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Abstract

In a smart manufacturing system involving workers, recognition of the worker’s activity can be used for quantification and

evaluation of the worker’s performance, as well as to provide onsite instructions with augmented reality. In this paper, we propose

a method for activity recognition using Inertial Measurement Unit (IMU) and surface electromyography (sEMG) signals obtained

from a Myo armband. The raw 10-channel IMU signals are stacked to form a signal image. This image is transformed into an

activity image by applying Discrete Fourier Transformation (DFT) and then fed into a Convolutional Neural Network (CNN) for

feature extraction, resulting in a high-level feature vector. Another feature vector representing the level of muscle activation is

evaluated with the raw 8-channel sEMG signals. Then these two vectors are concatenated and used for work activity classification.

A worker activity dataset is established, which at present contains 6 common activities in assembly tasks, i.e., grab tool/part,

hammer nail, use power-screwdriver, rest arm, turn screwdriver, and use wrench. The developed CNN model is evaluated on this

dataset and achieves 98% and 87% recognition accuracy in the half-half and leave-one-out experiments, respectively.
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1. Introduction

The availability of low-cost sensors and the devel-

opment of Internet-of-Things (IoT) technologies enable

access to big data for the manufacturing industry [1],

which builds up the data foundation for smart manufac-

turing. A variety of methods and algorithms have been

developed to learn valuable information from the data,

and to make the manufacturing smarter [2]. The fast-

growing artificial intelligence technologies, particularly

deep learning [3], are promising to further boost this in-

dustry.
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In a smart manufacturing system involving work-

ers, recognition of the worker’s activity can be used

for quantification and evaluation of the worker’s per-

formance, as well as to provide onsite instructions

with augmented reality. Wearable devices, such as an

armband embedded with an Inertial Measurement Unit

(IMU) or surface electromyography (sEMG) sensors,

directly sense the movement of human body or the level

of muscle activation, which can provide information of

the body status. In addition, there are a lot of inexpen-

sive wearable devices in the market, such as Myo arm-

bands [4] and smartphones, which are widely used in

activity recognition tasks.

For activity recognition in the manufacturing area,

Stiefmeire et al. [5] utilized ultrasonic and IMU sen-

sors for worker activity recognition in a bicycle mainte-

nance scenario using a Hidden Markov Model classifier.
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after randomly shuffling, one half of the dataset is pre-

pared for training and the other half is kept for testing.

In the leave-one-out evaluation, the samples from 7 out

of 8 subjects are used for training, and the samples of

the left one subject are reserved for testing. We em-

ploy several commonly used metrics [16] to evaluate the

classification performance, which are listed as follows:

• Accuracy

Accuracy =

∑N
i 1(ŷi = yi)

N
(3)

• Precision and Recall

Precision =
T P

T P + FP

Recall =
T P

T P + FN

(4)

• F1 score

F1 = 2 ·
Precision · Recall

Precision + Recall
(5)

where 1 is an indicator function in Equation 3. For a cer-

tain class yi, True Positive (TP) is defined as a sample of

class yi that is correctly classified as yi; True Negative

(TN) means a sample from a class other than yi is cor-

rectly classified as ‘not yi’; False Positive (FP) means a

sample from a class other than yi is misclassified as yi;

False Negative (FN) means a sample from the class yi

is misclassified as another ‘not yi’ class. F1 score is the

harmonic mean of Precision and Recall, which ranges

in the interval [0,1].

The CNN model described in Section 4 is created us-

ing the Google TensorFlow library. For training hyper-

parameters, we choose the batch size as 512, the learn-

ing rate as 0.001, the dropout rate as 0.5, and the regular-

izer coefficient as 1e-5. The number of epochs is 1000.

We use a workstation with one 12 core Intel Xeon pro-

cessor, 64GB of RAM and one Nvidia Geforce 1080 Ti

graphic card for the CNN training.

6. Results

To explore the optimal combination of inputs for the

CNN model, we first compare the performance of three

cases using different inputs: 1). activity images from

the IMU signals (IMU-AI); 2). activity images from the

sEMG signals (sEMG-AI); and 3). vectors represent-

ing the muscle activation levels from the sEMG signals

(sEMG-V). The model described in Section 4 is adapted

accordingly to fit these 3 cases. For case 1, the lower

stream of the CNN model for the second input shown

in Figure 6 is abandoned. Case 2 uses a CNN model

similar to the one in case 1. Since the size of an activ-

ity image from the sEMG signals is 25 × 64, this model

only has two sets of convolutional layers with the max-

imum depth of 16, instead of 32. For case 3, only the

lower stream of the CNN model shown in Figure 6 is re-

served, which is a fully connected neural network from

8 nodes to 6 nodes.

The performance of these three cases in terms of ac-

curacy, precision, recall and F1 score with two evalua-

tion strategies (half-half and leave-one-out) is summa-

rized in Table 3. Case 1 has the highest performance

among the three, which is about 30% higher than the

other two. It demonstrates that the activity images from

the IMU signals provide more discriminative features

for activity recognition. Compared to case 2, case 3 has

higher performance as well as lower computational cost

due to the simplicity of its model.

Table 3: Overall performance (%) of the half-half (hh) and leave-one-

out (loo) experiments.

Inputs* Accuracy Precision Recall F1 Score

IMU-AI
hh 97.5 97.5 97.5 97.5

loo 85.0 87.2 87.3 85.3

sEMG-AI
hh 60.4 64.0 60.3 61.8

loo 49.2 52.8 49.1 48.4

sEMG-V
hh 66.4 66.8 67.4 67.0

loo 50.7 52.5 53.1 47.9

IMU-AI,

sEMG-V

hh 97.6 97.8 97.5 97.7

loo 87.4 89.0 89.5 87.6

* ‘AI’ denotes activity images from either IMU or sEMG signals,

and ‘V’ denotes vectors that represent the muscle activation levels

from sEMG signals.

Therefore, we choose the two inputs, i.e., IMU-AI

and sEMG-V, for our CNN model. As shown in Ta-

ble 3, its performance of the leave-one-out experiment

is about 2% higher than that in case 1 with only one

IMU-AI input. For the half-half experiment, 97.6% of

the testing samples are correctly recognized. Also, as

shown in Figure 7, only a small number of samples are

misclassified and not along the diagonal. It is about

10% higher than 87.4% of the leave-one-out experi-

ment. This is because all the testing subjects are seen

in the half-half experiment, while the testing subject in

the leave-one-out experiment is unseen.

The leave-one-out results on each testing subject are

detailed in Table 4. The 4th subject has the highest

performance, which reaches 98.2%, 97.1%, 98.8% and








