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Abstract

In a smart manufacturing system involving workers, recognition of the worker’s activity can be used for quantification and
evaluation of the worker’s performance, as well as to provide onsite instructions with augmented reality. In this paper, we propose
a method for activity recognition using Inertial Measurement Unit (IMU) and surface electromyography (SEMG) signals obtained
from a Myo armband. The raw 10-channel IMU signals are stacked to form a signal image. This image is transformed into an
activity image by applying Discrete Fourier Transformation (DFT) and then fed into a Convolutional Neural Network (CNN) for
feature extraction, resulting in a high-level feature vector. Another feature vector representing the level of muscle activation is
evaluated with the raw 8-channel SEMG signals. Then these two vectors are concatenated and used for work activity classification.
A worker activity dataset is established, which at present contains 6 common activities in assembly tasks, i.e., grab tool/part,
hammer nail, use power-screwdriver, rest arm, turn screwdriver, and use wrench. The developed CNN model is evaluated on this

dataset and achieves 98% and 87% recognition accuracy in the half-half and leave-one-out experiments, respectively.
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1. Introduction

The availability of low-cost sensors and the devel-
opment of Internet-of-Things (IoT) technologies enable
access to big data for the manufacturing industry [1],
which builds up the data foundation for smart manufac-
turing. A variety of methods and algorithms have been
developed to learn valuable information from the data,
and to make the manufacturing smarter [2]. The fast-
growing artificial intelligence technologies, particularly
deep learning [3], are promising to further boost this in-
dustry.
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In a smart manufacturing system involving work-
ers, recognition of the worker’s activity can be used
for quantification and evaluation of the worker’s per-
formance, as well as to provide onsite instructions
with augmented reality. Wearable devices, such as an
armband embedded with an Inertial Measurement Unit
(IMU) or surface electromyography (SEMG) sensors,
directly sense the movement of human body or the level
of muscle activation, which can provide information of
the body status. In addition, there are a lot of inexpen-
sive wearable devices in the market, such as Myo arm-
bands [4] and smartphones, which are widely used in
activity recognition tasks.

For activity recognition in the manufacturing area,
Stiefmeire et al. [5] utilized ultrasonic and IMU sen-
sors for worker activity recognition in a bicycle mainte-
nance scenario using a Hidden Markov Model classifier.
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Later they proposed a string-matching based segmenta-
tion and classification method using multiple IMU sen-
sors for recognizing worker activity in car manufactur-
ing tasks [6,7]. Koskimaki et al. [8] used a wrist-worn
IMU sensor to capture the arm movement and a K-
Nearest Neighbors model to classify five activities for
industrial assembly lines. Maekawa et al. [9] proposed
an unsupervised measurement method for lead time es-
timation of factory work using signals from a smart-
watch with an IMU sensor.

In general, the activity recognition task can be bro-
ken down into two subtasks: feature extraction and sub-
sequent multiclass classification. To extract more dis-
criminative features, various methods have been ap-
plied to the raw signals in the time or frequency do-
main, e.g., mean, correlation, and Principal Component
Analysis [10-13]. Different classifiers have been ex-
plored on the features for activity recognition, such as
the Support Vector Machine [10,12], Random Forest, K-
Nearest Neighbors, Linear Discriminant Analysis [11],
and Hidden Markov Model [13]. To effectively learn
the most discriminative features, Jiang et al. [14] pro-
posed a method based on Convolutional Neural Net-
works (CNN). They assembled the raw IMU signals
into an activity image, which enabled the CNN model
to automatically learn the discriminative features from
the activity image for classification.

In the present research, we choose a Myo armband
to capture the worker’s activity because it can provide
both IMU and sEMG signals. Motivated by the study of
Jiang et al. [14], we stack the raw IMU signals to form
a signal image. This image is transformed into an activ-
ity image by applying Discrete Fourier Transformation
(DFT) and then fed into a CNN for feature extraction,
resulting in a high-level feature vector. Another feature
vector representing the level of muscle activation is cal-
culated from the raw sEMG signals. Then these two
vectors are concatenated and used for worker activity
classification. An overview of our method is illustrated
in Figure 1. To evaluate the method, a worker activ-
ity dataset containing 6 common activities in assembly
tasks is established.
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Fig. 1: Overview of our worker activity recognition method.

The remainder of this paper is organized as follows.
Section 2 discusses how we build up the worker activ-
ity dataset. Our proposed method is detailed in Sec-
tions 3 and 4. The experimental setups and results are
described in Sections 5 and 6, respectively. Finally, Sec-
tion 7 provides the conclusions.

2. Data Collection

To establish our dataset of worker activity, six activ-
ities commonly performed in assembly tasks are cho-
sen, which are: grab tool/part (GT), hammer nail (HN),
use power-screwdriver (UP), rest arm (RA), turn screw-
driver (TS), and use wrench (UW).

A Myo armband equipped with IMU and SEMG sen-
sors from Thalmic Labs is used for data acquisition. The
IMU returns three types of signals (3-channel accelera-
tion, 3-channel angular velocity, and 4-channel orienta-
tion) at the sample rate of SOHz. A set of 8 SEMG pods
attached to the skin return 8 channels of unitless signals
in the range of [-128, 127] at the sample rate of 200Hz,
which represent the corresponding muscle activations.
These 18-channel signals are transmitted via Bluetooth
to the computer.

Tool/part
containers

screwdriver

Wrench

Screwdriver

Fig. 2: (a) Data collection setup; (b) Wearing orientation of a right-
hand.

There are 8 subjects recruited to conduct a set of
tasks (listed in Table 1) containing the 6 activities. As
demonstrated in Figure 2(a), the subject is asked to
stand in front of the workbench, wear a Myo armband
on his/her right forearm with a fixed orientation (Fig-
ure 2(b)), and perform the tasks on assembly dummies
in a natural way. The Myo data are collected during the
tasks and an overhung camera is used to record the as-
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sembly activities simultaneously for monitoring the pro-
cess. Examples of the 6 activities are shown in Figure 3,
which are taken from the overhung camera.

Table 1: Tasks for collecting worker activity.

No  Tasks Activities
1 Grab 30 tools/parts from the 3 containers GT
2 Hammer 15 nails into the wooden dummy HN
3 Tighten 20 screws using a power-screwdriver UP
4 Rest arms for about 60 seconds RA
5 Tighten 10 nuts using a screwdriver TS
6 Tighten 10 nuts using a wrench Uw

Hammer nail

‘ 3; Grab tool/part
- X

;-l‘ii 7R

Rest arm

@

— TR i N ' VN

Turn screwdriver Use wrench

Fig. 3: Examples of the 6 activities.

3. Signal Preprocessing

Although the Myo data are collected separately for
different tasks and each task consists of only one activ-
ity, there still might be some noise inside the data, such
as preparing activities between hammering nails. To ad-
dress it, the recorded videos are reviewed to locate the
time durations, each of which contains only one of the
six activities. These durations are used to segment the
raw Myo data.

Usually, the duration of a segmented instance ranges
from a few seconds to more than one minute, which
consists of repeated activity patterns. Thus, sampling is
needed to prepare the data samples for recognition. As
depicted in Figure 4, the 50Hz IMU signals are sampled
using a sliding window with the width of 64 timestamps
and 75% overlap between two steps. Thus each IMU

sample lasts for about 1.3 seconds, which covers at least
one activity pattern. After sampling the IMU signals,
the 200Hz sEMG signals are sampled according to the
time durations of the IMU samples. Then each sSEMG
sample has an approximate width of 256 timestamps.
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Fig. 4: Sampling method.

After sampling, suppose we have N IMU samples
and N sEMG samples, by using the method proposed
by Jiang et al. [14], the 10-channel signals in an IMU
sample are stacked and shuffled, forming a signal im-
age with the size of 42 X 64. Then this signal image
is transformed into an activity image by applying two-
dimensional (2D) Discrete Fourier Transform (DFT)
and taking its logarithmic magnitude. Figure 5 shows
activity image examples for each activity. For a sSEMG
sample, the 8-channel signals are averaged along each
channel, forming an 8-dimensional vector, which repre-
sents the level of muscle activation.

Fig. 5: Examples of activity image.
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Fig. 6: The architecture of our CNN model. The volume size is represented in height X width X depth. ‘Conv.” and ‘Pool.” denote the operations of

convolution and pooling, respectively.

4. CNN Architecture

The architecture of our CNN model is illustrated in
Figure 6. It accepts two inputs, the IMU activity image
and the SEMG vector, and outputs a probability distri-
bution of the 6 activities.

After the preprocessing steps described in Section 3,
there are N activity images X/MY and N sEMG vectors
XEMG where i € [1,N]. X/ has the size of 42x64x1
(height, width, depth, respectively) and is normalized to
the interval [0, 1] before being fed into three 5 X 5 con-
volutional layers for feature extraction. Each convolu-
tional layer is down-sampled to a half by implementing
a2 x 2 max pooling layer.

Then the feature map from the third pooling layer
having the size of 2 x 5 X 32 is flattened into a 320-
dimension feature vector, which is subsequently densi-
fied by a fully connected layer to a 16 dimensional fea-
ture vector.

On the other side, X;*¢ representing muscle ac-
tivation levels at 8 positions is injected directly as a
high-level feature. It is concatenated to the previous 16-
dimension feature vector from IMU signals, resulting
in the total dimension of 24. Then another fully con-
nected layer is used to densify the feature vector to the
dimension of 6, which is the number of activities. Then
this 6 dimensional score vector {S;,j = 1,2,...,6} is
transformed to output the predicted probabilities using
a softmax function [15] as follows:

) i exp(s ;)
Py = XM X0 = ——=— (D)
Si1 expS o)

where P(y = jlI[X/MY, XEMGY) s the predicted prob-
ability of being class j based on the inputs X!V and
Xis‘EMG'

Training a CNN model involves optimizing the net-
work’s weights w to minimize a chosen cost function.
We select the cross entropy [15] as the cost function:

N

6
Lovy =Y > yiyloglP(y = XMV, X;EMC)]+ Al (w)

=1 j=1
2
where y;; is 0 if the ground truth label of the ith data
[X/MU, XsEMGY js the jth label, and is 1 otherwise. The
L2 regularization term [16] is added to the cost function
to penalize large weights, and A is its coefficient. The
Adam optimization method [17] is used in the training.
The dropout regularization [18] randomly drops
units from the neural network during training, which
is commonly used to avoid the overfitting. It is imple-
mented after the flatten layer in the CNN model.

5. Experiment

We evaluate our method on an established worker
activity dataset, which has 6 activities performed by 8
subjects. The quantitative information of the dataset is
listed in Table 2. There are 11,211 data samples in total.
These subjects use different amounts of time to finish
each task, therefore they have different numbers of data
samples for each activity.

Table 2: Number of data samples for each activity of different sub-
jects.

Subject No. GT HN UP RA TS UW

193 140 364 266 222 442
302 408 195 56 274 751
198 183 171 251 214 567
204 172 188 29 82 344
187 204 142 43 213 372
216 77 179 47 129 301
213 196 203 254 231 576
200 184 262 145 148 273

(e I N Y R R S

Two evaluation policies are conducted, i.e., half-half
and leave-one-out policies. In the half-half evaluation,
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after randomly shuffling, one half of the dataset is pre-
pared for training and the other half is kept for testing.
In the leave-one-out evaluation, the samples from 7 out
of 8 subjects are used for training, and the samples of
the left one subject are reserved for testing. We em-
ploy several commonly used metrics [16] to evaluate the
classification performance, which are listed as follows:

e Accuracy
N A
;10 = yi
Accuracy = M 3)
N
e Precision and Recall
.. TP
Precision = TP+ FP
Recall = P @
= TPYFN
e F'| score
Fi=2 Precision - Recall 5)

Precision + Recall

where 1 is an indicator function in Equation 3. For a cer-
tain class y;, True Positive (TP) is defined as a sample of
class y; that is correctly classified as y;; True Negative
(TN) means a sample from a class other than y; is cor-
rectly classified as ‘not y;’; False Positive (FP) means a
sample from a class other than y; is misclassified as y;;
False Negative (FN) means a sample from the class y;
is misclassified as another ‘not y;’ class. F; score is the
harmonic mean of Precision and Recall, which ranges
in the interval [0,1].

The CNN model described in Section 4 is created us-
ing the Google TensorFlow library. For training hyper-
parameters, we choose the batch size as 512, the learn-
ing rate as 0.001, the dropout rate as 0.5, and the regular-
izer coefficient as le-5. The number of epochs is 1000.
We use a workstation with one 12 core Intel Xeon pro-
cessor, 64GB of RAM and one Nvidia Geforce 1080 Ti
graphic card for the CNN training.

6. Results

To explore the optimal combination of inputs for the
CNN model, we first compare the performance of three
cases using different inputs: 1). activity images from
the IMU signals (IMU-AI); 2). activity images from the
SEMG signals (SEMG-AI); and 3). vectors represent-
ing the muscle activation levels from the SEMG signals
(sEMG-V). The model described in Section 4 is adapted
accordingly to fit these 3 cases. For case 1, the lower

stream of the CNN model for the second input shown
in Figure 6 is abandoned. Case 2 uses a CNN model
similar to the one in case 1. Since the size of an activ-
ity image from the SEMG signals is 25 x 64, this model
only has two sets of convolutional layers with the max-
imum depth of 16, instead of 32. For case 3, only the
lower stream of the CNN model shown in Figure 6 is re-
served, which is a fully connected neural network from
8 nodes to 6 nodes.

The performance of these three cases in terms of ac-
curacy, precision, recall and F score with two evalua-
tion strategies (half-half and leave-one-out) is summa-
rized in Table 3. Case 1 has the highest performance
among the three, which is about 30% higher than the
other two. It demonstrates that the activity images from
the IMU signals provide more discriminative features
for activity recognition. Compared to case 2, case 3 has
higher performance as well as lower computational cost
due to the simplicity of its model.

Table 3: Overall performance (%) of the half-half (hh) and leave-one-
out (loo) experiments.

Inputs” Accuracy  Precision  Recall  F; Score
hh 97.5 97.5 97.5 97.5
IMU-AL loo 85.0 87.2 87.3 85.3
hh 60.4 64.0 60.3 61.8
SEMG-AL 106 402 52.8 49.1 484
hh 66.4 66.8 67.4 67.0
SEMG-V 100 507 525 53.1 479
IMU-AL, hh 97.6 97.8 97.5 97.7
SEMG-V  loo 87.4 89.0 89.5 87.6

* ‘AI’ denotes activity images from either IMU or SEMG signals,
and ‘V’ denotes vectors that represent the muscle activation levels
from sEMG signals.

Therefore, we choose the two inputs, i.e., IMU-AI
and sEMG-V, for our CNN model. As shown in Ta-
ble 3, its performance of the leave-one-out experiment
is about 2% higher than that in case 1 with only one
IMU-AI input. For the half-half experiment, 97.6% of
the testing samples are correctly recognized. Also, as
shown in Figure 7, only a small number of samples are
misclassified and not along the diagonal. It is about
10% higher than 87.4% of the leave-one-out experi-
ment. This is because all the testing subjects are seen
in the half-half experiment, while the testing subject in
the leave-one-out experiment is unseen.

The leave-one-out results on each testing subject are
detailed in Table 4. The 4th subject has the highest
performance, which reaches 98.2%, 97.1%, 98.8% and
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97.9% in accuracy, precision, recall and F; score, re-
spectively. The lowest performance is from the 7th
subject, which has about 37% of the testing samples
misclassified. The UW activity of the 7th subject has
the largest recognition errors, which is shown in Fig-
ure 8(7). The majority of UW are misclassified as TS,
GT and UP. By reviewing the recorded videos, as illus-
trated in Figure 9 where the arrows show the approxi-
mate trajectories of the arm movements, we find the rea-
son for the low performance of the UW activity is that
the 7th subject performed the UW task significantly dif-
ferently from other subjects and thus it is difficult for the
CNN model to learn using the leave-one-out strategy.

Table 4: Results (%) of the leave-one-out experiments evaluated on
each test subject.

Subject No.  Accuracy  Precision Recall F1 Score
1 92.3 93.2 92.7 92.7
2 92.0 88.0 92.6 89.8
3 90.0 88.8 88.9 88.0
4 98.2 97.1 98.8 97.9
5 93.6 93.0 94.7 93.6
6 84.4 91.8 85.2 87.0
7 63.3 74.7 76.7 66.7
8 85.1 85.4 86.5 84.9
RA 562 0 0 2 0 6
HN 0 762 1 5 0 6
2
E TS 2 0 725 9 8 3
5]
£
E
T ow 0 1 3 822 2 13
s
o}
or 2 0 8 2 834 9
w 4 1 13 6 8
RA HN T P Gr

Predicted activity

Fig. 7: Confusion matrix of the half-half experiment. The values rep-
resent the number of samples, e.g., the ‘562’ on the upper-left corner
means there are 562 samples of actual ‘rest arm’ (RA) correctly pre-
dicted as RA, and the ‘6’ on the upper-right corner means there are 6
samples of actual RA incorrectly predicted as ‘use wrench’ (UW).

To address the confusing issues and further improve
the model performance, some directions for future work

are considered, such as recruiting more subjects to learn
more working styles, using data augmentation tech-
niques to add more variations to the collected data, and
exploring different methods of signal preprocessing and
feature extraction to fully exploit the SEMG signals. In
addition, the recording videos can also be utilized to cre-
ate an image-based activity recognition module.

7. Conclusion

In this paper, we develop a Convolutional Neural
Network (CNN) model for worker activity recognition
in smart manufacturing using the Inertial Measurement
Unit (IMU) and surface electromyography (SEMG) sig-
nals obtained from a Myo armband. A worker activ-
ity dataset is established, which involves 8 subjects and
contains 6 common activities in assembly tasks (i.e.,
grab tool/part, hammer nail, use power-screwdriver, rest
arm, turn screwdriver and use wrench). The developed
CNN model is evaluated on this dataset and achieves
98% and 87% recognition accuracy in the half-half and
leave-one-out experiments, respectively.
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