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Abstract

When teaching, people often intentionally intervene on a
learner while it is acting. For instance, a dog owner might
move the dog so it eats out of the right bowl, or a coach might
intervene while a tennis player is practicing to teach a skill.
How do people teach by intervention? And how do these
strategies interact with learning mechanisms? Here, we ex-
amine one global and two local strategies: working backwards
from the end-goal of a task (backwards chaining), placing a
learner in a previous state when an incorrect action was taken
(undoing), or placing a learner in the state they would be in if
they had taken the correct action (correcting). Depending on
how the learner interprets an intervention, different teaching
strategies result in better learning. We also examine how peo-
ple teach by intervention in an interactive experiment and find
a bias for using local strategies like undoing.
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Introduction

When attempting to teach another agent, people have many

tools at their disposal. They may choose to explain (Callanan

& Oakes, 1992), give a demonstration (Brugger, Lariviere,

Mumme, & Bushnell, 2007; Buchsbaum, Gopnik, Griffiths,

& Shafto, 2011; Király, Csibra, & Gergely, 2013), or offer

rewards and punishments for taking certain actions (Knox &

Stone, 2015; Ho, Littman, Cushman, & Austerweil, 2015).

Another way in which people teach a learner is by interven-

ing on the learner or the learner’s environment. For example,

if a puppy urinates on the carpet when a person is trying to

teach the puppy to urinate on a pad, a person might move

the puppy to the pad or move the pad to the puppy. When

teaching another person a skill like tennis, a teacher might in-

tervene on the trainee mid-movement and either adjust their

arm to match the target movement or stop them to start over.

The space of possible ways in which a teacher could change

a learner’s situation for pedagogical purposes is large. This

raises several questions: First, what is the effectiveness of

different intervention strategies? Second, how could learners

interpret interventions and how does the interpretation affect

a teaching strategy’s efficacy? And, finally, what teaching

strategies do people tend to use?

In this work, we examine three teaching by intervention

strategies from a reinforcement learning perspective (Sutton

& Barto, 1998). The first, backward chaining, is motivated

by algorithms such as value iteration (Bellman, 1957) that

solve multi-stage decision-problems by propagating informa-

tion about rewards to previous states that lead to those re-

wards. Intuitively, this is akin to teaching a task by “work-

ing backwards”, first ensuring that the learner knows how to

reach a goal from the penultimate state, and then reach the

penultimate state from the antepenultimate state, and so on.

We consider this a global intervention strategy since it in-

volves changing the learner’s state in a manner that reflects

the structure of the entire task, rather than a small part of it.

The second strategy, undoing, is motivated by the intuition

that interventions prevent learners from executing an unde-

sirable action by having them restart from the state they per-

formed the undesirable action. The third strategy, correcting,

intervenes on a learner when she executes an undesirable ac-

tion (like undoing), but places her in the state she would have

gone to if she had taken the desired action. Unlike backwards

chaining, undoing and correcting involve local changes to an

agent’s state.

How could a learner interpret an intervention? In a typi-

cal reinforcement learning setting, an agent takes an action

in a state, and then the environment rewards or punishes her

and moves her to a new state (Figure 1). We formalize four

ways that an intervention can be interpreted. First, the inter-

vention may simply reset the learner in a new location from

which the next action will be taken. Second, the next state

that the learner is moved to could be interpreted as part of a

transition in the environment. Third, the intervention could

be treated as an interruption in a learner’s stream of behavior

such that the undesirable action just taken never happened.

Fourth, the intervention could be treated as a disruption, in

which the intervention is experienced negatively. Each of

these accounts may interact with a teacher’s training strategy

in different ways, meaning that the best teaching strategy may

be dependent on the learner’s intervention interpretation.

The outline of the paper is as follows. First, we review

the reinforcement learning framework. Second, we formalize

four different ways that a reinforcement learning algorithm
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Figure 1: (a) Standard state, action, reward, next state sequence of a Markov Decision Process at a given time step. (b) Four

different interpretations of a teacher intervening to place the learner in state vt in response to a learner’s action at from state st .

When interventions are interpreted as reset, transition, or disrupt, rt is respectively determined by the environmental next state,

s′t , the teacher’s next state, st+1, or the teacher’s intervention, vt . When the the intervention is treated as interrupt, no reward

experienced and no learning occurs for that time step.

could interpret an intervention and three teaching strategies.

Third, we conduct simulations to examine how efficacious

different teaching strategies are depending on how a learner

interprets their interventions. Fourth, we conduct an exper-

iment to investigate how people teach by intervention. We

find that undoing, a local intervention strategy, is often ef-

fective and that people tend to teach most often by undoing,

occasionally correcting, and rarely backward chaining.

Computational Modeling

In this section we present the standard reinforcement learning

(RL) formalism, discuss the four intervention interpretations,

and define the three teaching strategies.

Reinforcement Learning RL describes how an agent inter-

acts with an environment and learns reward-maximizing be-

haviors (Sutton & Barto, 1998). Formally, an RL algorithm

learns to take actions in a Markov Decision Process (MDP),

defined by the tuple < S,A,T,R,γ >: a set of states in the

world S; a set of actions for each state A(s); a transition func-

tion that maps state-action pairs to a probability distribution

over next states, P(s′ | s,a); a reward function that maps states

to scalar rewards, R : S→ R; and a discount factor γ ∈ (0,1].
At each time step t, an RL agent takes an action at from

a state st , which results in moving to next state st+1 and a

reward rt+1 = R(st+1) (Figure 1). Actions are determined

by the agent’s policy π that maps states to distributions over

actions. For a policy π, the value at each state, V π(s), is:

V π(s) = Eπ

[

∞

∑
k=0

γkrt+k+1 | st = s

]

. (1)

The optimal policy, π∗, is one that maximizes the value func-

tion in every state, V ∗(s) =maxπ V π(s),∀s∈ S. An agent uses

state, action, next state, reward tuples to learn an optimal pol-

icy.

Q-Learning One algorithm for learning an optimal policy

is Q-learning, which is an off-policy temporal difference con-

trol algorithm. Under mild assumptions, Q-learning con-

verges to the true action-value function (Watkins & Dayan,

1992). Moreover, humans and animals both engage in the

type of error-driven reward learning found in Q-learning,

making it a useful model with which to test different human

teaching strategies (Niv, 2009). We use one form of this algo-

rithm, one-step Q-learning, which is defined by the following

update rule given a tuple (s,a,s′,r):

Q(s,a)← Q(s,a)+α[r+ γmax
a′

Q(s′,a′)−Q(s,a)]. (2)

where α is the learning rate. We convert the estimated action-

value function to a policy using the softmax decision-rule

π(a | s) = exp{Q(s,a)/λQ}/∑a′ exp{Q(s,a′)/λQ}, where λQ

is a temperature parameter controlling the probability that an

agent takes the action estimated to yield the largest reward de-

pending on the relative rewards she could get by taking other

actions.

Teaching by Intervention

Interpreting Interventions The standard RL formulation

does not define how interventions should be interpreted.

Thus, we posit four different possible interpretations here,

depicted in Figure 1. The four interpretations are motivated

by formalizing the following two intuitions in different ways.

First, a teacher could be treated as a part of the environment

such that her intervention directly changes the next state of

the learner (possibly stopping the feedback she would have

received had she gone to the next state had the intervention

not happened). Second, a teacher is distinct from the stan-

dard MDP environment, and intervenes as a direct response

to a learner having taken an action and ended up in a next

state.



Formally, at a time step t, the learner in state st takes an

action at and ends up in new state s′t . If the teacher does not

intervene, st+1 = s′t . Otherwise, a teacher intervenes to place

the learner in state vt ∈ S. For all intervention types, st+1 = vt .

However, if the teacher’s intervention is interpreted as a re-

set, then the learner performs a Q-learning update using the

tuple (st ,at ,s
′
t ,R(s

′
t)), meaning that she still receives the re-

ward she would have gotten had she reached s′t as the next

state. If it is interpreted as a transition, then the learner up-

dates with (st ,at ,vt ,R(vt)), meaning that she gets the reward

had she taken the action that would move her from st to vt .

If it is an interruption, then the learner does not update the

state-action value function the state-action pair that was in-

tervened on, and she takes her next action in st+1 = vt . If it

is interpreted as a disruption, then the learner updates with

(st ,at ,vt ,−1).

Teaching Strategies We discuss three teaching strategies:

backward chaining, undoing, and correcting. A teacher

using backward chaining has an n-length trajectory J =<
(s1,a1), ...,(sn,an) > that she uses to teach the learner. We

denote the states in the trajectory as SJ = {si : i = 1,2,3...,n}.
The teacher also has a utility function over different inter-

ventions, where initially U0(si) = i for i = 1,2,3, ...,n and

U0(s) = −∞ for s ∈ S \ SJ . On each time step, the teacher’s

utility function is updated as:

Ut+1(st) =

{

Ut(st)−1 if (st ,at) ∈ J

Ut(st) otherwise.
(3)

Teachers only intervene when the agent performs an action

inconsistent with the trajectory (i.e. (st ,at) /∈ J) and place the

agent in a next state according to a softmax decision rule over

their utilities: P(v) ∝ exp{Ut(v)/λ}, where λ is a tempera-

ture parameter. The backward chaining teacher is initially

more likely to move the agent closer to the end of a target

trajectory, but as the agent shows they can perform the target

action in a state the utility of moving the agent to that state de-

creases. Meanwhile, the relative utility of placing the agent

in a slightly earlier stage in the trajectory increases.

A teacher using an undoing strategy has a target policy π∗ :

S→ A that it is attempting to teach. On each time step, if an

agent’s action at 6= π∗(st), then vt = st . That is, when an agent

takes an incorrect action, that action is undone by the teacher

and the agent is placed back in the state she took the incorrect

action. A teacher using a correcting strategy also has a target

policy π∗ that it is attempting to teach. However, if an agent’s

action at 6= π∗(st), then vt = argmaxs T (s | st ,π
∗(st)). That

is, the teacher will move the agent to the state it would have

been in had the agent taken the target action.

Simulations

To understand the interaction of teaching strategy and learner

interpretation, we simulated the performance of a RL agent

for each combination in a gridworld task.

Teacher’s Reward Function

+10

-1

-1-1

-1-1

-1-1

-1

-10

Start

* *

Learner’s Reward Function

+10+10

Start

* *

Experiment Interface

Figure 2: Task used for simulations and experiment. Aster-

isks (*) indicate absorbing states, both providing reward to

the learner, whereas the teacher received reward if the learner

entered the right door, but was punished if the learner entered

the left door. The teacher received a mild punishment when-

ever the learner entered a garden tile.

Task

The task we used is shown in Figure 2. It consists of a 7 ×
4 gridworld where the learning agent always starts a round in

the center tile of the first row. At any given location, a sub-

set of the four cardinal directions is available to the learning

agent (e.g. at the bottom edge, “down” is not available as

an action). On each episode, the learning agent starts in the

bottom-middle tile and the upper-right and upper-left corners

of the gridworld are absorbing states.

In our task, the teacher and learner have different rewards

for the learner’s actions in the MDP. In particular, the two ab-

sorbing states (goals) both have a +10 reward for the learner,

but for the teacher, only one has +10 while the other has−10.

Additionally, there are several non-absorbing tiles that give

the teacher −1 if the learner enters them. These features of

the task are visualized in Figure 2.

All simulations used a Q-learning agent with a tabular rep-

resentation of states (Q0(s,a) = 0∀s,a, α = .9, and γ = .95).

Each simulated teacher interacted with the learner for 12
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Figure 3: Simulated backward chaining, undoing, and correcting results or different intervention interpretations and interven-

tion probabilities (top three rows). Results of learners trained using participant responses on task (bottom). Total teacher payoff

is the net reward of the learner’s behavior based on the teacher’s reward function during the evaluation phase of each episode.

episodes. Each episode was divided into two phases: a teach-

ing phase and an evaluation phase. During the teaching phase,

the simulated teacher interacted with the Q-learner, which se-

lected actions using a softmax rule (λQ = .1) and engaged in

learning. During the evaluation phase, the learner performed

the task without teacher interaction or learning and used a

greedy policy. Additionally, the performance was measured

with respect to the teacher’s payoffs based on her reward

function. Each episode phase ended after 25 time steps.

Teaching Strategies and Interpretations

We tested all combinations of teaching strategy and interven-

tion interpretation ({backwards chaining, undoing, correct-

ing} ×{resetting, transitioning, interrupting, disrupting}). In

natural situations, it is not likely that teachers intervene ev-

ery time a learner takes an incorrect action. Thus, we tested

the performance of the models given different probabilities

of intervening given that the learner performed an incorrect

action: 0.25,0.50,0.75,1.0. This allowed us to evaluate the

robustness of different teaching method and intervention in-

terpretation combinations when feedback is imperfect. Each

combination of teaching strategy, intervention type, and inter-

vention probability were simulated 1000 times and teaching

performance was based on the evaluation phase.

Results and Discussion

Simulation results are plotted in Figure 3. When interaction

probability is high, undoing is most effective. This is be-

cause interventions act as impassable obstacles to the learn-

ing agent, which, combined with a discount rate, makes tak-

ing incorrect actions less beneficial than alternative actions

that change the state and lead to reward. However, an excep-

tion is when the learner interprets interventions as disrupting,

where the average performance of the undoing teaching strat-

egy decreases quickly as intervention probability drops. This

is because the teacher is less likely to serve as an obstacle,

which makes it less likely that the agent will learn that in-

correct actions are less efficacious. Across all interpretations,

undoing outperforms correcting because undoing implicitly

teaches the learner that the garden tiles are negative, whereas,

correcting does not. Undoing also leads to more learning ex-

perience because correcting allows the agent to progress on

the task without actually taking target actions.

When the probability of intervention is high (1.0− 0.75),

the backward chaining strategy performs as well as or worse

than the undoing strategy. Unlike undoing, a global strategy

like backward chaining’s efficacy is robust to less frequent

interventions. This is because these interventions ensure that

the learning agent has mastered a subset of states and ac-

quired an accurate value representation as opposed to acting

as a constraint on transitions in the environment.

The different intervention types also interacted with the

teaching strategies in important ways. First, undoing shows

identical patterns regardless of whether the intervention type

is resetting, transitioning, or interrupting. When it is dis-

rupting, learners reach maximum performance even more
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Figure 4: Experimental results. (a) Boxplot of proportion of correcting, undoing, and other interventions performed by indi-

vidual participants. For many participants, the majority of their interventions were to undo the learner’s action. (b) Graphical

visualization of teacher-learner interaction during an episode (ε = 0.8) illustrating local interventions. Yellow numbers indicate

order of interventions. (c) Graphical visualization of participant interventions for actions taken from the same state. For each

episode, each participant has one pseudo-count that is divided among all of their interventions in that episode. The number in

each tile represents the sum of these pseudo-counts over participants. The intervention probability is the proportion of times

that action was subsequently intervened upon.

quickly. Second, for the backward chaining strategy, all

strategies but transitioning led to learners acquiring policies

that approached the target behavior. This is likely because

the transitioning interpretation results in learners using the

teacher’s interventions as a way to “teleport” to a desirable

location on the grid and not properly learn the task.

Experiment

How do people teach using interventions? Do they use a

global strategy like backwards chaining or a local one like

undoing or correcting? Our simulations suggest that undo-

ing is the best teaching strategy if teachers intervene when

the learner makes a mistake with high probability. However,

backwards chaining works better when the teacher intervenes

infrequently. Alternatively, it seems intuitive to intervene

such that the learner is shown the correct state she should have

gone to, and human teachers might use this strategy despite

its sub-optimality with Q-learners. To explore these possibil-

ities, we had human teachers interact with agents that were

pre-programmed to improve over time. This gave us the op-

portunity to view how people would teach by intervention in-

dependent of the learning mechanism.

Experimental Design

Participants and materials Thirty-five MTurk participants

took a dog training study that used the interface shown in Fig-

ure 2. On each trial, the dog would start at a tile and then walk

to an adjacent tile. If the participant did not click on the dog

at any point during its movement or within 1s of the dog en-

tering the next tile, the next trial would start. If the participant

clicked on the dog, then the dog “paused” and they could drag

it to any tile on the gridworld and drop it. The dog then “un-

paused” and the subsequent trial would then start at that tile.

When the dog reached either “dog bowl,” an animated dog

treat would appear to indicate that the dog had experienced a

reward. Entering either dog bowl tile ended an episode.

Procedure Before the main task, participants completed

training trials that taught them how to intervene on the dog’s

behavior by picking it up. For the main experiment, they were

told that they were trying to train a dog to perform a task on its

own. The task was for the dog to only go to its own dog bowl,

located in the upper-right tile, while avoiding their neighbor’s

dog bowl, located in the upper-left tile, and also avoiding the

two lawns. Thus, the participants’ goal in the task maps onto

the teacher reward function shown in Figure 2. They had 12



“days” (i.e. episodes) in which they could train the dog, and

they were told that each day ended once the dog became tired

after 25 steps or became satiated by eating a dog treat. Each

trial, the dog was programmed to execute the target policy

with a probability of 1− ε and a random action otherwise. ε
started at 1.0 for the first episode and then decreased by 0.1
each subsequent episode until ε = 0.0. This gave the impres-

sion that the dog was improving over time regardless of the

intervention strategy used.

After the task was completed, participants were asked to

answer several questions regarding their strategy, how well

the dog responded, task difficulty, expected training efficacy,

expected efficacy with a real dog, dog ownership, dog training

experience, and several demographic questions.

Results

Intervening People make relatively sparse, local interven-

tions that match the undoing model. Participants intervened

on learners’ behavior more when the learner performed a non-

target action than when they performed a target action (non-

target: M = 0.66, S.D. = 0.22; target: M = 0.06, S.D. = 0.10;

paired t-test: t(34) = 13.77, p < .001). Additionally, the pro-

portion of non-target actions that were intervened upon was

between 0.5 and 0.75, the regime where backward chaining

and undoing perform comparably. Interventions were also

fairly local and close to the final state that resulted in the

learner’s action (Average Manhattan Distance between next

state and intervention: M = 1.64, S.D. = 0.49). This indicates

that backwards chaining was not often used as a strategy since

that strategy requires making more global interventions. Fi-

nally, as Figure 4a reveals, many participants performed un-

doing interventions in which an agent that took a non-target

action was placed back into its original position (Correcting:

M = 0.15, S.D. = 0.14; Undoing: M = 0.59, S.D. = 0.24;

Other: M = 0.27, S.D. = 0.19; χ2(2) = 335.89, p < .001).

Teaching Q-learners To compare human and model strate-

gies, we used participants’ responses to train Q-learners in the

same task. We approximated how participants would have

taught real learners by sampling from their responses to a

learner’s action in the task whenever a simulated learner took

the same action. If a particular participant never observed an

agent’s take a simulated action, the default response was to

not intervene. These results are plotted in Figure 3 for com-

parison with the simulation results.

Discussion

Our simulations revealed important interactions among teach-

ing strategy, intervention interpretation, and intervention

probability. In particular, undoing, which involves local

changes to an agent’s state, is an especially effective strat-

egy only when interventions are frequent, while backward

chaining, which involves state-changes reflecting the global

structure of the task, is moderately effective regardless of in-

tervention frequency. Incidentally, when people teach by in-

tervention, they typically engage in undoing, but they do it

less often than they should to train Q-learners (66%). Gener-

ally, people make moderately frequent local interventions.

As this is a preliminary investigation into teaching by inter-

vention, this work has limitations. We use Q-learning as the

learner, but other RL algorithms may respond better to human

interventions. And given previous work showing that people

often teach with communicative intent (Shafto, Goodman, &

Griffiths, 2014; Ho et al., 2015), it may be that the standard

RL framework is inadequate for capturing peoples’ relatively

sparse, local interventions. Future work will also need to test

a wider range of MDP tasks. Nonetheless, these simulations

and models are a first step towards understanding the every-

day phenomenon of teaching by intervention in humans.
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Király, I., Csibra, G., & Gergely, G. (2013). Beyond ratio-

nal imitation: Learning arbitrary means actions from com-

municative demonstrations. Journal of Experimental Child

Psychology, 116(2), 471–486.

Knox, W. B., & Stone, P. (2015). Framing reinforcement

learning from human reward: Reward positivity, temporal

discounting, episodicity, and performance. Artificial Intel-

ligence, 225, 24–50.

Niv, Y. (2009). Reinforcement learning in the brain. Journal

of Mathematical Psychology, 53(3), 139–154.

Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014, June).

A rational account of pedagogical reasoning: Teaching by,

and learning from, examples. Cognitive Psychology, 71,

55–89.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:

An introduction. MIT press.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine

learning, 8(3-4), 279–292.


