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1 University at Buffalo, SUNY, {ashivram, saivikne, atri}@buffalo.edu.
2 Stanford University, chrismre@cs.stanford.edu.

Abstract
We revisit the classical problem of exact inference on proba-
bilistic graphical models (PGMs). Our algorithm is based on
recent worst-case optimal database join algorithms, which
can be asymptotically faster than traditional data process-
ing methods. We present the first empirical evaluation of
these algorithms via JoinInfer – a new exact inference en-
gine. We empirically explore the properties of the data for
which our engine can be expected to outperform traditional
inference engines, refining current theoretical notions. Fur-
ther, JoinInfer outperforms existing state-of-the-art inference
engines (ACE, IJGP and libDAI) on some standard bench-
mark datasets by up to a factor of 630x. Finally, we propose
a promising data-driven heuristic that extends JoinInfer to
automatically tailor its parameters and/or switch to the tradi-
tional inference algorithms.

Introduction
Efficient inference on probabilistic graphical models
(PGMs) is a core topic in artificial intelligence (AI) and
standard inference techniques are based on tree decompo-
sitions (Jensen, Lauritzen, and Olesen 1990; Dechter 1996;
Kask et al. 2005; Mateescu et al. 2010). The runtime of such
inference algorithms is exponential in the treewidth (tw) of
the underlying graph, which in the worst case, is unavoid-
able. Over the years, efforts in the logic, database and AI
communities to refine tw into a finer-grained measure of
complexity have culminated in generalized hypertree de-
compositions (GHDs) (Fischl, Gottlob, and Pichler 2016;
Gottlob et al. 2005). Recently, FAQ/AJAR (Abo Khamis,
Ngo, and Rudra 2016; Joglekar, Puttagunta, and Ré 2016)
theoretically reconnected such GHD-based algorithms with
probabilistic inference exploiting recent developments in
worst-case optimal database join algorithms (Ngo et al.
2012) and achieved tighter bounds based on a finer-grained
notion of width called fractional-hypertreewidth (fhtw).
Further, given the known connection between database joins
and CSPs (?; ?), their bounds apply to many classes of CSPs
as well.

However, the practical significance of GHD-based infer-
ence algorithms has met with some skepticism so far. In par-
ticular, Dechter et al. (?) use a predictive ratio (R) (based
on hypertreewidth htw and tw) and concluded that classi-
cal treewidth-based algorithms outperform their GHD-based

counterparts on an overwhelming majority of PGM bench-
marks. Further, their study suggests that the advantages of
GHD-based algorithms manifests only in instances with sub-
stantial factor sparsity (i.e. a large number of factor entries
having zero probabilities) and high factor arity.

In addition to the above constraints, translating the su-
perior theoretical guarantees of GHD-based algorithms into
practice is a non-trivial challenge. In particular, these algo-
rithms (Abo Khamis, Ngo, and Rudra 2016; Joglekar, Putta-
gunta, and Ré 2016) typically assume that one can exhaus-
tively search over all potential GHDs (which grows expo-
nentially in the number of variables) and their runtime anal-
ysis ignores the dependence on number of variables/factors.
Unfortunately, in practice, these assumptions could negate
the theoretical gains.

Our Contributions. In this paper, we introduce JoinInfer,
a proof-of-concept inference engine, to address all the above
problems: JoinInfer is efficient and can be up to 630x faster
than its competitors. Further, we introduce a theoretical mea-
sure that better predicts when JoinInfer can outperform its
competitors.

GHDs Revisited: We empirically demonstrate that Join-
Infer (a GHD-based algorithm) has wider scope than pre-
viously predicted, revisiting the conclusions of (?). We do
so with two new measures – ρ, the total number of entries
processed across all bags of the GHD and RJ , a better pre-
dictor of JoinInfer’s performance. We observe that RD (our
analogous version of R from (?) where htw is replaced by
fhtw), is contingent upon ρ (see ρ high and ρ low classes
in Figure 1), an insight that is not captured in (?)’s exper-
imental paradigm. In particular, engines employing truth-
table indices (libDAI/IJGP) do not scale to higher values of
ρ, whereas JoinInfer does (see Bands 1 − 3 in Figure 1).
For instance, in Band 3 in Figure 1, JoinInfer outperforms
competing engines by up to 2.7x, while RD predicts under-
performance by more than 1010x.

We then exploit the better theoretical runtime analysis of
JoinInfer to introduce RJ , a finer-grained theoretical mea-
sure that better predicts its performance. For instance, con-
sider the ‘RD small’ column in Figure 1 – when ρ is high
(Band 1 in Figure 1), JoinInfer is up to 630x faster than
competing engines and when ρ is low (Band 4 in Figure 1),
JoinInfer is only up to 5x faster. We note that RJ can actu-



ρ
lo

w
ρ

hi
gh

RD small RD medium RD large

1-105x fast 1-1010x slow 1010-1020x slow

102-103x fast 1-2.2x fast 1-2.7x fast

1-5x fast 1-20x (mean: 5x) slow 1-20x (mean: 10x) slow

Band 1
(JoinInfer)

Band 2
(JoinInfer)

Band 3
(JoinInfer)

Band 4
(JoinInfer)

Band 5
(libDAI)

Band 6
(libDAI)

Figure 1: Datasets are divided into six bands depending on the
sizes of RD and ρ. The grids in each box denote the expected
speedup of any GHD-based system over a treewidth based system
and gray shades show the actual speedup of JoinInfer with respect
to libDAI. The “winner” is stated explicitly for each band.

ally differentiate between these two rows while RD predicts
a similar speedup for both bands (see columns 4-7 in Ta-
ble 1).

Technical Contributions: JoinInfer leverages recently in-
troduced worst-case optimal join algorithms (Ngo, Ré, and
Rudra 2014) in conjunction with improved data structures.
In particular, we use two data representations for use in dif-
ferent passes of the algorithm – a level-order trie, which col-
lapses a conventional trie into a single array and (two vari-
ants of) an index-based compressed list. We find that the re-
sulting gains more than compensate for the overheads in-
volved in maintaining both data representations.

Hybrid Architecture: Given the relative advantages of
JoinInfer (e.g, Bands 1 − 4 in Figure 1) and libDAI (e.g.,
Bands 5 − 6 in Figure 1) in different spaces, we explore
the feasibility of exploiting their strengths in a ‘best-of-all-
worlds’ architecture. Our hybrid system (HJYAR) outper-
forms libDAI, IJGP and ACE for 75% of the networks (see
Table 1), illustrating its promise.

Related Work
Several streams of inquiry have emerged in the exact infer-
ence setting. One such stream involves conditioning algo-
rithms (Pearl 1989; Darwiche 2001) that adopt a case-based
reasoning approach. Another class of algorithms seeks to ex-
ploit local structure (Larkin and Dechter 2003; Poole and
Zhang 2003), where (Chavira and Darwiche 2007; Huang,
Chavira, and Darwiche 2006; Chavira and Darwiche 2005;
Darwiche 2001) exploit factor sparsity to improve tractabil-
ity of inference. Recently, an emerging area lifted prob-
abilistic inference (de Salvo Braz, Amir, and Roth 2005;
Milch et al. 2008; Kersting 2012), exploits symmetric struc-
tures within graphs to speed up inference. Yet another line
of work runs along variable elimination (Dechter 1996;
Zhang and Poole 1996) and tree decomposition-based rou-
tines (Jensen, Lauritzen, and Olesen 1990; Kask et al. 2005;

Mateescu et al. 2010). Finally, past work in PGMs has also
focused on approximate inference (Koller and Friedman
2009; Bekker et al. 2015; Bach and Jordan 2001); we believe
that advancements in JoinInfer could enhance their perfor-
mance.

JoinInfer: An Overview
We start by giving a brief overview of the background
concepts and outline the worst-case optimal join algorithm
MultFacProd that JoinInfer uses for computing factor prod-
ucts. We then show how MultFacProd fits in JoinInfer – our
GHD-based Message Passing Algorithm. Finally, we talk
about implementation challenges and our solutions, includ-
ing a Hybrid Architecture.

Preliminaries and Notation
Definition 1 A (discrete) probabilistic graphical model
can be defined by the triplet ⟨H, D,K⟩, where hypergraph
H = (V, E) represents the underlying graphical structure
(note E ⊆ 2V ). There are n = |V| discrete random vari-
ables on finite domains D = {D(U) : U ∈ V} and m = |E|
factors K = {ϕe}e∈E , where each factor ϕe is a mapping:
ϕe :

∏
U∈e D(U) → R+.

For instance, Figure ?? in the full version is a hypergraph
representing a PGM with variables V = {A,B,C,D},
edges E = {e=(A,B), f=(A,C), g=(B,C,D)} and fac-
tors K = {ϕe(A,B), ϕf (A,C), ϕg(B,C,D)}.

Definition 2 For any factor ϕ, the size of ϕ is its support
size, i.e., the number of entries with non-zero probabilities.
Storing only the non-zero entries (as well as their ϕ values)
is called the listing representation of ϕ. Factor sparsity is
defined as N∏

U∈ϕ

|D(U)| , where N is the size of factor ϕ.

A typical inference task in PGMs is to compute the marginal
estimates given by: ∀F ⊆ V , y ∈

∏
U∈F D(U),

ϕF (y) =
1

Z

∑
z∈

∏
U∈V\F

D(U)

∏
S∈E

ϕS(xS), (1)

where x = (y, z), xS denotes the projection of x onto
the variables in S and Z is a normalization constant. Vari-
able/Factor marginals are a special case of (1); F = {U}
for U ∈ V for variable marginals and F ∈ E for factor
marginals.

Exact inference in PGMs is usually performed by propa-
gating on a generalized hypertree decomposition (GHD) of
the underlying hypergraph H.

Definition 3 A GHD of H = (V, E) is defined by a triple
⟨T, χ, λ⟩, where T = (V (T ), E(T )) is a tree, χ : V (T ) →
2V is a function associating a set of vertices χ(v) ⊆ V to
each node v of T , and λ : V (T ) → 2E is a function associ-
ating a set of hyperedges to each node v of T such that the
following properties hold (i) for each e ∈ E , there is a node
v ∈ V (T ) such that e ⊆ χ(v) and e ∈ λ(v); and (ii) for
every V ′ ⊆ V , the set {v ∈ V (T )|V ′ ⊆ χ(v)} is connected
in T . We define treewidth tw = maxv∈V (T )(|χ(v)|).



Existing GHD-based Message Passing Algorithms. A
GHD can be thought of as a labeled (hyper)tree T , where
sets assigned to each node in T are called bags of the hy-
pertree. Inference propagation on T involves a two-pass
‘message-passing’ algorithm (Jensen, Lauritzen, and Olesen
1990). In the first pass (message-up), messages are propa-
gated ‘up’ from leaf (child) to root (parent). Subsequently
in the second pass (message-down), they are propagated
‘down’ from root (parent) to leaf (child).

More formally, a message ϕ′
mv,u

from node v to node u
is a marginal estimate given by

∑
U /∈χ(v)∩χ(u) ϕ

′
v , where

ϕ′
v =

∏
e∈λ(v)

ϕe ·
∏

w∈Children(v)

ϕ′
mw,v

, (2)

for the upward pass. For the downward pass, Children(v)
will be replaced by Parent(v). Upon completion of both
passes (up/down), variable marginals for all U ∈ χ(v) can
be retrieved using label χ(v) and factor marginals for all e ∈
λ(v) can be retrieved using λ(v) from each node v ∈ V (T ).
Computing ϕ′

v is the major bottleneck in message-passing
algorithms and we focus on this step next.

MultFacProd: A New Algorithm for Computing
Factor Products
In this section, we describe MultFacProd, the worst-case
optimal join algorithm used by JoinInfer to compute ϕ′

v for
every v ∈ V (T ). We first present a motivating example,
followed by the runtime analysis of MultFacProd.

Triangle Query As an example, consider the triangle
PGM with variables V = {A,B,C}, edges E = {e =
(A,B), f = (B,C), g = (A,C)} and factors K =
{ϕe(A,B), ϕf (B,C), ϕg(A,C)}. Let |D(U)| = D for all
U ∈ V and |ϕe(A,B)| = |ϕf (B,C)| = |ϕg(A,C)| =
N ≤ D2. We would like to compute the factor product
ϕ′(A,B,C) = ϕe(A,B) · ϕf (B,C) · ϕg(C,A) since the
GHD for this PGM would contain only one node with vari-
ables (A,B,C). Prior to (Abo Khamis, Ngo, and Rudra
2016; Joglekar, Puttagunta, and Ré 2016), there are two al-
gorithms used for computing factor products:

• The first would go over all D3 possible output tuples
(a, b, c) and compute the product of corresponding prob-
ability values, resulting in an overall runtime of O(D3).
This algorithm is called MultiplyFactors [(?), Chapter 6].

• The second would compute an intermediate product (say)
ϕe(A,B) · ϕf (B,C) to get up to N2 possible tuples
(a, b, c) and then filter this against ϕg(A,C). This takes
O(N2) time and is faster than O(D3) if N ≪ D

3
2 .

We would like to mention here that the engines libDAI and
IJGP compute intermediate pairwise products on a truth-
table indexing scheme, staying closer to the runtime of
O(D3) (see full version of this algorithm). The most in-
teresting thing about worst-case join algorithms (and hence
MultFacProd) is that they compute the above product in
time O(N

3
2 ), which is asymptotically better than both the

above algorithms as long as N ≪ D2. The key insight in

MultFacProd is that if ϕe(A,B) · ϕf (B,C) · ϕg(A,C) is
computed in a multiway fashion, then one can exploit spar-
sity in the input factors (which MultiplyFactors fails to do)
and avoid computing larger intermediate products (which
PairwiseProd fails to do). As an extreme example, consider
the case when ϕe(A,B) has N non-zero tuples of the form
[N ] × [1] and ϕf (B,C) has N non-zero tuples of the form
[1] × [N ]. The pairwise product ϕe(A,B) · ϕf (B,C) will
thus have N2 non-zero entries [N ] × [1] × [N ]. However,
we know only N of them would survive since ϕg(A,C)
has exactly N non-zero entries. In this case, MultFacProd
will first fix variable A’s value to a and B’s value of 1 (i.e,
(a, 1) ∈ ϕe(A,B)) and then obtain all values of c such
that (1, c) ∈ ϕf (B,C) and (a, c) ∈ ϕg(A,C). Note that
there exists a unique value of c for a fixed a. Thus, Mult-
FacProd will process only N entries overall in this case
since |ϕe(A,B)| ≤ N . (See Algorithm 1 for our algorithm
for the triangle case and full version for general algorithm.)

Algorithm 1 MultFacProd for Triangle

1: Input: Variables V = {A,B,C}, Edges E = {e =
(A,B), f = (B,C), g = (A,C)} and Factors K =
{ϕe(A,B), ϕf (B,C), ϕg(A,C)}.

2: Output: Factor Product ϕ′(A,B,C) = ϕe(A,B)·ϕf (B,C)·
ϕg(A,C).

3: for all a s.t. ∃b, c with ϕe(A = a,B = b) · ϕf (A = a,C =
c) ̸= 0 do

4: for all b s.t. ∃c with ϕe(A = a,B = b) · ϕf (B = b, C =
c) ̸= 0 do ▷ Value for variable A is fixed as a.

5: for all c s.t. ϕe(A = a,B = b) ·ϕf (B = b, C = c) ̸=
0 do ▷ Value for variables A and B are fixed as a and b
respectively.

6: ϕ′(A,B,C)← ϕ′(A,B,C)∪{(a, b, c), ϕe(a, b)·
ϕf (b, c) · ϕg(a, c)} ▷ The entry (a, b, c) is added to the factor
product along with its corresponding probability.

7: return ϕ′(A,B,C)

Runtime Complexity of MultFacProd A recent result of
Atserias, Grohe and Marx showed how to tightly bound the
worst-case output size of a factor product (Atserias, Grohe,
and Marx 2013) and subsequently, (Ngo et al. 2012) came
up with MultFacProd that can run in time of the worst-case
output size. For a hypergraph H = (V, E), let x ∈ R|E| be
a vector indexed by edges, such that x∗ = (xe)e∈E is an
optimal solution to the linear program

min
∑
e∈E

xelog2|ϕe| (3)

s.t.
∑
v∋e

xe ≥ 1∀v ∈ V;xe ≥ 0∀e ∈ E . (4)

Then, we can bound the size of the factor product ϕ′ =∏
e∈E ϕe as follows:

|ϕ′| ≤
∏
e∈E

|ϕe|xe . (5)

In particular, the runtime of MultFacProd is
O(

∏
e∈E |ϕe|xe) and is reflected in the triangle exam-

ple we considered earlier.



Example 1 In the previous section, we considered the tri-
angle query with edges e = (A,B), f = (B,C) and
g = (A,C) respectively. Solving the linear program (3) for
this case, we have x∗ = ( 12 ,

1
2 ,

1
2 ). Note that this gives us

an asymptotically better bound of N
3
2 since |ϕe(A,B)| =

|ϕf (B,C)| = |ϕg(A,C)| = N . In comparison, the
hypertreewidth-based bound is N2 (htw(T ) = 2) and the
treewidth-based bound is D3 (tw(T ) = 3).

Using MultFacProd in GHD-based Message
Passing Algorithms

The GHD-based Message Passing Algorithm (also known
as Junction-Tree Algorithm) forms the structure of JoinIn-
fer (we present a sketch of this procedure in Algorithm 2).
The input PGM network is transformed into a Junction Tree
(i.e., a GHD) using the min-fill heuristic. Then, we root the
GHD arbitrarily, determining the parent-child relationship
for every node. We assume that each input factor is assigned
to a unique bag in the GHD. In particular, for every node
v ∈ V (T ), α(v) denotes the input factors assigned to it.

Algorithm 2 JoinInfer
1: Input: A PGM P = (H, D,K).
2: Output: Variable and Factor Marginals.
3: Create a rooted GHD G = ((V,E), χ, λ) for P . ▷ Using

min-fill variable ordering.
4: R← JoinInferSampling(G) ▷ R : V → {0, 1, 2} and

JoinInferSampling (i.e., Algorithm in the full version.
5: ({ϕ′

v}v∈V , {ϕ′
mv,Parent(v)

}v∈V )← JoinInferUp(G, R)

6: {ϕ′
v}v∈V ←

JoinInferDown(G, {ϕ′
v}v∈V , {ϕ′

mv,Parent(v)
}v∈V )

7: Compute Variable and Factor Marginals from ({ϕ′
v}v∈V )

We now describe our contributions in the message-up and
message-down phases.

Message-Up Phase The upward pass propagates mes-
sages (i.e., marginalized factor products) from leaves to root
along the rooted GHD. Recall that this involves computing
factor products as in (2) at every node (bag) of the GHD.
JoinInfer lends its core contribution in this phase – it uses
MultFacProd to compute the factor products. As shown
in the Triangle example earlier, MultFacProd is different
from previously proposed exact inference algorithms and
performs a multiway product to achieve asymptotically bet-
ter bounds (see Algorithm 1 for an outline). We present the
general algorithm in the full version (adapted from (Ngo et
al. 2012)).

Further, for a given bag, in addition to input factors
mapped/messages received by it, JoinInfer includes fac-
tors that are not originally mapped to the bag, but have
non-trivial intersections with variables in the bag (using
ideas from Section 3.2 in (?) and we call these factors “01-
projections”). Note that these are crucial for theoretical re-
sults for FAQ/AJAR and can prune factor product entries
early on in the presence of factor sparsity.

We present our Message-Up procedure in Algorithm 3.1

Algorithm 3 JoinInferUp
1: Input: GHD G = ((V,E), χ, λ) and the map R.
2: Output: Factor Products {ϕ′

v}v∈V and Up Messages
{ϕ′

mv,Parent(v)
}v∈V both as tries.

3: for all nodes v ∈ V do: ▷ This is done in a level-order
traversal from leaves-to-root.

4: Ev ← λ(v),Kv ← {ϕe : e ∈ λ(v)} ▷ Initialize the PGM
Query corresponding to v’s Factor Product.

5: for all w ∈ Children(v) do ▷ We add all the messages
sent to v from its children.

6: Ev ← Ev ∪ {χ(v) ∩ χ(w)},Kv ← Kv ∪ {ϕ′
mw,v

}
7: if R(v) = 1 then ▷ We include the 0/1 projections while

computing the Factor Product for v.
8: for all e ∈ E \ λ(v) do
9: if e ∩ χ(v) ̸= ∅ then

10: Ev ← Ev ∪{e∩χ(v)},Kv ← Kv ∪{ϕe/χ(v)}
11: if v is not a root then
12: Let u = Parent(v), ϕ′

mv,u
be

∑
q∈χ(v)\χ(u) ϕ

′
v and

Fv = χ(v) ∩ χ(u).
13: (ϕ′

v, ϕ
′
mv,u

) ← MultFacProd(Rv, χ(v), Ev,Kv,Fv)

14: else ϕ′
v ← MultFacProd(Rv, χ(v), Ev,Kv, χ(v))

Message-Down Phase The downward pass (from root-to-
leaves) involves updating factor products for each bag (ex-
cept the root) using the received messages. Note that there
are two products computed for each bag – one between the
sent and received message and the second, between the re-
sult of the previous step with the bag’s factor product. We
use in-place hash products for this computation (more de-
tails in the full version).

Runtime Complexity: An Analysis of JoinInfer For a
GHD G = (T = (V,E), χ, λ), we can bound the size of
ϕ′
u for every u ∈ V (T ) as follows. For a hypergraph Hu =

(Vχ(u), E), let x ∈ R|E| be a vector indexed by edges, such
that x∗

u = (xu
e )e∈E is an optimal solution to (5), bounding

|ϕ′
u|:

|ϕ′
u| ≤

∏
e∈E

|ϕe|x
u
e . (6)

Since we run MultFacProd for every u ∈ V (T ), the total
runtime of JoinInfer is O(

∑
u∈V (T )

∏
e∈E |ϕe|x

u
e ).

Upper-bounding each |ϕe| by N = maxe∈E |ϕe| in the
above equation and replacing the sum over all u ∈ V (T ) by
max gives us an asymptotic bound of N fhtw(T ). fhtw(T ) is
guaranteed to be at most htw(T ) (hypetreewidth), which in
turn is at most tw(T ) (treewidth) for the same GHD, giving
us the best known theoretical bounds for exact inference in
PGMs. (More details in the full version.)

Recall that the asymptotic bounds for tw based algo-
rithms is given by Dtw, where D = maxU∈V |D(U)|.
However, a more realistic measure here would be ρ =

1When Rv = 2, PairwiseProd (Algorithm in the full version)
is run instead of MultFacProd.



∑
u∈V (T )

∏
U∈χ(u) |D(U)|. This gives us a fine-grained ra-

tio (as compared to (?)) to evaluate JoinInfer against classi-
cal engines:

RJ =

∑
u∈V (T )

∏
e∈E |ϕe|x

u
e

ρ
. (7)

Replacing the numerator with N fhtw and the denominator
with Dtw in (7) gives us

RD =
N fhtw

Dtw
. (8)

This ratio is analogous to the one in (?), which was based on
hypertree width:

R = log10

(
Nhtw∗

Dtw

)
.

Since computing htw is NP-Hard, (?) used an approxima-
tion for it (denoted by htw∗). In our measure RD, we over-
come this issue by using fhtw over htw. Using fhtw offers
two significant advantages – one, it is a more fine-grained
measure (since fhtw ≤ htw ≤ tw) and two, fhtw is poly-
nomially computable (basically, solve the LP from (3)). We
empirically demonstrate that RJ is a better predictor than
RD in Section 4.2.1 since it is a more fine-grained measure.

Technical Contributions
Consistent with (Abo Khamis, Ngo, and Rudra 2016;
Joglekar, Puttagunta, and Ré 2016), we represent every fac-
tor table as a trie (storing only entries with non-zero proba-
bilities),2 in our implementation of MultFacProd and use
a flattened version of the tries to exploit caching advan-
tages. In addition to this, we store factor tables as lists of
⟨index value, probability⟩ pairs, where each factor tuple is
converted into a corresponding index value. We use two vari-
ants – the first stores only ‘reverse’ indices (computed in re-
verse variable order) and the second stores forward and re-
verse indices (for representing intermediary messages). Note
that these representations enable us to optimize the up and
down passes. In particular, the reverse index enables efficient
construction of tries in the up-phase and in decoding mes-
sage entries over all children in a single pass in the down-
phase. Moreover, the reverse indices of the up-messages act
as placeholders for down-messages, enabling the reuse of
data structures. Finally, the forward indices are used while
merging down-messages with cluster products in-place, thus
optimizing decoding/encoding steps.

Hybrid Architecture
In Bands 5−6 (see Figure 1), libDAI’s pairwise product im-
plementation demonstrates distinct advantages over JoinIn-
fer’s multi-way product. We explore the feasibility of lever-
aging the respective advantages of both these strategies in a
new {HY}brid {J}oin {AR}chitecture (HYJAR). To build

2A trie is a multi-level data structure where each factor tuple
corresponds to a unique path from root to leaf and the probability
value associated with each tuple are stored in the leaf.

such a system, we use the native structure of JoinInfer and
import only the pairwise-product functionality from libDAI
(we do not integrate the entire engine). Given the high costs
of switching between the data structures required for Join-
Infer and libDAI, the main challenge here was to devise a
system that not only optimally chooses between the strate-
gies per bag, but at the same time minimizes the switches
between bags.3 We overcome this challenge by introducing
a deterministic heuristic that decides the optimal strategy
(JoinInfer or PairwiseProd) for each bag v in the GHD that
has at least one input factor assigned to it (i.e. α(v) ≥ 1).4
We then propagate this decision along the subtree of v, un-
til it reaches a bag that was already assigned a decision. To
decide the order of preference, we consider bags v in de-
creasing order of

∏
U∈χ(v) |D(U)|, with the intuition that

larger bags dominate the runtime of libDAI. More details in
the full version.

Experimental Evaluation
In this section, we empirically validate JoinInfer and outline
features that influence its performance. We start by describ-
ing our empirical setup introducing the standard benchmarks
and demonstrate the scope of JoinInfer vis-a-vis state-of-
the-art-systems on them. Then, we document performance
gains of our hybrid system and finally, evaluate our techni-
cal contributions.

Experimental Setup
We first create a testbed of 52 networks that spans the
full range of cases illustrated in Figure 1, sampling from
three publicly available benchmarks – UAI’06 (Bilmes and
Dechter 2006), PIC 2011 (?) and the BN Learns dataset (?)
(which subsumes IJCAI’05 networks (Chavira and Dar-
wiche 2005)). Further, in order to improve the tractability
of some of the larger networks (Bands 1, 2 and 3) for exact
inference (high ρ cases), we randomly induce factor spar-
sity.5 Note that these sparsity levels are consistent with the
ranges found in other networks in the benchmark and induc-
ing sparsity to improve model tractability is a well-accepted
procedure in many practical settings (?; Larkin and Dechter
2003). For the Band 2 networks BN 30− 39, we modify the
original probabilities (these networks are marked with a ‘*’
in Table 1) and provide details in the full version.

We compare JoinInfer against three state-of-the-art sys-
tems on the exact inference query of computing all variable
marginals: ACE (Chavira and Darwiche 2005), an engine
that explicitly exploits determinism, and, libDAI (Mooij
2010) and IJGP (Mateescu et al. 2010), two award winning
systems in the UAI 2010 inference challenge. Additionally,
while JoinInfer, IJGP and ACE process evidence, libDAI

3We would like to mention here that ACE uses a similar rule at
the GHD-level but ours works at the bag-level.

4Recall our earlier assumption that each factor table is assigned
to a unique bag. As a result, not many bags are chosen in this pro-
cess. Further we ignore the incoming messages for a bag v when
deciding on Rv , making this decision faster.

5Details in the full version.



does not. Hence, to ensure a fair comparison, we incorpo-
rate evidence information directly into the input given to the
engines,6 We compare our marginal outputs with these en-
gines, with an error limit of 0.00001. We evaluate all the
systems on the average time taken across 5 runs to compute
all the variable marginals (setting a timeout of 60 minutes
for each run). Further, ACE requires separate compilation of
the arithmetic circuit representing the input network (a non-
standard design). For a fair comparison with other engines
with end-to-end computations, we report two times for ACE
– the sum of compilation and inference times, followed by
inference time.

We ran all our experiments on a Linux server (Ubuntu
16.04 LTS) with Intel Xeon E5-2640 v3 CPU @ 2.60GHz
and 64 GB RAM.

Experimental Results
Benchmark Experiments The results in Table 1 are laid
out along the lines of Figure 1. These networks span over a
wide range of sparsity (20%−100%), domain sizes (2−100)
and factor arity levels (1− 10).

ρ High. The measure RD from (?) predicts superior per-
formance for JoinInfer only in Band 1 (CELAR). However,
in this region of high ρ, JoinInfer performs consistently bet-
ter than the predictions in (?). In Band 1, it is be up to 630x
faster on subsets where ACE completes. In Band 2, it is up
to 2.2x faster and in Band 3 where the corresponding pre-
dictions of (?) is under-performance by 1010× - 1020×, it
can be upto 2.7x faster than ACE (libDAI and IJGP fail
in this space). libDAI and IJGP fail in these bands due to
huge pre-memory allocation. On the other hand, ACE that
takes advantage of factor sparsity using arithmetic circuits
is the only other engine that completes; that said, compil-
ing these structures is costly. In Band 1, we surmise that
JoinInfer’s performance advantages are rooted in the use of
MultFacProd as opposed to standard algorithms, which is
predicted by RJ . The networks in these bands (1− 3) cover
a sparsity range of 20% − 50% and have factor arity level
1 − 4. Further, in Band 1, given that ACE requires the 20%
sparsity levels to complete, we present results at two levels
of sparsity for CELAR (20% and 40%).
ρ Low. RD predicts superior performance for JoinInfer in

Band 4, which it achieves. It is upto 5.29x faster than libDAI
(it’s closest competitor) and up to 5.4x faster than ACE (on
the subsets that ACE completes on). IJGP times out on al-
most all of the networks. Finally, in Bands 5/6, the two unfa-
vorable settings, JoinInfer is on an average faster than ACE
by 5.8x/9.5x and IJGP by 2.36x/2.28x respectively. It is on
an average slower than libDAI by 4.8×/10× respectively:
libDAI’s truth-table indexing advantages clearly manifest in
these two bands. We would like to note however, that the
corresponding predictions of (?) for JoinInfer is under per-
formance by 10x - 108x for Band 5, and 1020x - 1028x for
Band 6, i.e., several orders of magnitude worse.

Predictions by RJ . Our finer grained ratio RJ (Column
4) better tracks JoinInfer’s speed-ups as compared to RD

(Column 5) on most networks. Though it is similar to RD

6Details in the full version.

in Band 1 and within couple of orders magnitude in Band 2,
it diverges considerably (more than 105x) in Bands 3 and 4
(where JoinInfer’s speed-ups are within 1x - 5x). Moreover,
RJ has much tighter predictions than RD across almost all
of the networks in the testbed.

In addition to the above, we find that JoinInfer is com-
petitive in terms of memory usage and the use of “01-
projections” do not help significantly in our benchmarks
(more details in the full version).

Hybrid Architecture (HYJAR). Since JoinInfer is the
only engine that completes on all networks when ρ is high,
we now focus on low ρ conditions. HYJAR helps exploit
the relative strengths of each strategy–multiway or pairwise
products–into a single architecture, yielding consistent per-
formance across a majority of networks (26/28). Of these,
in 9 cases (e.g., munin1, munin, barley, mildew) HYJAR’s
completion times are faster than its nearest standalone com-
petitors (JoinInfer or libDAI), in 10 cases it is less than 2.5x
slower and in 7 cases it is between 2.5x - 4.5x slower. BN 42
and BN 44 are the only two networks where HYJAR’s strat-
egy does not lead to a notable improvement. Further, fol-
low up analysis indicates that HYJAR consistently switches
between strategies at the bag level (more details in the full
version).

Factor Representations. As described in the
Overview Section, we store two variants of the list of
⟨index, probability⟩ pairs – one with a forward index and
the other with a reverse index. Our experiments on the UAI
speech recognition datasets show that this results in up to
3x, 1.6x and 1.3x gains during building tries, message-up
and message-down phases respectively (details in the full
version).

Takeaways. We have identified a threshold for ρ at 109
reflecting the current memory limits for truth tables (on our
machine).7 Further, we have demonstrated that RJ is a better
predictor of JoinInfer’s performance than RD. Finally, HY-
JAR outperforms libDAI, IJGP and ACE on 39 out of 52 net-
works (i.e., 75% of them), illustrating its promise as a practi-
cally relevant architecture for building a robust, broadly ap-
plicable inference engine. Note that the second largest win-
ner is libDAI with wins on only 11 datasets.

Conclusion Our system can be extended to classes of
CSPs studied in (Abo Khamis, Ngo, and Rudra 2016), which
we think are potentially relevant for inference on Lifted
Graphical Models.
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Table 1: Benchmark Comparisons: The first column denotes the range of ρ, followed by the bands of the datasets (see Figure 1) and the
dataset name. The fourth column denotes the number of variables/factors, followed by RJ and RD . We report three runtimes for JoinInfer:
without 0/1 projections, with all 0/1 projections and HYJAR, followed by our comparison engines – LibDAI, IJGP and ACE (Total Time
and Inference Time). (All runtimes are in seconds.) Further, we report the median and mean sparsity for every dataset, followed by fractional
hypertree width (fhtw) and tree-width (tw) (computed for the same GHD). The fractional hypertreewidth (fhtw) numbers were generated by
solving the linear program (3) using Google OR-Tools (?). Finally, we report the maximum domain value (D) and maximum factor table (non-
zero) entry size (N). ‘T’ denotes engine-time out (60 mins). The networks BN 30− 39 are denoted by ‘*’ since we modify the probabilities
in them (details in the full version). Note that LibDAI and IJGP crash on all benchmarks where ρ > 109, due to huge pre-memory allocation
and this is denoted by ‘F’. For IJGP, we observed that it does approximate inference in benchmarks Munin1 and BN 43 − 46 respectively.
In particular, we recorded its final treewidth using the MinFill ordering on all benchmarks and compared it with JoinInfer’s and libDAI’s
treewidth (both using the MinFill ordering) respectively. We noticed that the final treewidth reported by IJGP was much smaller than the
treewidth reported by JoinInfer and libDAI. Note that we preprocess evidence and SAT-based singleton consistency on all the benchmarks
and thus, we concluded that IJGP does Approximate Inference on these datasets (which we denote by ‘A’).

ρ Band Dataset Var/Factors RJ RD JoinInfer HYJAR libDAI IJGP ACE Sparsity (in %) fhtw tw D/N
w/o 0/1 0/1 TTime ITime

ρ > 109

Band 1

CELAR6-SUB0 20 16/57 2.00E-03 1.00E-03 0.17 0.16 0.19 F F 97.24 0.36 20/20 4 8 44/387
CELAR6-SUB1 20 14/75 3.00E-04 3.00E-04 2.57 2.58 2.59 F F 444.38 0.99 20/20 5 10 44/387
CELAR6-SUB2 20 16/89 1.00E-04 1.00E-04 1.05 1.04 1.07 F F 653.33 0.74 20/20 5.5 11 44/387
CELAR6-SUB3 20 18/106 1.00E-04 1.00E-04 3.72 3.69 3.67 F F 1219.08 0.78 20/20 5.5 11 44/387
CELAR6-SUB0 40 16/57 3.00E-02 2.50E-02 4.55 4.59 4.17 F F 855.12 1.2 40/40 4 8 44/774
CELAR6-SUB1 40 14/75 1.00E-02 1.00E-02 392.7 388.76 388.42 F F T T 40/40 5 10 44/774
CELAR6-SUB2 40 16/89 6.50E-03 6.40E-03 449.02 448.56 441.41 F F T T 40/40 5.5 11 44/774
CELAR6-SUB3 40 18/106 6.00E-03 7.00E-03 796.76 794.98 780.93 F F T T 40/40 5.5 11 44/774

Band 2

BN 30* 1036/1153 15.96 5.10E+02 1.05 1.11 1.01 F F 2.20 0.28 50/44.5 25 41 2/4
BN 31* 1036/1153 47.47 2.00E+03 1.04 1.1 1.03 F F 2.23 0.31 50/44.5 25 39 2/4
BN 32* 1294/1441 1.88 1.20E+02 1.61 1.71 1.60 F F 2.94 0.32 50/44.3 28 49 2/4
BN 33* 1294/1441 6.20E+02 1.00E+03 1.62 1.68 1.60 F F 2.86 0.31 50/44.3 26 42 2/4
BN 34* 1294/1443 2.60E+04 3.20E+04 1.60 1.66 1.59 F F 2.76 0.31 50/44.3 28 41 2/4
BN 35* 1294/1443 3.10E+01 5.10E+02 1.59 1.65 1.58 F F 2.82 0.31 50/44.3 26 43 2/4
BN 36* 1294/1444 1.70E+03 2.00E+03 1.62 1.70 1.60 F F 3.05 0.31 50/43.7 30 49 2/4
BN 37* 1294/1444 7.10E+02 1.00E+03 1.64 1.70 1.62 F F 2.76 0.30 50/43.7 30 50 2/4
BN 38* 1294/1442 4.10E+02 2.50E+02 1.58 1.65 1.55 F F 2.94 0.32 50/43.9 27 46 2/4
BN 39* 1294/1442 10.7 2.50E+02 1.61 1.65 1.60 F F 2.93 0.32 50/43.9 26 44 2/4
BN 62 657/667 7.70E+09 8.38E+09 0.74 0.7 0.68 F F 1.45 0.24 25/34.1 21 47 2/14

Band 3

BN 60 530/539 1.20E+08 7.20E+16 0.7 0.75 0.73 F F 1.65 0.24 50/44.03 29 60 2/16
BN 61 657/667 3.00E+10 1.70E+10 0.74 0.74 0.69 F F 1.69 0.24 25/34.1 21 46 2/14
BN 63 530/540 1.40E+10 9.20E+18 2.43 0.77 0.67 F F 1.84 0.27 50/43.5 30 57 2/16
BN 64 530/540 1.60E+09 5.76E+17 0.79 0.68 0.63 F F 1.84 0.25 50/43.5 28.5 55 2/16
BN 67 430/437 4.60E+10 2.95E+20 2.64 1.65 2.05 F F 1.71 0.26 50/50.57 32.5 62 2/16

ρ ≤ 109

Band 4

BN 20 2433/2840 119 1.00E-04 4.53 4.47 14.94 22.73 T T T 50/49.3 4 7 91/208
BN 21 2433/2840 109 1.00E-04 4.49 4.42 14.86 23.37 T T T 50/49.3 4 7 91/208
BN 22 2119/2423 0.97 1.00E-05 2.13 2.18 2.98 3.77 T 7.83 1.71 50/47 4 7 91/208
BN 23 2119/2423 0.97 1.00E-05 2.14 2.21 3 3.74 T 7.74 1.79 50/47 2 5 91/208
BN 24 1514/1818 2.08 1.00E-05 1.33 1.4 1.74 2.11 T 6.24 1.58 53.8/53 2 5 91/208
BN 25 1514/1818 2.01 1.00E-05 1.31 1.39 1.76 2.12 T 6.34 1.62 53.8/53 2 5 91/208

Pathfinder 109/109 54.94 1.00E-05 0.15 0.29 0.29 0.11 0.34 0.81 0.31 52.4/61.4 2 7 63/6437

Band 5

Alarm 37/37 3.58 11.39 0.03 0.03 0.05 0.02 0.06 0.46 0.21 100/99.4 2 5 4/108
Hepar2 70/70 5.95 9 0.04 0.05 0.06 0.03 0.19 0.42 0.19 100/100 2 7 4/384
Mildew 35/35 2.00E+03 327 0.78 0.71 0.24 0.27 2.81 2.91 1.89 75/61.7 3 5 100/14849
Munin 1041/1041 35.77 557 13.27 13.82 1.98 3.14 11.35 T T 42.1/46.6 6 9 21/276
Munin1 186/186 43.23 16.6 598.86 629.75 20.6 39.01 A T T 46.2/48.6 7 12 21/276
Munin4 1038/1038 57.9 557 16.86 17.21 2.15 2.06 10.67 3.77 2.01 44/46.6 6 9 21/276
Diabetes 413/413 524.51 4.24E+06 3.28 3.31 0.72 0.89 32.98 6.99 4.69 33.3/45.6 4 5 21/2040
Munin2 1003/1003 2.90E+05 8.90E+08 2.71 2.28 0.68 0.79 4.27 2.81 1.63 46.4/48 8 8 21/276
Munin3 1041/1041 5.00E+05 1.20E+04 2.71 2.52 0.70 0.95 5.81 2.38 1.28 45.8/37 6 8 21/276

Pigs 441/441 144 1.50E+04 0.98 0.92 0.36 0.24 1.05 1.37 0.7 55.6/70.2 8 11 3/15
Link 724/724 2.00E+07 2.70E+08 18.02 19.91 14.27 3.43 29.73 201.02 7.49 50/65.1 12 16 4/31

Barley 48/48 4.00E+07 6.50E+03 26.69 27.17 1.13 1.45 15.32 17.53 10.94 100/100 4 8 67/40320
Hailfinder 56/56 13.02 1.00E+04 0.03 0.05 0.06 0.01 0.05 0.53 0.23 94.2/83.9 3 5 11/1181

Water 32/32 1.00E+05 1.00E+06 0.17 0.14 0.27 0.31 0.15 0.81 0.34 50/58.23 4 11 4/1454
Win95pts 76/76 8.66 3.10E+04 0.05 0.05 0.05 0.03 0.03 0.53 0.2 100/90 3 9 2/252

Band 6

Andes 223/223 3.10E+04 1.50E+20 0.57 0.59 0.19 0.14 0.59 1.12 0.67 100/95.7 12 17 2/128
BN 42 870/879 1.23 4.72E+21 32.63 32.11 35.15 2.66 19.18 1216.39 19.6 50/54.4 24 24 2/16
BN 43 870/880 1.14 3.78E+22 65.47 64.03 4.37 4.43 A 1132.1 22.24 50/54.4 25 25 2/16
BN 44 870/880 1.03 2.40E+24 227.87 216.98 133.5 12.82 A 1341.72 17.02 50/54.3 27 27 2/16
BN 45 870/880 1.1 3.78E+22 67.05 68.21 8.07 6.95 A 778.91 19.05 50/54.2 25 25 2/16
BN 46 489/497 1.04 7.92E+28 45.98 46.09 20.16 5.85 A 150.25 5.79 50/55.9 24 24 2/16
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