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Abstract

American Sign Language (ASL) alphabet recognition by computer vision is
a challenging task due to the complexity in ASL signs, high interclass similar-
ities, large intraclass variations, and constant occlusions. This paper describes
a method for ASL alphabet recognition using Convolutional Neural Networks
(CNN) with multiview augmentation and inference fusion, from depth images
captured by Microsoft Kinect. Our approach augments the original data by
generating more perspective views, which makes the training more effective and
reduces the potential overfitting. During the inference step, our approach com-
prehends information from multiple views for the final prediction to address the
confusing cases caused by orientational variations and partial occlusions. On

two public benchmark datasets, our method outperforms the state-of-the-arts.

Keywords: American Sign Language, Convolutional Neural Networks (CNN),

Data augmentation, Fusion

1. Introduction

American Sign Language (ASL) is an important communication way to con-

vey information among the deaf community in North America. Although it is
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primarily used by people who have hearing or speech difficulties, similar signs
also can be used in Natural User Interface (NUI) systems to realize human-
computer /robot interaction by hand gestures. Its automatic recognition using
various sensing devices has been studied extensively for decades with signifi-
cant progress having been made. There are mainly two categories of sensing
devices used in those studies: (1) wearable devices, such as a cyber glove em-
bedded with a flex sensor or an Inertial Measurement Unit (IMU) sensor, and
a set of trackable markers of a motion capturing system; and (2) non-wearable
devices, or markerless vision-based devices, such as a RGB camera or a depth
camera. Wearable devices directly sense the hand status like adjacent joints’
angles, spatial positions and movements, which can provide fairly precise infor-
mation of the hand [1, 2]. However, they are still too heavy and uncomfortable
for daily use. Markerless vision-based recognition has been increasingly popular
recently because it does not need sensors attached to a human and the low-
cost vision/depth cameras such as Microsoft Kinect are commercially available.
However, it is still challenging to recognize ASL signs because of the complex-
ities of these signs, high interclass similarities, large intraclass variations, and

constant finger occlusions.

1.1. Related Work

In this paper, we focus on recognizing the alphabet of American Sign Lan-
guage (ASL). In general, the ASL alphabet recognition task is formulated as
two subtasks: feature extraction and subsequent multiclass classification. Re-
searchers have been using different methods to extract discriminative features
and create powerful classifiers.

Pugeault and Bowden [3] applied Gabor filters to extract features from both
color and depth images at 4 different scales. Then a multiclass random forest
classifier was used to recognize the 24 static ASL alphabet signs. They had 49%
recognition rate in the leave-one-out experiment. Half of the signs could not
be recognized, showing that Gabor filters cannot capture enough discriminative

information for differentiating different signs. In addition, they developed a
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realtime recognition system which provides an interface for the user to select the
desired sign among ambiguous ones. It is worth mentioning that they publicized
their dataset well and this dataset has been the most common benchmark in
this research area, as surveyed in the following.

Wang et al. [4] also used color and depth images for recognition. They pro-
posed a Superpixel Earth Mover’s Distance (SP-EMD) metric to measure the
distance between two signs based on the shape, texture and depth informa-
tion. Then a template matching technique was utilized for the sign classifica-
tion. They reported 75.8% recognition rate on the benchmark dataset. Some
researchers only focused on either color or depth image. Maqueda et al. [5] de-
ployed a Volumetric Spatiograms of Local Binary Patterns (VS-LBP) descriptor
on color videos or images, without using depth images, for extracting spatio-
temporal features. By using a Support Vector Machine (SVM) classifier, they
had 83.7% leave-one-out accuracy on the benchmark dataset. Nai et al. [6] ex-
tracted features from only depth images on randomly positioned line segments
and used a random forest for classification, with 81.1% accuracy reported in
their paper.

Some studies attempted to exploit the 3D information embedded in the
depth images (3D approach). Kuznetsova et al. [7] implemented an Ensemble of
Shape Function (ESF) descriptor [8] on the 3D point cloud for feature extraction
and a multi-layered random forest for classification. Zhang et al. [9] proposed a
Histogram of 3D Facets (H3DF) descriptor to encode the 3D shape information
of different hand gestures. Then they used a SVM with a linear kernel for the
classification step and got 73.3% in the leave-one-out accuracy. Later, Zhang and
Tian [10] combined their H3DF with a dense sampling method and achieved an
improved accuracy of 83.8%. Rioux-Maldague and Giguére [11] created a mask
from the depth image and applied it on the intensity image to filter out the hand
region to form the intensity features. Six binary images were generated using
cross-sections of depth images to form depth features, which were then fed into
a Deep Belief Network (DBN) and achieved 77% recall and 79% precision on

the benchmark dataset. These 3D approaches are promising to achieve better



65

70

75

80

85

90

95

performance than image representations due to the extra dimension. However,
the 3D point cloud obtained from the depth image is sparse at the regions
with large gradients and absent at the occluded areas, which affects the overall
performance. To fully exploit the 3D benefits from the depth image, some 3D
reconstruction methods can be used to recover more valuable information.

Due to the articulated structure of hands, some studies implemented a hand
part segmentation step before the gesture recognition (bottom-up approach).
Keskin et al. [12] extracted depth comparison features from depth images fol-
lowing the method proposed by Shotton et al. [13] and fed them into a per-pixel
random forest classifier. The final predicted label for the whole image is deter-
mined by majority voting. They reported their leave-one-out recognition rate as
84.3% on the benchmark dataset. Furthermore, they introduced multi-layered
random forests in classifying hand parts to estimate its pose. This classifier is
trained using synthetic depth images which have the parts’ groundtruth of a
hand. To generate more realistic training data for per-pixel hand part classifi-
cation, a colored latex glove was employed in the research of Dong et al. [14].
They added kinematic constraints on the estimated joint locations to improve
the localization accuracy, based on which 13 key angles of the hand skeleton
were extracted and fed into a random forest classifier, resulting in 70% recog-
nition rate on the benchmark dataset. One of the major drawbacks for these
bottom-up approaches is that the sign recognition performance is highly de-
pendent upon the result of the hand part segmentation, and it is challenging
to improve the performance of the hand part segmentation because of the high
complexities and constant occlusions.

Recently, deep learning methods such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) have demonstrated their ex-
traordinary performance in various classification and recognition tasks. For
example, in the traffic sign classification task and the ImageNet challenge, the
CNN systems achieved even better performances than those of humans [15, 16].
Unlike the handcrafted feature extractor, which is designed to capture only spe-

cific patterns, the deep learning based feature extractor is automatically trained



100

105

110

115

120

to capture the most discriminative features using the real data. Ameen and
Vadera [17] introduced a CNN model with both color and depth inputs in the
ASL alphabet recognition task. This model has two convolutional layers for
each input to extract features from them. Those two sets of features are con-
catenated into one before being fed into fully connected layers. They reported
the accuracy of 80.34% on the benchmark dataset. RNNs have also been utilized

for hand gesture recognition tasks and achieved promising results [18].

1.2. Proposed Method

Depth images contain distance information from the camera plane to the
objects in the camera view, where each pixel represents a measured distance.
Therefore, it is easier to segment the target object in a depth image than a
color image. Thus, this research focuses on recognizing finger spelling signs

from depth images as follows:

e Considering the challenges of the ASL alphabet recognition task, we choose
CNN as the basic model to build the classifier because of its powerful

learning ability that has been shown.

e To fully exploit the 3D information provided by depth images, we develop
a novel multiview augmentation strategy. It generates more views from
different perspectives, in order to augment the perspective variations that

cannot be achieved using traditional image augmentation methods.

e To solve the interclass similarity issues caused by perspective variations
and partial occlusions, we first make predictions for all individual views

and then fuse information from them for the final prediction.

The remainder of this paper is organized as follows. Our proposed methods
of multiview augmentation, CNN model, and inference fusion are detailed in
Sections 2, 3 and 4, respectively. The experimental setups and experimental
results using the public datasets are described in Sections 5 and 6. Finally,

Section 7 gives the conclusions of this research.
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2. Multiview Augmentation

To train a valid CNN classifier with good performance, a large amount of
labeled data needs to be fed into it. However, it is always time-consuming
and costly to collect enough data with annotated labels. Data augmentation
is a common method to solve such an issue, which synthesizes additional data
derived from original ones.

Traditionally, data augmentation refers to implementing a series of image
transformation techniques on the original images, which consist of rotating,
scaling, shifting, flipping, shearing, etc. The image transformation is able to
introduce more variations and still keep the recognizable features. However,
the basic image transformation cannot introduce realistic variations of different
perspectives (e.g., out-of-plane transformations in the real world), which are

common for hand gestures because they are highly perspective-dependent.
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Figure 1: Multiview augmentation strategy.

To synthesize those perspective variations, we propose a multiview augmen-
tation strategy illustrated in Figure 1. A hand gesture is represented as a depth
image in its original view, from which a 3D point cloud is obtained. Then addi-
tional virtual cameras are set up and oriented to the point cloud with different
perspectives. Finally, a set of additional views are generated from those dis-

tributed virtual cameras. The central image on the right hand side in Figure 1



is the original depth image, based on which the other views are generated.
The generation process of a new view is shown in Figure 2. Given a hand

depth image I with M pixels (Figure 2(a)), to extract the point cloud P =

{p1,..-s Pm, -, P } from the depth image, each pixel I(4, j) is projected into the

3D space as a point p,, = ( %r) (y)

O i ,pSfL)). This projection first translates the
origin to the image center and then uses the depth values as the Z values, which

is formulated as follows (Figure 2(b)):

P =i —w/2

pW = —i+h/2 (1)
Pl =10.5)

where i and j represent the indices of row and column of I, respectively, w and

us h are the width and height of the depth image, respectively.
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Figure 2: Generation of a new view.

To capture the point cloud from a new perspective, a yaw-pitch-roll rotation

transformation on the point cloud around its volume center is implemented. For

point p,,, in P, its new location after rotation can be calculated by

(2)

p;n = R(OL Baﬂ/)pm
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where R(«, 3,7) is the rotation matrix, «, S and ~ represent yaw, pitch and
roll angles around z, y and = axes, respectively. It can be further expressed as

a multiplication of three orthogonal rotation matrices [19]:

R(av Bv '7) =R, (O‘)Ry(ﬂ)Rr (’7)

cos acos f3 712 713
= |sinacosf T99 723
—sinf8 cosfBsiny cosfcosy
where (3)
7192 = cos asin B siny — sin & cos 7y
r13 = cos asin S cosy + sin asin vy
r99 = sin arsin B siny 4 cos « cos 7y
ro3 = sin arsin 5 cosy — cos a:sin 7y
By implementing the yaw-pitch-roll rotation on each point, a new point
cloud P’ is generated (Figure 2(c)). Then P’ is reprojected onto a plane to
form a new depth image (Figure 2(d)), which is the reverse process of point
cloud extraction in Equation 1. After reprojection, the new depth image might
have holes because the occluded regions in the original image get exposed in the
new one after the yaw-pitch-roll rotation transformation. Those small holes can
be filled by interpolation using their neighboring pixels’ values (Figure 2(e)).
Then the hand region in the new image is cropped and re-centered by removing

its surrounding isolated noises (Figure 2(f)).

3. CNN Model

The overall architecture of our CNN model is shown in Figure 3. It is
composed of a layered feature extraction module and a classification module.

In the feature extraction module, suppose there are N depth images X,,,n €
[1, N] after data augmentation, they are scaled to the size 32 x 32 (width x
height) and normalized to the interval [0, 1], and then fed into three 5 x 5 con-

volutional layers for feature extraction. Rectified Linear Unit (ReLU) activation
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Figure 3: The overall architecture of our CNN model. ‘Conv.” and ‘Pool.” denote the operations

of convolution and pooling, respectively.

function [20] is applied to each convolutional operation. Then each convolutional
layer is followed by a 2 x 2 max pooling layer, which downsamples the previous
feature map by a half.

The classification module accepts the 4 x 4 x 128 feature map from the
feature extraction module and flattens it as a 2048 feature vector. Then two
fully connected layers are used to densify the feature vector to the dimensions
of 128 and C' sequentially, where C' is the number of ASL alphabet sign classes.
Then this C-dimensional score vector S([S1,...,Sc,...,S¢]) is transformed to

output the predicted probabilities with a softmax function as follows:

exp(S,)
Yy exp(Se)

where P(y, = ¢|X,,) is the predicted probability of being class ¢ for sample X,.

P(yn = c|X,) = (4)

Dropout has been proved to be a powerful regularization technique used
to avoid the overfitting, which randomly drops units from the neural network
during training [21]. Therefore, it is implemented after each pooling layer in
our CNN model.

The process of training a CNN model involves optimization of the network’s
parameters w to minimize the cost function for the training dataset X. We
select the commonly used regularized cross entropy [20] as the cost function,
which is

N
Lw) = nclog[Pyn = ¢|X,)] + Mo (w) (5)

n=1c=1
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where yy,. is 0 if the ground truth label of X, is the cth label, and is 1 otherwise.
The Iy regularization term is appended to the loss function for penalizing large

weights, and A is its coefficient.

4. Multiview Inference Fusion

Due to the high interclass similarities, some signs are almost the same from
certain perspectives. The inference relying on only one view may not be con-
vincing enough. Therefore, we propose a multiview inference fusion strategy

in order to augment the speculation of each individual view, as illustrated in

Figure 4.
X5
X B
X9 T s
S TTT—
H Trained H o — \
N' . CNN . Fusion L
o X, 1" Prediction
Testing input e
PNars—

E

Naps
xNaps £
n L
Top-K prediction
of each view

i: L) i

Multiview generation

Figure 4: Multiview inference fusion strategy.

In the inference step, suppose the CNN model described in Section 3 has
been trained with the augmented dataset, and we have Ny depth images
for inference. First of all, each query sample is preprocessed to the right in-
put XU, n € [1, Nies] which has the size of 32 x 32 and the value range of
[0,1]. Then, similar to the multiview augmentation process, a set of new views
{X} X2 ...  XNars} are generated from the original ones X°, where Napgs
is the number of augmentations per sample. After that, there are (Napgs + 1)

views {X9, X} - XV ... XNaprs} for the original query sample. Each view

10
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X?,v € [0, Napg] is inferred individually by the trained CNN to get the prob-
ablity distribution PV of the top-K predicted classes (K € [1,C], e.g., K = 5).
Then they are fed into an inference fusion step for the final prediction.

In the inference fusion step, predictions from all individual views are fused
together. We introduce the informativity value IV to evaluate the prediction
confidence at each view v. IV is calculated with Equation 6, which is modified
from the Shannon entropy of a discrete probability distribution to vary in the

interval of [0,1].

S, vy logpy
JV==F=="%8 2°F 1] 6
log K + (6)

where v is the index of views and k is the index of top-K candidates. p}
represents the probability of the kth class candidate at the vth view. IV will be
close to 0 if all the top-K candidates have similar probabilities (i.e., p} = 1/K),
and 1 if the probability of top-1 class candidate is about reaching 1 (i.e., p} =~ 1).

Then every predicted probability pj, at the vth view is weighted by I of this
view. The final predicted label is chosen as the one that maximizes the I"pj

value:

:l)fusion = mgx @yusion (7)
where

g;usion = arg m]?X IUPZ (8)

5. Experiments

5.1. Datasets

To compare our method with others, we evaluate it on the public ASL alpha-
bet dataset [3]. Some examples of the depth images in this dataset are shown in
Figure 5. It has 24 finger spelling signs (‘J’ and ‘Z’ are excluded because they
involve finger movement) captured by a Kinect with color and depth images

recorded. Those signs were performed by 5 different subjects and each of the

11
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24 signs consists of about 500 to 600 samples. As shown in Figure 5, the hand

regions were approximately cropped.

Figure 5: Depth image examples of the 24 signs in the ASL alphabet dataset[3].

To validate the generalization of our method, the NTU digit dataset [22] is
also chosen for experiments. This dataset has 10 signs representing digits from
0 to 9 captured by a Kincet containing color and depth images as well. They
are performed by 10 different subjects and each sign has 10 samples. Examples
of the depth image of the 10 signs in this dataset are shown in Figure 6. Each

image contains background and the hand region is not cropped or annotated.

Figure 6: Depth image examples of the 10 signs in the NTU digit dataset [22].

12
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Figure 7: Hand region segmentation. S1-6 denote the processing steps.

5.2. Preprocessing

The image size of an input sample is a design parameter when building a
CNN model and is fixed after the model is created. Thus, it only accepts input
samples with the predefined sizes, e.g., our CNN model described in Section 3
needs each input sample to have the uniform size of 32 x 32 (width x height).

Samples from the first dataset introduced in Section 5.1 have various sizes
(as shown in Figure 5). Although each sample in the second dataset shares the
same size (as shown in Figure 6), the size is 640 x 480 and the hand region
is only a small part of the entire image. Therefore, a preprocessing procedure
is needed to prepare the data for the CNN model. Taking an image from the
NTU digit dataset [22] as an example, this process is illustrated in Figure 7,
where S1-6 denote the processing steps. Suppose there is a raw depth image D
(Figure 7(a)) captured by a depth camera and it is assumed that the hand is
the closest object to this camera. First, a band-pass filter is applied to filter out
the pixels in the range of [dmin, dmin + 0], where dp;, is the minimum distance

value and ¢ is the threshold distance that should approximately represent the

13
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hand occupation along the direction out of the image. After that, the depth
image is reversed using the equation D' = dyy, + 6 — D (if D # 0), and
then on the new depth image D’, hand regions that are nearer to the camera
will be brighter, while further regions will be darker. This conversion will let
our CNN model focus on the nearer regions which contain more information in
distinguishing different signs. There is only one hand and it is the frontmost
object in a depth image for both of the datasets. Then the bounding box of the
hand is detected (Figure 7(b)) and cropped by using histograms projected onto
x and y axes (Figure 7(c)).

The palm center is approximated by calculating the mass center of the depth
image and the palm is segmented as a circular region (Figure 7(d)). Then we
calculate the polar histogram of the pixels that are outside the palm region,
followed by a clustering step. The number of pixels is counted for each cluster.
The cluster with the most pixels is segmented as the arm and its direction is
taken as the mean of the directions of all its pixels (Figure 7(e)). Finally the
arm region is removed, the image is rotated to make the arm direction point
down and translated to make the mass center as the image center. Finally, the
hand image is reshaped to the size of 32 x 32 and normalized to the interval
of [0,1] (Figure 7(f)). Note that the processing steps S3-6 in Figure 7 can be
iterated to get a better segmentation result because in some cases the resulted
hand still has a large arm area. For example, as shown in Figure 8, the first 53-6
processing does not remove all the arm region (Figure 8(d)). By implementing

the second S3-6 processing, most of the arm pixels are removed (Figure 8(g)).

- 83 -84 - _-856 -85 -84 856

b

)

Preprocessed
hand image

Figure 8: An example of iteration of the processing steps S3-6 for better segmentation result.
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The above preprocessing methods are implemented on the two datasets using
tools from the OpenCV library [23], and the resulted samples are shown in
Figures 9 and 10, respectively. For the ASL benchmark dataset, the direction
normalization step (56 in Figure 7) is discarded because some signs (e.g., ‘G’
and ‘H’) are related to orientations. The implementation of preprocessing and
hand segmentation removes the background and prepares the images to have
a centered hand on each with a uniform size 32 x 32 for the subsequent CNN

training process.
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Figure 9: Examples of the 24 signs of each of the five subjects in the preprocessed ASL
alphabet dataset.

Figure 10: Examples of the 10 signs of each of the ten subjects in the preprocessed NTU digit

dataset.
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5.8. Fwvaluation Metric

We conduct comparisons with state-of-the-art recognition results on the
above two datasets using the same evaluation policies as in [3], which are half-
half and leave-one-out policies. For the half-half policy, one half of the dataset
is randomly chosen and fed into the CNN model for training, and the other
half is reserved for evaluation. For the leave-one-out policy, the samples from
Noubjects—1 out of Ngypjects subjects are used for CNN training, and the samples
from the left one subject are used for evaluation. We employed a few commonly

used metrics to evaluate this multiclass classification performance, which are

e Accuracy
>on " (G = yn)

Accuracy = 9
Y Ntest ( )
e Precision and Recall
Precisi TP
recision = ————
TP+ FP (10)
TP
Recall = ————
T TP Y FEN

e [ score
Precision - Recall

F=2 (11)

" Precision + Recall

where 1() in Equation 9 is an indicator function. In Equation 10, True Positive
(TP) describes a sample X, from a certain class y, that is correctly classified

)

as yp; False Positive (FP) is defined as a sample X,, from a 'not y,’ class is

incorrectly classified as y,,; False Negative (FN) means a sample X, of the class

)

Y is misclassified as other 'not y,’ classes. In Equation 11, F score evaluates
the overall performance of the of Precision and Recall, which is their harmonic

mean in the interval [0,1].

5.4. Some CNN Training Details

TensorFlow [24] is used in creating the CNN model described in Section 3.
For the hyperparameters, we set the batch size, learning rate, dropout rate,

regularizer as 256, 0.001, 0.1, and le-5, respectively. The Adam optimizer [25]

16
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is used in training, and the training is stopped after 100 epochs, which takes
approximately 2 hours for a leave-one-out experiment on a workstation with one
12 core Intel Xeon processor, 64GB of RAM and one Nvidia Geforce 1080 Ti

graphic card.

6. Results and Discussion

6.1. Evaluation of the CNN Architecture

Due to the high architectural complexity and parametric variation of a CNN
model, it is not feasible to evaluate all possible architectures and associated
parameters (e.g., number of convolutional layers, kernel size, activation func-
tion, pooling method, etc.). In this study, a few representative CNN designs
with increasing numbers of layers and different parameters are compared to
find the optimal design. As shown in Table 1, eight CNN architectures (listed
in columns) are selected and their performance of leave-one-out evaluations is
compared. We can see that increasing the depth and the number of filters,
from the left (arch-i) to the right (arch-viii), improves the evaluation accuracy.
Regarding to the convolutional kernel size, the size of 5 outperforms the size of
3. Therefore, the design of arch-viii is chosen as our baseline CNN architecture

(see Figure 3).

6.2. Evaluation of the Multiview Augmentation and Inference Fusion Strategies

To evaluate the proposed multiview augmentation and inference fusion strate-
gies, we compare our methods, including MVA (multiview augmentation) and
MVA-+IF (multiview augmentation and inference fusion) methods, to JA (jit-
tering augmentation) method [15], which has been proved to be an effective
method and is commonly used in image classification tasks.

For the MVA and MVA+IF methods, four Napg values 6, 12, 18 and 24
are selected, i.e., new views are generated by implementing yaw-pitch-roll ro-
tation on the extracted point cloud around each axis for [£10°], [£10°, £20°],
[£10°,4+20°, £30°], and [+10°,+20°, £30°, £40°], yielding 6, 12, 18, and 24

17
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i ‘ ii ‘ iii ‘ iv ‘ v ‘ vi ‘ vii ‘ viii
Input (32 x 32 x 1)
c38 | os-8 | c38 [ 058 | 0316 | 0516 | 332 | C5-32

Maxpool
C3-16 ‘ C5-16 ‘ C3-16 ‘ C5-16 ‘ C3-32 ‘ C5-32 ‘ C3-64 ‘ C5-64

CNN arch. Mazxpool
332 | C5-32 | 0364 | C5-64 | 3128 | C5-128
Maxpool
FC-1024 FC-512 |  FC-1024 | FC-2048
FC-128
FC-24
Softmax
Accuracy(%) | 818 | 827 | s27 | sa2 | s30 [ 841 | sa7 | sas

Table 1: Comparison of leave-one-out accuracies on the ASL benchmark dataset (without
data augmentation) with different CNN architectures (listed in columns). The convolutional
layer parameters are denoted as ‘C{kernel size}-{number of output channels}’. The ReLU
activation function for each convolutional layer is not shown for brevity. The fully connected

layer parameters are denoted as ‘FC-{number of hidden units}’.

augmented views for each sample, respectively. For the MVA+IF method, mul-
tiview augmentations are implemented on both the training data and the testing
data. Thus, each testing image has multiple vector outputs before the IF step.
Then these vector outputs are fused to generate only one probability distribu-
tion. While for the MVA method, we only augment the data in the training
phase and do not augment the testing data. Therefore, each testing image has
only one vector output, from which the final prediction can be made. As for the
JA method, the same four N4pg values are used; 6, 12, 18, and 24 augmented
samples are generated by randomly translating in the range of [—2,42] pixels,
scaling in the range of [0.9,1.1] ratio, and rotating in the range of [-40, +40]
degrees.

The comparisons of leave-one-out accuracies on the ASL benchmark dataset
are shown in Figure 11 (the half-half accuracies are not considered for compar-

ison purpose because they are about reaching 100%). All the three augmenta-

18



330

335

tion methods have obvious accuracy improvements compared with the model
without using data augmentation. For the JA method, using the N4pg of 6
improves the accuracy from 84.7% to 88.9%, but continuing to increase Napg
from 6 to 24 does not further improve the accuracy. The mean accuracy of the
four cases (Naps = 6,12, 18,24) for MVA is about 88.8%. Although the accu-
racy of MVA method with the Napg of 6 is a little bit lower than that of JA
method, the accuracy increases when increasing the N4pg, which outperforms
JA after Naps > 12. The highest accuracy of MVA (91.1%) is from the case of
Naps = 24, which is 2 percentage points higher than JA.

94.0%

> 92.0%

Q

I

3 90.0%

Q

<

5 88.0% =

< +

Q < <

5 86.0% Z 2

§ =55

g 84.0%

—
82.0%
Nps 0 6 12 18 24
=JA 84.7% 88.9% 88.8% 88.7% 88.8%
= MVA 84.7% 88.5% 90.4% 90.9% 91.1%
MVA+F  84.7% 89.6% 91.6% 92.7% 92.7%

Figure 11: Comparison of leave-one-out accuracies on the ASL benchmark dataset using
the methods of JA (jittering augmentation), MVA (multiview augmentation) and MVA+IF
(multiview augmentation and inference fusion) with different N4 pg (number of augmentations

per sample).

By implementing the multiview inference fusion, more signs are correctly
recognized. MVA+IF demonstrates the highest accuracy in all the four cases
and for the case of Naps = 18 it reaches the best performance of 92.7% accuracy
among the three methods. Then increasing the Napg to 24 does not contribute

additional improvement.
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Overall, the data augmentation techniques, JA and MVA, demonstrate the
effectiveness in improving the model performance, because the augmentation
process introduces more natural variations to the original dataset to simulate
the potential variations in the unseen samples, which pushes the CNN model
to learn the most discriminative features and makes the training more robust.
Meanwhile, the MVA method outperforms the JA method. It is because the
finger spelling signs are highly perspective-dependent, i.e., the appearance of
a sign varies significantly from different perspectives, and the MVA method
can generate such perspective variations but the JA method can not. Fur-
thermore, the MVA+IF method fuses the predictions of multiple perspectives
to make a comprehensive inference, which results in better accuracy than the

MVA method.

6.3. Impact of the Number of Top-K Candidates

To find an appropriate number of top-K candidates (the value of K) for the
multiview inference fusion step described in Section 4, another set of experiments
are conducted on the benchmark dataset. In these experiments, we use different
K values, i.e., 3, 5, 7 and 9. Then the leave-one-out evaluation strategy is used
and the accuracy evaluated on each of the five subjects is listed in Table 2. We
can see that the four ‘top-K’ cases surpass the ‘MVA’ case due to the multiview
inference fusion step. However, changing the K value from 3 to 9 does not affect
the performance much. Therefore, we choose K = 3 that can provide enough

entries for the fusion process.

tetsbieer | 1 | 2 | 5 [ 4 | 5 |

MVA 92.74 | 86.33 | 94.34 | 87.73 | 88.66
MVA-+IF, Top-3 | 93.56 | 88.51 | 94.84 | 91.55 | 91.69
MVA-+IF, Top-5 | 93.62 | 88.52 | 94.78 | 91.62 | 91.66
MVA-+IF, Top-7 | 93.64 | 88.53 | 94.79 | 91.61 | 91.68
MVA+IF, Top-9 | 93.63 | 88.53 | 94.82 | 91.63 | 91.71

Table 2: The leave-one-out accuracy (%) tested on each of the five subjects with different

numbers of top-K candidates on the ASL benchmark dataset.
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6.4. Performance Comparison with State-of-the-Art Methods on the ASL Bench-

mark Dataset

In this subsection, we compare our results with state-of-the-art performance
on the ASL benchmark dataset in terms of accuracy, precision and recall with
two evaluation strategies (half-half and leave-one-out). The comparison is sum-
marized in Table 3. The highest accuracies of half-half and leave-one-out strate-
gies in the literature are 100% [9] and 84.3%[12], respectively. For the half-half
evaluation, our methods achieve 99.9%, which is almost 100% (there are only
about 40 samples misclassified out of 32,831 testing samples). For the leave-one-
out evaluation, our CNN model outperforms the state-of-the-art performance
even without augmentations. The accuracy is improved by 4% with our imple-
mentation of the JA method. By using the MVA method, our model achieves
91% accuracy which is 2% higher than JA. After implementing MVA+IF, the
accuracy is improved by another 2 percent. The best accuracy, precision and
recall of our results are 92.7%, 93.5% and 92.4%, respectively.

Overall, our CNN model outperforms other methods with the multiview
augmentation and inference fusion strategies. It is known that the leave-one-out
evaluation is a harder task than the half-half evaluation, because in the half-half
experiment, all the testing subjects have already been seen by the CNN model
during training; but in the leave-one-out experiment, the testing subject has not
been seen. Therefore, the leave-one-out performance can demonstrate how well
the trained model could be generalized to a new subject. Our model can reach
93% leave-one-out accuracy, which is a significant improvement compared to the

previous best benchmark of 84% and is very promising for practical applications.

6.5. Performance Evaluation on the NTU Digit Dataset

We evaluate the performance of our model on the NTU digit dataset, which
also achieves the best accuracies compared to other methods. The comparison
is listed in Table 4. The MVA method has 100% and 99.7% for the half-half and
leave-one-out accuracies, respectively, which outperforms the results reported

in the literatures. The MVA-+IF method further improve the leave-one-out
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Method ‘ hh-A ‘ hh-P ‘ hh-R ‘ loo-A ‘ loo-P ‘ loo-R ‘

Pugeault et al. (2011) [3] . 75 53 49 . -
Keskin et al. (2012) [12] 978 | - - 84.3 . -
Kuznetsova et al. (2013) [7] 87 - - 57 - -
Zhang et al. (2013) [9] 98.9 - - 73.3 - -
Rioux-Maldague and Giguére (2014) [11] - 99 99 - 79 7
Dong et al. (2015) [14] 90 - - 70 - -
Magqueda et al. (2015) [5] 97.5 - - 83.7 - -
Wang et al. (2015) [4] - - - 75.8 - -
Zhang and Tian (2015) [10] 100 - - 83.8 - -
Ma and Huang (2016) [26] 84 - - - - -
Ameen and Vadera (2017) [17] - - - 80.3 82 80
Nai et al. (2017) [6] - - - 81.1 - -
Our CNN 99.7 99.7 99.7 84.7 85.8 84.8
Our CNN+JA 99.9 99.9 99.9 88.9 90.2 89.0
Our CNN+MVA 99.9 99.9 99.9 90.9 91.6 90.8
Our CNN+MVA+IF 99.9 | 99.9 | 99.9 92.7 93.5 92.4

Table 3: Performance (%) comparison on the ASL benchmark dataset. hh: half-half, loo:
leave-one-out, A: accuracy, P: precision, R: recall, ‘-’ denotes that the value is not reported in

the paper.

accuracy to 100%, which means that the multiview inference fusion strategy

successfully classify the left 0.3% samples that are misclassfied using only MVA.

6.6. Feature Visualization

Although the CNN model demonstrates superior performance on various
applications, such as the sign recognition task, it is usually taken as a black box
because of its high architectural complexity and tremendous inner parameters,
and its hyperparameters are tuned by experience or trial-and-error. To have a
better understanding of what the CNN model has learned and what features
are extracted by the convolutional operations, we visualize the learned filters
and the extracted feature maps of the first convolutional layer since they can
be projected into 2 dimensional images, which is shown in Figure 12. The

32 learned filters of the first convolutional layer are presented on the top. It
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Method ‘ hh-A ‘ loo-A ‘

Ren et al. (2011) [22] 93.9 -

Zhang and Tian (2015) [10] | 97.5 | 99.0
Our CNN+MVA 100 99.7
Our CNN+MVA+IF 100 100

Table 4: Performance (%) comparison on the NTU digit dataset. hh: half-half, loo: leave-

one-out, A: accuracy, ‘-’ denotes that the value is not reported in the paper.

is difficult to make some intuitive explanations on these 5 x 5 filters, but by
reviewing the feature maps obtained from each input using these filters, we
can see that some low-level features like edges and curves are extracted. For
different signs, the filters are able to identify the discriminative feature elements.
For example, the main difference between signs ‘M’ and ‘N’ is the thumb’s
position, which is actually learned by the filters (as shown in the feature maps
of ‘N’, the thumb regions are successfully emphasized compared to the feature
maps of ‘M’). Filters and feature maps of the second and third convolutional
layers are not presented here because they involve high dimensional information,

thus, cannot be projected to images for visualization purpose.

6.7. Failure Case Studies

In this subsection, we discuss the signs that are not correctly classified in
the leave-one-out evaluations on the benchmark dataset. The overall mean
F scores for the 24 signs are illustrated in Figure 13. The model has great
performance (> 95%) on the signs ‘B’, ‘C’, ‘D’, ‘F’, ‘I’ ‘L, ‘O, ‘U, ‘W, ‘X,
and ‘Y’. However, for the signs of ‘E’, ‘K’, and ‘@’ , the F' scores are lower
than 85% due to their high subjectwise variations. For example, as shown in
Figure 13, different subjects perform the sign of ‘K’ in different ways, thus it is
difficult for the model to be generalized to the unseen subject in the leave-one-
out evaluations.

The confusion matrices and the most confusing sign pairs of the five subjects

are shown in Figures 14, 15, 16, 17 and 18, respectively. We can see that,
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Figure 12: Visualization of the 32 (4 rows x 8 columns) learned filters (top) of the first

convolutional layer, and the top 9 feature maps (the sequence is indexed as shown in A’s

feature maps) for each of the 24 signs in a trained model on the ASL benchmark dataset. The

images with alphabets on the left are the inputs, under which are the feature maps extracted

from the inputs using the learned filters.
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Figure 13: Mean F score of each of the 24 signs in the leave-one-out evaluations on the ASL

benchmark dataset.

different subjects show different performance on different signs in the leave-one-
out evaluations. For the 1st subject (see Figure 14), there are six confusing
pairs severely misclassified, which are ‘K-G’, ‘N-T", ‘R-K’, ‘R-U’, ‘V-K’, and
‘X-G’. For example, there are 101 ‘V’ misclassified as ‘K’ because of the high
similarity between them (i.e., both have the index and middle fingers pointing
up). For the 2nd subject (see Figure 15), the most confusing pairs are ‘G-
H’, ‘V-K’, and ‘T-E’. For the 3rd subject showing the best performance (see
Figure 16), most of the signs are successfully classified except the most confusing
pairs ‘A-T” and ‘K-L’, where there are 99 ‘A’ and 109 ‘K’ misclassified as ‘T’
and ‘L’, respectively. The most confusing pairs of the 4th (see Figure 17) and
5th (see Figure 18) subjects are ‘G-H’, ‘N-M’, ‘T-N’, and ‘E-S’, ‘V-K’, *Q-P’,
respectively.

By reviewing these failure cases, we find that the high similarity between
the confusing pairs makes it difficult to distinguish them, and the significant
subjectwise difference for the same sign makes it difficult to learn this kind of
unseen variations beforehand.

To address these failure cases for further improving the performance, some
future work can be explored: (1) more subjects can be considered to include
more signing styles for training the model; (2) 3D reconstruction can be imple-

mented to recover more information from the depth image than the current 3D
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Figure 15: Confusion matrix and the most confusing pairs of the leave

the ASL benchmark dataset tested on the 2nd subject.
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Figure 16: Confusion matrix and the most confusing pairs of the leave-one-out evaluation on

the ASL benchmark dataset tested on the 3rd subject.
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Figure 17: Confusion matrix and the most confusing pairs of the leave-one-out evaluation on

the ASL benchmark dataset tested on the 4th subject.
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Figure 18: Confusion matrix and the most confusing pairs of the leave-one-out evaluation on

the ASL benchmark dataset tested on the 5th subject.

point cloud; (3) the hand skeleton information can be extracted to obtain some
skeleton-based features for classification; (4) the RGB images can be included
in the model; and (5) the architecture of the CNN model can be explored to

improve its performance and efficiency.

7. Conclusions

In this paper, we propose a novel method of multiview augmentation and
inference fusion for ASL alphabet recognition from depth images using a Con-
volutional Neural Network (CNN). Multiview augmentation first retrieves the
3D information embedded in a depth image, and then generates more data for
different perspective views. The result has shown that it outperforms the tradi-
tional image augmentation methods because it can simulate realistic perspective
variations that the traditional methods cannot. Inference fusion copes with the
interclass similarity issues caused by perspective variations and finger occlu-

sions. It comprehends information of all individual views, and then outputs
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the final prediction, which has been proved to be effective in further improv-
ing the model’s performance. Our method has been successfully evaluated on
two public datasets, the ASL benchmark dataset and the NTU digit dataset.
The experimental results have demonstrated that our method makes significant
improvement compared to the previous work, achieving recognition accuracies
of 100% and 93% in the half-half and the leave-one-out experiments, respec-
tively, on the ASL benchmark dataset, and achieving recognition accuracies of
100% for both the half-half and the leave-one-out experiments on the NTU digit

dataset.
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