Effectively Learning from Pedagogical Demonstrations

Mark K Ho (mark_ho@brown.edu)
Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer Street
Providence, RI 02906 USA

Michael L. Littman (mlittman @ cs.brown.edu)
Department of Computer Science, Brown University, 115 Waterman Street
Providence, RI 02912 USA

Fiery Cushman (cushman @fas.harvard.edu)
Department of Psychology, 1484 William James Hall, 33 Kirkland St.
Cambridge, MA 02138 USA

Joseph L. Austerweil (austerweil @ wisc.edu)
Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson Street
Madison, WI 53706 USA

Abstract

When observing others’ behavior, people use Theory of Mind
to infer unobservable beliefs, desires, and intentions. And
when showing what activity one is doing, people will modify
their behavior in order to facilitate more accurate interpretation
and learning by an observer. Here, we present a novel model of
how demonstrators act and observers interpret demonstrations
corresponding to different levels of recursive social reasoning
(i.e. a cognitive hierarchy) grounded in Theory of Mind. Our
model can explain how demonstrators show others how to per-
form a task and makes predictions about how sophisticated ob-
servers can reason about communicative intentions. Addition-
ally, we report an experiment that tests (1) how well an ob-
server can learn from demonstrations that were produced with
the intent to communicate, and (2) how an observer’s interpre-
tation of demonstrations influences their judgments.

Keywords: Theory of Mind; Communicative Intent; Cogni-
tive Hierarchy; Reinforcement Learning; Bayesian Pedagogy

Introduction

People often learn by observing others’ demonstrations. Con-
sider learning how to tie your shoes. It would be difficult
to learn shoe tying through trial-and-error, which is why we
usually learn how to do it from others. However, by itself,
being in the presence of social others who are adept at ty-
ing shoes is insufficient: imagine trying to learn to tie your
shoes by only examining finished knots or briefly watching
as someone ties their shoes before rushing out the door. That
would be difficult. Instead, people often engage in teaching
interactions in which a demonstrator intentionally communi-
cates the structure of a task or skill while an observer intently
watches, aware of the demonstrator’s pedagogical aims. The
demonstrator, to better teach, might modify their behavior to
better disambiguate a task, while the observer, to properly
learn, might interpret actions in light of these teaching goals
to draw better inferences. This form of interaction supports
learning in a variety of domains, from learning everyday tasks
like shoe tying to complex technical skills to nuanced social
norms. Understanding the cognitive processes that support
this capacity is thus critical for a painting a complete pic-

ture of folk pedagogy and cultural learning (Tomasello et al.,
2005; Boyd, Richerson, & Henrich, 2011).

We examine learning from demonstration from the per-
spective of Theory of Mind (Dennett, 1987; Baker, Saxe,
& Tenenbaum, 2009) and communication via recursive so-
cial reasoning (Sperber & Wilson, 1986; Shafto, Goodman,
& Griffiths, 2014). Theory of Mind is the capacity to rea-
son about one’s own or others’ mental states (such as be-
liefs, desires, and intentions) and interpret behavior in light
of these mental states. Previous work focuses on how ob-
servers reason about agents that are simply doing activities
such as pursuing goals (Gergely, Nadasdy, Csibra, & Biro,
1995) or interacting with others besides the observer (Heider
& Simmel, 1944; Hamlin, Ullman, Tenenbaum, Goodman,
& Baker, 2013). However, people often intentionally teach
(Csibra & Gergely, 2009) and demonstrators who are show-
ing how to do a task behave in ways that differ systematically
from those simply doing a task (Ho, Littman, MacGlashan,
Cushman, & Austerweil, 2016).

Here, we present a new framework for modeling how peo-
ple teach by and learn from demonstrations that combines el-
ements of planning (Puterman, 1994; Sutton & Barto, 1998)
and cognitive hierarchy (Camerer, Ho, & Chong, 2004). This
has several theoretical advantages and can capture new as-
pects of data originally reported in Ho et al. (2016). We de-
velop a model of sophisticated observers who not only rea-
son about another agent doing a task, but also reason dif-
ferently about a demonstrator’s communicative versus non-
communicative goals, thus learning more effectively than a
naive observer who is insensitive to this distinction. Finally,
we present the results of an experiment in which participants
observed the behavior of another agent doing or showing how
to do a task, and participants were told either that they were
or were not produced with communicative intent. The model
shows a correspondence to peoples’ judgments, providing
further support for this framework for modeling teaching with
and learning from demonstration.



Modeling Teaching with and Learning from
Demonstration

To model demonstrator behavior and observer inferences, we
draw on two approaches. Aspects of Theory of Mind have
been modeled as inverse planning (Baker et al., 2009). Mean-
while, recursive social reasoning has been modeled as a cog-
nitive hierarchy (Camerer et al., 2004), where inferences and
actions result from Bayesian agents modeling one another.
This has been applied to domains such as pragmatics (Frank
& Goodman, 2012) and strategic games (Wunder, Kaisers,
Yaros, & Littman, 2011). Building on these approaches, we
introduce a new model of showing as planning in observer
belief space and a model of learning from showing.

Theory of Mind as Inverse Planning

Markov Decision Processes (MDPs) (Puterman, 1994) can
be used to model intentional action (that is, doing a task)
and serve as the generative model for Theory of Mind in-
ference (Baker et al., 2009). A ground MDP, M; € M is
a tuple < S§,A4,T;,R;,y >: a set of ground states S; a set
of actions A4; a transition function that maps states and ac-
tions to distributions over next states, 7; : S X 4 — P(S); a
reward function that maps state/action/next-state transitions
to scalar rewards, R; : S X A x S — R; and a discount fac-
tor y € [0,1) that captures a preference for earlier rewards
or completing a task quickly. Associated with each MDP
is an optimal value function, QF : § x A — R. Intuitively,
this corresponds to the maximum expected cumulative dis-
counted reward (i.e. the value) that an agent could expect
to receive when taking an action a from a state s and act-
ing optimally from then on. Formally, it is uniquely deter-
mined by the fixed-point of the recursive Bellman equations
0i(s,a) = Yy Ti(s' | 5,a) [Ri(s,a,s') +ymaxy Q; (s’,a/)}, for
each state s and action a. O represents the value for a per-
fectly optimal agent. To account for deviations from this, we

assume each ’doing” agent uses a soft-max policy, which is
defined as:
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where T° > 0 is a temperature parameter.

Given a generative model of a demonstrator’s actions as
produced from possible desires (i.e. reward functions), en-
vironment knowledge (i.e. states and transitions), and ap-
proximate rationality (i.e. acting to soft-maximize value), an
observing agent can perform Bayesian inference over worlds
(i.e. MDPs). Suppose, at time #, an observer has an initial be-
lief over possible MDPs, h9% (M;). As they observe a demon-
strator take an action and transition to a new state, they will
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Figure 1: Cognitive hierarchy levels and model notation.

update their beliefs in accordance with Bayesian inference:

bery (Mi) = P(M; | sy, ar,5111)
o< (a St+1 |St7 )P(Mi)
B 2
= P(a; | 8¢, M;)P(st+1 | 81,01, M;)P(M;)

=7 (ar | 50)Ti(si+1 | s0,a0) P> (M;).

That is, at each timestep, an observer’s beliefs is updated
based on the prior belief from the previous timestep, b?bs,
the likelihood of the observed state-action transition as given
by the optimal policy, ©P°, and the transition dynamics, T},
under the MDP M;. For notational convenience, we define
a belief update function BU (s, a;,s.+1,b°%). The output of
this function is b,off, the observer’s belief that the demonstra-
tor is in each MDP given a state-action transition and previous
beliefs bO.

Showing as Planning in Observer Belief Space

An observer can interpret a demonstrator’s behavior as doing
a task using Theory of Mind. But what if the demonstrator
is aware that they are being observed and motivated to show
what task they are performing? Then they may reason not
only about how their actions cause transitions and rewards
in the ground state-space, .S, but also in the observer’s be-
lief space, Ay,. We formulate a showing demonstrator, then,
as representing an Observer Belief MDP (OBMDP), MY,
defined by the tuple < Q%,}Zl,Y}Sh"W,RiShOW,YSh"W >: a joint
belief-ground state-space, B = S X Ayy; the original ground
actions, 4; a belief-ground state transition function, 7,5V :
B x 4 — B; a showing reward function, R,.Sh"W :BxB—-R;
and a showing discount rate, y5"% € [0,1). (Note from now
on we will refer to the doing discount as YP° to explicitly dis-
tinguish it from yShow )

We draw attention to two key components of our model of
showing as planning in observer belief space: the showing
reward function, R?"¥, and the showing transition function,
TiSh‘)W. They are both influenced by the environment and ob-
server’s belief state. When cooperatively showing what they
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Figure 2: (a) Example of behavior in doing versus showing demonstration conditions from Ho et al. (2016) and the instructions
for each condition. (b) Space of eight possible reward functions with different assignments of safe (0 points) and dangerous (-2
points) to each of the three colors. Labels like “000” are used later in this paper to reference specific reward functions. Note
that participants never directly saw the reward function and inferred them from instructions on a trial.

are doing or how to do a task, a demonstrator wants the ob-
server to increase their belief in the true ground MDP, M;.
However, they are still constrained by the rewards in the en-
vironment, determined by R;. That is, they must plan ac-
tions with both communicative and non-communicative re-
wards in mind. Thus, we formulate R?™" as a combination
of ground rewards and weighted observer belief changes in
the true ground MDP, M;:

RiShow(stab?bsa ArySt+1, bgl-i)ls)
= Ri(st,ar,5041) + (O (M) = b7 (My)), - (3)

where K controls the degree of a demonstrator’s motivation
to show. The showing transition function is similarly deter-
mined by the ground dynamics, 7;, as well as how an ob-
server’s beliefs change in response to observed actions:

Show Obs Obs
Ti (st+17bt+1 |stabt 7at)

_ s | sean), i€ 620 =BU(sp,ar,501,b7%)
0, otherwise.

“

A showing demonstrator can then be modeled by calculat-
ing the solution to an OBMDP.! That is, for MiSh"W, we can
calculate a value function and softmax policy that defines
actions to take in different world-belief states: 7P (g,
51,b0%) o< exp{ Q3% (5,,b9%,a,) /TMV}, where 1"V is a
showing temperature parameter.

Learning from Showing

Just as a showing demonstrator has a nested model of an ob-
serving agent, we can define a sophisticated observer who

! Although both plan over beliefs, an OBMDP is nof equivalent to
a Partially Observable Markov Decision Process (POMDP) with the
true MDP as the hidden state. Due to Equation 4, an OBMDP value
function is not necessarily piecewise, linear, and convex, which is a
key property of a POMDP (Kaelbling, Littman, & Cassandra, 1998).
We approximate the OBMDP value function using value iteration
(Sutton & Barto, 1998) over a discretization of the belief space.

reasons about showing demonstrators. Analogous to Equa-
tion 2, a sophisticated observer updates a distribution over
OBMDPs by reasoning about possible showing agents:

b1 (M;)
o< ﬂ?how(at | St;b?bs)Ti(SH—l | Staat)th-ObS(Mi)~ 4)

A sophisticated observer recognizes that actions are, in part,
pedagogically motivated. For instance, when teaching a child
how to tie their shoes, a parent might fold the laces to clearly
resemble “bunny ears”. A naive observer would only be
able to attribute those particular actions to task-related goals,
whereas a sophisticated observer could also reason about
them in relation to communicative goals.

Summary

Here, we have developed a framework for modeling demon-
strator behavior and observer interpretations of behavior
based on recursive social reasoning and Theory of Mind.
Different types of demonstrators and observers correspond
to different “levels” in a cognitive hierarchy, as illustrated
in Figure 1, allowing us to simultaneously model actions
and inferences about possible tasks as they unfold over time.
An implementation of the different models is available at
https://github.com/markkho/demonstration-teach-learn.

Modeling Showing as Planning in Observer
Belief Space
Task

In Ho et al. (2016), we compared how people show a task to
how they do a task. Participants were given the gridworld in
Figure 2a, where they could move the blue agent up, down,
left, or right. Each round began in the same location and
ended upon reaching the yellow goal, worth 10 points. Also,
on each round, the reward for stepping on the remaining color
tiles (orange, purple, and cyan) changed. Each color could be
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Figure 3: Tests for Ho et al. (2016) data. See Figure 2 for
reward function codes. *p < .05, p < .01,**p < .001.

either safe (no points) or dangerous (-2 points), resulting in
eight distinct reward functions (Figure 2b).

In the test phase, participants were given a round with each
of the eight reward functions and were assigned to the do-
ing or showing condition. Those in the doing condition were
simply told the reward values of each color. Those in the
showing condition were told the reward values, but they were
also told that their behavior would be shown to another par-
ticipant. Critically, this other participant would need to know
which colors were safe and dangerous for a separate experi-
ment. Additional experimental details can be found in Ho et
al. (2016).

Analysis of Ho et al. (2016) Results

Does the current model explain showing? In an OBMDP, the
value of showing comes from the rewards associated with
transitions in an observer’s belief space. Thus, a model of
doing the task is a subset of showing the task, and we can
use a likelihood-ratio test to determine if showing explains
behavior. We fit the current model to individual participants
and rounds, varying y°, T2°, %% and t5P°%, Since an OB-
MDP collapses into the original world MDP when actions
are uninformative, we used T2° = 1000 as the null model in
a likelihood-ratio test. Using this test on the original data,
we found that for the showing condition, seven out of eight
reward functions rejected the null model, while in the doing
condition, only one out of eight rejected it (all }?(29) > 42.5,
p < .05, Figure 3).

The model of showing as planning in observer belief space
thus provides an account of how peoples’ showing demon-
strations unfold over time. This represents several advances
over previous accounts such as that presented in Ho et al.
(2016). First, it directly integrates non-communicative re-
wards, such as losing points for being on certain tile col-
ors, and communicative goals through RS"% (Equation 3).
This allows us to model how people balance these motiva-
tions. Second, we can arbitrarily approximate the entire value
function and policy over observer belief space, rather than be
constrained to enumerated trajectories. In doing so, we can
directly model extended, repetitive behaviors that are non-

Figure 4: Left: Participant demonstrations in doing condition
when only orange is dangerous. Right: Showing demonstra-
tions with an example of extended behavior captured by the
model of planning in observer belief space in red.

Markov in the world state-space, but Markov in the observer
belief space. For example, Figure 4 illustrates a person’s
showing demonstration from a single round in which specific
transitions are revisited and emphasized in a particular se-
quence. We can also compute teaching policies when the en-
vironment involves stochastic transitions (Ho, Littman, Cush-
man, & Austerweil, in prep), which cannot be modeled by se-
lecting a deterministic trajectory. Finally, by (approximately)
computing a compact representation for showing policies,
TV j = 1,2,...,n, we can compute the belief states of a
sophisticated observer who reasons about a demonstrator’s
communicative intentions (b5°°%%). In the next section, we
present an experiment designed to compare the predictions of
a naive observer and this sophisticated observer model.

Experiment: Learning from Showing

Given that the model accounts for demonstrator behavior,
we can investigate how demonstrator intentions and an ob-
server’s interpretation influence what is ultimately learned.
To answer this question, we presented the empirical demon-
strations obtained from the doing and showing demonstrator
conditions originally reported in Ho et al. (2016) to a new set
of participants. These participants were additionally placed
in either a doing or showing observer condition in which the
interpretation of a demonstration (whether it was originally
produced with the intent to show) was manipulated. Testing
both sets of demonstrations as well as both possible interpre-
tations as separate factors enables us to understand how they
interact and each influence learning from demonstration.

Materials and Design

The stimuli used were the state/action/next-state tuples from
the original study. These were generated from the eight
main trials from the 29 participants in the doing and showing
demonstrator conditions, for a total of 464 demonstrations.
Each participant was told they would observe a single demon-
stration from a partner. They were also assigned to a doing
or showing observer condition. In the showing observer con-
dition, but not the doing one, they were told that their part-
ner “knows that you are watching and is trying to show you
which colors are safe and dangerous”. Next, they were shown
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Figure 5: (a) Probability on the correct answer produced by the model. (b) Accuracy of human judgments. (c) Reported
confidence of human judgments on a 0-100 scale. Error bars are bootstrap-estimated 95% confidence intervals.

a page with the animated demonstration and answered, for
each of the three colors (orange, purple, and cyan), whether
they thought it was safe or dangerous and their confidence on
a continuous scale (0 to 100). Each participant received a base
pay of 10¢ and starting from a bonus of 15¢ won/lost 5¢ for
each correct/incorrect answer. Two MTurkers were assigned
to each demonstration and observer instruction combination
using psiTurk (Gureckis et al., 2016).

Models

We implemented four models for the gridworld task: the do-
ing agent, the showing agent, the naive observer, and the
sophisticated observer. The doing agent was parameterized
with YP° = .99 and tP° = .08, while the showing model with
a nested doing model was parameterized with YP° = .99,
0 = 3.0, Y% = 9, and MV = 1.0. These values were
chosen to produce trajectories that were qualitatively compa-
rable to human demonstrations. For each reward function and
demonstrator type, one hundred trajectories were generated,
which were then fed to either a naive observer who performed
inference over possible models of doing (using the nested do-
ing parameters) or a sophisticated observer who performed
inference over possible showing models. At the end of each
observation of a trajectory, we converted the final probabil-
ity vector over possible MDPs to probabilities that each color
was safe/dangerous. For each reward function, these were
then converted to a corresponding probability on the true re-
ward of the color that the demonstration was generated from.
As shown in Figure 5a, both model showing demonstrations
and sophisticated observing led to greater probability mass
assigned to the correct option.

Experimental Results

For both accuracy of which colors were safe/dangerous and
confidence, we found main effects of both the demonstrator
and observer instructions. For judgment accuracy, we used a
repeated-measures logistic regression with correct/incorrect
as the outcome variable, reward function and demonstra-
tor as random effects, and demonstrator instructions and

observer instructions as fixed effects. We found signifi-
cant variance across reward function intercepts (SD = 0.92,
xz(l) =760.26, p < .0001) and demonstrator (SD = 0.33,
x%(1) = 63.10, p < .0001). The most complex model with a
significant increase in fit was one with the demonstrator and
observer instruction conditions as main effects, but without
their interaction. In the final model, there was a main effect
of demonstrator instructions (B = 0.40, SE = 0.11, z = 3.63,
p < .001), corresponding to showing demonstrations increas-
ing accuracy by 1.5 times, holding other factors at fixed val-
ues. There was also a main effect of observer instructions
B =0.13, SE = 0.07, z = 1.97, p < .05), corresponding
to observers’ interpretation of demonstrations as intentional
showing increasing accuracy by 1.14 times.

We similarly analyzed the confidence judgments provided
by participants using a mixed-effects linear regression model.
Confidence on a 0 to 100 scale was the outcome variable,
while reward function, demonstrator, and observer were ran-
dom effects, and demonstrator and observer instructions were
fixed effects. We found significant variance across reward
function intercepts (SD = 3.65, x2(1) =91.97, p < .0001),
demonstrator (SD = 1.20, xz(l) =23.72, p < .0001), and
observer (SD = 14.14, xz(l) = 454.31, p < .0001). In the
final model, which did not include the interaction between
demonstrator and observer instructions, there was a main
effect of demonstrator instructions (B = 3.34, SE = 0.93,
1(57.2) =3.59, p < .001) and observer instructions (f = 3.57,
SE =0.87,1(1790.8) = 4.08, p < .001). In short, across both
measures (accuracy and confidence), we found main effects
of demonstrator and observer instructions (Figure 5bc).

Discussion

We presented a computational framework for modeling
demonstrator behavior and observer interpretation based on
Theory of Mind (Baker et al., 2009) and recursive social rea-
soning (Camerer et al., 2004). In our models, the meaning
of actions is grounded in what an agent performing a task
would do, and a showing demonstrator is modeled as plan-
ning in the belief space of a naive observer using Theory of



Mind. A sophisticated observer is then one who also reasons
about the communicative goals of a showing demonstrator to
draw stronger inferences about what they are being shown.
This model has a number of advantages over one originally
presented in Ho et al. (2016), and we found that it captures
new aspects of the data in that study. Further, we can model
the inferences of a sophisticated observer. In an experiment
that used previously collected demonstrations, we found that,
consistent with our models, both the observer’s interpretation
of behavior as showing and demonstrator’s communicative
intent to show positively influence learning.

Our approach draws on a number of existing ideas and re-
lates to several other lines of research. Related formalisms
have been explored in the context of making robot actions
legible (Dragan, Lee, & Srinivasa, 2013) and from a “value
alignment” perspective (Hadfield-Menell, Russell, Abbeel, &
Dragan, 2016). Within cognitive science, this work builds on
models of concept teaching by example (Shafto et al., 2014)
and sequences of teacher interventions (Rafferty, Brunskill,
Griffiths, & Shafto, 2016) as recursive reasoning and par-
tially observable planning, respectively. Additionally, simi-
lar models have been used to study how people generate and
interpret pragmatics in language (Frank & Goodman, 2012).
This work can be seen as a direct extension of the work in
pragmatics to forms of non-verbal communication where the
“semantics” of communicative behaviors are determined by
world-directed intentional action (i.e. doing tasks).

There are several directions to explore with these models.
For instance, they make predictions about the time course of
naive versus sophisticated observer inferences, but our exper-
iment did not test these directly. Important differences might
arise in more complex domains with longer time horizons.
Also, we model belief space transitions as deterministic and
known with certainty, but in reality this is rarely the case.
“Uncertainty in the observer’s uncertainty”” could have an in-
fluence on demonstrator behavior that cannot be explained by
the current model. Finally, some work in linguistics explores
the back-and-forth of conversations from the perspective of
recursive social reasoning (Hawkins, Stuhlmiiller, Deegan, &
Goodman, 2015). This work could be extended to model sit-
uations in which both the teacher and learner can take actions
while observing and reasoning about one another. Future
work will need to explore these questions to provide a clearer
picture of everyday teaching, social learning, and communi-
cation.
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