
The Peeping Eye in the Sky
Qinggang Yue∗, Zupei Li∗, Chao Gao∗, Wei Yu†, Xinwen Fu‡, and Wei Zhao§

∗University of Massachusetts Lowell, Email: {qye, zli1,cgao}@cs.uml.edu
†Towson University, Email: wyu@towson.edu

†University of Central Florida, Email: xinwenfu@ucf.edu
‡American University of Sharjah, Email: wzhao@aus.edu

Abstract—In this paper, we investigate the threat of drones
equipped with recording devices, which capture videos of in-
dividuals typing on their mobile devices and extract the touch
input such as passcodes from the videos. Deploying this kind
of attack from the air is significantly challenging because of
camera vibration and movement caused by drone dynamics and
the wind. Our algorithms can estimate the motion trajectory of
the touching finger, and derive the typing pattern and then touch
inputs. Our experiments show that we can achieve a high success
rate against both tablets and smartphones with a DJI Phantom
drone from a long distance. A 2.5′′ NEUTRON mini drone flies
outside a window and also achieves a high success rate against
tablets behind the window. To the best of our knowledge, we
are the first to systematically study drones revealing user inputs
on mobile devices and use the finger motion trajectory alone to
recover passcodes typed on mobile devices.

Index Terms—Drone, Security, Privacy, Computer Vision

I. INTRODUCTION

Drones, or Unmanned Aerial Vehicles (UAVs), have primar-
ily been used in military applications until recent commercial-
ization. According to Business Insider, estimated 10 million
new consumer drones were shipped in 2017. DJI has been
dominating the drone market today. The number of mini drone
being sold worldwide demonstrates their increasing popularity.

A powerful technology such as drones often has two ethical
sides, split between altruistic intention and subversive poten-
tial. People use tablets or smartphones doing all kinds of things
such as mobile banking and online shopping outside. Civil
drones like DJI drones often have at least four degrees of
freedom: moving forward and backward, moving left and right,
moving up and down, and rotating left and right (yawing).
Equipped with cameras, these drones may easily take videos
of people performing touch-inputs and inputting sensitive
credentials. Given millions of civil drones flying in the sky,
it is necessary and critical to perform a rigid study of such
privacy threats from these drones.

In this paper, we perform a systematic study of privacy
threats from drones equipped with video recording devices
such as lightweight camcorders. In particular, a drone captures
videos of individuals typing on their smart devices including
tablets and smartphones. The text on the touch screen does not
appear in the video because of the distance, lighting, camera
angle, and limited camera focal length. Figures 1, 2 and 3
show three example experiment scenarios with mini drones.
We apply various computer vision techniques to estimate the
fingertip motion trajectory over a reference keyboard. Touched

points are where the fingertip touches the touch screen to input.
We designed sophisticated recursive moving speed analysis
(Section III) to derive touched points from the estimated
fingertip motion trajectory. Our algorithms consider various
cases of touch inputs, such as repeated keys. By connecting
the estimated touched points, we are able to estimate the typing
pattern, denoted as target pattern, which may be distorted
and have a translational displacement from the actual typing
pattern formed by the actual touched points. We then use
the vector similarity distance and turning function distance
to measure the similarity of the target pattern and candidate
typing patterns derived from combinations of possible touched
keys. We then rank candidate passcodes and choose the ones
with high similarity scores as the touched keys.

Fig. 1: DJI Drone
against iPad

Fig. 2: DJI Drone
against iPhone

Fig. 3: NEUTRON
outside a Window

The major contributions of this paper can be summarized
as follows. The key idea of the drone attack in this paper is to
estimate the typing pattern from the touching finger’s motion
trajectory derived from a captured video. The estimated typing
pattern can then be used to derive the touch input through our
algorithms. To the best of our knowledge, we are the first to
use the finger motion trajectory alone to derive the passcodes,
which can be mobile banking passwords or online shopping
passwords, although we use the touch screen unlock pins as
the example in the paper. We are also the first to systematically
study drones revealing user inputs on mobile devices.

To validate the drone attack, we tested two types of drones: a
DJI Phantom 2 drone with a Sony camcorder and a NEUTRON
mini drone with a built-in camera. Overall, we recruited 14
volunteers for the experiments. At approximately 15 meters,
the DJI drone has a success rate of 100% recovering a 4-digit
passcode against iPad. The success rate is 85% even if the
distance is 20 meters. We also perform experiments with the
DJI drone against smaller mobile devices such as iPhone from
10 meters away and achieve a success rate of over 90%. A
2.5′′ NEUTRON drone were flown outside a window to attack

an iPad behind the window from about 3 meters. It achieves
a success rate of over 86%. These experiment results clearly
demonstrate the severity of the drone privacy issue.

The rest of this paper is organized as follows. In Section
II, we introduce the threat model and the drone attack, in
which a drone equipped with a camcorder records a video of
an individual typing on her smart device and an adversary can
analyze the video to derive the individual’s touch inputs. In
Section III, we present the fingertip motion analysis in detail.
The fingertip motion analysis plays a critical role of identifying
touched points. In Section IV, we evaluate the performance of
the drone attack. We review related work in Section V and
conclude the paper in Section VI.

II. DRONE ATTACK

In this section, we first present the threat model and the
basic idea of our drone attack. We then introduce the attack
process in detail.

A. Threat Model

In the investigated attack, we assume the drone is equipped
with a camcorder, and flies as high as possible to stealthily
take a video of a user tapping on the touch screen of her
mobile device. We assume that the displayed text on the touch
screen does not appear in the video. This is a reasonable
assumption, because in a video taken far away, the text on the
touch screen may not be visible due to the distance, lighting,
camera angle, and limited camera focal length. This is also
what we observe in the experiments. We also assume that
the adversary has the ability to adjust the height and angle
of the drone and camera to capture the device’s screen and
the fingertip movement in the video. The Sony camcorder in
our experiments can be controlled via WiFi by smartphones
or tablets with the control app. Therefore, the adversary can
see the real-time video with the app and adjust the drone to
capture videos with the expected quality.

B. Attack Process

Figure 4 shows the workflow of the investigated attack. We
use the four-digit passcode on an iPad as an example and
explain these eight steps in detail below.

1) Step 1: Capturing Videos: Compared with video record-
ing on the ground, a drone has the unique viewpoint recording
videos from the air. A civil drone often has the four degrees of
freedom: moving forward and backward, moving left and right,
moving up and down, and rotating left and right (yawing). The
adversary can choose an angle for a good view of the target
and adjust the height of the drone for stealthy video recording.
A civil drone may also rotate forward and backward (pitch) or
rotate side to side (roll). Pitching and rolling are the other two
degrees of freedom. However, performing pitching and rolling
often requires significant training. The stunts of pitching and
rolling by civil drones are often performed with high velocity
and are not useful for taking quality videos in our context.

Hovering in the sky also introduces the camera instability
issue. Motors make a drone and the camera attached to it

vibrate. Wind may push the drone out of the view of the
target. For a quadcopter, the position-hold function tries to
drag the drone back to the original position, but the thrust
applied to the drone will tilt the drone and camera. The target
can be lost because of such tilting. The vibration may also
incur the camera focusing issue and generate blurry videos. In
our experiments, when the wind speed is less than 3 miles per
hour (mph), we can easily keep the target within the camera
view and have expected quality videos. When the wind speed
is more than 10mph, it will be very hard to maneuver the
drone successfully. When the wind speed is between 3mph
and 10mph, it requires significant effort to control the drone
successfully. In all conditions, if the drone is at a reasonable
height, the camera can capture the whole typing process and
the video is not very blurry, we can have a good chance to
recover the touch input. Please also note that an adversary may
choose calm days without much wind for the drone attack.

2) Step 2: Deriving the Keyboard Layout: In this step, we
will draw the reference device and software keyboard of the
same size as the ones on a victim device. For example, the
iPad display has a resolution of 1024 × 768 pixels. We can
physically measure the device, the coordinates and size of the
keys and the margins with a vernier caliper, and then draw
the device and keyboard layouts. Here we assume we know
the make and model of the victim mobile device. The salient
features of most mobile devices may disclose such information
from recorded videos.

3) Step 3: Tracking the Device: As discussed in Step 1, the
drone and the camera vibrate. The motion of the drone and
camera moves the position of the victim device in the video
even if the victim device is static. In addition, the appearance
of the device in the video may change continuously due to the
change of camera angle and lighting. Therefore, effectively
tracking the target device in the video is essential for the
accuracy of further analysis.

We use DPM [1] to detect the device in the first frame of
the video and then track it in all subsequent video frames.
DPM models the object as a whole with several (often six)
deformable parts. To detect iPad, we train iPad’s DPM model
and apply it to the first frame. In order to train a DPM model,
we need to generate positive data (iPad) and negative data
(background). To obtain positive data, we take images of the
target device from different viewpoints with the drone, and
manually label the device with a bounding box. To collect
negative data, we use background images in our attack sce-
narios taken by the drone. To extend the varieties of scenarios,
we also use background images from the SUN dataset [2].

For subsequent frames in the video, we will track the
device in each video frame with tracking-based algorithms,
which reduce computing time compared with detection-based
algorithms. Due to the camera’s angle and lighting, the ap-
pearance of the device in the video may change. Adaptive
tracking algorithms can address this issue [3]. In this paper,
we apply the online tracking algorithm based on boosting
[4]. It is a classification-based tracking algorithm that updates
the classifier while tracking the object by selecting the most

2

Fig. 4: Workflow of the attack

discriminating features.
4) Step 4: Aligning the Video: In this step, we will stabilize

the video by aligning the device in the video to the reference
device derived in Step 2. In Step 3, we keep the device area
and remove much of the background in the original video.
However, each frame may be taken from a different angle and
location by the vibrating and moving drone. Even if we can
control the drone static in the sky, the victim user may move
the device or even walk around on the ground. Therefore, the
location of the device in the video would vary in each video
frame and it is hard to analyze the movement of the fingertip
directly from the raw video. By the alignment performed in
this step, we have a common coordinate system for the touch
screen surface in all video frames.

The alignment is based on the planar homography [5]
between the device in video frames and the drawn reference
device. Planar homography is a 2D projective transformation
that relates two images of the same planar surface. Assume
p = (s, t, 1) is a point in an image of a 3D planar surface and
q = (s′, t′, 1) is the corresponding point in another image of
the same 3D planar surface. The two images may be taken
by the same camera or different cameras. There exists an
invertible 3×3 matrix H, denoted as the homography matrix,

q = Hp. (1)

According to the theory of planar homography [5], we
need at least four pairs of corresponding points to obtain the
homography matrix. We can use the four corners of the display.
These corners are the intersections of the four edge lines. To
obtain the edge lines, we first apply the bilateral smoothing
filter [6] to sharpen the edges while removing noise in images.
After smoothing, we apply the LSD (Line Segment Detection)
algorithm [7] to detect the line segments as shown in Figure 5.
We now derive the four edges of the display area. Applying
the same procedure to the reference device, we obtain the
corresponding four points.

The homgoraphy matrix can create a warped image, i.e.
aligned image, of the device image in the video frame. Figure
6 shows an example of the warped image blended with the
reference keyboard, and demonstrates the relationship between
the fingertip and the keyboard.

5) Step 5: Tracking Fingertip Movement: To track the
fingertip, we employ the DPM object detection algorithm. We
train the DPM fingertip model and apply it to each frame. To
obtain the fingertip data for the DPM training, we manually
select the fingertip in video frames. The negative data (non
fingertip area) is randomly selected from the background.
Applying the fingertip model to the device area derived in Step
3, we obtain the detected fingertip in the red bounding box in

Figure 7. Since the searching space for the fingertip is limited
by the device area, the detecting speed is much faster and the
false positive rate is much smaller compared with searching
the entire video frame.

To accurately locate the fingertip top, we first train a smaller
bounding box around the center of the detected fingertip
bounding box. For pixels in this bounding box, the screen
area (background) is much darker than the fingertip. Therefore,
we can obtain the fingertip contour by clustering pixels in
this small bounding box into two groups: the dark screen and
the bright fingertip. To derive the fingertip top, we first find
the central point for each horizontal line of pixels within the
fingertip contour. We then fit a line over these central points.
This line is the estimated central line of the finger in the video
frame, indicating the orientation of the fingertip that touches
the screen. The intersection between this line and the fingertip
contour is the estimated fingertip top.

Once the fingertip top point is derived for each video frame,
we map it to the reference device. By connecting the rectified
fingertip points in the reference device image for all video
frames, we obtain the fingertip motion trajectory as shown in
Figure 8.

6) Step 6: Analyzing Fingertip Motion: In this step, we
analyze the fingertip motion trajectory to estimate touched
points, where the fingertip touches the screen. The motion
trajectory in Figure 8 shows the fingertip moving on the screen,
or hanging over the screen during the touching process. The
trajectory can be treated as a sequence of 3-tuples (xt, yt, t),
where xt and yt are coordinates of the fingertip in the reference
device image, and t is the frame number indicating the time.

At the moment the fingertip touches the key, the fingertip
would stay on the key for a short period of time. Assume the
fingertip touches the key at frame s and leaves the key at frame
e. That is, there may be a few frames at which the fingertip
touches the key of interest. These few frames form the so-
called touching action. For robustness, when our algorithm
identifies a touching action, we use the center of the fingertip
top points retrieved from these few frames to estimate the
touched point. Therefore, a touching action is defined as
a 3-tuple (P, s, e), where P is the center of the fingertip
points from frame s to frame e.

We use motion analysis to derive touched points. When
a key is touched, the fingertip stays at the key for a short
period and its velocity reduces toward zero. Therefore, we
can analyze the moving speed of the fingertip to estimate
touched points. We denote touched points estimated through
the speed analysis as hovering points. However, sometimes,
the fingertip moves so fast that a touching action identified
by our algorithm includes frames where the fingertip moves

3

Fig. 5: Detected Lines Fig. 6: Warped Image Fig. 7: Detected Fingertip Fig. 8: Fingertip Motion Trajectory

toward the key, and/or frames where the fingertip leaves the
key. The fingertip velocity will not be zero in such a case.
Moreover, the imperfect computer vision algorithm may not
recognize a touched point over a key even if the finger stays
still on the key from frame s to frame e. This also introduces
a non-zero velocity for the touching action. We will present
the detailed analysis in Section III.

7) Step 7: Deriving the Passcode Candidates: In a lucky
case, the touched points derived above land in the actually
touched areas and the passcode is recovered. However, if the
video is of low resolution, we may not be able to derive
the touched points directly. The keys holding the touched
points are the possible keys, and the keys surrounding the
touched points can also be the touched keys. Therefore, we
propose an algorithm to generate the key candidates for each
touched point. To derive the candidate keys for each estimated
touched point, we compute the distance between the estimated
touched point and the center of each key. The key with the
smaller distance will be the most probable candidate. Given a
touched point with coordinate (xi, yi), the distance between a
key with coordinate (xk, yk) and the touched point is defined
as the Euclidean distance dist =

√
(xk − xi)2 + (yk − yi)2.

For each touched point, we will derive two candidate keys,
corresponding to two smallest distances.

Given key candidates for each touched point, we obtain the
passcode candidates by combining the key candidates. For a
four digit passcode with two key candidates for each touched
point, we will have 24 = 16 passcode candidates. Because
individuals tend to target the key center when touching keys,
connecting the passcode key centers will generate the cor-
responding candidate typing pattern or candidate pattern in
short.

8) Step 8: Ranking the Passcode Candidates: In this step,
we rank the passcode candidates, derived in Step 7, in order to
find the most probable ones. Note that the estimated touched
points may not be the actual ones, and the key holding the
estimated touched point may not be the actual touched key
although they should be close to each other. The estimated
touched points are critical points on the fingertip motion
trajectory. This is because at these points, the fingertip may
be performing the touching actions. We connect the four
estimated touched points and form the so-called target pattern.
Recall that the centers of keys of a candidate passcode derived
in Step 7 form the so-called candidate pattern. By measuring
the similarity between the target pattern and a candidate
pattern, we can rank the passcode candidates so that the one
with the highest score will be considered to be the most likely

passcode.
We measure the similarity between a candidate pattern and

the target pattern to rank passcode candidates. The comparison
between the two patterns can be formalized as a polygon
similarity estimation problem, which estimates the similarity
between the polygons in terms of shape (angle) similarity,
scale similarity, location similarity, etc. The classic polygon
similarity estimation problem needs to first match the polygon
vertices by iterating through all possibilities. The best match is
then chosen. Nonetheless, in our case, the polygon is formed
by an ordered sequence of keys. The vertex correspondence
is already known in Step 7, since we assume that estimated
touched points are close to actual touched points. We do not
need to iterate over all possible combinations to obtain the
vertex correspondence. Since vertices of our two polygons
(patterns) refer to the locations of the fingertip on the keyboard
and are under the same coordinate system, we do not need to
consider the translation, rotation, or scaling.

The scale and location similarities play an important role in
our similarity estimation since they are related to the touched
keys. The traditional polygon similarity problem requires two
polygons have exactly the same shape, while the polygon size
and location can be different. For example, the polygon formed
by the key sequence 1-2-5-4 and the one formed by the key
sequence 5-6-9-8 are similar under the traditional definition,
but differ much in our context.

We use the vector similarity distance [8] and the turning
function distance [9] as similarity metrics. These two distances
measure the difference between two polygons from different
perspectives.

Vector Similarity Distance
A polygon with n vertices can be represented

by a ordered sequence of vertices, P (n) =
{(x1, y1), (x2, y2), · · · , (xn, yn)}. All x-coordinates of P
form a vector ~X = {x1, · · · , xn} and all y-coordinates of
P form a vector ~Y = {y1, · · · , yn}. Assume we have two
polygons P ′ and P ′′, P ′ = {(x′1, y′1), · · · , (x′n, y′n)}
and P ′′ = {(x′′1 , y′′1), · · · , (x′′n, y′′n)}. Therefore,
~X ′ = {x′1, · · · , x′n}, ~Y ′ = {y′1, · · · , y′n}, ~X ′′ = {x′′1 , · · · , x′′n},

and ~Y ′′ = {y′′1 , · · · , y′′n}. The vector similarity distance (VSF)
dvec(P

′, P ′′) is defined as follows

dvec(P
′, P ′′) =

~X ′ · ~X ′′

| ~X ′ || ~X ′′ |

~Y ′ · ~Y ′′

| ~Y ′ || ~Y ′′ |
, (2)

where | ~X | is the norm of the vector ~X and ~X ′ · ~X ′′ is
the dot product of two vectors ~X ′ and ~X ′′. Cosine similarity
measures the similarity of two non-zero vectors as the cosine

4

of the angle between the two vectors. We can see that vector
similarity is the product of cosine similarity of ~X ′ and ~X ′′

and cosine similarity of ~Y ′ and ~Y ′′.
Turning Function Distance
The turning function Θ(s) is a cumulative angle function.

The measurement starts with a reference point on an edge
of the polygon of interest. s is the total arc length of the
polygon starting from this reference point. The initial value
of Θ(s) is the angle between the counterclockwise tangent
along the edge at the reference point and the x-axis, where
s = 0. When we move froward counterclockwise, s increases
along the edge of the polygon. Whenever there is an angle
change, we update Θ(s) with the change, which is the counter-
clockwise angle between the previous tangent (edge) and the
next tangent (edge). For a left hand turn with an angle change
of δ◦, Θ(s)+ = δ. For a right turn with an angle change of
δ◦, Θ(s)− = δ. When the measurement is finished, s is the
perimeter of the polygon.

For two polygons P ′ and P ′′ with turning functions ΘP ′(s)
and ΘP ′′(s), their turning function distance dtf (P ′, P ′′) is
defined as follows

dtf (P ′, P ′′) = ‖ ΘP ′(s)−ΘP ′′(s) ‖p, (3)

= (

∫ 1

0

| ΘP ′(s)−ΘP ′′(s) |p ds)
1
p , (4)

where ‖ · ‖p is the Lp norm and p is 2 in our case. For two
polygons, their perimeters may be different. Therefore, before
computing dtf (P ′, P ′′), we normalize the length s by dividing
it by the perimeter of each polygon.

In our context, we want to compute the distance/similarity
between the target pattern and a candidate pattern, i.e., two
polygons. We know the correspondence of vertices on the two
polygons. Therefore, we select a pair of corresponding vertices
as the reference points and then compute dtf (P ′, P ′′).

III. FINGERTIP MOTION ANALYSIS

In this section, we introduce the detailed fingertip motion
analysis to derive accurate touched points.

A. Speed Analysis

We first introduce how to compute the speed at an identified
fingertip top point. For two fingertip top points pi = (xi, yi),
pi+1 = (xi+1, yi+1), the raw speed V Pi at the point pi is
defined as follows:

V Pi =
√

(xi+1 − xi)2 + (yi+1 − yi)2. (5)

The speed models how fast the fingertip moves from the
current point to the next point. Because of the limitation of
computer vision algorithms, there exists noise while retrieving
the location of the fingertip top. We use the moving average to
smooth the speed. The moving average smooths the speed at
one point by computing the average of the speed at the point
and its neighboring points.

The basic idea of speed analysis is to find low-speed points,
which may correspond to a touching action (P, s, e) with the

touched point P . To identify points with low speed automati-
cally, we apply the K-means [10] algorithm to cluster the speed
into two groups, low and high. We use the median of the low
speed group as a threshold to obtain points corresponding to
touching actions. Note that one touching action corresponds
to a segment of consecutive points.

There is a possibility that within the same touching action,
a point may have a large speed in the middle of the touching
action because of noise. In such a case, the single touching
action is divided into two or more touching actions. To correct
this error, we check whether touching actions can be merged
based on the time gap between the two actions, the distance
between points and the number of frames in the two touching
actions. The details of the merging algorithm will be discussed
at the end of this subsection.

It is also possible that there may be repeated keys in the
passcode. The speed analysis can be still valid for this situation
to identify touched points. Our experiments show that since the
drone camera always has an angle relative to the direction of
touching by the fingertip, the speed of the fingertip is still slow
when it touches the key and is relatively fast when it moves
towards and leaves the key in a recorded video. Therefore, we
may still detect repeated keys with speed analysis. Moreover,
the number of frames in each of those touching actions
corresponding to repeated keys is large enough to avoid being
merged as one touching action.

In some cases, when a person touches different keys, her
fingertip speed varies. For example, the fingertip may stay on
the last key of a passcode for a longer time. This behavior
produces extremely low fingertip speed and affects the K-
means algorithm. That is, points with extremely low speed
form one group and all other points land in the other group.
We may miss other touching actions because of points with
the extremely low speed. Therefore, we propose the recursive
speed analysis: we apply the K-means algorithm to cluster

Algorithm 1 Recursive Speed Analysis
Input:
1: Raw fingertip motion trajectory Traj = {p1, p2 · ··, pm}
2: k: expected number of touched points

Output: Hovering point set CP1

3: for i = 1 to m− 1 do
4: V Pi =

√
(xi+1 − xi)2 + (yi+1 − yi)2

5: end for
6: V Pm = 0
7: Smoothing V Pi with moving average
8: CP1 = ∅
9: while | CP1 |< k do

10: Clustering the moving average into two groups
11: sThred = median of the low cluster
12: Filter points with speed larger than sThred
13: Cluster the filtered results into groups
14: Derive the center of points in each group as a touched point
15: Determine if newly detected touched points can be merged with the

existing detected touched points
16: If true, merge newly detected touched points with the corresponding

existing touched points and update CP1. Otherwise, save the touched
point into CP1

17: end while
18: return CP1

5

points into two groups. If the number of touching actions
in the low speed group is less than the expected number of
keys in a passcode, we exclude the low speed points and
apply the clustering/grouping procedure again to the remaining
points until we find the expected number of touching actions.
Algorithm 1 gives the recursive algorithm that estimates the
touched (hovering) points based on speed analysis.

B. Merging Algorithm

We now discuss how to merge two touched points which
are close to each other in Algorithm 1. Given two touched
point candidates: cp1 = (p1, s1, e1) (where point p1 is the
center of touched points from frame s1 to frame e1) and
cp2 = (p2, s2, e2) (where the point p2 is the center of touched
points starting frame s2 to frame e2), they belong to the same
touching action if Equations (6), (7) and (8) hold,

dist(p1, p2) < DistThred, (6)
s2 − e1 < GapThred, (7)
e2 − s1 < TimeThred, (8)

where DistThred is the distance threshold and is defined as
the radius of the key. GapThred is defined as the threshold
of timing distance between two consecutive touching actions.
TimeThred is defined as the threshold of the length of one
touching action. dist(p1, p2) is the Euclidean distance between
points p1 and p2. When we merge the two corresponding
touching actions, we derive the center of the points in the
merged touching actions as the new touched point.

IV. EVALUATION

We have performed extensive experiments to evaluate the
drone attack introduced in this paper. In this section, we first
introduce the metrics and then give the evaluation results.

A. Metrics

To evaluate the effectiveness of the investigated attack and
the factors that affect the success of the attack, we use the
following metrics and measures to evaluate the attack.

Accuracy: The accuracy is the ratio of the number of
successfully recognized passcodes over the total number of
passcodes. In an attack, an attacker may try the first passcode
candidate or try the top three passcode candidates. For the first
one strategy, if the first candidate is correct, we consider it to
be successful. Otherwise, it is a failure. Under the top three
strategy, if any of the three passcode candidates is correct, it is
a successful attack. This top three strategy is reasonable, given
that most of the smart mobile devices allow three passcode
tries before the device is locked. The account locking policy
is similar for other mobile applications such as online shopping
and mobile banking.

Human guess by volunteers: During the experiments, we
also ask volunteers to guess the passcode from videos recorded
by the drone in order to demonstrate the necessity of our
computer vision based attack. The vibrating camera makes
it impossible for humans to guess the whole passcode right.

Distance effects: To obtain the information about how the
height (the distance from the drone to the user) affects the
attack accuracy, we fly the drone at different distances from
the target with the camera at the same focal length.

B. Results

We now show the evaluation results of the drone attack.
To validate the feasibility and effectiveness of the investigated
attack, we performed three groups of experiments with the DJI
drone from different distances to the user with an iPad 2 tablet,
and also performed another group of experiments with iPhone
6s to test how the attack works on smaller devices. In the first
group of experiments, we employed 10 people and obtained
30 videos at a distance of approximately 10 meters. We took
two more groups of videos with five volunteers and obtained
20 videos with the drone from around 15 meters and 20 meters
respectively to test how the height affects the attack accuracy.
5 people were involved in the experiments by the DJI drone
attacking the iPhone from around 10 meters, and 15 videos
are taken with each person inputting three passcodes. For the
NEUTRON mini drone, we involved 5 volunteers tapping the
passcodes on iPad and recorded 15 videos.

Table I gives the results of the two passcode selection
strategies - (first one and top three) - for the two ranking
algorithms in Step 8 in Section II. It can be observed that
the vector similarity distance (VSD) based ranking algorithm
works better than the turning function distance (TFD) analysis.
The reason can be that normalization used in TFD discards the
size difference between polygons so that TFD may incorrectly
rank a wrong candidate pattern higher. Moreover, the TFD
analysis does not consider the absolute location of a polygon
while the absolute location of a polygon is important in our
polygon similarity estimation problem.

TABLE I: Accuracy at Around 10 Meters Attacking iPad

Vector Similarity Turning Function
First One 100% 53.33%
Top Three 100% 63.33%

Figure 9 shows the accuracy for the two algorithms with the
drone at different distances from the target. From the results,
we can see the VSD analysis works perfectly even when the
distance is 15 meters. At around 20 meters, VSD still has an
accuracy of 85% for the first one strategy while its accuracy
of the top three strategy is 87.5%. Compared with the VSD
algorithm, the TFD analysis does not work so well as the VSD
analysis while the accuracy is not bad.

Figure 9 shows that when the distance increases, the accu-
racy has a decreasing trend. In the experiments, we set the
cameracoder focal length to about one third of its maximum.
The resolution of the device at 10 meters is about 133 × 83,
the device size at around 15 meters is about 71 × 57 and the
device at 20 meters is about 57 × 49. We can see the device
size in the video affects the attack accuracy.

Figure 10 gives the summary of the experiment results for
different target devices with the VSD ranking algorithm under

6

Fig. 9: Accuracy v.s. Distance

different distances and drones. In the case of the DJI drone
attacking iPhone, the accuracy is 93%, less than 100% in the
case of DJI attacking iPad. The smaller device and keys of
iPhone play its role here. Recall in the NEUTRON mini drone
attack, the mini drone is outside a building and attacks an iPad
behind a window. The distance is around 3 meters and the
attack accuracy for the top three strategy is over 85%! Figure
10 demonstrates the severity of attacks from various drones
on market.

Fig. 10: Accuracy On Different Smart Devices, Drones and
Distances

V. RELATED WORK

Because of space limit, we briefly review most related
work. In computer vision-based attacks against mobile devices
[11]–[15] , an adversary can take videos of people typing
on their mobile devices and retrieve the inputs by analyzing
the fingertip movement, or the device movement. By applying
the Natural Language Processing techniques to correct errors
while recovering meaningful messages, an adversary can fur-
ther increase accuracy. The difference between this paper and
these related papers is that previous attacks do not consider
the use of the fingertip motion trajectory and typing pattern.
We demonstrate that use of such patterns alone can severely
breach user privacy.

VI. CONCLUSION

In this paper, we systematically study the privacy threats
from the increasingly popular civil drones. In particular, we
investigate the attack in which a drone equipped with a video
recording device spies on people inputting sensitive informa-
tion such as passcodes on the touch screen of their mobile

devices. The novel drone attack can recover the passcodes
from a recorded video by analyzing the fingertip motion
trajectory, even if there is no text visible in the video. Our
extensive experiments demonstrate the severity of the privacy
issues introduced by drones on market and flying in the key.

Although various privacy enhancing techniques have been
proposed to defeat computer vision based attacks, the passcode
based authentication with a fixed software keyboard is still the
mainstream authentication strategy on various mobile devices.
The novel drone attack studied in this paper poses a severe
threat against such authentication strategy, given the flexibility
of drones and its increasing popularity. More usable and
effective mobile authentication strategies are in demand to
counter the drone threats.

REFERENCES

[1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 32, pp. 1627–1645, 2010.

[2] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in Pro-
ceedings of 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010, pp. 3485–3492.

[3] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys, vol. 38, no. 4, December 2006.

[4] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-
line boosting,” in Proceedings of the British Machine Vision Conference.
BMVA Press, 2006, pp. 6.1–6.10.

[5] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2003.

[6] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proceedings of the Sixth IEEE International Conference on
Computer Vision (ICCV), 1998.

[7] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd: A fast
line segment detector with a false detection control,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), vol. 32, no. 4,
pp. 722–732, 2010.

[8] D. Cakmakov, V. Arnautovski, and D. Davcev, “A model for polygon
similarity estimation,” in Proceedings of Computer Systems and Software
Engineering (CompEuro), May 1992, pp. 701–705.

[9] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B.
Mitchell, “An efficiently computable metric for comparing polygonal
shapes,” in Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1990, pp. 129–137.

[10] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms (SODA), 2007, pp. 1027–1035.

[11] Z. Li, Q. Yue, C. Sano, W. Yu, and X. Fu, “3D vision attack against
authentication,” in IEEE International Conference on Communications
(ICC), May 2017.

[12] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Y. Zhang, “VISIBLE:
Video-assisted keystroke inference from tablet backside motion,” in
Network and Distributed System Security Symposium (NDSS), February
2016.

[13] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2014, pp. 1403–1414.

[14] Q. Yue, Z. Ling, W. Yu, B. Liu, and X. Fu, “Blind recognition of text
input on mobile devices via natural language processing,” in Proceedings
of the 2015 Workshop on Privacy-Aware Mobile Computing (PAMCO),
2015, pp. 19–24.

[15] Q. Yue, Z. Ling, X. Fu, B. Liu, W. Yu, and W. Zhao, “My google glass
sees your passwords!” in Black Hat USA, 2014.

7

