al., 2015a; Wald-

spurger et al., 2015). These methods lift the problem to

a higher dimension, resulting in excessive complexity and

memory requirements. To perform phase retrieval for high-

dimensional problems with performance guarantees, a range

of convex (Bahmani & Romberg, 2017; Goldstein & Studer,

2017; Hand & Voroninski, 2016; Dhifallah et al., 2017; Dhi-

fallah & Lu, 2017; Yuan & Wang, 2017; Salehi et al., 2018)

and nonconvex methods (Netrapalli et al., 2013; Schniter &

Rangan, 2015; Candès et al., 2015b; Chen & Candès, 2015;

Zhang & Liang, 2016; Wang et al., 2017a; Zhang et al.,

2016; Wei, 2015; Sun et al., 2016; Zeng & So, 2017; Lu &

Li, 2017; Ma et al., 2018) have been proposed recently.

1.2. Spectral Initializers

All of the above non-lifting-based phase retrieval methods

rely on accurate initial estimates of the signal vector to be

recovered. Such estimates are typically obtained by means

of so-called spectral initializers put forward in (Netrapalli

et al., 2013). Spectral initializers first compute a Hermitian

matrix of the following form:

Dβ = β

M∑

m=1

T (ym)amaHm, (2)



Linear Spectral Estimators and an Application to Phase Retrieval

where β > 0 is a suitably-chosen scaling factor, ym denotes

the mth measurement, aHm corresponds to the mth row of

the measurement matrix A and T : R → R is a (possi-

bly nonlinear) preprocessing function. While the identity

T (y) = y was used originally in (Netrapalli et al., 2013),

recent results revealed that carefully crafted preprocessing

functions yield more accurate estimates (Chen & Candès,

2015; Chen et al., 2015; Wang et al., 2017a;b; Lu & Li,

2017; Mondelli & Montanari, 2017). From the matrix Dβ

in (2), one then extracts the (scaled) eigenvector x̂ associ-

ated with the largest eigenvalue, which serves as an initial

estimate of the solution to the phase retrieval problem.

As shown in (Netrapalli et al., 2013; Chen & Candès, 2015;

Chen et al., 2015; Wang et al., 2017a;b; Lu & Li, 2017;

Mondelli & Montanari, 2017), for i.i.d. Gaussian measure-

ment matrices A, sufficiently large measurement ratios

δ = M/N , and carefully crafted preprocessing functions T ,

spectral initializers provide accurate initialization vectors.

In fact, the results in (Mondelli & Montanari, 2017) for

the large-system limit with δ fixed and M → ∞ show that

spectral initializers in combination with an optimal prepro-

cessing function T achieve the fundamental information-

theoretic limits of phase retrieval. However, the assump-

tion of having i.i.d. Gaussian measurement matrices A is

impractical—it is more natural to assume that the signal

vector x is random and the measurement matrix A is deter-

ministic and structured (Bendory & Eldar, 2017).

1.3. Contributions

We propose a novel class of estimators, called linear spec-

tral estimators (LSPEs), that provide accurate estimates for

general nonlinear measurement systems of the form (1) and

enable a nonasymptotic mean-squared error (MSE) analysis.

We showcase the efficacy of LSPEs by applying them to

phase retrieval problems, where we compute initialization

vectors for real- and complex-valued systems with deter-

ministic and finite-dimensional measurement matrices. For

the proposed LSPEs, we derive nonasymptotic and sharp

bounds on the MSE for signal estimation from phaseless

measurements. We use synthetic and real-world phase re-

trieval problems to demonstrate that LSPEs are able to sig-

nificantly outperform existing spectral initializers on sys-

tems that acquire structured measurements. We furthermore

show that preprocessing the phaseless measurements en-

ables LSPEs to generate improved initialization vectors for

an even broader class of measurement systems.

1.4. Notation

Lowercase and uppercase boldface letters represent column

vectors and matrices, respectively. For a matrix A, its trans-

pose and Hermitian conjugate is AT and AH , respectively,

and the kth row and ℓth column entry is [A]k,ℓ = Ak,ℓ. For

a vector a, the kth entry is [a]k = ak. The ℓ2-norm of a is

denoted by ‖a‖2 and the Frobenius norm of A by ‖A‖F .

The Kronecker product is ⊗, the Hadamard product is ⊙,

the Hadamard division is ⊘, and the trace operator is tr(·).
The N ×N identity matrix is denoted by IN ; the M ×N
all-zeros and all-ones matrices are denoted by 0M×N and

1M×N , respectively. For a vector a, diag(a) is a square ma-

trix with a on the main diagonal; for a matrix A, diag(A)
is a column vector containing the diagonal elements of A.

2. Linear Spectral Estimators

We start by reviewing the essentials of spectral initializers

and then, introduce linear spectral estimators (LSPEs) for

measurement systems of the form (1) with general nonlinear-

ities f . We furthermore provide nonasymptotic expressions

for the associated estimation error, and we compare our

analytical results to that of conventional spectral initializers

in (2). In Section 3, we will apply LSPEs to phase retrieval.

2.1. Spectral Estimation and Initializers

One of the key issues of the phase retrieval problem is

the fact that if x is a solution to (1), then ejφx for any

φ ∈ [0, 2π) is also a valid solution (assuming H = C). Put

simply, the solution is nonunique up to a global phase shift.

One way of combating this issue is to directly recover the

outer product xxH instead of x, which is unaffected by

phase shifts; this insight is the key underlying lifting-based

phase retrieval methods (Candès et al., 2013; Candès & Li,

2014; Candès et al., 2015a; Waldspurger et al., 2015). With

this in mind, one could envision the design of an estimator

that directly minimizes the conditional MSE:

ẋ = arg min
x̃∈HN

E
[
‖xxH − x̃x̃H‖2F | y

]
. (3)

Here, expectation is with respect to the signal vector x and

the two noise sources ez and ey . This optimization problem

resembles that of a posterior mean estimator (PME) which

is, in general, difficult to derive, even for simple observation

models—for phase retrieval, we have two additional chal-

lenges: (i) nonlinear phaseless measurements as in (1) and

(ii) the quantity x̃x̃H has rank-1.

Spectral initializers avoid the issues of the estimator in (3)

by first replacing the true outer product xxH with a so-

called spectral estimator matrix Dβ as in (2) that depends

on the measurement vector y. In a second step, one then

computes the best rank-1 approximation as follows:

x̂ = arg min
x̃∈HN

‖Dβ − x̃x̃H‖2F (4)

from which the estimate x̂ can be extracted. By perform-

ing an eigenvalue decomposition Dβ = UΛUH with

UHU = IM and the eigenvalues in the diagonal matrix
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Λ = diag([λ1, . . . , λM ]T ) are sorted in descending order

of their magnitudes, a spectral initializer is given by the

scaled leading eigenvector x̂ =
√
λ1u1. In practice, one

can use power iterations to efficiently compute x̂.

2.2. Linear Spectral Estimators

We now propose a novel class of estimators, which we call

linear spectral estimators (LSPEs), that provide accurate

estimates for general nonlinear measurement systems of the

form (1). To this end, we borrow ideas from the spectral

initializer, the PME in (3), and the linear phase retrieval

algorithm put forward in (Ghods et al., 2018). In the first

step, LSPEs apply a linear estimator to the nonlinear obser-

vations in T (y) to construct a spectral estimator matrix Dy

for which the spectral MSE (or matrix MSE) defined as

S-MSE = E

[∥∥Dy − xxH
∥∥2
F

]
(5)

is minimal. We restrict ourselves to spectral estimator ma-

trices Dy that are affine in T (y), i.e., are of the form

Dy = W0 +

M∑

m=1

T (ym)Wm (6)

with Wm ∈ HN×N , m = 0, . . . ,M . In the second step,

we use the spectral estimator matrix Dy to extract a (scaled)

leading eigenvector as in (3), which is the linear spectral es-

timate of the signal vector x. Intuitively, if we can construct

a matrix Dy from the preprocessed measurements in T (y)
for which the S-MSE in (5) is minimal, then we expect that

computing its best rank-1 approximation would yield an

accurate estimate of the signal vector x up to a global phase

shift. We will justify this claim in Section 2.3.

Mathematically, we wish to compute a matrix Dy of the

form (6) that is the solution to the following problem:

minimize
W̃m∈HN×N

m=0,...,M

E



∥∥∥∥∥W̃0 +

M∑

m=1

T (ym)W̃m− xxH

∥∥∥∥∥

2

F


. (7)

Clearly, the spectral estimator matrix Dy will depend on

the measurement matrix A, the statistics of the signal to

be estimated x and the two noise sources ez and ey, the

nonlinearity f , as well as the preprocessing function T . For

this setting, we have the following general result which

summarizes the LSPE; the proof is given in Appendix A.

Theorem 1 (Linear Spectral Estimator). Let the measure-

ment vector y be a result of the general measurement model

in (1) and select a preprocessing function T . Define the

vector T (y) = E[T (y)] and assume the matrix

T = E
[
(T (y)− T (y))(T (y)− T (y))T

]

is full rank. Let t ∈ R
M satisfy Tt = T (y)− T (y) and

Vm = E
[
(T (ym)− T (ym))(xxH −Kx)

]

for m = 1, . . . ,M with Kx = E
[
xxH

]
. Then, the LSPE

matrix that minimizes the S-MSE in (5) is given by

Dy = Kx +

M∑

m=1

tmVm. (8)

The linear spectral estimate x̂ is then given by the scaled

leading eigenvector of the matrix Dy in (8).

The vector t is the only quantity in Theorem 1 that depends

on the actual (nonlinear) observations contained in the mea-

surement vector y. All other quantities depend only on the

first two moments of xxH as well as the considered signal,

noise, and measurement models. The key features of the

LSPE are as follows: (i) the involved quantities can often be

computed in closed form (see Section 3 for two applications

to phase retrieval) and (ii) LSPEs enable a nonasymptotic

and sharp analysis of the associated estimation error.

Remark 1. Theorem 1 requires the matrix T to be invert-

ible. This condition is satisfied in most practical situations

with nondegenerate measurement matrices A or in situa-

tions with nonzero measurement noise.

2.3. Estimation Error Analysis of LSPEs

The remaining piece of the proposed LSPE is to show that

the result of this two-step estimation procedure indeed yields

a vector that is close to the signal vector x. We start with

the following result; the proof is given in Appendix B.

Theorem 2 (S-MSE of the LSPE). Let the assumptions of

Theorem 1 hold. Then, the S-MSE in (5) for the LSPE matrix

in (8) is given by

S-MSELSPE = CxxH −
M∑

m=1

M∑

m′=1

[T−1]m,m′ tr
(
VH

mVm′

)

(9)

with CxxH = E

[∥∥xxH −Kx

∥∥2
F

]
.

With this result, we are ready to establish a bound on the

estimation error of the LSPE. The proof of the following

result follows from Theorem 2 and is given in Appendix C.

Corollary 1 (LSPE Estimation Error). Let the assumptions

of Theorem 1 hold. Then, the estimation error (EER) of the

LSPE satisfies the following inequality:

EERLSPE = E
[
‖x̂x̂H − xxH‖2F

]
≤ 4 S-MSELSPE. (10)

This result implies that by minimizing the S-MSE in (5)

via (7), we are also reducing the EER of the LSPE. In other

words, if the spectral error E = Dy − x̂x̂H is small, then

the EER of the LSPE (10) will be small.
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Remark 2. Corollary 1 is nonasymptotic and depends on

the instance of measurement matrix A. This result is in

stark contrast to existing performance bounds for spectral

initializers (Netrapalli et al., 2013; Chen & Candès, 2015;

Chen et al., 2015; Wang et al., 2017a;b) that strongly rely

on randomness in the measurement matrix. In addition to

randomness, the sharp performance guarantees in (Lu & Li,

2017; Mondelli & Montanari, 2017) focus on the asymptotic

regime for which δ = M/N is fixed and M → ∞.

2.4. S-MSE of Spectral Initializers

We can also derive an exact expression for the S-MSE of the

conventional spectral initializer in (2). We assume optimal

scaling, i.e., the parameter β is set to minimize the S-MSE.

The following result characterizes the S-MSE of such a

scaled spectral initializer; the proof is given in Appendix D.

Proposition 1 (S-MSE of the Spectral Initializer). Let Dβ

be the conventional spectral initializer matrix in (2). Then,

the optimally-scaled S-MSE defined as

S-MSESI = min
β∈H

E
[
‖Dβ − xxH‖2F

]
(11)

is given by

S-MSESI = RxxH −

∣∣∣
∑M

m=1
aHmṼmam

∣∣∣
2

∑M
m=1

∑M
m′=1

T̃m,m′ |aHmam′ |2
,

(12)

where RxxH = E
[
‖xxH‖2F

]
, Ṽm = E

[
T (ym)xxH

]
,

m = 1, . . . ,M , and T̃ = E
[
T (y)T (y)T

]
.

Since the matrix in (2) is a special case of the LSPE matrix

in (6), we have the following simple yet important property:

S-MSELSPE ≤ S-MSESI.

In words, the spectral MSE of the LSPE cannot be worse

than that of a spectral initializer. As we will show in Sec-

tion 4, LSPEs are able to outperform spectral initializers

on both synthetic and real-world phase retrieval problems

given that the same preprocessing function T is used.

3. LSPEs for Phase Retrieval Problems

The LSPE provides a framework for estimating signal vec-

tors from the general observation model in (1). To make

the concept of LSPEs explicit and to demonstrate their effi-

cacy in practice, we now show two application examples to

phase retrieval in complex-valued systems. The LSPE for

real-valued phase retrieval can be found in Appendix E.

3.1. Phase Retrieval without Preprocessing

We first focus on the case where the signal vector x to be

estimated and the measurement matrix A are both complex-

valued. The phaseless measurements y, however, remain

real-valued. We need the following assumptions.

Assumptions 1. Let H = C. Assume square absolute

measurements f(z) = |z|2 and the identity preprocessing

function T (y) = y. Assume that the signal vector x ∈ C
N

is i.i.d. circularly-symmetric complex Gaussian with covari-

ance matrix Cx = σ2
xIN , i.e., x ∼ CN (0N×1, σ

2
xIN ). As-

sume that the signal noise vector ez is circularly-symmetric

complex Gaussian with covariance matrix Cez , i.e., ez ∼
CN (0M×1,Cez ), and the measurement noise vector ey is a

real-valued Gaussian vector with mean ēy and covariance

matrix Cey , i.e., ey ∼ N (ēy,Cey ). Furthermore assume

that x, ez , and ey are independent.

Under these assumptions, we can derive the following LSPE

which we call LSPE-C; the detailed derivations of this spec-

tral estimator are given in Appendix G.

Estimator 1 (LSPE-C). Let Assumptions 1 hold. Then, the

spectral estimation matrix is given by

DC

y = Kx +

M∑

m=1

tmVm, (13)

where Kx = σ2
xIN , the vector t ∈ R

M is given by the

solution to the linear system Tt = y − y with

y = diag(Cz) + ēy

Cz = σ2
xAAH +Cez

T = Cz ⊙C∗
z +Cey

and Vm = σ4
xamaHm, m = 1, . . . ,M . The spectral esti-

mate x̂ is given by the (scaled) leading eigenvector of DC
y

in (13). Furthermore, the S-MSE is given by Theorem 2.

We emphasize that the spectral estimator matrix in (13)

resembles that of the conventional spectral initializer ma-

trix (2) with the following key differences. First and fore-

most, each outer product contained in Vm = σ4
xamaHm

in Estimator 1 is weighted by tm, which is a function of

all phaseless measurements in y and of the covariance ma-

trix Cx. In contrast, each outer product in the conventional

spectral initializer matrix in (2) is only weighted by the asso-

ciated measurement ym. This difference enables the LSPE

to weight each outer product depending on correlations in

the phaseless measurements caused by structure in the ma-

trix A. Second, the spectral estimator matrix includes a

mean term Kx, which is absent in the spectral initializer

matrix. As we will show in Section 4, for the same pre-

processing function T , Estimator 1 is able to outperform

spectral initializers for systems with structured measurement

matrices A. For large i.i.d. Gaussian measurement matrices,

there is no particular correlation structure to exploit and

LSPEs perform on par with spectral initializers.
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3.2. Phase Retrieval with Exponential Preprocessing

To demonstrate the flexibility and generality of our frame-

work, we now design an LSPE with an exponential prepro-

cessing function for complex-valued phase retrieval. We

derive the LSPE under the following assumptions.

Assumptions 2. Let H = C. Assume square absolute mea-

surements f(z) = |z|2 and the exponential preprocessing

function T (y) = exp(−γy) with γ > 0, i.e., we consider

T (y) = exp
(
−γ(|z|2 + ey)

)
and z = Ax+ ez,

where the exponential function is applied element-wise to

vectors. The remaining assumptions are the same as in

Assumptions 1.

We now derive the following LSPE called LSPE-Exp; the

derivation of this spectral estimator is given in Appendix H.

Estimator 2 (LSPE-Exp). Let Assumptions 2 hold. Then,

the spectral estimation matrix is given by

DExp
y = Kx +

M∑

m=1

tmVm, (14)

where Kx = σ2
xIN , the vector t ∈ R

M is given by the

solution to the linear system Tt = T (y)− T (y) with

T (y) = pγ ⊘ qγ

T = (pγp
T
γ )⊙exp(γ2Cey )⊘(qγq

T
γ − γ2Cz ⊙C∗

z)

− (pγp
T
γ )⊘ (qγq

T
γ )

Vm = − γσ4
x[pγ ]m

(γ[Cz]m,m + 1)2
amaHm, m = 1, . . . ,M,

where we use the following definitions:

qγ = γ diag(Cz) + 1M×1

pγ = exp
(
−γēy + γ2 1

2
diag(Cey )

)

Cz = σ2
xAAH +Cez .

The spectral estimate x̂ is given by the (scaled) leading

eigenvector of D
Exp
y in (14). Furthermore, the S-MSE of this

estimator is given by Theorem 2.

At first sight, the choice of the exponential preprocessing

function used in Estimator 2 seems to be arbitrary. We em-

phasize, however, that this particular function is inspired

by the asymptotically-optimal preprocessing function for

properly-normalized Gaussian measurement ensembles pro-

posed in (Mondelli & Montanari, 2017) which is given by

Topt(y) =
y − 1

y +
√
δ − 1

. (15)

As it turns out, we can scale, negate, and shift the exponen-

tial preprocessing function T (y) = exp(−γy) to make it

take a similar shape as the function in (15). More concretely,

exponential preprocessing as well as Topt(y) enables one to

attenuate the effect of measurements with large magnitude,

which is also the idea underlying the class of orthogonal

spectral initializers, as proposed in (Chen et al., 2015; Wang

et al., 2017a;b), that perform well in practice.

4. Numerical Results

We now compare the performance of our LSPEs against

existing spectral initializers proposed for phase retrieval

on synthetic and real image data. All our results use the

spectral initializers and experimental setups provided by

PhasePack (Chandra et al., 2017).

4.1. Impact of Measurement Ensemble

We start by comparing the normalized MSE (N-MSE) de-

fined as (Chandra et al., 2017)

N-MSE =
minα∈H ‖x− αx̂‖2

‖x‖2

for a range of spectral initializers on different measurement

ensembles. Specifically, we focus on the complex-valued

case and consider (i) an i.i.d. Gaussian measurement ma-

trix with signal dimension N = 16, (ii) an i.i.d. Gaussian

measurement matrix with N = 256, and (iii) the structured

“transmission matrix” used for image recovery through mul-

tiple scattering media as detailed in (Metzler et al., 2017).

We vary the oversampling ratio δ = M/N and compare the

N-MSE of the proposed complex-valued LSPEs, LSPE-C

(Estimator 1) and LSPE-Exp (Estimator 2 with γ = 0.001),

to the following spectral initializers: the original spectral ini-

tializer (Netrapalli et al., 2013; Candès et al., 2015a) called

“spectral,” truncated spectral initializer (Chen & Candès,

2015) called “truncated,” weighted spectral initializer (Wang

et al., 2017b) called “weighted,” amplitude spectral initial-

izer (Wang et al., 2017a) called “amplitude,” orthogonal

spectral initializer (Chen et al., 2015) called “orthogonal,”

and the asymptotically-optimal spectral initializer (Mondelli

& Montanari, 2017) called “optimal.” For the following syn-

thetic experiments, we generate the signals to be recovered

according to Assumptions 1 and Assumptions 2 for LSPE-C

and LSPE-Exp, respectively.

Figure 1a shows that the proposed LSPEs significantly out-

perform all existing spectral initializers for small problem

dimensions with Gaussian measurements; this improvement

is even more pronounced for large oversampling ratios. The

reason is that since we randomly generate a low-dimensional

sensing matrix, the system will exhibit strong correlations

among the measurements that can be exploited by LSPEs.

For larger dimensions with Gaussian measurements, we see

in Figure 1b that the proposed LSPEs do not provide an

advantage over other methods. In fact, only LSPE-Exp is
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(a) Gaussian measurements, N = 16.
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(b) Gaussian measurements, N = 256.

0 10 20 30 40 50 60 70
10

−3

10
−2

10
−1

10
0

10
1

oversampling ratio: δ = M/N

n
o

rm
al

iz
ed

M
S

E
:

N
-M

S
E

spectral
truncated
amplitude
weighted
optimal
orthogonal
LSPE-C
LSPE-Exp

(c) Transmission measurements, N = 256.

Figure 1: Comparison of normalized MSE (N-MSE) as a function of the oversampling ratio δ = M/N for complex-valued

phase retrieval with different spectral initializers and with different measurement matrices. The proposed LSPEs perform

well on low-dimensional problems, for structured measurement ensembles, or at high oversampling ratios δ.

able to perform as well as the orthogonal spectral initial-

izer, which achieves the best performance in this scenario.

This behavior can be attributed to the facts that (i) for large

random matrices there is no particular correlation structure

among the measurements to exploit and (ii) ignoring mea-

surements associated to large values in ym is increasingly

important. For structured measurements, as it is the case for

the transmission matrix from (Metzler et al., 2017), we see

in Figure 1c that LSPEs significantly outperform existing

methods that are designed for random measurement ensem-

bles. In this scenario, exponential preprocessing does not

improve performance since correlations in the transmission

matrix are dominating the performance.

4.2. S-MSE Expressions and Approximation Error

We now validate our theoretical S-MSE expressions in The-

orem 2 and Proposition 1, and confirm the accuracy of the

EER bound given in Corollary 1. In the following exper-

iment, we set M = 8N and vary the dimension N from

8 to 64. For each pair (M,N), we randomly generate one

instance of an i.i.d. circularly symmetric complex Gaus-

sian measurement matrix and average the different errors

(S-MSE and EER) over 10, 000 Monte-Carlo trials. We con-

sider a noiseless setting and assume identity preprocessing,

i.e., T (y) = y. The signal vectors are generated accord-

ing to an i.i.d. circularly complex Gaussian random vector.

From Figure 2, we see that our analytical S-MSE expres-

sions for the LSPE-C and spectral initializers match their

empirical values. We furthermore see that the empirical EER

is only about 6 dB to 10 dB lower than our non-asymptotic

upper bound given in Corollary 1.

4.3. Real-World Image Recovery

We finally illustrate the efficacy of LSPEs in a more realistic

scenario. In particular, we show results for a real image

reconstruction task by using LSPEs and spectral initializers
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Figure 2: Comparison of the analytical and empirical spec-

tral MSE (S-MSE) and estimation error (EER) for LSPEs

and spectral initializers (SI) at oversampling ratio δ = 8.

Our analytical expressions in Theorem 2 and Proposition 1

match the empirical S-MSE; the upper bound in Corollary 1

accurately characterizes the empirical EER.

only, i.e., we are not using any additional phase retrieval al-

gorithm. Our goal is to recover a 16×16-pixel and a 40×40-

pixel image that was captured through a multiple scattering

media using the deterministic and highly-structured trans-

mission matrix as detailed in (Metzler et al., 2017). We

compare the proposed LSPEs to the same set of spectral

initializers as in Section 4.1. The signal priors are as in

Assumptions 1 (LSPE-C) and Assumptions 2 (LSPE-Exp).

Figures 3 and 4 show the recovered images along with the

N-MSE values. The proposed LSPEs (often significantly)

outperform all spectral initializers in terms of visual quality

as well as the N-MSE. This result confirms the observations

made in Figure 1c that LSPEs outperform existing spec-

tral initializers for structured measurement matrices. We

note that exponential preprocessing for LSPEs does not no-

ticeably improve the N-MSE (over LSPE-C) in this setting

since correlations in the transmission measurement matrix

are dominating the recovery performance.
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(a) original (b) amplitude
N-MSE = 0.4927

(c) optimal
N-MSE = 0.4833

(d) orthogonal
N-MSE = 0.6850

(e) spectral
N-MSE = 0.4764

(f) truncated
N-MSE = 0.4764

(g) weighted
N-MSE = 0.4797

(h) LSPE-C
N-MSE = 0.3377

(i) LSPE-Exp
N-MSE = 0.2928

Figure 3: Recovery of a 16× 16 image from with M = 5N
measurements captured through a scattering medium with-

out the use of a phase retrieval algorithm. LSPEs outper-

form all initializers for structured measurements.

5. Conclusions

We have proposed a novel class of estimators, called lin-

ear spectral estimators (LSPEs), which are suitable for the

recovery of signals from general nonlinear measurement

systems. We have developed nonasymptotic and determinis-

tic performance guarantees for LSPEs that provide accurate

bounds on the estimation error, especially for structured

or low-dimensional measurement systems. To demonstrate

the efficacy of LSPEs in practice, we have applied them to

complex-valued phase retrieval problems, in which LSPEs

can be used to compute accurate signal estimates or ini-

tialization vectors for other convex or nonconvex phase

retrieval algorithms. We have shown that properly prepro-

cessing the nonlinear measurements can further improve the

performance of LSPEs in practical scenarios. Our simula-

tions with synthetic and real data have shown that LSPEs are

able to significantly outperform existing spectral initializ-

ers, especially for low-dimensional problems, for structured

measurement matrices, or for large oversampling ratios.

There are many avenues for future work. First, one could

derive LSPEs for the asymptotically-optimal preprocess-

ing function in (15) or for other commonly used functions,

which may lead to further performance improvements. Sec-

ond, the proposed error analysis could be used to generate

improved measurement matrices. Third, an exploration of

LSPEs for other nonlinearities that arise in machine learning

and signal processing applications is left for future work.

(a) original (b) amplitude
N-MSE = 0.7010

(c) optimal
N-MSE = 0.5849

(d) orthogonal
N-MSE = 0.7028

(e) spectral
N-MSE = 0.7016

(f) truncated
N-MSE = 0.7020

(g) weighted
N-MSE = 0.7013

(h) LSPE-C
N-MSE = 0.4920

(i) LSPE-Exp
N-MSE = 0.4896

Figure 4: Recovery of a 40×40 image from with M = 10N
measurements captured through a scattering medium with-

out the use of a phase retrieval algorithm. LSPEs outper-

form all initializers for structured measurements.
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A. Proof of Theorem 1

The proof proceeds in two steps detailed as follows.

Mean Matrix We first compute the mean matrix W0.

Since (7) is a quadratic form, we can take the derivative

in W̃H
0 and set it to zero, i.e.,

d

dW̃H
0

E



∥∥∥∥∥W̃0 +

M∑

m=1

T (ym)W̃m − xxH

∥∥∥∥∥

2

F


= 0.

Basic matrix calculus yields

W̃0 = Kx −∑M
m=1

T (ym)W̃m (16)

with T (ym) = E[T (ym)] and Kx = E
[
xxH

]
.

Linear Estimation Matrix With (16) and the fact that (7)

is a quadratic form in the matrices Wm, m = 1, . . . ,M ,
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we take the derivatives in WH
m and setting them to zero:

d

dW̃H
m

E

[∥∥∥∥
M∑

m=1

(T (ym)−T (ym))W̃m−(xxH−Kx)

∥∥∥∥
2

F

]
=0.

By interchanging the derivative with expectation and with

basic manipulations, we obtain the following set of optimal-

ity conditions for Wm for m = 1, . . . ,M :

∑M
m′=1

W̃m′ E
[
(T (ym)− T (ym))(T (ym′)− T (ym′))

]

= E
[
(T (ym)− T (ym))(xxH −Kx)

]
. (17)

In compact matrix form, the above condition reads

(T⊗ IN×N )W = V, (18)

where we used the following shortcuts:

T = E
[
(T (y)− T (y))(T (y)− T (y))T

]

W = [W̃T
1 , . . . ,W̃

T
m, . . . ,W̃T

M ]T

Vm= E
[
(T (ym)−T (ym))(xxH−Kx)

]
,m = 1, . . . ,M

V = [VT
1 , . . . ,V

T
m, . . . ,VT

M ]T .

The condition in (18) can be solved for the estimation ma-

trices in W leading to W = (T−1 ⊗ IN×N )V, where we

require the matrix T to be full rank. To obtain the linear

spectral estimator matrix, we simplify as

Dy = Kx + ((T (y)− T (y))T ⊗ IN×N )W

= Kx +
∑M

m=1
tmVm,

where we define the vector t = T−1(T (y)− T (y)).

B. Proof of Theorem 2

To compute the spectral MSE in (5), we simplify

S-MSE = E

[∥∥∥
∑M

m=1
tmVm − (xxH −Kx)

∥∥∥
2

F

]
.

We expand this expression into four terms

E

[∥∥∥
∑M

m=1
tmVm − (xxH −Kx)

∥∥∥
2

F

]

= E

[∥∥∥
∑M

m=1
tmVm

∥∥∥
2

F

]
(19)

+ E

[∥∥xxH −Kx

∥∥2
F

]

− E

[
tr
(
(xxH −Kx)

H
(∑M

m=1
tmVm

))]
(20)

− E

[
tr

((∑M
m=1

tmVm

)H
(xxH −Kx)

)]
(21)

and simplify each expression individually. We start with (19)

and use the fact that

∑M
m=1

tmVm = ((T (y)− T (y))TT−1 ⊗ IN×N )V

and rewrite the quantity within expectation as follows:

VH(T−1(T (y)− T (y))⊗ IN×N )

× ((T (y)− T (y))TT−1 ⊗ IN×N )V

= VH((T−1(T (y)− T (y))

× (T (y)− T (y))TT−1)⊗ IN×N )V.

We now evaluate the expectation which leads to

E

[∥∥∥
∑M

m=1
tmVm

∥∥∥
2

F

]
= tr

(
VH(T−1 ⊗ IN×N )V

)

or, equivalently, to

E

[∥∥∥
∑M

m=1
tmVm

∥∥∥
2

F

]
=

M∑

m=1

M∑

m′=1

[T−1]m,m′ tr
(
VH

mVm′

)
.

We next will simplify (20). Recall that

tm =
∑M

m′=1
[T−1]m,m′(T (ym′)− T (ym′)),

which enables us to write (20) as

E

[
tr
(
(xxH −Kx)

H
(∑M

m=1
tmVm

))]

=
∑M

m=1

∑M
m′=1

[T−1]m,m′

× tr
(
E
[
(xxH −Kx)

H(T (ym′)− T (ym′))
]
Vm

)

=
∑M

m=1

∑M
m′=1

[T−1]m,m′ tr
(
VH

m′Vm

)
. (22)

Seeing as (21) is the Hermitian conjugate of (20), we have

E

[
tr

((∑M
m=1

tmVm

)H
(xxH −Kx)

)]

=
∑M

m=1

∑M
m′=1

[T−1]∗m,m′ tr
(
VH

mVm′

)
. (23)

Combining all these terms yield the spectral MSE

S-MSE = E

[∥∥∥
∑M

m=1
tmVm − (xxH −Kx)

∥∥∥
2

F

]

= CxxH − tr
(
VH(T−1 ⊗ IN×N )V

)
.

with CxxH = E

[∥∥xxH −Kx

∥∥2
F

]
.

C. Proof of Corollary 1

We bound the estimation error with the spectral MSE of the

LSPE as follows. For a given instance, we have

‖x̂x̂H − xxH‖2F = ‖x̂x̂H −Dy +Dy − xxH‖2F
(a)

≤ 2‖x̂x̂H −Dy‖2F + 2‖Dy − xxH‖2F
(b)

≤ 4‖Dy − xxH‖2F ,
where (a) follows from the squared triangle inequality and

(b) because x̂x̂H is the best rank-1 approximation of Dy.

Averaging over all instances finally yields

E
[
‖x̂x̂H − xxH‖2F

]
≤ 4 S-MSELSPE.
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D. Proof of Proposition 1

Our goal is to first evaluate the S-MSE of the unnormalized

spectral initializer in (2)

US-MSESI = E



∥∥∥∥∥β

M∑

m=1

T (ym)amaHm − xxH

∥∥∥∥∥

2

F




and then minimize the resulting expression over the param-

eter β. The unnormalized spectral MSE can be expanded

into the following form:

|β|2
M∑

m=1

M∑

m′=1

E[T (ym)T (ym′)] tr(amaHmam′aHm′)

− β∗

M∑

m=1

tr
(
amaHm E

[
T (ym)xxH

])

− β

M∑

m=1

tr
(
E
[
xxHT (ym)

]
amaHm

)

+ E
[
‖xxH‖2F

]
.

By using the definitions

Ṽm = E
[
T (ym)xxH

]
,m = 1, . . . ,M,

T̃ = E
[
T (y)T (y)T

]
,

we can simplify the above expression into

|β|2
M∑

m=1

M∑

m′=1

T̃m,m′ |aHmam′ |2 + E
[
‖xxH‖2F

]

− β∗

M∑

m=1

tr
(
amaHmṼm

)
− β

M∑

m=1

tr
(
ṼH

mamaHm

)
. (24)

We can now find the optimal parameter for β by taking the

derivative with respect to β∗ and setting the expression to

zero. The resulting optimal scaling parameter is given by

β̂ =

∑M
m=1

tr
(
amaHmṼm

)

∑M
m=1

∑M
m′=1

T̃m,m′ |aHmam′ |2
.

We now plug in β̂ into the expression (24), which yields

S-MSESI =

∣∣∣∣∣∣

∑M
m=1

tr
(
amaHmṼm

)

∑M
m=1

∑M
m′=1

T̃m,m′ |aHmam′ |2

∣∣∣∣∣∣

2

(25)

×
M∑

m=1

M∑

m′=1

T̃m,m′ |aHmam′ |2

−
∑M

m=1
tr
(
ṼH

mamaHm

)

∑M
m=1

∑M
m′=1

T̃ ∗
m,m′ |aHmam′ |2

M∑

m=1

tr
(
amaHmṼm

)

−
∑M

m=1
tr
(
amaHmṼm

)

∑M
m=1

∑M
m′=1

T̃m,m′ |aHmam′ |2
M∑

m=1

tr
(
ṼH

mamaHm

)

+ E
[
‖xxH‖2F

]
.

This expression can be simplified further to obtain:

S-MSESI =

∣∣∣
∑M

m=1
tr
(
amaHmṼm

)∣∣∣
2

∑M
m=1

∑M
m′=1

T̃ ∗
m,m′ |aHmam′ |2

−

∣∣∣
∑M

m=1
tr
(
amaHmṼm

)∣∣∣
2

∑M
m=1

∑M
m′=1

T̃ ∗
m,m′ |aHmam′ |2

−

∣∣∣
∑M

m=1
tr
(
amaHmṼm

)∣∣∣
2

∑M
m=1

∑M
m′=1

T̃m,m′ |aHmam′ |2
+ E

[
‖xxH‖2F

]
,

= RxxH −

∣∣∣
∑M

m=1
aHmṼmam

∣∣∣
2

∑M
m=1

∑M
m′=1

T̃m,m′ |aHmam′ |2
,

which is what we wanted to show in (12).

E. Real-Valued Phase Retrieval

We now focus on the case where the signal vector x to be re-

covered and the measurement matrix A are both real-valued.

We derive the LSPE by using the following assumptions,

which are reasonable for phase retrieval problems.

Assumptions 3. Let H = R. Assume square measure-

ments f(z) = z2 and the identity preprocessing function

T (y) = y. Assume that the signal vector x ∈ R
N is i.i.d.

zero-mean Gaussian distributed with covariance matrix

Cx = σ2
xIN , i.e., x ∼ N (0N×1, σ

2
xIN ); the parameter σ2

x

denotes the signal variance. Assume that the signal noise

vector ez is zero-mean Gaussian with covariance matrix

Cez , i.e., ez ∼ N (0M×1,Cez ), and the measurement noise

vector ey is Gaussian with mean ēy and covariance matrix

Cey , i.e., ey ∼ N (ēy,Cey ). Furthermore assume that x,

ez , and ey are independent.

Under these assumptions, we can derive the following LSPE

which we call LSPE-R; the detailed derivations of this spec-

tral estimator are given in Appendix F.

Estimator 3 (LSPE-R). Let Assumptions 3 hold. Then, the

spectral estimation matrix is given by

DR

y = Kx +

M∑

m=1

tmVm, (26)

where Kx = σ2
xIN , the vector t ∈ R

M is given by the

solution to the linear system Tt = y − y with

y = diag(Cz) + ēy
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Cz = σ2
xAAT +Cez

T = 2Cz ⊙Cz +Cey

and Vm = 2σ4
xamaTm, m = 1, . . . ,M . The spectral esti-

mate x̂ is given by the (scaled) leading eigenvector of DR
y

in (26). Furthermore, the S-MSE is given by Theorem 2.

F. Derivation of Estimator 3

We now use Theorem 1 to derive Estimator 3 under Assump-

tions 3. To this end, we require the three quantities: T (y),
T, and Vm, m = 1, . . . ,M , which we derive separately.

Computing T (y) To compute the real-valued vector

T (y) = E[T (y)] , (27)

we need the following result on the bivariate folded normal

distribution developed in (Kan & Robotti, 2017, Sec. 3.1).

Lemma 1. Let [u1, u2] ∼ N (µ,Σ) be a pair of real-valued

jointly Gaussian random variables with covariance matrix

Σ =

[
σ2
1 σ2

1,2

σ2
1,2 σ2

2

]
.

Then, for m = 1, 2, the pair of random variables (ν1, ν2)
with ν1 = u2

1 and ν2 = u2
2 follows the bivariate folded

normal distribution with the following (centered) moments:

ν̄m = E
[
u2
m

]
= σ2

m + µ2
m

[Cν ]1,2 = E[(ν1 − ν̄1)(ν2 − ν̄2)]

= 4µ1µ2σ
2
1,2 + 2σ4

1,2

[Cν ]1,1 = E
[
(ν1 − ν̄1)

2
]
= 2σ4

1 + 4µ2
1σ

2
1 .

Let z̄ = E[z] denote the mean vector and Cz = ACxA
H +

Cez = σ2
xAAH + Cez the covariance matrix of the

“phased” measurements z = Ax + ez . Then, by defin-

ing σ2
m = [Cz]m,m, we can compute the mth entry T (ym)

using Lemma 1 as follows:

T (ym) = ȳm = E
[
|zm|2 + ny

m

]
= σ2

m + ēym. (28)

Hence, in compact vector notation we have

T (y) = ȳ = diag(Cz) + ēy. (29)

Computing T To compute the real-valued matrix

T = E
[
(T (y)− T (y))(T (y)− T (y))T

]

= E
[
T (y)T (y)T

]
− T (y)T (y)T , (30)

we only need to compute the matrix E
[
T (y)T (y)T

]
as the

vector T (y) was computed in (29). We compute this matrix

entry-wise as

Tm,m′ = E
[
(T (ym)− T (ym))(T (ym′)− T (ym′))

]

= E[ymy∗m′ ]− ȳmȳ∗m′

(a)
= E

[
(|zm|2 + eym)(|zm′ |2 + eym′)

]

− (σ2
m + ēym)(σ2

m′ + ēym′)

= E
[
|zm|2|zm′ |2

]
− σ2

m′σ2
m + [Cey ]m,m′ ,

where (a) follows from (28). The only unknown term in

the above expression is E
[
|zm|2|zm′ |2

]
. This term is the

second moment of the random vector [|zm|2, |zm′ |2], which

follows a bivariate folded normal distribution. For m 6= m′,

Lemma 1 yields

E
[
|zm|2|zm′ |2

]
= σ2

mσ2
m′ + 2σ4

m,m′

with σ2
m,m′ = [Cz]m,m′ . For m = m′, Lemma 1 yields

E
[
|ym|2

]
= E

[
|zm|4

]
= 3σ4

m.

Hence, we have

Tm,m′ = [Cey ]m,m′ +

{
2σ4

m,m′ if m 6= m′

2σ4
m if m = m′,

which can be written in compact matrix form as

T = 2Cz ⊙Cz +Cey .

Computing Vm To compute the matrices

Vm = E
[
(T (ym)− T (ym))(xxH −Kx)

]

= E
[
T (ym)xxH

]
− T (ym)Kx (31)

for m = 1, . . . ,M , we only need to compute the complex-

valued matrix E
[
T (ym)xxH

]
as the two other quantities

Kx = E
[
xxH

]
and T (ym) are known. We compute this

matrix entry-wise as

[Vm]n,n′ = E
[
(T (ym)− T (ym))xnx

∗
n′

]

= E[ymxnx
∗
n′ ]− ȳm[Cx]n,n′ .

Since ȳm is known from (28), we focus on computing

E[ymxnx
∗
n′ ]

= E

[(( N∑

j=1

A∗
m,jx

∗
j + ezm

)

×
( N∑

j′=1

Am,j′xj′+ezm

)
+ eym

)
xnx

∗
n′

]

= E

[( N∑

j=1

A∗
m,jx

∗
j

N∑

j′=1

Am,j′xj′

)
xnx

∗
n′

]

+ E
[
|ezm|2xnx

∗
n′

]
+ E[eymxnx

∗
n′ ]

=
N∑

j=1

A∗
m,j

N∑

j′=1

Am,j′ E
[
x∗
jxj′xnx

∗
n′

]
(32)
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+ ([Cez ]m,m + ēym)[Cx]n,n′ .

The only unknown in the above expression is the double

summation in (32). Since we assumed that the entries of the

signal vector x are i.i.d., most of the terms in this summation

are zero. For n 6= n′, there are only two nonzero terms,

corresponding to the cases of (j, j′) = (n, n′) and (j, j′) =
(n′, n). Thus, for n 6= n′ we have

N∑

j=1

A∗
m,j

N∑

j′=1

Am,j′ E
[
x∗
jxj′xnx

∗
n′

]

= 2A∗
m,nAm,n′ E

[
|xn|2|xn′ |2

]

(b)
= 2A∗

m,nAm,n′ [Cx]n,n[Cx]n′,n′ , (33)

where (b) follows from Lemma 1. For n = n′, we have

N∑

j=1

A∗
m,j

N∑

j′=1

Am,j′ E
[
x∗
jxj′xnx

∗
n

]

= |Am,n|2 E
[
|xn|4

]
+

N∑

j 6=n,j=1

|Am,j |2 E
[
|xj |2|xn|2

]

(c)
= 3|Am,n|2[Cx]

2
n,n +

N∑

j 6=n,j=1

|Am,j |2[Cx]j,j [Cx]n,n

= 2|Am,n|2[Cx]
2
n,n +

N∑

j=1

|Am,j |2[Cx]j,j [Cx]n,n.

As for (33), (c) follows from Lemma 1. By combining the

above results, we have

Vm =2CH
x amaHmCx + (aHmCxam)(CH

x ⊙ I)

+ ([Cez ]m,m − σ2
m)Cx = 2σ4

xamaHm,

where aHm denotes the mth row of the matrix A.

G. Derivation of Estimator 1

We now use Theorem 1 to derive Estimator 1 under Assump-

tions 1. To this end, we require the three quantities: T (y),
T, and Vm, m = 1, . . . ,M , which we derive separately.

Computing T (y) To compute the real-valued vector

T (y) = ȳ in (27), we need the following definitions. Let

z̄ = E[z] denote the mean vector and Cz = ACxA
H +

Cez = σ2
xAAH + Cez the covariance matrix of the

“phased” measurements z = Ax+ez . Then, using Lemma 1

with the definitions z̄ and Cz, we have

ȳm = E
[
|zm|2 + ēym

]
= E

[
|zm,R|2 + |zm,I |2 + ēym

]

= σ2
m + ēym, (34)

where we have used the definition σ2
m = [Cz]m,m. Hence,

in compact vector notation we have

T (y) = ȳ = diag(Cz) + ēy.

Computing T To compute the real-valued matrix T

in (30), we will frequently use the following result. Since

the vector z is a complex circularly-symmetric jointly Gaus-

sian vector, we can extract the covariance matrices of the

real and imaginary parts separately as:

E
[
zIz

H
I

] (a)
= E

[
zRzHR

]
=

1

2
ℜ{Cz} =

1

2
Cz,R (35)

E
[
zRzHI

]
= −E

[
zIz

H
R

]
=

1

2
ℑ{Cz} =

1

2
Cz,I , (36)

where (a) follows from circular symmetry of the random

vector x. We are now ready to compute the individual

entries of E
[
T (y)T (y)T

]
as

Tm,m′ = E
[
(T (ym)− T (ym))(T (ym′)− T (ym′))

]

= E[(ym − ȳm)(ym′ − ȳm′)∗]

= E[ymy∗m′ ]− ȳmȳ∗m′ .

The quantity ȳm is given by (34). Hence, we now compute

E[ymy∗m′ ]

= E
[
(|zm|2 + eym)(|z′m|2 + eym′)

∗
]

= E
[(
|zm,R|2 + |zm,I |2

) (
|zm′,R|2 + |zm′,I |2

)]

+ [Cey ]m,m

= 2E
[
|zm,R|2|zm′,R|2

]
+ 2E

[
|zm,R|2|zm′,I |2

]

+ [Cey ]m,m.

The first two terms above are a second moment of the vari-

ables [|zm,R|2, |zm′,R|2] and [|zm,R|2, |zm′,I |2], which fol-

low a bivariate folded normal distributions. We first fo-

cus on [|zm,R|2, |zm′,R|2]. With Lemma 1, we can cal-

culate the moments using the covariance E
[
zRzHR

]
given

in (35). To this end, define σ2
m,m′,R = [Cz,R]m,m′ and

σ2
m,R = [Cz,R]m,m. Thus, we have

E
[
|zm,R|2|zm′,R|2

]
=

{
σ2
m,R

2

σ2

m′,R

2
+

σ4

m,m′,R

2
, m 6= m′

3
σ4
m,R

4
, m = m′.

Analogously, we can compute E
[
zRzHI

]
in (36) from the

covariance matrix of [|zm,R|2, |zm′,I |2], with σ2
m,m′,I =

[Cz,I ]m,m′ and noting that σ2
m,I = [Cz,I ]m,m = 0 as

E
[
|zm,R|2|zm′,I |2

]
=

{
σ2
m,R

2

σ2

m′,R

2
+ 2

σ4

m,m′,I

4
, m 6= m′

3
σ4
m,R

4
, m = m′.

By combining the above results, we have

Tm,m′ =

{
σ2
m,Rσ2

m′,R + σ4
m,m′,R + σ4

m,m′,I , m 6= m′

2σ4
m,R, m = m′,

+ [Cey ]m,m′ − ȳmȳ∗m′

= [Cey ]m,m′ +

{
σ4
m,m′,R + σ4

m,m′,I , m 6= m′

σ4
m,R, m = m′,

which can be written in matrix form as

T = Cz ⊙C∗
z +Cey .



Linear Spectral Estimators and an Application to Phase Retrieval

Computing Vm To compute the matrices Vm, m =
1, . . . ,M , in (31), we need the complex-valued matrix

E
[
T (ym)xxH

]
. We compute this matrix entry-wise as

[Vm]n,n′ = E
[
(T (ym)− T (ym))xnx

∗
n′

]

= E[ymxnx
∗
n′ ]− ȳm[Cx]n,n′ .

Since ȳm is given by (34), we only need to compute

E[ymxnx
∗
n′ ]

= E

[(( N∑

j=1

A∗
m,jx

∗
j + ez∗m

)

×
( N∑

j′=1

Am,j′xj′ + ezm

)
+ eym

)
xnx

∗
n′

]

=
N∑

j=1

A∗
m,j

N∑

j′=1

Am,j′ E
[
x∗
jxj′xnx

∗
n′

]

+ E
[
|ezm|2xnx

∗
n′

]
+ E[eymxnx

∗
n′ ]

=

N∑

j=1

A∗
m,j

N∑

j′=1

Am,j′ E
[
x∗
jxj′xnx

∗
n′

]
(37)

+ ([Cez ]m,m + ēym)[Cx]n,n′ .

We will first simplify the term

N∑

j=1

A∗
m,j

N∑

j′=1

Am,j′ E
[
x∗
jxj′xnx

∗
n′

]
.

Since we assumed that the signal vector x has i.i.d. zero-

mean entries, most of the terms in this summation are zero.

For n 6= n′, there is only one non-zero term for (j, j′) =
(n, n′). Thus, for n 6= n′ we have

N∑

j=1

A∗
m,j

N∑

j′=1

Am,j′ E
[
x∗
jxj′xnx

∗
n′

]

= A∗
m,nAm,n′ [Cx]n,n[Cx]n′,n′ ,

since the term that corresponds to (j, j′) = (n′, n), i.e.

A∗
m,n′Am,n E[x

∗
n′x∗

n′ ]E[xnxn], is zero.

Next, for n = n′, we have

N∑

j=1

A∗
m,j

N∑

j′=1

Am,j′ E
[
x∗
jxj′xnx

∗
n′

]

= |Am,n|2 E
[
|xn|4

]
+

N∑

j 6=k,j=1

|Am,j |2 E
[
|xj |2|xn|2

]

= |Am,n|2 E
[
|xn,R|4

]
+ |Am,n|2 E

[
|xn,I |4

]

+ 2|Am,n|2 E
[
|xn,R|2|xn,I |2

]

+

N∑

j 6=n,j=1

|Am,j |2

× E
[
(|xj,R|2 + |xj,I |2)(|xn,R|2 + |xn,I |2)

]

(a)
= 2|Am,n|2 E

[
|xn,R|4

]

+ 2

N∑

j=1

|Am,j |2 E
[
|xj,R|2|xn,I |2

]

+ 2

N∑

j 6=n,j=1

|Am,j |2 E
[
|xj,R|2|xn,R|2

]

(b)
= |Am,n|2[Cx]

2
n,n +

N∑

j=1

|Am,j |2[Cx]j,j [Cx]n,n,

where (a) follows from circular symmetry of x and (b) from

Lemma 1. By combining the above results, we have

Vm = CH
x amaHmCx + (aHmCxam)(CH

x ⊙ I)

+ ([Cez ]m,m − σ2
m)Cx = σ4

xamaHm.

H. Derivation of Estimator 2

We now use Theorem 1 to derive Estimator 2 under Assump-

tions 2. To this end, we require the three quantities: T (y),
T, and Vm, m = 1, . . . ,M , which we derive separately.

Computing T (y) To derive an expression for T (y)
in (27), we need the following two results.

Lemma 2. Let u ∼ CN (0M×1,Σ) be a complex-valued

circularly-symmetric jointly Gaussian random vector with

positive definite covariance matrix Σ ∈ C
M×M . Then,

for the random variable ν = exp(−uHGu) with positive

definite G ∈ C
M×M and G + Σ

−1 positive definite, we

have the following result:

E[ν] =
1

|GΣ+ IM | .

Proof. We first expand the expected value into

E[ν] = E
[
exp(−uHGu)

]
=

∫

CM

exp(−uHGu)
1

πM |Σ| exp(−uH
Σ
−1u)du,

where |Σ| > 0 is the determinant of Σ. We can now simplify

the above expression as follows:

∫

CM

exp(−uHGu)
1

πM |Σ| exp(−uH
Σ
−1u)du

=

∫

CM

1

πM |Σ| exp
(
− uH(G+ Σ

−1)u
)
du

=
πM |(G+ Σ

−1)−1|
πM |Σ|

1

πM |(G+ Σ−1)−1|

×
∫

CM

exp
(
− uH(G+ Σ

−1)u
)
du
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=
|(G+ Σ

−1)−1|
|Σ| =

1

|G+ Σ−1||Σ| =
1

|GΣ+ I| ,

where we also required that G+Σ
−1 is positive definite. �

Lemma 3. Let u ∼ N (ū,Σ) be a real-valued Gaussian

random vector with mean ū and covariance Σ, and γ ∈ R
N

be a given vector. Then, we have

E
[
exp(−γ

Tu)
]
= exp

(
−γ

T ū+ 1

2
γ
T
Σγ
)
.

Proof. The proof is an immediate consequence of the mo-

ment generating function of a Gaussian random vector. �

By considering Lemma 2 and Lemma 3 for scalar random

variables, the mth entry of the preprocessed phaseless mea-

surement is given by

T (ym) = E[T (ym)] = E
[
exp(−γ|zm|2 − γ[ey]m)

]

=
1

γ[Cz]m,m + 1
exp
(
−γ[ēy]m + 1

2
γ2[Cey ]m,m

)
.

We define the following auxiliary vectors

qγ = γ diag(Cz) + 1M×1 (38)

pγ = exp
(
−γēy + 1

2
γ2 diag(Cey )

)
, (39)

which enable us to rewrite the above expression in compact

vector form as

T (y) = pγ ⊘ qγ .

Computing T To compute the matrix T in (30), we only

need to compute E
[
T (y)T (y)T

]
, which we will compute

entry-wise and in two separate steps. Concretely, we have

E[T (ym)T (ym′)] = E
[
exp(−γ(|zm|2 + |zm′ |2))

]

× E[exp(−γ([ey]m + [ey]m′))],

where we compute both expected values separately. In the

first step, we compute

E
[
exp(−γ(|zm|2 + |zm′ |2))

]
= E

[
exp(−uHGu))

]
,

with u = [zm, zm′ ]T and G = I2γ. By invoking Lemma 2

with [Σ]m,m′ = [Cz]m,m′ , we obtain

E
[
exp(−γ(|zm|2 + |zm′ |2))

]
=

1

|γΣ+ I2|

=
1

(γ[Cz]m,m + 1)(γ[Cz]m′,m′ + 1)− γ2|[Cz]m,m′ |2 .

With the definition of qγ in (38), we can rewrite the above

expression in vector form as

E
[
exp(−γ|z|2) exp(−γ|z|2)T

]

= 1M×M ⊘ (qγq
T
γ − γ2Cz ⊙C∗

z).

In the second step, we compute

E[exp(−γ([ey]m + [ey]m′))] = E
[
exp(−γ

Tu)
]

with u = [[ey]m, [ey]m′ ]T and γ
T = [γ, γ]. By invoking

Lemma 3 with mean ū = [̄[ey]m, [ēy]m′ ] and covariance Σ

given by the entries of the covariance matrix Cey associated

to the indices m and m′, we obtain

E[exp(−γ([ey]m + [ey]m′))] = exp(−γ([ēy]m + [ēy]m′))

× exp( 1
2
γ2([Cey ]m,m + [Cey ]m′,m′ + 2[Cey ]m,m′)).

With the definition of pγ in (39), we can rewrite the above

expression in vector form as

E
[
exp(−γey) exp(−γey)T

]
= (pγp

T
γ )⊙ exp(γ2Cey )

We furthermore have

T (y)T (y)T = (pγp
T
γ )⊘ (qγq

T
γ ).

By combining the two steps with the above results, we have

T =(pγp
T
γ )⊙

(
exp(γ2Cey )⊘ (qγq

T
γ − γ2Cz ⊙C∗

z)

− 1M×M ⊘ (qγq
T
γ )
)
.

Computing Vm To compute the matrices Vm, m =
1, . . . ,M , in (31), we only need E

[
T (ym)xxH

]
which we

will compute entry-wise and in two steps. We have

E[T (ym)xnx
∗
n′ ] = E

[
exp(−γ|aHmx+ [ez]m|2)xnx

∗
n′

]

× E[exp(−γ[ey]m)] ,

where we next compute both expected values separately.

As a first step, we use direct integration to compute the

following expected value:

E
[
exp(−γ|aHmx+ [ez]m|2)xnx

∗
n′

]
=

∫

CN+1

exp(−γ|aHmx+ [ez]m|2)

× 1

(πσ2
x)

N
exp

(
−‖x‖2

σ2
x

)

× 1

πσ2
n

exp

(
−|[ez]m|2

σ2
n

)
xnx

∗
n′dxd[ez]m.

We define the following auxiliary quantities:

ãHm = [aHm, 1 ]

x̃T = [xT , [ez]m ]

Cx̃ =

[
σ2
xIN 0N×1

01×N σ2
m

]

K̃−1 = γãmãHm +C−1

x̃ ,
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where σ2
m = E

[
|[ez]m|2

]
= [Cnz ]m,m. We now derive the

above expectation in compact form as

E
[
exp(−γ|ãHmx̃|2)x̃nx̃

∗
n′

]
=

=
1

(πσ2
x)

N

1

πσ2
n

∫

CN+1

exp(−γ|ãH x̃|2− x̃HC−1

x̃ x̃)x̃nx̃
∗
n′dx̃

=
1

|πCx̃|

∫

CN+1

exp(−x̃H(γãmãHm +C−1

x̃ )x̃)x̃nx̃
∗
n′dx̃

=
1

|πCx̃|

∫

CN+1

exp(−x̃HK̃−1x̃)x̃nx̃
∗
n′dx̃,

where n = 1, . . . , N+1, n′ = 1, . . . , N+1. We can further

rewrite this expression as

1

|πCx̃|

∫

CN+1

exp(−x̃HK̃−1x̃)x̃nx̃
∗
n′dx̃

=
|πK̃|

|πK̃||πCx̃|

∫

CN+1

exp(−x̃HK̃−1x̃)x̃nx̃
∗
n′dx̃.

It is now key to realize that

1

|πK̃|

∫

CN+1

exp(−x̃HK̃−1x̃)x̃nx̃
∗
n′dx̃

= E[x̃nx̃
∗
n′ ] = [K̃]n,n′

and hence we have

E
[
exp(−γ|ãHmx̃|2)x̃nx̃

∗
n′

]

=
|K̃|
|Cx̃|

[K̃]n,n′ =
1

|K̃−1||Cx̃|
[K̃]n,n′

=
1

|γãmãHm +C−1

x̃ ||Cx̃|
[K̃]n,n′

=
1

|γãmãHmCx̃ + IN+1|
[K̃]n,n′ .

We can now use the matrix-determinant lemma to simplify

|γãmãHmCx̃ + IN+1| = γãHmCx̃ãm + 1

= γ(σ2
x‖am‖2 + σ2

m) + 1

and the matrix inversion lemma to simplify

K̃ = (γãmãHm +C−1

x̃ )−1

= Cx̃ − γCx̃ãmãHmCx̃

γãHmCx̃ãm + 1

= Cx̃ − γCx̃ãmãHmCx̃

γ(σ2
x‖am‖2 + σ2

m) + 1
.

By using these two simplifications, we have

E
[
exp(−γ|ãHmx̃|2)x̃nx̃

∗
n′

]

=
1

γ(σ2
x‖am‖2 + σ2

m) + 1

×
[
Cx̃ − γCx̃ãmãHmCx̃

γ(σ2
x‖am‖2 + σ2

m) + 1

]

n,n′

and since we are only interested in the upper N ×N part of

the matrix K̃, we have

E
[
exp(−γ|aHmx+ [ez]m|2)xnx

∗
n′

]

=
1

γ(σ2
x‖am‖2 + σ2

m) + 1

×
[
σ2
xIN − γσ4

xamaHm
γ(σ2

x‖am‖2 + σ2
m) + 1

]

n,n′

=
1

γ[Cz]m,m + 1

[
σ2
xIN − γσ4

xamaHm
γ[Cz]m,m + 1

]

n,n′

since for our assumptions

σ2
x‖am‖2 + σ2

m = [Cz]m,m.

In compact matrix form, we have

E
[
exp(−γ|aHmx+ [ez]m|2)xxH

]

=
1

γ[Cz]m,m + 1

(
σ2
xIN − γσ4

xamaHm
γ[Cz]m,m + 1

)
.

As a second step, we use definition (39) and obtain

E[exp(−γ[ey]m)] = [pγ ]m.

By combining both steps, we obtain

Vm =
[pγ ]m

γ[Cz]m,m + 1

(
σ2
xIN − γσ4

xamaHm
γ[Cz]m,m + 1

)

− [pγ ]m
γ[Cz]m,m + 1

σ2
xIN

= − γσ4
x[pγ ]m

(γ[Cz]m,m + 1)2
amaHm,

which is what we desperately wanted to show.
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