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Abstract

Recent years have seen a flurry of activities in de-

signing provably efficient nonconvex optimization

procedures for solving statistical estimation prob-

lems. For various problems like phase retrieval or

low-rank matrix completion, state-of-the-art non-

convex procedures require proper regularization

(e.g. trimming, regularized cost, projection) in or-

der to guarantee fast convergence. When it comes

to vanilla procedures such as gradient descent,

however, prior theory either recommends highly

conservative learning rates to avoid overshooting,

or completely lacks performance guarantees. This

paper uncovers a striking phenomenon in several

nonconvex problems: even in the absence of ex-

plicit regularization, gradient descent follows a

trajectory staying within a basin that enjoys nice

geometry, consisting of points incoherent with the

sampling mechanism. This “implicit regulariza-

tion” feature allows gradient descent to proceed in

a far more aggressive fashion without overshoot-

ing, which in turn results in substantial compu-

tational savings. Focusing on two statistical esti-

mation problems, i.e. solving random quadratic

systems of equations and low-rank matrix comple-

tion, we establish that gradient descent achieves

near-optimal statistical and computational guaran-

tees without explicit regularization. As a byprod-

uct, for noisy matrix completion, we demonstrate

that gradient descent enables optimal control of

both entrywise and spectral-norm errors.
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1. Introduction

A wide spectrum of science and engineering applications

calls for solutions to a nonlinear system of equations. Imag-

ine we have collected a set of data points y = {yj}1≤j≤m,

generated by a nonlinear sensing system,

yj ≈ Aj

(
x\

)
, 1 ≤ j ≤ m,

where x\ is the unknown object of interest, and the Aj’s

are certain nonlinear maps known a priori. Can we hope to

reconstruct the underlying object x\ in a faithful yet efficient

manner? Problems of this kind abound in information and

statistical science, prominent examples including low-rank

matrix recovery (Keshavan et al., 2010; Candès & Recht,

2009), phase retrieval (Candès et al., 2013; Jaganathan et al.,

2015), and learning neural networks (Soltanolkotabi et al.,

2017; Zhong et al., 2017), to name just a few.

In principle, one can attempt reconstruction by seeking a

solution that minimizes the empirical loss, namely,

minimizex f(x) =
m∑

j=1

∣∣yj −Aj(x)
∣∣2. (1)

Unfortunately, this empirical loss minimization problem is,

in many cases, highly nonconvex, making it NP-hard in

general. For example, this non-convexity issue comes up in:

• Solving random quadratic systems of equations

(a.k.a. phase retrieval): where one wishes to solve for x\

in m quadratic equations yj =
(
a>
j x

\
)2

, 1 ≤ j ≤ m,

with {aj}1≤j≤m denoting the known design vectors. In

this case, the empirical risk minimization is given by

minimizex∈Rn f(x) =
1

4m

m∑

j=1

[
yj −

(
a>
j x

)2]2
. (2)

• Low-rank matrix completion: which aims to predict all

entries of a low-rank matrix M \ = X\X\> from partial

entries (those from an index subset Ω), where X\ ∈
R

n×r (r � n). Here, the nonconvex problem to solve is

minimize
X∈Rn×r

f(X) =
n2

4m

∑

(j,k)∈Ω

(
M \

j,k − e>j XX>ek

)2

.
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Table 1. Prior theory for gradient descent (with spectral initialization)

Vanilla gradient descent Regularized gradient descent

sample iteration step sample iteration type of
complexity complexity size complexity complexity regularization

Phase
n log n n log 1

ε
1
n

n log 1
ε

trimming
retrieval e.g. (Chen & Candès, 2017)

n/a n/a n/a
nr7 n

r
log 1

ε

regularized loss
Matrix e.g. (Sun & Luo, 2016)

completion
nr2 r2 log 1

ε

projection
e.g. (Chen & Wainwright, 2015)

1.1. Nonconvex Optimization via Regularized GD

First-order methods have been a popular heuristic in practice

for solving nonconvex problems including (1). For instance,

a widely adopted procedure is gradient descent (GD), which

follows the update rule

xt+1 = xt − ηt∇f
(
xt

)
, t ≥ 0, (3)

where ηt is the learning rate (or step size) and x0 is some

proper initial guess. Given that it only performs a single

gradient calculation ∇f(·) per iteration (which typically

can be completed within near-linear time), this paradigm

emerges as a candidate for solving large-scale problems.

The natural questions are: whether xt converges to the

global solution and, if so, how long it takes for convergence,

especially since (1) is highly nonconvex.

Fortunately, despite the worst-case hardness, appealing con-

vergence properties have been discovered in various sta-

tistical estimation problems; the blessing being that the

statistical models help rule out ill-behaved instances. For

the average case, the empirical loss often enjoys benign ge-

ometry, particularly in a local region surrounding the global

optimum. In light of this, an effective nonconvex iterative

method typically consists of two parts:

1. an initialization scheme (e.g. spectral methods);

2. an iterative refinement procedure (e.g. gradient descent).

This strategy has recently spurred a great deal of interest,

owing to its promise of achieving computational efficiency

and statistical accuracy at once for a growing list of prob-

lems, e.g. (Keshavan et al., 2010; Jain et al., 2013; Chen &

Wainwright, 2015; Sun & Luo, 2016; Candès et al., 2015;

Chen & Candès, 2017). However, rather than directly apply-

ing vanilla GD (3), existing theory often suggests enforcing

proper regularization. Such explicit regularization enables

improved computational convergence by properly “stabi-

lizing” the search directions. The following regularization

schemes, among others, have been suggested to obtain or

improve computational guarantees. We refer to these algo-

rithms collectively as Regularized Gradient Descent.

• Trimming/truncation, which truncates a subset of the gra-

dient components when forming the descent direction.

For instance, when solving quadratic systems of equa-

tions, one can modify the gradient descent update rule as

xt+1 = xt − ηtT
(
∇f

(
xt

))
, (4)

where T is an operator that effectively drops samples

bearing too much influence on the search direction (Chen

& Candès, 2017; Zhang et al., 2016b; Wang et al., 2017).

• Regularized loss, which attempts to optimize a regular-

ized empirical risk function through

xt+1 = xt − ηt
(
∇f

(
xt

)
+∇R

(
xt

))
, (5)

where R(x) stands for an additional penalty term in the

empirical loss. For example, in matrix completion, R(·)
penalizes the `2 row norm (Keshavan et al., 2010; Sun &

Luo, 2016) as well as the Frobenius norm (Sun & Luo,

2016) of the decision matrix.

• Projection, which projects the iterates onto certain sets

based on prior knowledge, that is,

xt+1 = P
(
xt − ηt∇f

(
xt

))
, (6)

where P is a certain projection operator used to enforce,

for example, incoherence properties. This strategy has

been employed in low-rank matrix completion (Chen &

Wainwright, 2015; Zheng & Lafferty, 2016).

Equipped with such regularization procedures, existing

works uncover appealing computational and statistical prop-

erties under various statistical models. Table 1 summarizes

the performance guarantees derived in the prior literature;

for simplicity, only orderwise results are provided.

1.2. Regularization-free Procedures?

The regularized gradient descent algorithms, while exhibit-

ing appealing performance, usually introduce more tuning

parameters depending on the assumed statistical models.

In contrast, vanilla gradient descent (cf. (3)) — which is

perhaps the very first method that comes into mind and re-

quires minimal tuning parameters — is far less understood

(cf. Table 1). Take matrix completion as an example: to

the best of our knowledge, there is currently no theoretical

guarantee derived for vanilla gradient descent.

The situation is better for phase retrieval: the local conver-

gence of vanilla gradient descent, also known as Wirtinger

flow (WF), has been investigated in (Candès et al., 2015).
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error contraction (Bubeck, 2015), namely, for t ≥ 0

∥∥xt+1 − x\‖2 ≤

(
1−

2

β/α+ 1

)∥∥xt − x\
∥∥
2
, (7)

as long as the step size is chosen as ηt = 2/(α + β).
Here, x\ denotes the global minimum. This immediately

reveals the iteration complexity for gradient descent: the

number of iterations taken to attain ε-accuracy is bounded

by O((β/α) log(1/ε)). In other words, the iteration com-

plexity is dictated by and scales linearly with the condition

number — the ratio β/α of smoothness to strong convexity

parameters.

Moving beyond convex optimization, one can easily extend

the above theory to nonconvex problems with local strong

convexity and smoothness. More precisely, suppose the

objective function f satisfies

∇2f(x) � αI and
∥∥∇2f(x)

∥∥ ≤ β

over a local `2 ball surrounding the global minimum x\:

Bδ(x) :=
{
x | ‖x− x\‖2 ≤ δ‖x\‖2

}
. (8)

The contraction result (7) continues to hold, as long as the

algorithm starts with an initial point that falls inside Bδ(x).

2.2. Local Geometry for Solving Quadratic Systems

To invoke generic gradient descent theory, it is critical

to characterize the local strong convexity and smoothness

properties of the loss function. Take the problem of solv-

ing random quadratic systems as an example. Consider

the i.i.d. Gaussian design in which aj
i.i.d.
∼ N (0, In),

1 ≤ j ≤ m, and suppose without loss of generality that the

underlying signal obeys ‖x\‖2 = 1.

In the regime where m � n log n (which is the regime

considered in (Candès et al., 2015)), local strong convexity

is present, in the sense that f(·) as defined in (2) obeys

∇2f(x) � (1/2) · In, ∀x :
∥∥x− x\

∥∥
2
≤ δ

∥∥x\
∥∥
2

with high probability, provided that δ > 0 is sufficiently

small (see (Soltanolkotabi, 2014; White et al., 2015) and

(Ma et al., 2017)). The smoothness parameter, however,

is not well-controlled. In fact, it can be as large as (up to

logarithmic factors)
∥∥∇2f(x)

∥∥ . n even when we restrict

attention to the local `2 ball (8) with δ > 0 being a fixed

small constant. This means that the condition number β/α
(defined in Section 2.1) may scale as O(n), leading to the

step size recommendation ηt � 1/n, and, as a consequence,

a high iteration complexity O(n log(1/ε)). This underpins

the analysis in (Candès et al., 2015).

In summary, the geometric properties of the loss function

— even in the local `2 ball centering around the global min-

imum — is not as favorable as one anticipates. A direct

application of generic gradient descent theory leads to an

overly conservative learning rate and a pessimistic conver-

gence rate, unless the number of samples is enormously

larger than the number of unknowns.

2.3. Which Region Enjoys Nicer Geometry?

Interestingly, our theory identifies a local region surrounding

x\ with a large diameter that enjoys much nicer geometry.

This region does not mimic an `2 ball, but rather, the inter-

section of an `2 ball and a polytope. We term it the region

of incoherence and contraction (RIC). For phase retrieval,

the RIC includes all points x ∈ R
n obeying

∥∥x− x\
∥∥
2
≤ δ

∥∥x\
∥∥
2

and (9a)

max
1≤j≤m

∣∣a>
j

(
x− x\

)∣∣ .
√
log n

∥∥x\
∥∥
2
, (9b)

where δ > 0 is some small numerical constant. As will be

formalized in (Ma et al., 2017), with high probability the

Hessian matrix satisfies

(1/2) · In � ∇2f(x) � O(log n) · In

simultaneously for all x in the RIC. In words, the Hessian

matrix is nearly well-conditioned (with the condition num-

ber bounded by O(log n)), as long as (i) the iterate is not

very far from the global minimizer (cf. (9a)), and (ii) the it-

erate remains incoherent1 with respect to the sensing vectors

(cf. (9b)). See Figure 2(a) for an illustration.

The following observation is thus immediate: one can safely

adopt a far more aggressive step size (as large as ηt =
O(1/ log n)) to achieve acceleration, as long as the iterates

stay within the RIC. This, however, fails to be guaranteed

by generic gradient descent theory. To be more precise, if

the current iterate xt falls within the desired region, then

in view of (7), we can ensure `2 error contraction after one

iteration, namely,

‖xt+1 − x\‖2 ≤ ‖xt − x\‖2

and hence xt+1 stays within the local `2 ball and hence

satisfies (9a). However, it is not immediately obvious that

xt+1 would still stay incoherent with the sensing vectors

and satisfy (9b). If xt+1 leaves the RIC, then it no longer en-

joys the benign local geometry of the loss function, and the

algorithm has to slow down in order to avoid overshooting.

See Fig. 2(b) for a visual illustration. In fact, in almost all

regularized gradient descent algorithms mentioned in Sec-

tion 1.1, the regularization procedures are mainly proposed

to enforce such incoherence constraints.

2.4. Implicit Regularization

However, is regularization really necessary for the iterates

to stay within the RIC? To answer this question, we plot

1If x is aligned with (and hence very coherent with) one vector

aj , then with high probability one has
∣∣a>

j

(
x−x

\
)
| &

∣∣a>

j x| �√
n‖x‖2, which is significantly larger than

√
log n‖x‖2.
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Algorithm 2 Vanilla gradient descent for matrix completion

(with spectral initialization)

Input: Y = [Yj,k]1≤j,k≤n, r, p.

Spectral initialization: Let U0
Σ

0U0> be the rank-r
eigendecomposition of

M0 := p−1PΩ(Y ) = p−1PΩ

(
M \ +E

)
,

and set X0 = U0
(
Σ

0
)1/2

.

Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Xt+1 = Xt − ηt∇f
(
Xt

)
. (21)

X\ = U \(Σ\)1/2 allows us to factorize M \ as

M \ = X\X\>. (19)

Consider a random sampling model such that each entry of

M \ is observed independently with probability 0 < p ≤ 1,

i.e. for 1 ≤ j ≤ k ≤ n,

Yj,k =

{
M \

j,k + Ej,k with probability p,

0, else,
(20)

where the entries of E = [Ej,k]1≤j≤k≤n are independent

sub-Gaussian noise with sub-Gaussian norm σ (see (Ver-

shynin, 2012)). We denote by Ω the set of locations being

sampled, and PΩ(Y ) represents the projection of Y onto

the set of matrices supported in Ω. We note here that the

sampling rate p, if not known, can be faithfully estimated

by the sample proportion |Ω|/n2.

To fix ideas, we consider the following nonconvex optimiza-

tion problem

minimize
X∈Rn×r

f (X) :=
1

4p

∑

(j,k)∈Ω

(
e>j XX>ek − Yj,k

)2
.

The vanilla gradient descent algorithm (with spectral initial-

ization) is summarized in Algorithm 2.

Before proceeding to the main theorem, we first introduce a

standard incoherence parameter required for matrix comple-

tion (Candès & Recht, 2009).

Definition 1 (Incoherence for matrix completion). A rank-r
matrix M \ with eigendecomposition M \ = U \

Σ
\U \> is

said to be µ-incoherent if

∥∥U \
∥∥
2,∞

≤
√
µ/n

∥∥U \
∥∥
F
=

√
µr/n, (22)

where ‖ · ‖2,∞ denotes the largest `2 norm of the rows.

In addition, recognizing that X\ is identifiable only up to

orthogonal transformation, we define the optimal transform

from the tth iterate Xt to X\ as

Ĥt := argmin
R∈Or×r

∥∥XtR−X\
∥∥
F
, (23)

where Or×r is the set of r × r orthonormal matrices. With

these definitions in place, we have the following theorem.

Theorem 2. Let M \ be a rank r, µ-incoherent PSD matrix,

and its condition number κ is a fixed constant. Suppose

the sample size satisfies n2p ≥ Cµ3r3n log3 n for some

sufficiently large constant C > 0, and the noise satisfies

σ

√
n

p
�

σmin√
κ3µr log3 n

. (24)

With probability at least 1−O
(
n−3

)
, the iterates of Algo-

rithm 2 satisfy

∥∥Xt
Ĥt −X

\
∥∥
F
≤
(
C4ρ

t
µr

1√
np

+
C1σ

σmin

√
n

p

)∥∥X\
∥∥
F
,

∥∥Xt
Ĥt −X

\
∥∥
2,∞

≤
(
C5ρ

t
µr

√
log n

np
+

C8σ

σmin

√
n log n

p

)

·
∥∥X\

∥∥
2,∞

,

∥∥Xt
Ĥt −X

\
∥∥ ≤

(
C9ρ

t
µr

1√
np

+
C10σ

σmin

√
n

p

)∥∥X\
∥∥

for all 0 ≤ t ≤ T = O(n5),3 where C1, C4, C5, C8,

C9 and C10 are some absolute positive constants and 1−
(σmin/5) · η ≤ ρ < 1, provided that 0 < ηt ≡ η ≤
2/ (25κσmax).

Theorem 2 provides the first theoretical guarantee of un-

regularized gradient descent for matrix completion, demon-

strating near-optimal statistical accuracy and computational

complexity, under near-minimal sample complexity.

• Implicit regularization: In Theorem 2, we bound the

`2/`∞ error of the iterates in a uniform manner. Note

that
∥∥X − X\

∥∥
2,∞

= maxj
∥∥e>j

(
X − X\

)∥∥
2
, which

implies the iterates remain incoherent with the sensing

vectors throughout and have small incoherence param-

eters, including the spectral initialization (cf. (22)). In

comparison, prior works either include a penalty term

on {‖e>j X‖2}1≤j≤n (Keshavan et al., 2010; Sun & Luo,

2016) and/or ‖X‖F (Sun & Luo, 2016) to encourage

an incoherent and/or low-norm solution, or add an ex-

tra projection operation to enforce incoherence (Chen &

Wainwright, 2015; Zheng & Lafferty, 2016). Our results

demonstrate that such explicit regularization is unneces-

sary for the success of gradient descent.

• Constant step size: Without loss of generality we may

assume that σmax = ‖M \‖ = O(1), which can be done

by choosing proper scaling of M \. Hence we have a

constant step size ηt � 1. Actually it is more convenient

to consider the scale invariant parameter ρ: Theorem

2 guarantees linear convergence of the vanilla gradient

descent at a constant rate ρ. Remarkably, the convergence

3Theorem 2 remains valid if the total number T of iterations
obeys T = nO(1). In the noiseless case where σ = 0, the theory
allows arbitrarily large T .
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occurs with respect to three different unitarily invariant

norms: the Frobenius norm ‖·‖F, the `2/`∞ norm ‖·‖2,∞,

and the spectral norm ‖ · ‖. As far as we know, the latter

two are established for the first time. Note that our result

even improves upon that for regularized GD; see Table 1.

• Near-minimal Euclidean error: As the number of it-

erations t increases, the Euclidean error of vanilla GD

converges to

∥∥XtĤt −X\
∥∥
F
.

σ

σmin

√
n

p

∥∥X\
∥∥
F
, (25)

which coincides with the theoretical guarantee in (Chen

& Wainwright, 2015) and matches the minimax lower

bound established in (Negahban & Wainwright, 2012;

Koltchinskii et al., 2011).

• Near-optimal entrywise error: The `2/`∞ error bound

immediately yields entrywise control of the empirical

risk. Specifically, as soon as the number of iterations t is

sufficiently large, we have

∥∥XtXt> −M \
∥∥
∞

.
σ

σmin

√
n log n

p

∥∥M \
∥∥
∞

.

Compared with the Euclidean loss (25), this implies that

when r = O(1), the entrywise error of XtXt> is uni-

formly spread out across all entries. As far as we know,

this is the first result that reveals near-optimal entrywise

error control for noisy matrix completion using noncon-

vex optimization, without resorting to sample splitting.

4. Related Work

Convex relaxations have received much attention for solving

nonlinear systems of equations in the past decade. Instead

of directly attacking the nonconvex formulation, convex re-

laxation lifts the object of interest into a higher dimensional

space and then attempts recovery via semidefinite program-

ming (e.g. (Recht et al., 2010; Candès et al., 2013; Candès

& Recht, 2009)). This has enjoyed great success in both

theory and practice. Despite appealing statistical guarantees,

SDP is in general prohibitively expensive when processing

large-scale datasets.

In comparison, nonconvex approaches have been under ex-

tensive study in the last few years, due to their computational

advantages. There is a growing list of statistical estimation

problems for which nonconvex approaches are guaranteed

to find global optimal solutions, including but not limited to

phase retrieval (Netrapalli et al., 2013; Candès et al., 2015;

Chen & Candès, 2017), low-rank matrix sensing and com-

pletion (Tu et al., 2016; Bhojanapalli et al., 2016; Park et al.,

2016; Chen & Wainwright, 2015; Zheng & Lafferty, 2015;

Ge et al., 2016), dictionary learning (Sun et al., 2017), blind

deconvolution (Li et al., 2016a; Cambareri & Jacques, 2016;

Lee et al., 2017), tensor decomposition (Ge & Ma, 2017),

joint alignment (Chen & Candès, 2018), learning shallow

neural networks (Soltanolkotabi et al., 2017; Zhong et al.,

2017). In several problems (Sun et al., 2016; 2017; Ge &

Ma, 2017; Ge et al., 2016; Li et al., 2016b; Li & Tang, 2016;

Mei et al., 2016; Maunu et al., 2017), it is further suggested

that the optimization landscape is benign under sufficiently

large sample complexity, in the sense that all local min-

ima are globally optimal, and hence nonconvex iterative

algorithms become promising in solving such problems.

When it comes to noisy matrix completion, to the best of our

knowledge, no rigorous guarantees have been established for

gradient descent without explicit regularization. A notable

exception is (Jin et al., 2016), which studies unregularized

stochastic gradient descent for online matrix completion

with fresh samples used in each iteration.

Finally, we note that the notion of implicit regularization

— broadly defined — arises in settings far beyond what

considered herein. For instance, it has been in matrix fac-

torization, over-parameterized stochastic gradient descent

effectively enforces certain norm constraints, allowing it

to converge to a minimal-norm solution as long as it starts

from the origin (Li et al., 2017; Gunasekar et al., 2017).

The stochastic gradient methods have also been shown to

implicitly enforce Tikhonov regularization in several statis-

tical learning settings (Lin et al., 2016). More broadly, this

phenomenon seems crucial in enabling efficient training of

deep neural networks (Neyshabur et al., 2017; Zhang et al.,

2016a; Soudry et al., 2017; Keskar et al., 2016).

5. Discussions

This paper showcases an important phenomenon in non-

convex optimization: even without explicit enforcement of

regularization, the vanilla form of gradient descent effec-

tively achieves implicit regularization for a large family of

statistical estimation problems. We believe this phenomenon

arises in problems far beyond the two cases studied herein,

and our results are initial steps towards understanding this

fundamental phenomenon. That being said, there are nu-

merous avenues that remain open. For instance, it remains

unclear how to generalize the proposed leave-one-out tricks

for more general designs beyond the i.i.d. Gaussian design.

It would also be interesting to see whether the message

conveyed in this paper can shed light on why simple forms

of gradient descent and variants work so well in learning

complicated neural networks. We leave these for future

investigation.
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