
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Noria: dynamic, partially-stateful data-flow
for high-performance web applications

Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, and Lara Timbó Araújo,
MIT CSAIL; Martin Ek, Norwegian University of Science and Technology;

Eddie Kohler, Harvard University; M. Frans Kaashoek and Robert Morris, MIT CSAIL

https://www.usenix.org/conference/osdi18/presentation/gjengset

Noria: dynamic, partially-stateful data-flow
for high-performance web applications

Jon Gjengset ∗ Malte Schwarzkopf ∗ Jonathan Behrens Lara Timbó Araújo
Martin Ek† Eddie Kohler‡ M. Frans Kaashoek Robert Morris

MIT CSAIL † Norwegian University of Science and Technology ‡ Harvard University

Abstract

We introduce partially-stateful data-flow, a new stream-
ing data-flow model that supports eviction and recon-
struction of data-flow state on demand. By avoiding state
explosion and supporting live changes to the data-flow
graph, this model makes data-flow viable for building
long-lived, low-latency applications, such as web appli-
cations. Our implementation, Noria, simplifies the back-
end infrastructure for read-heavy web applications while
improving their performance.

A Noria application supplies a relational schema and a
set of parameterized queries, which Noria compiles into
a data-flow program that pre-computes results for reads
and incrementally applies writes. Noria makes it easy
to write high-performance applications without manual
performance tuning or complex-to-maintain caching lay-
ers. Partial statefulness helps Noria limit its in-memory
state without prior data-flow systems’ restriction to win-
dowed state, and helps Noria adapt its data-flow to
schema and query changes while on-line. Unlike prior
data-flow systems, Noria also shares state and computa-
tion across related queries, eliminating duplicate work.

On a real web application’s queries, our prototype
scales to 5× higher load than a hand-optimized MySQL
baseline. Noria also outperforms a typical MySQL/mem-
cached stack and the materialized views of a commercial
database. It scales to tens of millions of reads and mil-
lions of writes per second over multiple servers, outper-
forming a state-of-the-art streaming data-flow system.

1 Introduction
Web applications must serve many users at low latency.
They respond to each user request using data queried
from backend stores, usually relational databases. The
vast majority of such store accesses are reads, and
evaluating them as repeated queries over the normal-
ized schema of a relational database is inefficient [54,
57]. Hence, many applications explicitly include pre-
computed query results in their database schemas, or
cache such results in separate key-value stores [8, 54].
For example, the Lobsters news aggregator [43] stores
stories’ computed vote counts and “hotness” in separate

∗ equal contribution

table columns to avoid re-computing them on every page
load [42]. As each vote is reflected in several places, ap-
plication logic must explicitly update computed columns
every time a value changes. Hence, pre-computation
complicates both application reads and writes. In gen-
eral, developers must choose between convenient, but
slow, “natural” relational queries (e.g., with inline aggre-
gations), and increased performance at the cost of appli-
cation and deployment complexity (e.g., due to caching).

Noria applications do not need to choose. Noria ex-
poses a high-level query interface (SQL), but unlike
in conventional systems, Noria accelerates the execu-
tion of even complex natural queries by answering with
pre-computed results where possible. At its core, No-
ria runs a continuous, but dynamically changing, data-
flow computation that combines the persistent store, the
cache, and elements of application logic. Each write to
Noria streams through a joint data-flow graph for the
current queries and incrementally updates the cached,
eventually-consistent internal state and query results.

Making this approach work for web applications is
challenging. A naı̈ve implementation might maintain un-
bounded pre-computed state, causing unacceptable space
and time overhead, so Noria must limit its state size.
Writes can update many pre-computed results, so Noria
must ensure that writes are fast and avoid unnecessary
work. Finally, since many web applications frequently
change their queries [20, 61], Noria must accommodate
changes without iterating over all data.

Existing data-flow systems either cannot perform fine-
grained incremental updates to state [36, 52, 75], or limit
the growth of operator state using “windowed” state (e.g.,
this week’s stories). This bounds their memory footprint
but prohibits reading older data [11, 39, 46, 51]. No-
ria’s data-flow operator state is partial instead of win-
dowed, retaining only the subset of records that the ap-
plication has queried. This is possible thanks to a new,
partially-stateful data-flow model: when in need of miss-
ing state, operators request an upquery that derives the
missing records from upstream state. Ensuring correct-
ness with this model requires careful attention to invari-
ants, as ordinary updates and upqueries can race. With-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 213

Write

⋈⋈

∑

stories votes users

Read

Wr
it
e
wo
r
k

Re
a
d-
si
de

wo
r
k

(a)

Write1

2

Invalidate
cache

3
Query on
read miss

stories votes users

Read
 cache

∑

⋈⋈

Classicdatabaseoperation
withcomputeonreads.

(b)Two-tierstackwith
demand-filledcache[54

Write

stories votes

Read
StoryWithVC

∑

⋈⋈

2 Stream
through
data-flow

1

Update view3

users

Karma

Add new query

⋈⋈∑

,§2].
(c)Noria:statefuldata-flowoperatorspre-computedatafor
readsincrementally;data-flowchangesupportsnewqueries.

Figure1:OverviewofhowcurrentwebsitebackendsandNoriaprocessfrontendreadsandwrites.

outcare,suchracescouldproducepermanentlyincorrect
state,andthereforeincorrectcachedqueryresults.

ThestatethatNoriakeepsissimilartoamaterial-
izedview,anditsdata-flowprocessingisakintoview
maintenance[2,37].Noriademonstratesthat,contrary
toconventionalwisdom,maintainingmaterializedviews
forallapplicationqueriesisfeasible.Thisispossible
becausepartially-statefuloperatorscanevictrarely-used
state,anddiscardwritesforthatstate,whichreduces
statesizeandwriteload.Noriafurtheravoidsredundant
computationandstatebyjointlyoptimizingitsqueriesto
mergeoverlappingdata-flowsubgraphs.

Fewexistingstreamingdata-flowsystemscanchange
theirqueriesandinputschemaswithoutdowntime.For
example,Naiadmustre-starttoaccommodatechanges,
andSpark’sStructuredStreamingmustrestartfroma
checkpoint[18].Noria,bycontrast,adaptsitsdata-flow
tonewquerieswithoutinterruptingexistingclients.Itap-
plieschangeswhileretainingexistingstateandwhilere-
mainingliveforreadsthroughout.Writesfromcurrent
clientsseesub-secondinterruptionsinthecommoncase.

Noria’stechniquesremaincompatiblewithtraditional
parallelanddistributeddata-flow,andallowNoriato
parallelizeandscalefine-grained,partiallymaterialized
viewmaintenanceovermultiplecoresandmachines.

Insummary,Noriamakesfourprincipalcontributions:

1.thepartially-statefuldata-flowmodel,itscorrect-
nessinvariants,andaconformingsystemdesign;

2.automatic merge-and-reusetechniquesfordata-
flowsubgraphsinjointdata-flowsover many
queries,whichreduceprocessingcostandstatesize;

3.near-instantaneous,dynamictransitionsfordata-
flowgraphsinresponsetochangestoqueriesor
schemawithoutlossofexistingstate;and

4.aprototypeimplementationandanevaluationthat
demonstratesthatpracticalwebapplicationsbenefit
fromNoria’sapproach.

OurNoriaprototypeexposesabackwards-compatible
MySQLprotocolinterfaceandcanserverealwebappli-
cationswithminimalchanges,althoughitsbenefitsin-

creaseforNoria-optimizedapplications. Whenserving
theLobsterswebapplicationonasingleAmazonEC2
VM,ourprototypeoutperformsthedefault MySQL-
basedbackendby5×whilesimultaneouslysimplifying
theapplication(§8.1).Forarepresentativequery,our
prototypeoutperformsthewidely-used MySQL/mem-
cachedstackandthematerializedviewsofacommer-
cialdatabaseby2–10×(§8.2).Italsoscalesthequery
tomillionsofwritesandtensofmillionsofreadsper
secondonaclusterofEC2VMs,outperformingastate-
of-the-artdata-flowsystem,differentialdataflow[46,51]
(§8.3).Finally,ourprototypeadaptsthedata-flowwith-
outanyperceptibledowntimeforreadsorwriteswhen
transitioningthesamequerytoamodifiedversion(§8.5).

Nevertheless,ourcurrentprototypehassomelimita-
tions.Itonlyguaranteeseventualconsistency;itsevic-
tionfrompartialstateisrandomized;itisinefficientfor
shardedqueriesthatrequireshufflesinthedata-flow;and
itlackssupportforsomeSQLkeywords.Weplantoad-
dresstheselimitationsinfuturework.

2 Background

WenowexplainhowcurrentwebsitebackendsandNoria
processdata.Figure1showsanoverview.

Manywebapplicationsusearelationaldatabaseto
storeandquerydata(Figure1a).Pageviewsgenerate
databasequeriesthatfrequentlyrequirecomplexcompu-
tation,andthequeryloadtendstoberead-heavy.Across
onemonthoftrafficdatafromaHotCRPsiteandthe
productiondeploymentofLobsters[32],88%to97%
ofqueriesarereads(SELECTqueries),andthesereads
consume88%oftotalqueryexecutiontimeinHotCRP.
Sincereadperformanceisimportant,applicationdevel-
opersoftenmanuallyoptimizeit.Forexample,Lob-
stersstoresindividualvotesforstoriesinavotesta-
ble,butalsostoresper-storyvotecountsasacolumnin
thestoriestable.Thisspeedsupreadqueriesofvote
counts,but“de-normalizes”theschemaandcomplicates
votewrites,whichmustupdatethederivedcounts.

214 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Websites often deploy an in-memory key-value
cache (like Redis, memcached, or TAO [8]) to speed
up common-case read queries (Figure 1b). Such a
cache avoids re-evaluating the query when the under-
lying records are unchanged. However, the application
must invalidate or replace cache entries as the records
change. This process is error-prone and requires complex
application-side logic [37, 48, 57, 64]. For example, de-
velopers must carefully avoid performance collapse due
to “thundering herds” (viz., many database queries issued
just after an invalidation) [54, 57]. Since the cache can
return stale records, reads are eventually-consistent.

Some sites use stream-processing systems [13, 39] to
maintain results for queries whose re-execution over all
past data is infeasible. One major problem for these sys-
tems is that they must maintain state at some operators,
such as aggregations. To avoid unbounded growth, exist-
ing systems “window” this state by limiting it to the most
recent records. This makes it difficult for a stream pro-
cessor to serve the general queries needed for websites,
which need to access older as well as recent state. More-
over, stream processors are less flexible than a database
that can execute any relational query on its schema: in-
troducing a new query often requires a restart.

Noria, as shown in Figure 1c, combines the best of
these worlds. It supports the fast reads of key-value
caches, the efficient updates and parallelism of streaming
data-flow, and, like a classic database, supports changing
queries and base table schemas without downtime.

3 Noria design
Noria is a stateful, dynamic, parallel, and distributed
data-flow system designed for the storage, query process-
ing, and caching needs of typical web applications.

3.1 Target applications and deployment

Noria targets read-heavy applications that tolerate even-
tual consistency. Many web applications fit this model:
they accept the eventual consistency imposed by caches
that make common-case reads fast [15, 19, 54, 72]. No-
ria’s current design primarily targets relational operators,
rather than the iterative or graph computations that are
the focus of other data-flow systems [46, 51], and pro-
cesses structured records in tabular form [12, 16]. Large
blobs (e.g., videos, PDF files) are best stored in external
blob stores [7, 24, 50] and referenced by Noria’s records.

Noria runs on one or more multicore servers that com-
municate with clients and with one another using RPCs.
A Noria deployment stores both base tables and derived
views. Roughly, base tables contain the data typically
stored persistently, and derived views hold data an appli-
cation might choose to cache. Compared to conventional
database use, Noria base tables might be smaller, as No-
ria derives data that an application may otherwise pre-

1 /* base tables */

2 CREATE TABLE stories
3 (id int, author int, title text, url text);
4 CREATE TABLE votes (user int, story_id int);
5 CREATE TABLE users (id int, username text);
6 /* internal view: vote count per story */

7 CREATE INTERNAL VIEW VoteCount AS
8 SELECT story_id, COUNT(*) AS vcount
9 FROM votes GROUP BY story_id;

10 /* external view: story details */

11 CREATE VIEW StoriesWithVC AS
12 SELECT id, author, title, url, vcount
13 FROM stories
14 JOIN VoteCount ON VoteCount.story_id = stories.id
15 WHERE stories.id = ?;

Figure 2: Noria program for a key subset of the Lobsters
news aggregator [43] that counts users’ votes for stories.

compute and store in base tables for performance. Views,
by contrast, will likely be larger than a typical cache foot-
print, because Noria derives more data, including some
intermediate results. Noria stores base tables persistently
on disk, either on one server or sharded across multiple
servers, but stores views in server memory. The applica-
tion’s working set in these views should fit in memory
for good performance, but Noria reduces memory use by
only materializing records that are actually read, and by
evicting infrequently-accessed data.

3.2 Programming interface

Applications interact with Noria via an interface that
resembles parameterized SQL queries. The application
supplies a Noria program, which registers base tables
and views with parameters supplied by the application
when it retrieves data. Figure 2 shows an example Noria
program for a Lobsters-like news aggregator application
(? is a parameter). The Noria program includes base ta-
ble definitions, internal views used as shorthands in other
expressions, and external views that the application later
queries. Internally, Noria instantiates a data-flow to con-
tinuously process the application’s writes through this
program, which in turn maintains the external views.

To retrieve data, the application supplies Noria with an
external view identifier (e.g., StoriesWithVC) and one
or more sets of parameter values. Noria then responds
with the records in the view that match those values.
To modify records in base tables, the application per-
forms insertions, updates, and deletions, similar to a SQL
database. Noria applies these changes to the appropriate
base tables and updates dependent views.

The application may change its Noria program to add
new views, to modify or remove existing views, and to
adapt base table schemas. Noria expects such changes
to be common and aims to complete them quickly. This
contrasts with most previous data-flow systems, which
lack support for efficient changes without downtime.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 215

incoming
record
at join
triggers
upquery

σ FILTER

∑ SUM

⨝ JOIN

2

1 3

...

...

...

upquery
into
upstream
state

upstream
state

upquery
response

σ FILTER

∑ SUM

⨝ JOIN

...

...

...

I II upstream
state

Figure3:Noria’sdata-flowoperatorscanqueryintoup-
streamstate:ajoinissuesanupquery(I)toretrievea
recordfromupstreamstatetoproduceajoinresult(II).

InadditiontoitsnativeSQL-basedqueryinterface,
Noriaprovidesanimplementationofthe MySQLbi-
naryprotocol,whichallowsexistingapplicationsthatuse
preparedstatementsagainsta MySQLdatabasetoin-
teractwithNoriawithoutfurtherchanges.Theadapter
turnsad-hocqueriesandpreparedSQLstatementsinto
writestobasetables,readsfromexternalviews,andin-
crementallyeffectsNoriaprogramchanges.Noriasup-
portsmuch,butnotall,SQLsyntax.Wediscusstheex-
perienceofbuildingandportingapplicationsin§7.

3.3 Data-flowexecution

Noria’sdata-flowisadirectedacyclicgraphofrelational
operatorssuchasaggregations,joins,andfilters.Base
tablesaretherootsofthisgraph,andexternalviewsform
theleaves.Noriaextendsthegraphwithnewbasetables,
operators,andviewsastheapplicationaddsnewqueries.

Whenanapplicationwritearrives,Noriaappliesitto
adurablebasetableandinjectsitintothedata-flowas
anupdate.Operatorsprocesstheupdateandemitde-
rivedupdatestotheirchildren;eventuallyupdatesreach
andmodifytheexternalviews.Updatesaredeltas[46,
60]thatcanaddto,modify,andremovefromdown-
streamstate.Forexample,acountoperatoremitsdeltas
thatindicatehowthecountforakeyhaschanged;a
joinmayemitanupdatethatinstallsnewrowsindown-
streamstate;andadeletionfromabasetablegenerates
a“negative”updatethatrevokesderivedrecords.Neg-
ativeupdatesremoveentrieswhenNoriaappliesthem
tostate,andretaintheirnegative“sign”whencombined
withotherrecords(e.g.,throughjoins).Negativeupdates
holdexactlythesamevaluesasthepositivestheyrevoke
andthusfollowthesamedata-flowpaths.

Noriasupportsstatelessandstatefuloperators.State-
lessoperators,suchasfiltersandprojections,needno
contexttoprocessupdates;statefuloperators,suchas
count,min/max,andtop-k,maintainstatetoavoidinef-
ficientre-computationofaggregatevaluesfromscratch.
Statefuloperators,likeexternalviews,keeponeormore
indexestospeedupoperation.Noriaaddsindexesbased
onindexingobligationsimposedbyoperatorsemantics;

forexample,anoperatorthataggregatesvotesbyuserID
requiresauserIDindextoprocessnewvotesefficiently.

Inmoststreamprocessors,joinoperatorskeepawin-
dowedcacheoftheirinputs[3,76],allowinganup-
datearrivingatoneinputtojoinwithallrelevantstate
fromtheother.InNoria,joinsinsteadperformupqueries,
whicharerequestsformatchingrecordsfromstatefulan-
cestors(Figure3):whenanupdatearrivesatonejoin
input,thejoinlooksuptherelevantstatebyquerying
itsotherinputs.ThisreducesNoria’sspaceoverhead,
sincejoinsoftenneednotstoreduplicatestate,butre-
quirescareinthepresenceofconcurrentupdates,anis-
suefurtherdiscussedin§4.Upqueriesalsoimposein-
dexingobligationsthatNoriadetectsandsatisfies.

3.4 Consistencysemantics

Toachievehighparallelprocessingperformance,Noria’s
data-flowavoidsglobalprogresstrackingorcoordina-
tion.Anupdateinjectedbyabasetabletakestimeto
propagatethroughthedata-flow,andtheupdatemayap-
pearindifferentviewsatdifferenttimes.Noriaopera-
torsandthecontentsofitsexternalviewsareeventually-
consistent.Eventualconsistencyisattractiveforperfor-
manceandscalability,andissufficientformanywebap-
plications[15,54,72].

Noriadoesensurethatifwritesquiesce,allexternal
viewseventuallyholdresultsthatarethesameasifthe
querieshadbeenexecuteddirectlyagainstthebaseta-
bledata.Makingthisworkcorrectlyrequiressomecare.
Likemostdata-flowsystems,Noriarequiresthatopera-
torsaredeterministicfunctionsovertheirownstateand
theinputsfromtheirancestors.Inaddition,Noriamust
avoidracesbetweenupdatesandupqueries;avoidre-
orderingupdatesonthesamedata-flowpath;andresolve
racesbetweenrelatedupdatesthatarriveindependently
atmulti-ancestoroperatorsviadifferentdata-flowpaths.
ConsideranORthatcombinesfiltersusingaunionoper-
ator,orajoinbetweendata-flowpathsconnectedtothe
samebasetable:suchoperators’finaloutput(andstate)
mustbecommutativeovertheorderinwhichupdates
arriveattheirinputs.Thestandardrelationaloperators
Noriasupportshavethisproperty.

Webapplicationssometimesrelyondatabasetrans-
actions,e.g.,toatomicallyupdatepre-computedval-
ues. Noria approach’sis compatible with basic,
optimistically-concurrent multi-statementtransactions,
butNoriaalsooftenobviatestheneedforthem.Forex-
ample,Lobstersusestransactionsonlytoavoidwrite-
writeconflictsonvotecountsandstories’“hotness”
scores.Amulti-statementtransactionisrequiredonlybe-
causebaselineLobsterspre-computeshotnessforperfor-
mance.Noriainsteadcomputeshotnessinthedata-flow,
whichavoidswrite-writeconflictswithoutatransaction,
albeitatthecostofeventualconsistencyforreads.We

216 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

read
misses

∑ SUM

2

1

3
...

recursive
upquery
misses,
recurses

upquery response
fills missing record

∑ SUM

k

k
4

recursive upquery hits

k

k

∑ SUM

...

∑ SUM

I II

9

y 2
x 7

k

9k

9k

k y 2
k x 7

Figure4:Apartially-statefulviewsendsarecursiveup-
querytoderiveevictedstate(⊥)forkeykfromupstream
state(I);theresponsefillsthemissingstate(II).

omitfurtherdiscussionoftransactionswithNoriainthis
paper;weplantodescribetheminfuturework.

3.5 Challenges

AnefficientNoriadesignfacestwokeychallenges:first,
itmustlimitthesizeofitsstateandviews(§4);andsec-
ond,changestotheNoriaprogrammustadaptthedata-
flowwithoutdowntimeinservingclients(§5).

4 Partially-statefuldata-flow

Noriamustlimitthesizeofitsviews,asthestatefor
anapplicationwithmanyqueriescouldexceedavailable
memoryandbecometooexpensivetomaintain.
Thepartially-statefuldata-flowmodelletsoperators
maintainonlyasubsetoftheirstate.Thisconceptofpar-
tialmaterializationiswell-knownformaterializedviews
indatabases[79,80],butnoveltodata-flowsystems.Par-
tialstatereducesmemoryuse,allowsevictionofrarely-
usedstate,andrelievesoperatorsfrommaintainingstate
thatisneverread.Partially-statefuldata-flowgeneralizes
beyondNoria,butwehighlightspecificdesignchoices
thathelpNoriaachieveitsgoals.
Partialstateintroducesnewdata-flowmessagestoNo-
ria.Evictionnoticesflowforwardalongtheupdatedata-
flowpath;theyindicatethatsomestateentrieswillno
longerbeupdated.Operatorsdropupdatesthatwould
affecttheseevictedstateentrieswithoutfurtherpro-
cessingorforwarding.WhenNorianeedstoreadfrom
evictedstate—forinstance,whentheapplicationreads
stateevictedfromanexternalview—Noriare-computes
thatstate.Thisprocesssendsrecursiveupqueriestothe
relevantancestorsinthegraph(Figure4

∑ COUNT 1 1
 0

id
 0 u3 a
authortext

 1 u1 b

story_id

 u7 0

user

 u1 1
 u3 1

stories votes

⨝ JOIN

story_id

 1 u1 b 2

author textvcount

story_idvcount

e

D
e
 = { }

VoteCount

T
e
 = { , }

S
e
 = { }StoriesWithVC

 u1 1

 u1 1

 u3 1

 u3 1

id:story_id

 0 1 u1 b 2

).Anancestor
thathandlessuchanupquerycomputesthedesiredvalue
(possiblyaftersendingitsownupqueries),thenforwards
aresponsethatfollowsthedata-flowpathtothequery-
ingoperator.Whentheupqueryresponseeventuallyar-
rives,Noriausesittopopulatetheevictedentry.Afterthe
evictedentryhasbeenfilled,subsequentupdatesthrough
thedata-flowkeepitup-to-dateuntilitisevictedagain.
Forcorrectness,upqueriesmustproduceeventually-
consistentresults.Forperformance,Noriashouldcon-
tinuetoprocessupdates—includingupdatestothewait-

Figure5:Definitionsforpartialstateentrye(yellow)
inVoteCount:anin-flightupdatefromvotes(blue)is
inTe,butnotyetinSe;theentryinStoriesWithVCis
key-descendantfromeviastoryid(green).

ingoperator—while(possiblyslow)upqueriesarein
flight.Theserequirementscomplicatethedesign.

4.1 Data-flowmodelandinvariants

Wefirstdescribehigh-levelcorrectnessinvariantsofNo-
ria’spartially-statefuldata-flow.Theseinvariantsensure
thatNoriaremainseventually-consistentandneverre-
turnsresultscontaminatedbyduplicate,missing,orspu-
riousupdates.SinceNoriaallowsoperatorstoexecutein
paralleltotakeadvantageofmulticoreprocessors,these
invariantsmustholdinthepresenceofconcurrentup-
datesandevictionnotices.Theinvariantsconcernstate
entries,whereastateentrymodelsonerecordinoneop-
eratororview.Data-flowimplementationsderivestate
entryvaluesfrominputrecords,possiblyaftermulti-
plesteps.Foreaseofexpression,wemodelastateen-
tryasthemultisetofinputrecordsthatproducedthat
entry’svalue.Noria’seventualconsistencyrequiresthat
eachstateentry’scontentsapproachtheidealsetofinput
recordsthatwouldproducethemostup-to-datevalue.

Givensomestateentrye,wedefine:

•Teisthesetofallinputrecordsreceivedsofarthat,in
acorrectimplementationofthedata-flowgraph,would
beusedtocomputee.

•Seiseitherthemultisetofinputrecordsactuallyused
tocomputeine,or⊥,whichrepresentsanevictedentry.
Weuseamultisetsothemodelcanrepresentpotential
bugssuchasduplicateupdates.

•Deisthesetofkey-descendantentriesofe.These
areentriesofoperatorsdownstreamofeinthedata-flow
thatdependonethroughkeylookup.

TeandSearetime-dependent,whereasthedependencies
representedinDecanbedeterminedfromthedata-flow
graph.IfeistheVoteCountentryforsomestoryin
Figure5,thenTecontainsallinputvoteseverreceived
forthatstory;Secontainstheupdatesrepresentedinits
vcount;andDeincludesitsStoriesWithVCentry.

Correctnessofpartially-statefuldata-flowreliesonen-
suringtheseinvariants:

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 217

1. Update completeness: if Se 6=⊥, then either all up-
dates in Te−Se are in flight toward e, or an eviction
notice for e is in flight toward e.

2. No spurious or duplicate updates: Se ⊆ Te.
3. Descendant eviction: if Se =⊥, then for all d ∈De,

either Sd =⊥, or an eviction notice for d is in flight
toward d’s operator.

4. Eventual consistency: if Te stops growing, then
eventually either Se = Te or Se =⊥.

We now explain the mechanisms that Noria uses to real-
ize this data-flow model and maintain the invariants.

4.2 Update ordering

Noria uses update ordering to ensure eventual consis-
tency without global data-flow coordination. Each oper-
ator totally orders all updates and upquery requests it re-
ceives for an entry; and, critically, the downstream data-
flow ensures that all updates and upquery responses from
that entry are processed by all consumers in that order.
Thus, if the operator orders update u1 before u2, then
every downstream consumer likewise processes updates
derived from u1 before those derived from u2. Noria data-
flows can split and merge (e.g., at joins), but update or-
dering and operator commutativity ensure that the even-
tual result is correct independent of processing order.

4.3 Join upqueries

Join operators use upqueries (§3.3): when an update ar-
rives at one input, the join upqueries its other input for the
corresponding records, and combines them with the up-
date. Join upqueries reach the next upstream stateful op-
erator, which computes a snapshot of the requested state
entry and forwards it along the data-flow to the querying
join. Intermediate operators process the response as ap-
propriate. Unlike normal updates, upquery responses fol-
low the single path back to the querying operator without
forking. Upquery responses also commute neither with
each other nor with previous updates. This introduces a
problem for join update processing, since every such up-
date requires an upquery that produces non-commutative
results, yet must produce an update that does commute.

Noria achieves this by ensuring that no updates are
in flight between the upstream stateful operator and the
join when a join upquery occurs. To do so, Noria lim-
its the scope of each join upquery to an operator chain
processed by a single thread. Noria executes updates on
other operator chains in parallel with join upqueries.

This introduces a trade-off between parallelism and
state duplication: join processing must stay within a sin-
gle operator chain, so copies of upstream state may be
required in each operator chain that contains a join.

4.4 Eviction and recursive upqueries

Evicted state introduces new challenges for Noria’s data-
flow. If the application requests evicted state, Noria must

use recursive upqueries to fill it in. Moreover, operators
now encounter evicted state when they handle updates.
These factors influence the Noria design in several ways.

First and simplest, Noria operators drop updates that
encounter evicted entries. This reduces the time spent
processing updates downstream, but necessitates the de-
scendant eviction invariant: operators downstream of an
evicted entry never see updates for that entry, so they
must evict their own dependent entries lest they remain
permanently out of date.

Second, recursive upqueries now occasionally cascade
up in the data-flow until they encounter the necessary
state—in the worst case, up to base tables. Responses
then flow forward to the querying operator. Upquery re-
sults are snapshots of operator state, and do not com-
mute with updates. For unbranched chains, update order-
ing (§4.2) and the fact that updates to evicted state are
dropped ensure that the requested upquery response is
processed before any update for the evicted state.

Recursive upqueries of branching subgraphs, such as
joins, are more complex. A join operator must emit a sin-
gle correct response for each upquery it receives, even if
it must make one or more recursive upqueries of its own
to produce the needed state. Combining the upqueries’
results directly would be incorrect: those upqueries exe-
cute independently, and updates can arrive between their
responses. Joins thus issue recursive upqueries, but com-
pute the final result exclusively with join upqueries once
the recursive upqueries complete (multiple rounds of re-
cursive upqueries may be required). These join upqueries
execute within a single operator chain and exclude con-
current updates. Noria supports other branching opera-
tors, such as unions, which obey the same rules as joins.

Finally, a join upquery performed during update pro-
cessing may encounter evicted state. In this case, No-
ria chooses to drop the update and evict dependent en-
tries downstream; Noria statically analyzes the graph to
compute the required eviction notices. There is a trade-
off here: computing the missing entry could avoid future
upqueries. Noria chooses to evict to avoid blocking the
write path while filling in the missing state.

Such evictions are rare, but they can occur.
For example, imagine a version of Figure 2 that
adds AuthorVotes, which aggregates VoteCount by
stories.author, and the following system state:

• stories[id=1] has author=Elena.
• VoteCount[story id=1] has vcount=8.
• AuthorVotes[author=Elena] has vcount=8.
• stories[id=2] has author=Bob.
• VoteCount[story id=2] is evicted.

Now imagine that an update changes story 2’s au-
thor to Elena. When this update arrives at the join
for AuthorVotes, that join operator upqueries for
VoteCount[story id=2], which is evicted. As a result,

218 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Noria sends an eviction notice for Elena—whose number
of votes has changed—to AuthorVotes.

4.5 Partial and full state

Noria makes state partial whenever it can service up-
queries using efficient index lookups. If Noria would
have to scan the full state of an upstream operator to sat-
isfy upqueries, Noria disables partial state for that oper-
ator. This may happen because every downstream record
depends on all upstream ones—consider e.g., the top 20
stories by vote count. In addition, the descendant evic-
tion invariant implies that partial-state operators cannot
have full-state descendants.

Partial-state operators in Noria start out fully evicted
and are gradually and lazily populated by upqueries. As
we show next, this choice has important consequences
for Noria’s ability to transition the data-flow efficiently.

5 Dynamic data-flow
Application queries evolve over time, so Noria’s dy-
namic data-flow represents a continuously-changing set
of SQL expressions. Existing data-flow systems run sep-
arate data-flows for each expression, initialize new op-
erators with empty state and reflect only new writes, or
require restarting from a checkpoint. Changes to the No-
ria program instead adapt the data-flow dynamically.

Given new or removed expressions, Noria transitions
the data-flow to reflect the changes. Noria first plans the
transition, reusing operators and state of existing expres-
sions where possible (§5.1). It then incrementally applies
these changes to the data-flow, taking care to maintain its
correctness invariants (§5.2). Once both steps complete,
the application can use new tables and queries.

The key challenges for transitions are to avoid unnec-
essary state duplication and to continue processing reads
and writes throughout. Operator reuse and partial state
help Noria address these challenges.

5.1 Determining data-flow changes

To initiate a transition, the application provides Noria
with sets of added and removed expressions. Noria then
computes required changes to the currently-running data-
flow. This process resembles traditional database query
planning, but produces a long-term joint data-flow across
all expressions in the Noria program. This allows Noria
to reuse existing operators for efficiency: if two queries
include the same join, the data-flow contains it only once.

To plan a transition, Noria first translates each new ex-
pression into an extended query graph [21]. The query
graph contains a node for each table or view in the ex-
pression, and an edge for every join or group-by clause.
Noria uses query graphs to inexpensively reject many ex-
pressions from consideration [21, §3.4, 78, §3] and to
quickly establish a set of sharing candidates for each

new expression. The sharing candidates are existing ex-
pressions that likely overlap with the new expression.
Next, Noria generates a verbose intermediate represen-
tation (IR), which splits the new expression into more
fine-grained operators. This simplifies common subex-
pression detection, and allows Noria to efficiently merge
the new IR with the cached IR of the sharing candidates.

For each sharing candidate, Noria reorders joins in the
new IR to match the candidate when possible to max-
imize re-use opportunities. It then traverses the candi-
date’s IR in topological order from the base tables. For
each operator, Noria searches for a matching operator (or
clique of operators) in the new IR. A match represents a
reusable subexpression, and Noria splices the two IRs to-
gether at the deepest matches.

This process continues until Noria has considered all
identified reuse candidates, producing a final, merged IR.

5.2 Data-flow transition

The combined final IRs of all current expressions rep-
resent the transition’s target data-flow. Noria must add
any operator in the final IR that does not already exist in
the data-flow. To do so, Noria first informs existing op-
erators of index obligations (§3.3) incurred by new op-
erators that they must construct indexes for. Noria then
walks the target data-flow in topological order and inserts
each new operator into the running data-flow and boot-
straps its state. Finally, after installing new operators and
deleting removed queries’ external views, Noria removes
obsolete operators and state from the data-flow.

Bootstrapping operator state. When Noria adds a
new stateful operator, it must ensure that the operator
starts with the correct state. Partially-stateful operators
and views start processing immediately. They are ini-
tially empty and bootstrap via upqueries in response to
application reads during normal operation, amortizing
the bootstrapping work over time. Fully-stateful opera-
tors are initially marked as “inactive”, which causes them
to ignore all incoming updates. Noria then executes a
special, large upquery for all keys on behalf of the fully-
stateful operator. Once the last upquery response has ar-
rived, Noria activates the operator for update processing
and moves on to the next new operator.

Base table changes. As applications evolve, develop-
ers often add or remove base table columns [17]. This
affects existing operators in the data-flow: new updates
from the base table may now lack values that existing op-
erators expect. Noria could rebuild the data-flow or trans-
form the existing base table state to effect such a change,
but this would be inefficient for large base tables. Instead,
Noria base tables internally track all columns that have
existed in the table’s schema, including those that have
been deleted. When a base table processes an application
write, it automatically injects default values for missing

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 219

columns (but does not store them). This permits queries
for different base table schemas to coexist in the data-
flow graph, and makes most base table changes cheap.

6 Implementation
Our Noria prototype implementation consists of 45k
lines of Rust and can operate both on a single server and
across a cluster of servers. Applications interface with
Noria either through native Rust bindings, using JSON
over HTTP, or through a MySQL protocol adapter.

6.1 Persistent data storage

Noria persists base tables in RocksDB [66], a high-
performance key-value store based on log-structured
merge (LSM) trees. Batches of application updates are
synchronously flushed into RocksDB’s log before No-
ria acknowledges them and admits them into the data-
flow; a background thread asynchronously merges log
entries into the LSM trees. Each base table index forms
a RocksDB “column family”. For base tables with non-
unique indexes, Noria uses RocksDB’s ordered iterators
to efficiently retrieve all rows for an index key [14, 67].

Persistence reduces Noria’s write throughput by about
5% over in-memory base tables. Reads are not greatly
impacted when an application’s working set fits in mem-
ory: only occasional upqueries access RocksDB, and
these add < 1ms of additional latency on a fast SSD.

6.2 Parallel processing

Noria shards the data-flow and allows concurrent reads
and writes with minimal synchronization for parallelism.

Sharding. Noria processes updates in parallel on a
cluster by hash-partitioning each operator on a key and
assigning shards to different servers. Each machine runs
a Noria instance, a process that contains a complete copy
of the data-flow graph, but holds state only for its shards
of each operator. When an operator with one hash parti-
tioning links to an operator with a different partitioning,
Noria inserts “shuffle” operators that perform inter-shard
transfers over TCP connections. Upqueries across shuf-
fle operators are expensive since they must contact all
ancestor shards. This limits scalability, but allows opera-
tors below a shuffle to maintain partial state.

Multicore parallelism. Noria achieves multicore par-
allelism within each server in two ways: a server can
handle multiple shards by running multiple Noria in-
stances, and each instance runs multiple threads to pro-
cess its shard. Each instance has two thread pools: data-
flow workers process updates within the data-flow graph,
and read handlers handle reads from external views.

At most one data-flow worker executes updates for
each data-flow operator at a time. This arrangement
yields CPU parallelism among different operators, and
also allows lock-free processing within each operator.

There are typically fewer data-flow workers than oper-
ators in the data-flow graph, so Noria multiplexes opera-
tor work across the worker threads. Within one instance,
Noria schedules chains of operators with the same key as
a unit. This reduces queueing and inter-core data move-
ment at operator boundaries. It also allows Noria to op-
timize some upqueries: an upquery within a chain can
simply access the ancestor’s data synchronously, without
worry of contamination from in-flight updates (§4.3).

Read handlers process clients’ RPCs to read from ex-
ternal views. They must access the view with low latency
and high concurrency, even while a data-flow worker is
applying updates to the view. To minimize synchroniza-
tion, Noria uses double-buffered hash tables for external
views [27]: the data-flow worker updates one table while
read handlers read the other, and an atomic pointer swap
exposes new writes. This trades space and timeliness for
performance: with skewed key popularity distributions,
it can improve read throughput by 10× over a single-
buffered hash table with bucket-level locks.

6.3 Distributed operation

A Noria controller process manages distributed in-
stances on a cluster of servers, and informs them of
changes to the data-flow graph and of shard assign-
ments. Noria elects the controller and persists its state
via ZooKeeper [34]. Clients discover the controller via
ZooKeeper, and obtain long-lived read and write handles
to send requests directly to instances.

Noria handles failures by rebuilding the data-flow. If
the controller fails, Noria elects a new controller that re-
stores the data-flow graph. It then streams the persistent
base table data from RocksDB to rebuild fully-stateful
operators and views. Partial operators are instead pop-
ulated through on-demand upqueries. If individual in-
stances fail, Noria rebuilds only the affected operators.

6.4 MySQL adapter

Our prototype includes an implementation of the
MySQL binary protocol in a dedicated stateless adapter
that appears as a standard MySQL server to the applica-
tion. This adapter allows developers to easily run existing
applications on Noria. The adapter transparently trans-
lates prepared statements and ad-hoc queries into transi-
tions on Noria’s data-flow, and applies reads and writes
using Noria’s API behind the scenes. Its SQL support is
sufficiently complete to run some unmodified web appli-
cations (e.g., JConf [74] written in Django [22]), and to
run Lobsters with minimal syntax adaptation.

6.5 Limitations

Our current prototype has some limitations that we plan
to address in future work; none of them are fundamental.
First, it only shards by hash partitioning on a single col-
umn, and resharding requires sending updates through

220 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a single instance, which limits scalability. Second, it
re-computes data-flow state on failure; recovering from
snapshots or data-flow replicas would be more efficient
(e.g., using selective rollback [35]). And third, it does not
currently support range indices or multi-column joins.

7 Applications
This section discusses our experiences with developing
Noria applications. Noria aims to simplify the develop-
ment of high-performance web applications; several as-
pects of our implementation help it achieve that goal.

First, applications written for a MySQL database can
use Noria directly via its MySQL adapter, provided
they generate parameterized SQL queries (for instance,
via libraries like PHP Data Objects [69] or Python’s
MySQL connector [55, §10.6.8]). Porting typically pro-
ceeds in three steps. First, the developer points the appli-
cation at the Noria MySQL adapter instead of a MySQL
server and imports existing data into Noria from database
dumps. The application will immediately see perfor-
mance improvements for read queries that formerly ran
substantial in-line compute. Though the MySQL adapter
even supports ad-hoc read queries (it transitions the
data-flow as required to support each query), the most
benefit will be seen for frequently-reused queries. Sec-
ond, the developer creates views for computations that
the MySQL application manually materialized, such as
the per-story vote count in Lobsters. These views co-
exist with the manual materializations, and allow exist-
ing queries to continue to work as the developer updates
the write path so that it no longer manually updates de-
rived views and caches. Third, the developer incremen-
tally rewrites their application to rely on natural views
and remove manual write optimizations. These changes
gradually increase application performance as the devel-
oper removes now-unnecessary complexity from the ap-
plication’s read and write paths.

The porting process is not burdensome. We ported
a PHP web application for college room ballots—
developed by one of the authors and used production
for a decade—to Noria; the process took two evenings,
and required changes to four queries. We also used
the MySQL adapter to port the Lobsters application’s
queries to Noria; the result is a focus of our evaluation.

Developing native Noria applications can be even eas-
ier. We developed a simple web application to show the
results of our continuous integration (CI) tests for No-
ria. The CI system stores its results in Noria, and the
web application displays performance results and aggre-
gate statistics. Since we developed directly for Noria, we
were not tempted to cache intermediate results or ap-
ply other manual optimizations, and could use aggrega-
tions and joins in queries without fear that performance
would suffer as a result (e.g., due to aggregations over the

long commit history). Most application updates reduced
to single-table inserts, deletes, or updates.

Limitations. Though applications traditionally use
parameterized queries to avoid SQL injection attacks
and cache query plans, Noria parameterized queries also
build materialized views. An application with many dis-
tinct parameterized queries can thus end up with more
views than necessary. The developer can correct this by
adding shared views. Our prototype does not yet support
update and delete operations conditioned on non-primary
key columns, and lacks support for parameterized range
queries (e.g., age > ?), which some applications need.
Planned support for range indexes and an extended base
table implementation will address these limitations.

8 Evaluation
We evaluated our Noria prototype using backend work-
loads generated from the production Lobsters web appli-
cation, as well as using individual queries. Our experi-
ments seek to answer the following questions:

1. What performance gains does Noria deliver for a
typical database-backed web application? (§8.1)

2. How does Noria perform compared to a
MySQL/memcached stack, the materialized
views of a commercial database, and an idealized
cache-only deployment? (§8.2)

3. Given a scalable workload, how does our prototype
utilize multiple servers, and how does it compare to
a state-of-the-art data-flow system? (§8.3)

4. What space overhead does Noria’s data-flow state
impose, and how does Noria perform with limited
memory and partial state? (§8.4)

5. Can Noria data-flows adapt to new queries and input
schema changes without downtime? (§8.5)

Setup. In all experiments, Noria and other storage
backends run on an Amazon EC2 c5.4xlarge instance
with 16 vCPUs; clients run on separate c5.4xlarge in-
stances unless stated otherwise. Our setup is “partially
open-loop”: clients generate load according to a Poisson
distribution of interarrival-times and have a limited num-
ber of backend requests outstanding, queueing additional
requests. This ensures that clients maintain the measure-
ment frequency even during periods of high latency [45].
Our test harness measures offered request throughput and
“sojourn time” [62], which is the delay from request gen-
eration until a response returns from the backend.

8.1 Application performance: Lobsters

We first evaluate Noria’s performance on a realistic web
application workload to answer two questions:

1. Do Noria’s fast reads help it outperform a conven-
tional database on a real application workload, even
on a hand-optimized application?

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 221

0 1K 2K 3K 4K 5K

Offeredload[pageviews/sec]

0

20

40

60

80

100

La
te
nc
y
[
ms
]

MariaDB,baselinequ. Noria,baselinequ. Noria,naturalqu.

Figure6:NoriascalesLobsterstoa5×higherload
thanMariaDB(2.3×withbaselinequeries)atsub-100ms
95%ilelatency(dashed:median).MariaDBislimitedby
readcomputation,whileNoriabecomeswrite-bound.

2.CanNoriapreservegoodperformanceforanappli-
cationwithouthandoptimization?

OurworkloadmodelsproductionLobsterstraffic.The
benchmarkemulatesauthenticatedLobstersusersvis-
itingdifferentpagesaccordingtotheaccessfrequen-
ciesandpopularitydistributionsintheproductionwork-
load[32].LobstersisaRuby-on-Railsapplication,but
ourbenchmarkgeneratesdatabaseoperationsdirectlyin
ordertoeliminateRailsoverhead.Weseedthedatabase
with9.2kusers,40kstoriesand120kcomments—the
sizeoftherealLobstersdeployment—andrunincreasing
requestloadstopushthedifferentsetupstotheirlimits.

ThebaselinequeriesincludetheLobstersdevelopers’
optimizations,whichmanuallymaterializeandmaintain
aggregatevalueslikevotecountstoreduceread-side
work.Wealsodeveloped“natural”queriesthatproduce
thesameresultsusingNoriadata-flowtocomputeag-
gregationsratherthanmanualoptimizations. Wecom-
pare MariaDB(acommunity-developed MySQLfork;
v10.1.34)withNoriausingbaselinequeries,andthen
toNoriausingnaturalqueries(bothviaNoria’sMySQL
adapter).WeconfiguredMariaDBtouseathreadpool,
toavoidflushingtodiskaftertransactions,andtostore
thedatabaseonaramdisktoremoveoverheadsunrelated
toqueryexecution.Withthebaselinequeries,themedian
pageviewexecutes11queries;thisreducestoeightwith
naturalqueries.Thisexperimentusesanm5.24xlarge
EC2instancefortheCPU-intensiveclients.

Figure6showstheresultsasthroughput-latency
curves.Anidealsystemwouldshowasahorizontalline
withlowlatency;inreality,eachsetuphitsa“hockey
stick”onceitfailstokeepupwiththeofferedload.
MariaDBscalesto1,000pages/second,afterwhichit
saturatesall16CPUcoreswithread-sidecomputation
(e.g.,forper-pagenotificationcounts[33]).Noriarun-
ningthesamebaselinequeriesscalestoa2.3×higher
offeredload,sinceitsincrementalwrite-sideprocessing
avoidsredundantre-computationonreads.

Thebaselinequeriesmanuallypre-computeaggre-
gates.MariaDBrequiresthisforperformance:without
thepre-computation,itsupportsjust20pages/sec.Noria
insteadmaintainspre-computedaggregatesinitsdata-
flow.Thisallowsustoincludetheaggregationsdirectly
inthequeries,whichnormalizesthebasetableschema,
reduceswriteload,andavoidsbugsduetomissedup-
datestopre-computedvalues.Withallaggregatecompu-
tationmovedintoNoria’sdata-flow(“naturalqueries”),
throughputscaleshigherstill,to5,000pages/second(5×
MariaDB).Eliminatingapplicationpre-computationre-
ducesoverallwriteloadandcompactsthedata-flow,
whichletsNoriaparallelizeitmoreeffectively.

TheresultisthatNoriaachievesbothgoodperfor-
manceandnatural,robustqueries.Weobservedsimilar
benefitswithotherapplications(e.g.,asyntheticTPC-
W-likeworkload),whichweomitforspace.

8.2 In-depthperformancecomparison

Wecomparetoalternativesystemsusingasubsetof
Lobsters.Thisrestrictiongivesusbettercontrolover
workloadproperties,whilecapturingtheaspectsofweb
workloadsthatmotivatedtheNoriadesign.Weuseone
kindofwrite,insertingavote,andonereadquery,
StoriesWithVCfromFigure2.Thisreadqueryfetches
storiesandtheirvotecounts;85%ofpageviewsinpro-
ductionLobstersareforpagesthatexecutethisquery.

Wecomparefivesingle-serverdeploymentsthatall
haveaccesstothesameresources,butdifferinhowthey
storeandcalculatetheper-storyvotecount.MariaDB
usesthebaselineLobstersapproachofpre-computing
andstoringvotecountsinacolumnoftheLob-
stersstoriestable.SystemZ,acommercialdatabase
withmaterializedviewsupport,usesanincrementally-
maintained materializedviewdefinedsimilarlyto
StoriesWithVC;weuseSystemZtocomparedatabase
view maintenance with Noria’sdata-flow-basedap-
proach.MariaDBandSystemZrunatthefastesttransac-
tionalisolationlevel(“readuncommitted”)andarecon-
figuredtokeepdatainmemory.MariaDB+memcached
addsademand-filledmemcached(v1.5.6)cache[54]
toMariaDBthatcachesStoryWithVCentries.Thisre-
ducesreadloadonMariaDB,butcomplicatesapplica-
tioncodeevenbeyondpre-computation:writesmustin-
validatethecacheandreadsmustsometimespopulateit.
Wealsomeasurememcached-onlywithoutarelational
backend.Thissetupoffersgoodperformance,butisun-
realistic:itdoesnotstoreindividualvotesorstories,is
notpersistent,andcannotpreventdouble-voting.Ithelps
usestimatehowabackendthatservesallreadsfrom
memoryanddoesminimalworkforwritesmightper-
form.Finally,wemeasureNoriashardedfourwayson
stories.id,withtheremaining12coresservingreads.

222 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 2M 4M 6M 8M 10M 12M 14M

Offeredload[requests/sec]

0

50

100
9
5
%-
il
e
la
te
nc
y
[
ms
]

MariaDB(hand-opt.)

SystemZ

MariaDB+memcached

memcached-only

Noria(4shards)

(a)

0 2M 4M 6M 8M 10M 12M 14M

Offeredload[requests/sec]

0

50

100

9
5
%-
il
e
la
te
nc
y
[
ms
]

MariaDB(hand-opt.)

SystemZ

MariaDB+memcached

memcached-only

Noria(4shards)

Read-heavyworkload(95%/5%):Noriaoutperformsall
othersystems(allbutmemcachedat100–200krequests/sec).

(b)Mixedread-writeworkload(50%/50%):Noriaoutperforms
allsystemsbutmemcached(othersareat20krequests/sec).

Figure7:ALobsterssubset(Figure2)benchmarkedonNoriahand-optimizedMariaDB,SystemZ’smaterialized
views,aMariaDB/memcachedsetup,andonmemcachedonly,allwithZipf-distributed(s=1.

0 2M 4M 6M 8M 10M 12M 14M

Offeredload[requests/sec]

0

50

100

95
%-
il
e
la
te
nc
y
[
ms
]

MariaDB(hand-opt.)

SystemZ

MariaDB+memcached

memcached-only

Noria(4shards)

08)readsandvotes.

Figure8: Forauniformly-distributed,read-heavy
(95%/5%)workloadonFigure2,Noriaperformssimi-
larlytothe(unrealistic)memcached-onlysetup.

Noriausesnaturalqueries;othersystemsexceptSystem
Zmanuallypre-computevotecounts.

Clientsreadandinsertvotesforrandomly-chosensto-
ries;wemeasurethe95th-percentilelatencyforeachof-
feredload.Beforemeasurementbegins,wepopulatethe
storiestablewith500krecordsandperform40sec-
ondsofwarmupusingthesameworkloadasthebench-
markitself.Absolutethroughputishigherintheseex-
perimentsbecausethedata-flowonlycontainsasingle
queryandclientsbatchreadsandwritesforupto1ms.

Figure7showsresultsforaskewedworkloadsimi-
lartoLobsters’,withstorypopularityfollowingaZip-
fiandistribution(s=1.08). With95%reads,Noria
outperformsallothersystems,includingtheunrealis-
ticcache-onlydeployment(Figure7a). Mostupdates
writevotesforpopularstories, whichcreates write
contentionproblemsin MariaDBandSystemZ.The
MariaDB+memcachedsetupperformsequallypoorly:
onmemcachedinvalidationsforpopularkeys,multiple
clientsmissanda“thunderingherd”ofclientssimulta-
neouslyissuesdatabasequeries[54,§3.2.1].memcached
onitsownscales,butNoriaoutperformsit(despitedo-
ingmorework)sinceNoria’slocklessviewsavoidcon-
tentionforpopularkeys.Noriascalesto14Mrequest-

s/secondwithfourshards.Noriaalsohandlesawrite-
heavyworkload(50%writes)well(Figure7b):although
absoluteperformancehasdropped,Noriastilloutper-
formsallothersystemsapartfromthecache-onlysetup.
Thisisbecauseshardingallowsdata-parallelwritepro-
cessing,whichhelpsNoriascaleto2Mrequests/second.

Witha(less-realistic) uniform workload,other
systemscomeclosertoNoria’s5Mrequests/second
(Figure8).SystemZdoesbetterthanbefore,but
suffersfromslow writestothe materializedview.
MariaDB+memcached,perhapssurprisingly,performs
worsethanMariaDB,whichscalesto3Mrequests/sec-
ond:thereasonliesintheextrawork(andRPCs)theap-
plicationmustperformforinvalidations.Thisillustrates
thatalook-asidecacheonlyhelpsifitavoidexpensive
queries;awrite-throughcacheavoidsinvalidationover-
heads,butwouldstillperformworsethantheidealized
memcached-onlysetup(andthus,thanNoria).

Separately,weevaluatedNoria’sviewmaintenance
againstDBToaster[2,53],astate-of-the-artmaterial-
izedviewmaintenancesystemthatcompilesviewdef-
initionstonativecode.DBToaster(v2.2.3387)lacks
supportforpersistentbasetables,concurrentreads,or
multicoreparallelism—itsonlyreadoperationsnap-
shotsentireviews—butitdoesprovidefastupdates
to materializedviews. WhenweconstrainNoriato
onlyoneshardanddata-flowworkerthread,weexpect
DBToastertooutperformit,sinceDBToaster’sgenerated
C++codedoesclose-to-minimalworktoincrementally
maintainthevotecount.Wemeasurethewritethrough-
putof50Muniformly-distributedvotesthatupdate
StoriesWithVCfor500kstories.Noriaachieves240k
single-recordwrites/secondforfully-populatedstate,and
1Mwrites/secondforfully-evictedstate.DBToasteronly
supportsfully-populatedstate,andachieves520ksingle-
recordwrites/second.Atthesametime,Noriaismore
memory-efficient,using6.2GBofmemoryforbaseta-
blesandallderivedstate,36%ofDBToaster’s17GB.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 223

1 2 3 4 5 6 7 8 9 10

Numberofmachines

0

10M

20M

30M
T
hr
o
u
g
h
p
ut
[r
e
q/
se
c] DifferentialDataflow

Noria

Figure9:Forauniform95%/5%workload,Noriascales
totenmachineswithsub-100ms95th%tilelatencyby
shardingthedata-flow.Differentialdataflow[44]scales
lesswellduetoitsinter-workercoordination.

Additionally,Noriacanprocessshardsinparallelanduse
moremachinestoincreasethroughput.

8.3 Distributionovermultipleservers

WenextevaluateNoria’ssupportfordistributedopera-
tion.CanNoriaeffectivelyusemultiplemachines’re-
sourcesgivenascalableworkload?

Weevaluatethe95%-readLobsterssubsetfrom§8.2
withtwomillionstories. Weshardthedata-flowon
stories.idandvarythenumberofmachinesfromone
toten,witheachmachinehostingfourshards.Forade-
ploymentwithnNoriamachines,wescaleclientloadto
n×3Mrequests/secondinapartiallyopen-looptesthar-
ness.ThisarrangementachievesclosetoNoria’smaxi-
mumloadatsub-100ms95th-percentilelatencyfortwo
millionstoriesononemachine.Loadgeneratorsselect
storiesuniformlyatrandom,sotheworkloadisperfectly
shardable.Theidealresultisastraightdiagonal,withn
machinesachievingntimesthethroughputofasingle
one.Figure9showsthatNoriaachievesthisandserves
thefullper-machineloadatallpoints.

Wealsoimplementedthisbenchmarkforastate-
of-the-artDifferentialDataflow(DD)implementation
(v0.7)inRust[44]basedonNaiadanditsearlierversion
ofDD[46,51].SinceDDlacksaclient-facingRPCin-
terface,weco-locateDDclientswithworkers;thisdoes
notdisadvantageDDsinceloadgenerationischeapcom-
paredtoRPCprocessing.DDuses12workerthreadsand
fournetworkthreadspermachine.

Figure9showsthatNoriaiscompetitivewithDDon
thisbenchmark.Ononeandtwomachines,DDsupports
aslightlyhigherper-machineload(3.5Mrequests/sec-
ondvs.Noria’s3M)withinour95th-percentilelatency
budgetof100ms.Beyondfourmachines,however,DD
failstomeetNoria’smaximumper-machineload.Its
supportedthroughputtailsofftoaround20Mrequests/-
secattenmachines.Thistail-offisduetoDD’sprogress-
trackingprotocol,whichcoordinatesbetweenworkersto
exposewritesatomically,andwhichimposesincreasing

overheadasthenumberofmachinesgrows.DDamor-
tizesthiscoordinationbyincreasingitsbatchsize,and
consequentlyseesincreasedlatencyasthroughputin-
creases.Noriaavoidssuchcoordinationandscaleswell,
butoffersonlyeventually-consistentreads.

8.4 Statesize

Noriareliesonpartialstatetokeepitsmemoryfootprint
low.HowmuchofNoria’sstateforLobsterscanbepar-
tial,andhowdoesNoriaperformwhenitevictsfrompar-
tialstatetomeetamemorylimit?Weinvestigatethese
questionsusingthefullLobstersapplication,firstatLob-
stersproductionscale,andthenat10×scale.

TheNoriadata-flowforthenaturalLobstersqueries
has235operators,ofwhich60ofarestateful.Withpar-
tialstatedisabled,i.e.,forcingalldata-flowoperators
tokeepfullstate,Norianeeds789MBofin-memory
state(8×thebasetablesizeof137MB). Withpartial
stateenabled,35ofthestatefuloperatorscanusepartial
state;theremaining25arepartofunparameterizedviews
(e.g.,allstoriesonthefrontpage)whosestateNoriacan-
notmakepartialastheylacksuitablekeys.Together,
thenon-partialstateoccupies73MB:Noria’sessential
memoryrequirementforLobstersthereforeamountsto
9%oftotalstate(addinganoverheadof53%ofbaseta-
blesize).Noriacanevictandre-computetheremaining
91%ofstateshoulditexceedamemorylimit.

Asforanycache,thismemorylimitshouldexceed
theapplication’sworkingsetsizetoachievelowread
latencyandavoidthrashingofevictionsandupqueries.
ForLobsters,theworkingsetsizedependsontheof-
feredload,ashigherloadmeansawiderrangeofsto-
riesareread. WedetermineitbyvaryingNoria’sstate
sizelimit(andhence,evictionfrequency)andmeasur-
ing95th-percentilereadlatency. Withproduction-scale
Lobstersdata,Noria’sworkingsetcontains525MBof
state(60%oftotal,3.8×basetables)atanofferedloadof
2,300pages/second.However,withafewthousandusers,
theproductionLobstersdeploymentissmall.Ourbench-
markfurtherunderstatesitssizeasweusesyntheticstory
andcommenttextsofafewbytes.Hence,werepeated
thisexperimentwiththeLobstersdatascaledupby10×.
Noriameetssub-100ms95thpercentilelatencyat2,300
pages/secondifthememorylimitexceedsthe2.6GB
workingset(38%of7GBtotalstate;3×basetables).

TheseresultssuggestthatNoriaimposesareasonable
spaceoverhead(around3×basetablesize)forLobsters,
andthatpartialstateiskeytoreducingtheoverhead.

8.5 Livedata-flowadaptation

Inatraditionaldatabase,querychangesareeasyand
instantaneous.CanNoria’sdata-flowadaptationseam-
lesslytransitiontoincludenewSQLexpressions?The
goalisforthetransitiontocompletequickly,forwrite

224 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
100K
200K
300K

T
hr
o
u
g
h
p
ut

Totalwritethroughput %fastreadsfromnewview

0%

100%

(a)

0
100K
200K
300K

T
hr
o
u
g
h
p
ut

0%

100%

Withpartialmaterializationandreuse(Zipfian).

(b)

0
100K
200K
300K

T
hr
o
u
g
h
p
ut

−15 0 30 60 90

Timeaftertransitionstart[sec]

0%

100%

Withpartialmaterializationandreuse(uniform).

(c)Noreuseorpartialmaterialization(Zipfian).

Figure10:ReuseandpartialstateallowNoriatoadapt
thelivedata-flow.Graylinesdelimitstartandendofthe
transition(in(a)and(b),thetransitionsarealmostin-
stantaneous);thegreenshadedareashowsthefractionof
newviewreadsthatrequirenoupqueries.Readsfromthe
oldview(notshown)proceedatfullspeedthroughout.

performancetoremainstable,forreadsfromexisting
viewstobeunaffected,andforreadsfromnewly-added
viewstoquicklyachievelowlatency.

Wetestthisbyaddinga modifiedversionofthe
StoriesWithVCviewtotheLobsterssubset.This
newview,StoriesWithRatings,usesnumericrat-
ingsstoredinaratingsbasetableinsteadofvotes.
Italsoreflectsoldvotesscaledtoarating. Wefirst
loadanunshardedNoriawith2Mstoriesand30M
votes,thentransitiontothenewprogram.Oncethe
transitionfinishes,clientsperform“ratingreads”from
StoriesWithRatingsandstartwritingtothenew
ratingstable.Throughouttheexperiment,clients
alsoreadtheStoriesWithVCview,andwritetothe
votestable. Weexpectpost-transitionthroughputto
bereduced—thenewdata-flowgraphislarger,with
moretablesanddeeperpaths—althoughremovingthe
oldviewwouldincreasethroughputagain.However,we
hopethatthroughputandlatencydonotsuffergreatly
duringthetransition.

Figure10ashowsthetransitionwithreuseandpar-
tialmaterializationenabled.Thetransitioncompletesim-
mediately:Noriacreatesthenewoperatorsandviewas
empty,andpopulatesthemondemandinresponseto
reads.Duetotheskewedreadandwritedistributions,
upqueriesforonlyafewpopularkeyssufficeforNo-

riatoservethemajorityofratingreadswithoutrecur-
siveupqueries.Reuseisalsocrucial:withoutreusing
VoteCount,Noriamustupqueryratingreadsbyre-
computingfromthebasetables.Thisleadstoslowup-
queriesforpopularstories,asthedata-flowmustre-
counttheirvotes.Withreuseenabled,pre-computedvote
countssatisfytheupqueries.Theresultsalsofollowthis
patternforauniformworkload(Figure10b).Initially,
mostratingreadsareslow,butfastreadsincreaseasthe
partialstatepopulates;writethroughputisreducedbe-
causedata-flowupdatescontendwithupqueryresponses.
Contentionincreasesas moreentriespopulate,since
fewerupdateshitevictedstate.

Figure10cshowsthesametransition(withaZip-
fian workload),but withpartial materializationand
operatorreusedisabled. Noriafullypopulatesthe
StoriesWithRatingsviewandallinternalstateful
operatorsduringthetransition.Itcopiesvotesand
storiestobootstraptheratingaggregationstate,and
thencopiestheresultingstateagaintoinitializethe
newexternalview.Eachcopystopswriteprocessing
forseveralseconds,andNoria’sstatetransfertothe
newoperatorsviathedata-flowslowsdownconcurrent
writes.Whentransitioncompletesafter25seconds,the
StoriesWithRatingsviewisfullymaterializedandall
ratingreadsarefast.Thisillustratesthatpartialstateand
reusearecrucialfordowntime-freedata-flowtransitions.

HowoftencanNoriaachievealivetransitionin
practice?Inaseparateanalysisofqueryandschema
changesinHotCRPandTPC-W,wefoundthatNoria
live-transitionedforover95%ofprogramchanges.Ex-
istingapproachesarelessflexible:SystemZmustrebuild
itsmaterializedviewsonchange;amemcachedclus-
termustbecarefullytransitioned[54,§4.3];DBToaster
lackssupportforquerychanges;andevenrelational
databasespausewritesduringsomeschemaupdates.

8.6 Discussion

WeevaluatedLobstersbothatproductionscaleandat
10×scale,butmanywebapplicationsaremuchlarger
still.WebelievethatNoriacanalsosupportsuchappli-
cations.Forapplicationswithmanyqueries,andconse-
quentlyalargedata-flow,Noriacanassignshardsofonly
someoperatorstoeachmachine,sendingcross-operator
trafficoverthenetwork.Similarly,Noriacanshardlarge
basetablesandoperatorswithlargestateacrossma-
chines.Efficientreshardingandpartitioningthedata-
flowtominimizenetworktransfersareimportantfuture
workforNoriatoachievetrulylargescale.

WealsobelieveNoriaiswellsuitedforapplications
whoseworkingsetschangeovertime.Manylarge,real-
worldapplicationsseesuchchangingworkloads;forin-
stance,anoldstorymaysuddenlybecomepopular.As

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 225

clients request such items, Noria’s upqueries bring them
into the working set, making subsequent reads fast.

9 Related work
Noria builds on considerable related work.

Data-flow systems excel at data-parallel comput-
ing [36, 51], including on streams, but cannot serve web
applications directly. They only achieve low-latency in-
cremental updates at the expense of windowed state (and
incomplete results) or by keeping full state in memory.
Noria’s partially-stateful data-flow lifts this restriction. A
few data-flow systems can reuse operators automatically:
for example, Nectar [28] detects similar subexpressions
in DryadLINQ programs, similar to Noria’s automated
operator reuse, using DryadLINQ-specific merge and
rewrite rules. Support for dynamic changes to a running
data-flow is more common: CIEL [52] dynamically ex-
tends batch-processing data-flows, as does Ray [58] for
stateful “actor” operators’ state transitions in reinforce-
ment learning applications. Noria dynamically changes
long-running, low-latency streaming computations by
modifying the data-flow; unlike existing streaming data-
flow systems like Naiad [51] or Spark Streaming [76], it
has no need for a restart or recovery from a checkpoint.

Stream processing systems [3, 11, 39, 71, 76] often
use data-flow, but usually have windowed state and static
queries that process only new records. STREAM [6]
identifies opportunities for operator reuse among static
queries; Noria achieves similar reuse for dynamic
queries. S-Store [47] lacks Noria’s partial materialization
and state reuse, but combines a classic database with a
stream processing system using trigger-based view main-
tenance. S-Store enables transactional processing, a fu-
ture goal for Noria.

Database materialized views [29, 41] were devised
to cache expensive analytical query results. Commercial
databases’ materialized view support [1] is limited [49,
63] and views must usually be rebuilt on change. How-
ever, there is considerable research on incremental view
maintenance in databases [30, 40, 41, 70, 77, 81]. No-
ria builds upon ideas from this work, but applies them
in the context of a concurrent, stateful data-flow system
for web applications. This requires efficient fine-grained
access to views, solutions to new coordination problems
and concurrency races, as well as inexpensive long-term
adaptation as view definitions change. DBToaster [2, 53]
supports incremental view maintenance under high write
loads with generated recursive delta query implemen-
tations. Noria sees lower single-threaded performance,
but supports parallel processing and changing queries;
adding native-code generation to Noria might further im-
prove its performance, but would complicate operator
reuse. Pequod [37] and DBProxy [4] support partial ma-
terialization in response to client demand, although Pe-

quod is limited to static queries, and unlike Noria, neither
shares state nor processing across queries.

The problem of detecting shared subexpressions
(§5.1) is a multi-query optimization (MQO) prob-
lem [21, 59, 78]. MQO tries to maximize sharing across
a batch of expressions, with the freedom to rewrite any
expression to suit the others. Like joint query process-
ing systems [10, 25, 31], Noria faces the more restricted
problem of mutating new expressions to increase their
opportunity to share existing expressions in the data-flow.

A wide array of tools deal with websites’ query and
schema transitions [9, 23, 26, 56, 65]. Like Noria,
they aim to transition backend stores without interrup-
tion in client service, but they require developers to
manually configure complex “ghost tables” or binlog-
following triggers. Base table schema changes increase
complexity further [73]. Noria handles query changes
transparently, and efficiently applies common base table
schema changes by supporting many concurrent base ta-
ble schemas. Most of its data-flow transitions are live for
reads and writes without added complexity.

Finally, some open-source systems have experi-
mented with flexible query and schema changes. Apache
Kafka [5] achieves some flexibility in query and schema
changes as used by the New York Times [68], and sim-
ilar ideas were proposed as an extension proposal for
Samza [38]. To our knowledge, however, no prior sys-
tem achieves the performance and flexibility of Noria.

10 Conclusions
Noria is a web application backend that delivers high
performance while allowing for simplified application
logic. Partially-stateful data-flow is essential to achiev-
ing this goal: it allows fast reads, restricts Noria’s mem-
ory footprint to state that is actually used, and enables
live changes to the data-flow. In future work, we plan
to add more flexible sharding, range indexes, and better
eviction strategies.

Noria is open-source software and available at:

https://pdos.csail.mit.edu/noria

Acknowledgements
We thank Joana da Trindade and Nikhil Benesch for
contributions to our implementation, as well as Frank
McSherry for assisting with implementation and tuning
of the differential dataflow benchmark. Jon Howell pro-
vided helpful feedback that much improved the paper,
as did Ionel Gog, Frank McSherry, David DeWitt, Sam
Madden, Amy Ousterhout, Tej Chajed, Anish Athalye,
and the PDOS and Database groups at MIT. We are also
grateful to the helpful comments we received from our
anonymous reviewers, as well as from Wyatt Lloyd, our
shepherd. This work was funded through NSF awards
CSR-1301934, CSR-1704172, and CSR-1704376.

226 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://pdos.csail.mit.edu/noria

References
[1] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R.

Narasayya. “Automated Selection of Materialized
Views and Indexes in SQL Databases”. In: Pro-
ceedings of the 26th International Conference on
Very Large Data Bases (VLDB). Cairo, Egypt,
Sept. 2000, pages 496–505.

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch,
and Milos Nikolic. “DBToaster: Higher-order
Delta Processing for Dynamic, Frequently Fresh
Views”. In: Proceedings of the VLDB Endowment
5.10 (June 2012), pages 968–979.

[3] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu,
Slava Chernyak, Josh Haberman, Reuven Lax,
Sam McVeety, Daniel Mills, Paul Nordstrom, and
Sam Whittle. “MillWheel: Fault-tolerant Stream
Processing at Internet Scale”. In: Proceedings
of the VLDB Endowment 6.11 (Aug. 2013),
pages 1033–1044.

[4] Khalil Amiri, Sanghyun Park, Renu Tewari, and
Sriram Padmanabhan. “DBProxy: a dynamic data
cache for web applications”. In: Proceedings of
the 19th International Conference on Data Engi-
neering (ICDE). Mar. 2003, pages 821–831.

[5] Apache Software Foundation. Apache Kafka: a
distributed streaming platform. URL: http : / /
kafka.apache.org/ (visited on 09/14/2017).

[6] Arvind Arasu, Brian Babcock, Shivnath Babu,
John Cieslewicz, Mayur Datar, Keith Ito, Ra-
jeev Motwani, Utkarsh Srivastava, and Jennifer
Widom. “STREAM: The Stanford Data Stream
Management System”. In: Data Stream Man-
agement: Processing High-Speed Data Streams.
Edited by Minos Garofalakis, Johannes Gehrke,
and Rajeev Rastogi. Berlin/Heidelberg, Germany:
Springer, 2016, pages 317–336.

[7] Doug Beaver, Sanjeev Kumar, Harry C. Li, Ja-
son Sobel, and Peter Vajgel. “Finding a Nee-
dle in Haystack: Facebook’s Photo Storage”. In:
Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation
(OSDI). Vancouver, British Columbia, Canada,
Oct. 2010, pages 1–8.

[8] Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Fer-
ris, Anthony Giardullo, Sachin Kulkarni, Harry
Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar,

Yee Jiun Song, and Venkat Venkataramani. “TAO:
Facebook’s Distributed Data Store for the Social
Graph”. In: Proceedings of the USENIX Annual
Technical Conference. San Jose, California, USA,
June 2013, pages 49–60.

[9] Mark Callaghan. Online Schema Change for
MySQL. URL: https://www.facebook.com/
note.php?note_id=430801045932 (visited on
02/01/2017).

[10] George Candea, Neoklis Polyzotis, and Radek
Vingralek. “A Scalable, Predictable Join Opera-
tor for Highly Concurrent Data Warehouses”. In:
Proceedings of the VLDB Endowment 2.1 (Aug.
2009), pages 277–288.

[11] Paris Carbone, Stephan Ewen, Seif Haridi, As-
terios Katsifodimos, Volker Markl, and Kostas
Tzoumas. “Apache Flink: Stream and batch pro-
cessing in a single engine”. In: IEEE Data Engi-
neering 38.4 (Dec. 2015).

[12] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Mike Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert
E. Gruber. “Bigtable: A Distributed Storage Sys-
tem for Structured Data”. In: Proceedings of the
7th USENIX Symposium on Operating System De-
sign and Implementation (OSDI). Seattle, Wash-
ington, USA, Nov. 2006.

[13] Guoqiang Jerry Chen, Janet L. Wiener, Shrid-
har Iyer, Anshul Jaiswal, Ran Lei, Nikhil Simha,
Wei Wang, Kevin Wilfong, Tim Williamson, and
Serhat Yilmaz. “Realtime Data Processing at
Facebook”. In: Proceedings of the 2016 SIG-
MOD International Conference on Management
of Data. San Francisco, California, USA, 2016,
pages 1087–1098.

[14] CockroachDB. Structured data encoding in Cock-
roachDB SQL. Jan. 2018. URL: https : / /
github . com / cockroachdb / cockroach /

blob/master/docs/tech-notes/encoding.

md (visited on 04/20/2018).

[15] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh
Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. “PNUTS: Yahoo!’s Hosted
Data Serving Platform”. In: Proceedings of the
VLDB Endowment 1.2 (Aug. 2008), pages 1277–
1288.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 227

http://kafka.apache.org/
http://kafka.apache.org/
https://www.facebook.com/note.php?note_id=430801045932
https://www.facebook.com/note.php?note_id=430801045932
https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md
https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md
https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md
https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md

[16] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, J. J. Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebas-
tian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David
Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,
Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. “Span-
ner: Google’s Globally Distributed Database”. In:
ACM Transactions on Computer Systems 31.3
(Aug. 2013), 8:1–8:22.

[17] Carlo A. Curino, Letizia Tanca, Hyun J. Moon,
and Carlo Zaniolo. “Schema Evolution in
Wikipedia: toward a Web Information System
Benchmark”. In: Proceedings of the International
Conference on Enterprise Information Systems
(ICEIS). June 2008.

[18] Databricks, Inc. Structured Streaming in Produc-
tion – Recover after changes in a streaming query.
URL: https : / / docs . databricks . com /
spark / latest / structured - streaming /

production . html # recover - after -

changes-in-a-streaming-query (visited on
09/06/2018).

[19] Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash Lak-
shman, Alex Pilchin, Swaminathan Sivasubrama-
nian, Peter Vosshall, and Werner Vogels. “Dy-
namo: Amazon’s Highly Available Key-value
Store”. In: Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles
(SOSP). Stevenson, Washington, USA, Oct. 2007,
pages 205–220.

[20] Dror G. Feitelson, Eitan Frachtenberg, and Kent
L. Beck. “Development and Deployment at Face-
book”. In: IEEE Internet Computing 17.4 (July
2013), pages 8–17.

[21] Sheldon Finkelstein. “Common Expression Anal-
ysis in Database Applications”. In: Proceedings
of the 1982 ACM SIGMOD International Confer-
ence on Management of Data. Orlando, Florida,
USA, June 1982, pages 235–245.

[22] Django Software Foundation. Django: The Web
framework for perfectionists with deadlines. Mar.
2018. URL: https : / / www . djangoproject .
com/ (visited on 03/20/2018).

[23] Matt Freels. TableMigrator. URL: https : / /
github.com/freels/table_migrator (vis-
ited on 02/01/2017).

[24] Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. “The Google File System”. In: Pro-
ceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP). Bolton Landing,
NY, USA, Oct. 2003, pages 29–43.

[25] Georgios Giannikis, Gustavo Alonso, and Donald
Kossmann. “SharedDB: Killing One Thousand
Queries with One Stone”. In: Proceedings of the
VLDB Endowment 5.6 (Feb. 2012), pages 526–
537.

[26] GitHub, Inc. gh-ost: GitHub’s online schema mi-
gration for MySQL. URL: https : / / github .
com/github/gh-ost (visited on 02/01/2017).

[27] Jon Gjengset. evmap: A lock-free, eventually con-
sistent, concurrent multi-value map. URL: https:
//github.com/jonhoo/rust-evmap (visited
on 09/13/2018).

[28] Pradeep Kumar Gunda, Lenin Ravindranath,
Chandramohan A. Thekkath, Yuan Yu, and Li
Zhuang. “Nectar: Automatic Management of Data
and Computation in Datacenters”. In: Proceedings
of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI). Vancou-
ver, British Columbia, Canada, 2010, pages 75–
88.

[29] Himanshu Gupta and Inderpal Singh Mumick.
“Selection of views to materialize in a data ware-
house”. In: IEEE Transactions on Knowledge and
Data Engineering 17.1 (Jan. 2005), pages 24–43.

[30] Himanshu Gupta and Inderpal Singh Mumick.
“Incremental Maintenance of Aggregate and Out-
erjoin Expressions”. In: Information Systems 31.6
(Sept. 2006), pages 435–464.

[31] Stavros Harizopoulos, Vladislav Shkapenyuk, and
Anastassia Ailamaki. “QPipe: A Simultaneously
Pipelined Relational Query Engine”. In: Proceed-
ings of the 2005 ACM SIGMOD International
Conference on Management of Data. Baltimore,
Maryland, USA, June 2005, pages 383–394.

[32] Peter Bhat Harkins. Lobste.rs access pattern
statistics for research purposes. Mar. 2018. URL:
https : / / lobste . rs / s / cqnzl5 / lobste _

rs_access_pattern_statistics_for#c_

hj0r1b (visited on 03/12/2018).

[33] Peter Bhat Harkins. replying comments

view in Lobsters. Feb. 2018. URL: https :
//github.com/lobsters/lobsters/blob/

640f2cdca10cc737aa627dbdf0bbe398b81b497f/

db / views / replying _ comments _ v06 . sql

(visited on 04/20/2018).

228 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.databricks.com/spark/latest/structured-streaming/production.html#recover-after-changes-in-a-streaming-query
https://docs.databricks.com/spark/latest/structured-streaming/production.html#recover-after-changes-in-a-streaming-query
https://docs.databricks.com/spark/latest/structured-streaming/production.html#recover-after-changes-in-a-streaming-query
https://docs.databricks.com/spark/latest/structured-streaming/production.html#recover-after-changes-in-a-streaming-query
https://www.djangoproject.com/
https://www.djangoproject.com/
https://github.com/freels/table_migrator
https://github.com/freels/table_migrator
https://github.com/github/gh-ost
https://github.com/github/gh-ost
https://github.com/jonhoo/rust-evmap
https://github.com/jonhoo/rust-evmap
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b
https://github.com/lobsters/lobsters/blob/640f2cdca10cc737aa627dbdf0bbe398b81b497f/db/views/replying_comments_v06.sql
https://github.com/lobsters/lobsters/blob/640f2cdca10cc737aa627dbdf0bbe398b81b497f/db/views/replying_comments_v06.sql
https://github.com/lobsters/lobsters/blob/640f2cdca10cc737aa627dbdf0bbe398b81b497f/db/views/replying_comments_v06.sql
https://github.com/lobsters/lobsters/blob/640f2cdca10cc737aa627dbdf0bbe398b81b497f/db/views/replying_comments_v06.sql

[34] Patrick Hunt, Mahadev Konar, Flavio Paiva Jun-
queira, and Benjamin Reed. “ZooKeeper: Wait-
free Coordination for Internet-scale Systems”. In:
Proceedings of the USENIX Annual Technical
Conference. Boston, Massachusetts, USA, June
2010, pages 149–158.

[35] Michael Isard and Martı́n Abadi. “Falkirk Wheel:
Rollback Recovery for Dataflow Systems”. In:
CoRR abs/1503.08877 (2015).

[36] Michael Isard, Mihai Budiu, Yuan Yu, Andrew
Birrell, and Dennis Fetterly. “Dryad: Distributed
Data-parallel Programs from Sequential Building
Blocks”. In: Proceedings of the 2nd ACM SIGOPS
European Conference on Computer Systems (Eu-
roSys). Lisbon, Portugal, Mar. 2007, pages 59–72.

[37] Bryan Kate, Eddie Kohler, Michael S. Kester,
Neha Narula, Yandong Mao, and Robert Morris.
“Easy Freshness with Pequod Cache Joins”. In:
Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI). Seattle, Washington, USA, Apr. 2014,
pages 415–428.

[38] Martin Kleppmann. Turning the database inside-
out with Apache Samza. Mar. 2015. URL: https:
/ / martin . kleppmann . com / 2015 / 03 / 04 /

turning-the-database-inside-out.html

(visited on 05/09/2016).

[39] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu,
Vikas Kedigehalli, Christopher Kellogg, Sailesh
Mittal, Jignesh M. Patel, Karthik Ramasamy, and
Siddarth Taneja. “Twitter Heron: Stream Process-
ing at Scale”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Manage-
ment of Data. Melbourne, Victoria, Australia,
May 2015, pages 239–250.

[40] Per-Åke Larson and Jingren Zhou. “Efficient
Maintenance of Materialized Outer-Join Views”.
In: Proceedings of the 23rd International Con-
ference on Data Engineering (ICDE). Apr. 2007,
pages 56–65.

[41] Ki Yong Lee and Myoung Ho Kim. “Optimiz-
ing the Incremental Maintenance of Multiple Join
Views”. In: Proceedings of the 8th ACM Inter-
national Workshop on Data Warehousing and
OLAP (DOLAP). Bremen, Germany, Nov. 2005,
pages 107–113.

[42] Lobsters Developers. Lobsters Database Schema
(schema.rb). Apr. 2018. URL: https : / /
github . com / lobsters / lobsters / blob /

93fe0fdd74028cf678134d6d112ae084d8fdd928/

db / schema . rb # L145 - L148 (visited on
04/23/2018).

[43] Lobsters Developers. Lobsters News Aggregator.
Mar. 2018. URL: https://lobste.rs (visited
on 03/02/2018).

[44] Frank McSherry. Differential Dataflow in Rust.
URL: https : / / crates . io / crates /
differential - dataflow (visited on
01/15/2017).

[45] Frank McSherry. Throughput and Latency in
Differential Dataflow: open-loop measurements.
Aug. 2017. URL: https : / / github . com /
frankmcsherry/blog/blob/master/posts/

2017 - 07 - 24 . md # addendum - open - loop -

measurements - 2017 - 08 - 14 (visited on
04/13/2018).

[46] Frank McSherry, Derek G. Murray, Rebecca
Isaacs, and Michael Isard. “Differential dataflow”.
In: Proceedings of the 6th Biennial Conference on
Innovative Data Systems Research (CIDR). Asilo-
mar, California, USA, Jan. 2013.

[47] John Meehan, Nesime Tatbul, Stan Zdonik, Cansu
Aslantas, Ugur Cetintemel, Jiang Du, Tim Kraska,
Samuel Madden, David Maier, Andrew Pavlo,
Michael Stonebraker, Kristin Tufte, and Hao
Wang. “S-Store: Streaming Meets Transaction
Processing”. In: Proceedings of the VLDB Endow-
ment 8.13 (Sept. 2015), pages 2134–2145.

[48] Jhonny Mertz and Ingrid Nunes. “Understand-
ing Application-Level Caching in Web Applica-
tions: A Comprehensive Introduction and Survey
of State-of-the-Art Approaches”. In: ACM Com-
puting Surveys 50.6 (Nov. 2017), 98:1–98:34.

[49] Microsoft, Inc. Create Indexed Views – Additional
Requirements. SQL Server Documentation. URL:
https://docs.microsoft.com/en-us/sql/

relational - databases / views / create -

indexed-views#additional-requirements

(visited on 04/16/2017).

[50] Subramanian Muralidhar, Wyatt Lloyd,
Sabyasachi Roy, Cory Hill, Ernest Lin, Wei-
wen Liu, Satadru Pan, Shiva Shankar, Viswanath
Sivakumar, Linpeng Tang, and Sanjeev Kumar.
“f4: Facebook’s Warm BLOB Storage System”.
In: Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation
(OSDI). Broomfield, Colorado, USA, Oct. 2014,
pages 383–398.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 229

https://martin.kleppmann.com/2015/03/04/turning-the-database-inside-out.html
https://martin.kleppmann.com/2015/03/04/turning-the-database-inside-out.html
https://martin.kleppmann.com/2015/03/04/turning-the-database-inside-out.html
https://github.com/lobsters/lobsters/blob/93fe0fdd74028cf678134d6d112ae084d8fdd928/db/schema.rb#L145-L148
https://github.com/lobsters/lobsters/blob/93fe0fdd74028cf678134d6d112ae084d8fdd928/db/schema.rb#L145-L148
https://github.com/lobsters/lobsters/blob/93fe0fdd74028cf678134d6d112ae084d8fdd928/db/schema.rb#L145-L148
https://github.com/lobsters/lobsters/blob/93fe0fdd74028cf678134d6d112ae084d8fdd928/db/schema.rb#L145-L148
https://lobste.rs
https://crates.io/crates/differential-dataflow
https://crates.io/crates/differential-dataflow
https://github.com/frankmcsherry/blog/blob/master/posts/2017-07-24.md#addendum-open-loop-measurements-2017-08-14
https://github.com/frankmcsherry/blog/blob/master/posts/2017-07-24.md#addendum-open-loop-measurements-2017-08-14
https://github.com/frankmcsherry/blog/blob/master/posts/2017-07-24.md#addendum-open-loop-measurements-2017-08-14
https://github.com/frankmcsherry/blog/blob/master/posts/2017-07-24.md#addendum-open-loop-measurements-2017-08-14
https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views#additional-requirements
https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views#additional-requirements
https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views#additional-requirements

[51] Derek G. Murray, Frank McSherry, Rebecca
Isaacs, Michael Isard, Paul Barham, and Martı́n
Abadi. In: Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP).
Farmington, Pennsylvania, USA, Nov. 2013,
pages 439–455.

[52] Derek G. Murray, Malte Schwarzkopf, Christo-
pher Smowton, Steven Smith, Anil Mad-
havapeddy, and Steven Hand. “CIEL: a universal
execution engine for distributed data-flow com-
puting”. In: Proceedings of the 8th USENIX
Symposium on Networked System Design and
Implementation (NSDI). Boston, Massachusetts,
USA, Mar. 2011, pages 113–126.

[53] Milos Nikolic, Mohammad Dashti, and Christoph
Koch. “How to Win a Hot Dog Eating Contest:
Distributed Incremental View Maintenance with
Batch Updates”. In: Proceedings of the 2016 ACM
SIGMOD International Conference on Manage-
ment of Data (SIGMOD). San Francisco, Califor-
nia, USA, 2016, pages 511–526.

[54] Rajesh Nishtala, Hans Fugal, Steven Grimm,
Marc Kwiatkowski, Herman Lee, Harry C. Li,
Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, David Stafford, Tony Tung, and Venkatesh-
waran Venkataramani. “Scaling Memcache at
Facebook”. In: Proceedings of the 10th USENIX
Conference on Networked Systems Design and
Implementation (NSDI). Lombard, Illinois, USA,
Apr. 2013, pages 385–398.

[55] Oracle Corp. MySQL Connector/Python Devel-
oper Guide. URL: https://dev.mysql.com/
doc / connector - python / en / connector -

python - api - mysqlcursorprepared . html

(visited on 09/05/2018).

[56] Percona LLC. pt-online-schema-change. URL:
https://www.percona.com/doc/percona-

toolkit/2.2/pt-online-schema-change.

html (visited on 02/01/2017).

[57] Dan R. K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. “Transac-
tional Consistency and Automatic Management in
an Application Data Cache”. In: Proceedings of
the 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI). Vancouver,
British Columbia, Canada, 2010, pages 279–292.

[58] “Ray: A Distributed Framework for Emerging
AI Applications”. In: Proceedings of the 13th

USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI). Carlsbad, Cal-
ifornia, USA, Oct. 2018.

[59] Prasan Roy, S. Seshadri, S. Sudarshan, and Sid-
dhesh Bhobe. “Efficient and Extensible Algo-
rithms for Multi Query Optimization”. In: Pro-
ceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data. Dal-
las, Texas, USA, May 2000, pages 249–260.

[60] Kenneth Salem, Kevin Beyer, Bruce Lindsay, and
Roberta Cochrane. “How to Roll a Join: Asyn-
chronous Incremental View Maintenance”. In:
Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data. Dal-
las, Texas, USA, 2000, pages 129–140.

[61] Tony Savor, Mitchell Douglas, Michael Gen-
tili, Laurie Williams, Kent Beck, and Michael
Stumm. “Continuous Deployment at Facebook
and OANDA”. In: Proceedings of the 38th In-
ternational Conference on Software Engineering
(ICSE). Austin, Texas, USA, 2016, pages 21–30.

[62] Bianca Schroeder, Adam Wierman, and Mor
Harchol-Balter. “Open Versus Closed: A Caution-
ary Tale”. In: Proceedings of the 3rd USENIX Con-
ference on Networked Systems Design and Im-
plementation (NSDI). San Jose, California, USA,
2006, pages 239–252.

[63] Jes Schultz Borland. What You Can (and Can’t)
Do With Indexed Views. Brent Ozar Unlimited
Blog. URL: https://www.brentozar.com/
archive / 2013 / 11 / what - you - can - and -

cant-do-with-indexed-views/ (visited on
04/16/2017).

[64] Ziv Scully and Adam Chlipala. “A Program
Optimization for Automatic Database Result
Caching”. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Program-
ming Languages (POPL). Paris, France, 2017,
pages 271–284.

[65] SoundCloud Ltd. Large Hadron Migrator. URL:
https://github.com/soundcloud/lhm (vis-
ited on 02/01/2017).

[66] Facebook Open Source. A persistent key-value
store for fast storage environments. Apr. 2018.
URL: http : / / rocksdb . org/ (visited on
04/20/2018).

[67] Facebook Open Source. MyRocks data dictionary
format. Apr. 2018. URL: https://github.com/
facebook/mysql-5.6/wiki/MyRocks-data-

dictionary-format (visited on 04/20/2018).

[68] Boerge Svingen. Publishing with Apache Kafka at
The New York Times. Confluent, Inc. blog. Sept.
2017. URL: https : / / www . confluent . io /
blog / publishing - apache - kafka - new -

york-times/ (visited on 09/14/2017).

230 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursorprepared.html
https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursorprepared.html
https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursorprepared.html
https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html
https://www.brentozar.com/archive/2013/11/what-you-can-and-cant-do-with-indexed-views/
https://www.brentozar.com/archive/2013/11/what-you-can-and-cant-do-with-indexed-views/
https://www.brentozar.com/archive/2013/11/what-you-can-and-cant-do-with-indexed-views/
https://github.com/soundcloud/lhm
http://rocksdb.org/
https://github.com/facebook/mysql-5.6/wiki/MyRocks-data-dictionary-format
https://github.com/facebook/mysql-5.6/wiki/MyRocks-data-dictionary-format
https://github.com/facebook/mysql-5.6/wiki/MyRocks-data-dictionary-format
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/

[69] The PHP Group. PHP Data Objects. URL: http:
//php.net/manual/en/book.pdo.php (vis-
ited on 09/05/2018).

[70] Frank W. Tompa and Joseph A. Blakeley. “Main-
taining Materialized Views Without Accessing
Base Data”. In: Information Systems 13.4 (Oct.
1988), pages 393–406.

[71] Ankit Toshniwal, Siddarth Taneja, Amit Shukla,
Karthik Ramasamy, Jignesh M. Patel, Sanjeev
Kulkarni, Jason Jackson, Krishna Gade, Maosong
Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal,
and Dmitriy Ryaboy. “Storm@Twitter”. In: Pro-
ceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. Snowbird,
Utah, USA, June 2014, pages 147–156.

[72] Werner Vogels. “Eventually Consistent”. In: Com-
munications of the ACM 52.1 (Jan. 2009),
pages 40–44.

[73] Jacqueline Xu. Online migrations at scale. Stripe
engineering blog. URL: https : / / stripe .
com / blog / online - migrations (visited on
02/01/2017).

[74] Jean Yang, Travis Hance, Thomas H. Austin,
Armando Solar-Lezama, Cormac Flanagan, and
Stephen Chong. “Precise, Dynamic Information
Flow for Database-backed Applications”. In: Pro-
ceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (PLDI). Santa Barbara, California,
USA, June 2016, pages 631–647.

[75] Matei Zaharia, Mosharaf Chowdhury, Tathagata
Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Sto-
ica. “Resilient Distributed Datasets: A Fault-
tolerant Abstraction for In-memory Cluster Com-
puting”. In: Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Im-

plementation (NSDI). San Jose, California, USA,
Apr. 2012, pages 15–28.

[76] Matei Zaharia, Tathagata Das, Haoyuan Li, Tim-
othy Hunter, Scott Shenker, and Ion Stoica. “Dis-
cretized Streams: Fault-tolerant Streaming Com-
putation at Scale”. In: Proceedings of the 24th

ACM Symposium on Operating Systems Prin-
ciples (SOSP). Farmington, Pennsylvania, USA,
Nov. 2013, pages 423–438.

[77] Jingren Zhou, Per-Åke Larson, and Hicham G.
Elmongui. “Lazy Maintenance of Materialized
Views”. In: Proceedings of the 33rd International
Conference on Very Large Data Bases. Vienna,
Austria, Sept. 2007, pages 231–242.

[78] Jingren Zhou, Per-Ake Larson, Johann-Christoph
Freytag, and Wolfgang Lehner. “Efficient Ex-
ploitation of Similar Subexpressions for Query
Processing”. In: Proceedings of the 2007 ACM
SIGMOD International Conference on Manage-
ment of Data (SIGMOD). Beijing, China, 2007,
pages 533–544.

[79] Jingren Zhou, Per-Åke Larson, and Jonathan
Goldstein. Partially Materialized Views. Techni-
cal report MSR-TR-2005-77. Microsoft Research,
June 2005.

[80] Jingren Zhou, Per-Åke Larson, Jonathan Gold-
stein, and Luping Ding. “Dynamic Materialized
Views”. In: Proceedings of the 23rd International
Conference on Data Engineering (ICDE). Istan-
bul, Turkey, Apr. 2007, pages 526–535.

[81] Yue Zhuge, Héctor Garcı́a-Molina, Joachim Ham-
mer, and Jennifer Widom. “View Maintenance in
a Warehousing Environment”. In: Proceedings of
the 1995 ACM SIGMOD International Confer-
ence on Management of Data. San Jose, Califor-
nia, USA, May 1995, pages 316–327.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 231

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php
https://stripe.com/blog/online-migrations
https://stripe.com/blog/online-migrations

