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Abstract. Emerging needs in data sensing applications result in the
usage of IoT networks. These networks are widely deployed and exploited
for various efficient data transfer. Wireless sensors can be incorporated in
IoT networks to reduce the deployment costs and maintenance costs. One
of the critical problems in sensor equipped IoT devices is to design an
energy efficient data aggregation method that processes the maximum
value query and distinct set query. Therefore, in this paper, we pro-
pose two approximate algorithms to process the maximum queries and
distinct-set queries in wireless sensor networks. These two algorithms are
based on uniform sampling. Solid theoretical proofs are offered which can
make sure the proposed algorithms can return correct query results with
a given probability. Simulation results show that both d-approximate
maximum value and J-approximate distinct set algorithms perform sig-
nificantly better than a simple distributed algorithm in terms of energy
consumption.

1 Introduction

With the ever-increasing population, problems of everyday sustainability have
become onerous. According to the survey by United Nations, 54% of the world’s
current population lives in urban areas. It is also expected that the percentage
increases to 66 by 2050. With this escalation in urban population, new chal-
lenges have emerged. These challenges include the constant power supply, public
safety, disaster prediction, and traffic maintenance. Smart City (SC) has become
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inevitable to address these challenges. Many cities like New York, Detroit,
Singapore, and London are working towards smart city development. These
cities have adopted for various technologies like smart parking services, intel-
ligent street light systems, sensors to redirect traffic, and water conservation.
Although these applications are designed for urban living, they should also be
incorporated in rural areas so that more resources could be preserved for future
generations. SC networks should collect data from all over the city to provide
better information. So, to collect such well spread data, they exploit various
sensor equipped devices in the city to collect data and interpret information at
the city level.

In today’s world, all the devices from smart home devices to intelligent
transport systems are well connected to the Internet. Such a network with well-
connected devices is called Internet-Of-Things (IoT). As the network grows, our
need for intelligent devices develop and so does the necessity to sense various
activities for the convenient living of people in the cities. Some of the applica-
tions like transportation, healthcare, and seamless internet connection widely use
IoT technologies. The main aim in the IoT is to reduce cost and provide faster
access to the data [12,16,21]. But the primary challenge is that the deployment
of IoT network is expensive as it requires a large number of sensing devices. Addi-
tionally, it is also important to collect data autonomously and provide intelligent
methods that address the issues of dynamic traffic, accommodating new services,
channel conditions, and ever-increasing user requirements.

Sensors are the building blocks for many IoT devices. Utilizing sensors as the
communication media helps us resolve many of the problems discussed earlier.
Previous researchers have studied the issues of routing, data management, link
scheduling, coverage and topology control in networks that include sensors for
communication [3-7,20,22,23]. Although using sensors reduces the communica-
tion cost, it raises the issue of processing cost. Sensors collect data for a more
extended period over vast networks. Therefore, we end up with massive data
being processed at a single sensor node and thus increasing the processing cost.
To address this issue, we need data aggregation at the sensor level. When data
is aggregated, we only send the aggregated partial data into the network. This
further raises the energy consumption issue as the aggregation costs much energy
and the sensors are not equipped with a huge amount of power supply. Accord-
ing to [18], cost of transmitting one bit of data using wireless link is equivalent
to the cost of executing 1000 instructions. So, reducing the data transmission is
the major way to decrease the energy consumption. Hence, it is critical to design
energy efficient data aggregation models for the sensor equipped IoT networks.

There are two kinds of aggregation queries: maximum query and distinct set
query. The maximum query is to calculate the maximum of all the readings in
the sensory data while the distinct set query is to calculate the unique values in
the sensory data. Both the queries are essential for a given network. For example,
while monitoring pollution, maximum query results in the most polluted area
along with its values. Similarly, distinct set query shows the pollution levels
in all the regions. Hence, the energy efficient data aggregation model should
accommodate both queries in its development.
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In practice, exact query results are not always necessary while approximate
query results may be acceptable for conservation [9]. Therefore, in this paper, we
propose an algorithm to process d-approximate maximum queries and §-distinct-
set queries in IoTs. This algorithm is based on uniform sampling. Proposed
algorithm returns the exact query results with probability not less than 1—9
where the value of § can be arbitrarily small.

The rest of the paper is organized as follows. Section2 defines the prob-
lem. Section3 provides the mathematical proof for the J-approximate aggre-
gation algorithms. Section4 explains the proposed §-approximate aggregation
algorithms. Section 5 shows the simulation results and the related works is dis-
cussed in Sect. 6. Section 7 concludes the paper.

2 Problem Definition

Let us assume that we have a sensor equipped IoT network with n sensor nodes
and sy; is the sensory value of node i at time ¢. Sy = {s¢1, 512, .., Stn} is used
to denote the set of all the sensory data in the network at time t. We use
Dis(S;) = {s4,s%,..., Sz:l\Dis(Stﬂ} to denote the distinct set of S, which con-
tains the distinct values in S;. For example, if we have Sy = {s¢1, St2, St3, St4, St5 }
and sy = 1,812 = 1,83 = 2,814 = 3,85 = 3; then the Dis(S;) = {1,2,3}. In
this paper, we assume that the data is distributed randomly in the network while
the spatial and temporal correlation of the sensory data is ignored.

In this paper, we focus on two aggregation operations on S;, which are mazx
and distinct set. The definition of the maximum value and distinct-set are as
follows:

1. The exact maximum value denoted by Max(S;) satisfies Max(S;) =
max{sy € S¢|l < i < n}.

2. The exact distinct-set of S; denoted by Dis(S;) satisfies that Vs € Sy, 3s? €
Dis(Sy),s = s and Vs, si € Dis(S;),z # y = s& # si.

A naive method that solves the max and distinct set aggregation problems
has three main steps.

1. Organize all the nodes in the network into an aggregation tree. The sink node
broadcasts the aggregation operation in the network.

2. All the nodes in the network submit their sensory data to the sink node along
the aggregation tree.

3. The intermediate nodes in the aggregation tree aggregate the partial results
during the data transmission.

However, the above method will lead to an immense communication cost and
computation cost for calculating exact aggregation result. Therefore, we propose
a d-approximate result for the above two aggregation operations. Let I; and I,
are the exact aggregation result and approximate aggregation result of S; at
time ¢t respectively. The definition of the d-estimator is as follows.
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Definition 1 (6-estimator). For any § (0 < § < 1), I, is called the §-estimator
of I if Pr(I, # I,) < 6,
According to Definition 1, the problem of computing J-approximate maximum
value and J-approximate distinct-set is defined as follows.
Input: (1) A sensor equipped IoT network with n nodes; (2) The sensory data
set Sy; (3) Aggregation operator Agg € {Max, DistinctSet} and § (0 <6 <1).
Output: J-approximate aggregation result of Agg.

3 Preliminaries

Let uy,ug, ..., Uy, denote m simple random samplings with replacement from Sy,
U(m) = {u1,u2,...,un} is used to denote a uniform sample of S; with sample
size m, then we have the following conclusions.

1. u; and u; are independent of each other for all 1 <7 # j < m.
2. Pr(u; =s45) = L forany 1 <i<m, 1<j<n.

n

Based on the above conclusions, we have the following theorem.

Lemma 1. For any given value x € Dis(Sy), we have

Pr(e ¢ U(m)) = (1 - =)™

where n, is the number of appearance of value x in S;.

Proof: Pr(z ¢ U(m)) = Pr(u1 # xAug # A...upy # x). Since all the samples
Uy, Uz, - . . , Uy are independent with each other, we have

Pr(z ¢ U(m)) = HPr(ui #x) = (Pr(us # z))™.

i=1
Moreover, we also have

Pr(ul#x)zl—Pr(ulzx)zl—&.
n

Then this lemma is proved. a

To obtain the J-approximate maximum value, we need the mathematical
estimator. Let M m)u denote the uniform sampling based estimator of exact
value Mazx(S;). Then M&(\St)u is defined as

—

Max(St)y = Mazx(U(m)) = max{u; € U(m)|1 <i<m}.

Based on Lemma 1, we have the following theorem.
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Theorem 1. Maz(S:), is a d-estimator of Max(Sy) if

Inéd

"= (1 = B

where Ny s the number of appearances for the least appearing data.

Proof: Based on the condition, we have

mln(l — M) <Iné
n

Nomin
1———)™ <.
(1-tmmym <
According to Lemma 1, we have
. NMax(Sy) )m

Pr(Maxz(S;) ¢ U(m)) = (1 -
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where nprqz(s,) is the number of times the maximum value appears in S;. Since

NMaz(S;) = Tmin, We have

Pr(Maz(S) ¢ U(m)) < (1 — anm)m <.

Then this theorem is proved.

—

O

Let Dis(St), denote the uniform sampling based estimator of exact result

Dis(St). Then DZ/S(S\t)u is defined as

Dis(St)y = Dis(U(m)).

Based on Lemma 1, we have the following theorem.
Theorem 2. DE(E)U is a d-estimator of Dis(Sy) if
In(1 — (1 — §)nmin/m)
- In(1 — Hmin)

m

where Nupin 18 the number of appearances for the least appearing data.

Proof: Based on the condition, we have

(1= My < 1= (1= gyl

N

1_ 1_ mznmn/nvnin>1_5

(1 (1= Ty >
[Dis(S)|

1- I a-a-"mmym <

X n
i=1
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Let Nga denote the number of appearances for sfj , then we have

[Dis(S)|

- I a-a-=km<s

since Nyin < Mg . Moreover, according to Lemma 1, we have
i

|Dis(Se)|

1— J[ (1 =Pe(sih ¢ Um)) <6

i=1

|Dis(St)|
1-— H Pr(sk € U(m)) <6
=1
1 — Pr(Dis(S,)u = Dis(S,)) <6

Then this theorem is proved. a

4 J-Approximate Aggregation Algorithm

The theorems in Sect.3 show how to calculate the required sampling size and
sampling probability according to a given §. However, we still have the following
problems to be solved.

1. How does the sink node broadcast the sampling information in the whole
network.

2. How to sample the sensory data from the entire network.

3. How to transmit and aggregate the partial aggregation results.

When the sample size m is calculated using the theorems in Sect. 3, there is
a simple method to sample the sensory data.

1. The sink generates m random numbers from the set {1, 2, 3, . . . , n} and
broadcasts them in the whole network.

2. The sensor node whose id is one of the m randomly selected ids sends its
sensory data to the sink node.

However, the above algorithm has a huge energy cost during the first step since a
significant amount of sampling information needs to be transmitted. To further
reduce the energy cost, we divide the whole network into %k disjoint clusters C7,
Cy, ... , Cg. Each cluster randomly selects one of its node as the cluster head.
By using the method, proposed in [15], all the cluster heads in the network are
organized as a minimum hop-count spanning tree rooted at the sink node. We
then adopt the uniform sampling algorithm proposed by [8], described as follows.
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1. The sink generates a series of random numbers Y; with the probability Pr(Y; =
D=1 <i<m),

2. Let my be the sample size of C;. Then m; is calculated by m; = |[{Y;|Y; = 1}

3. The sink node sends the sample size {m; | 1 <1 < k} to each cluster head.
Each cluster head samples the sensory data in the cluster using the above
naive sampling algorithm.

When the cluster head of the I-th cluster receives all the sampled sensory
data, U(ml), it calculates the partial aggregation result R(U(m;)) according to
aggregation operation Agg by using the following method.

R(U(m1)) = {M‘aa:(U(ml)) if Agg = Max

Dis(U(my))  elsewhere
The above process is explained in Algorithm 1. Then the partial aggregation
result R(U(my)) is transmitted along the spanning tree to the sink node. To
further reduce the transmission cost, the intermediate nodes in the spanning
tree aggregate the received partial result while transmitting the data. The above
process is explained in Algorithm 2.

Algorithm 1. Uniform Sampling Based Aggregation Algorithm

Input: 0, aggregation operator Agg € {Max, DistinctSet}
Output: d-approximate aggregation results

1: if Agg = Max then
_ Iné
m= ’7111(177"7;‘1',1'” )“
: else .
m = ’—ln(l—(l—é) min )-‘

In(1—“min)

end if

: generate Y; following Pr(Y; =1) = %,

cmy={Y; | Yi=1} (1 <i<m,1<1<k), the sink sends m; to each cluster head
by multi-hop communication

8: for each cluster head of the clusters C; (1 <[ < k) do

9: generates random numbers k1, k2, ..., km, then broadcast inside the cluster

10: end for

11: for each cluster member of C; (1 <1< k) do

12: send sensory value to cluster head if its id € {ki,ka,..., kmi}

13: end for

14: for each cluster head of the clusters C; (1 <1< k) do

15:  receive sample data U(m;) and calculate partial result R(U(m;))

16: end for

According to the analysis in Sect. 3, for the sample size m, we have

[w] if Agg = Dis

ln(l—n"‘Ti")

m =
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Algorithm 2. Partial Data Aggregation Algorithm

1: for each node j in the spanning tree do
2:  if j is the leaf node then

3: Send R; to its parent node

4:  else

5: Receive partial results Rj1, Rj2, ..., Rjc from its children
6: if Agg = Maz then

7: Rj = maX(le,Rjg,...,ch)
8: else

9: R; = Ui, Rji

10: end if
11: if j is the sink node then
12: return R;
13: else
14: Send R; to its parent node
15: end if
16:  end if
17: end for

Therefore, we have

O(In %) if Agg = Max
m = . .
O(ln(m)) lf Agg = D'LS

In practice, |R;| can be regarded as a constant. According to [8], the communica-
tion cost and the energy cost of the uniform sampling based d-approximate aggre-
gation algorithm is O(In 1) if Agg = Maz, while the cost is O(ln(m))
if Agg = Dis.

5 Simulation Results

To evaluate the proposed algorithms, we have simulated a network with 1000
nodes. All the nodes are randomly distributed in a rectangular region of size
300m x 300 m, and the sink is in the center of the region. The following strategy
is used to define the clusters.

1. Divide the whole region into 10 x 10 grids.
2. Group the nodes in the same gird into the same cluster.
3. Randomly chose the cluster head among the nodes of the same grid.

For each node, the energy cost to send and receive one byte is set as 0.0144 mJ
and 0.0057mJ [10]. The communication range of each sensor node is set to be
30v/2m [1]. This kind of simulation setting can make every sensor node commu-
nicate with its cluster head by a one-hop message.

The first group of simulations is about the relationship between § and the
sample size. The results are presented in Fig.1. These results show that the
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Fig. 1. The relationship between § and the sample size.
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Fig. 2. The relationship between § and the energy cost for the uniform sampling based
aggregation algorithm.

sample size increases with the decline of . Moreover, the sample sizes are much
smaller than the size of the network For example when § = 0. 01 the sample
size is about 67 for deriving §- = 15, which
indicates that we just need to sample 6.7% sensory data from "the network to
guarantee that the estimated maximum value being equal to the actual maximum
value with the probability greater than 99%. Therefore, our uniform sampling
based algorithm saves a tremendous amount of energy as it only needs a little
amount of sensory data to be sampled and transmitted in the network. Moreover,
we can see that in the same condition, the required sample size for the distinct-
set aggregation is greater than that of the maximum value aggregation since
the distinct-set aggregation needs to make sure all the distinct values are being
sampled.

The second group of simulations is about the relationship between ¢ and
the energy cost. The results are shown in Fig. 2. These results indicate that the
energy cost increases with the decline of §. We can also see that for the same
condition, the energy cost for the distinct-set aggregation is higher than that of
the maximum value aggregation, as the distinct-set aggregation has a greater
sample size.
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Fig. 3. Energy cost comparison between the uniform sampling based aggregation algo-
rithm and the simple distributed algorithm.

The third group of simulations is to compare the energy cost between the
uniform sampling based aggregation algorithm and the simple distributed algo-
rithm. The simple distributed algorithm is to collect all the raw sensory data
and to aggregate the partial results during the transmission, which can always
return accurate aggregation results. For the uniform sampling based aggregation
algorithm, we set § = 0.1, n:m = 15, and the network size varies from 500 to
1500. The results are listed in Fig.3. We can see that for all the proposed algo-
rithms, the energy cost increases with the increase of the network size. Moreover,
for the same network size, the energy cost of the uniform sampling based aggre-
gation algorithm is much lower than that of the naive distributed algorithm.
These results indicate that the uniform sampling based aggregation algorithm
performs better in terms of energy consumption. It is also to be observed that
with an increase in the network size, the energy cost of the naive distributed algo-
rithm proliferates, while the energy cost of the uniform sampling based aggrega-
tion algorithm almost remains the same. The above phenomenon indicates that
the uniform sampling based aggregation algorithm has even better performance
when the network size is large.

6 Related Works

The sampling technique has been widely used in many fields, such as quan-
tile calculation, data collection and top-k query. For example, [13,14] introduce
approximate algorithms to calculate the quantiles in wireless sensor networks.
This algorithm reduces energy cost by using the sampling technique. By using
the sampling technique, [11] develops ASAP, an adaptive sampling approach to
energy-efficient periodic data collection in sensor networks, whose basic idea is
to use a dynamically changing node set as samplers. [19] uses samples of past
sensory data to formulate the problem of optimizing approximate top-k queries
under an energy constraint. However, all the above techniques cannot be used in
our problem directly since the above operations differ a lot with the maximum
query and distinct-set query.
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The distinct-count query in wireless sensor networks has been widely studied
in many existing works, such as [2,17]. [17] proposes an algorithm to calculate
approximate distinct-count based on approximate frequency query results. [2]
also proposes an algorithm to compute the approximate distinct-count. However,
this algorithm is centralized and not appropriate for large scale wireless sensors.
Moreover, all the above works are for the distinct-count query, which can only
reflect the size of the distinct set instead of all the content of the distinct set.
Therefore, the above works still cannot be used in our problem directly.

7 Conclusions

In this paper, the J-approximate algorithms for the maximum value and distinct-
set aggregation operations in sensor equipped IoT networks are proposed. These
algorithms are based on the uniform sampling. Mathematical proofs have been
made for better understanding of these algorithms. Additionally, we have also
proposed mathematical estimators for the two algorithms. Moreover, we have
derived the values for the sample size and the sample probability which satisfies
the specified failure probability requirements of the final result. Finally, a uniform
sampling based algorithm is provided.

Experiments are conducted for various delta values and the network sizes.
The results are then compared between the naive method and the proposed
algorithms. The simulation results indicate that the proposed algorithms have
high performance with respect to the energy cost.
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