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Abstract

Deep neural networks (DNNs) are vulnera-
ble to adversarial examples, perturbations to
correctly classified examples which can cause
the model to misclassify. In the image do-
main, these perturbations are often virtually
indistinguishable to human perception, caus-
ing humans and state-of-the-art models to dis-
agree. However, in the natural language do-
main, small perturbations are clearly percep-
tible, and the replacement of a single word
can drastically alter the semantics of the doc-
ument. Given these challenges, we use a
black-box population-based optimization al-
gorithm to generate semantically and syntac-
tically similar adversarial examples that fool
well-trained sentiment analysis and textual en-
tailment models with success rates of 97% and
70%, respectively. We additionally demon-
strate that 92.3% of the successful sentiment
analysis adversarial examples are classified to
their original label by 20 human annotators,
and that the examples are perceptibly quite
similar. Finally, we discuss an attempt to use
adversarial training as a defense, but fail to
yield improvement, demonstrating the strength
and diversity of our adversarial examples. We
hope our findings encourage researchers to
pursue improving the robustness of DNNs in
the natural language domain.

1 Introduction

Recent research has found that deep neural net-
works (DNNSs) are vulnerable to adversarial ex-
amples (Goodfellow et al., 2015; Szegedy et al.,
2014). The existence of adversarial examples has
been shown in image classification (Szegedy et al.,
2014) and speech recognition (Carlini and Wag-
ner, 2018). In this work, we demonstrate that
adversarial examples can be constructed in the
context of natural language. Using a black-box

* Moustafa Alzantot and Yash Sharma contribute equally
to this work.

population-based optimization algorithm, we suc-
cessfully generate both semantically and syntac-
tically similar adversarial examples against mod-
els trained on both the IMDB (Maas et al., 2011)
sentiment analysis task and the Stanford Natural
Language Inference (SNLI) (Bowman et al., 2015)
textual entailment task. In addition, we validate
that the examples are both correctly classified by
human evaluators and similar to the original via
a human study. Finally, we attempt to defend
against said adversarial attack using adversarial
training, but fail to yield any robustness, demon-
strating the strength and diversity of the generated
adversarial examples.

Our results show that by minimizing the seman-
tic and syntactic dissimilarity, an attacker can per-
turb examples such that humans correctly classify,
but high-performing models misclassify. We are
open-sourcing our attack! to encourage research
in training DNNs robust to adversarial attacks in
the natural language domain.

2 Natural Language Adversarial
Examples

Adversarial examples have been explored primar-
ily in the image recognition domain. Exam-
ples have been generated through solving an op-
timization problem, attempting to induce misclas-
sification while minimizing the perceptual distor-
tion (Szegedy et al., 2014; Carlini and Wagner,
2017; Chen et al., 2018; Sharma and Chen, 2018).
Due to the computational cost of such approaches,
fast methods were introduced which, either in one-
step or iteratively, shift all pixels simultaneously
until a distortion constraint is reached (Goodfel-
low et al., 2015; Kurakin et al., 2017; Madry et al.,
2018). Nearly all popular methods are gradient-
based.

"https://github.com/nesl/nlp_
adversarial_examples
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Such methods, however, rely on the fact that
adding small perturbations to many pixels in the
image will not have a noticeable effect on a human
viewer. This approach obviously does not transfer
to the natural language domain, as all changes are
perceptible. Furthermore, unlike continuous im-
age pixel values, words in a sentence are discrete
tokens. Therefore, it is not possible to compute the
gradient of the network loss function with respect
to the input words. A straightforward workaround
is to project input sentences into a continuous
space (e.g. word embeddings) and consider this as
the model input. However, this approach also fails
because it still assumes that replacing every word
with words nearby in the embedding space will not
be noticeable. Replacing words without account-
ing for syntactic coherence will certainly lead to
improperly constructed sentences which will look
odd to the reader.

Relative to the image domain, little work has
been pursued for generating natural language ad-
versarial examples. Given the difficulty in gener-
ating semantics-preserving perturbations, distract-
ing sentences have been added to the input docu-
ment in order to induce misclassification (Jia and
Liang, 2017). In our work, we attempt to gener-
ate semantically and syntactically similar adver-
sarial examples, via word replacements, resolv-
ing the aforementioned issues. Minimizing the
number of word replacements necessary to in-
duce misclassification has been studied in previ-
ous work (Papernot et al., 2016), however with-
out consideration given to semantics or syntactics,
yielding incoherent generated examples. In recent
work, there have been a few attempts at generat-
ing adversarial examples for language tasks by us-
ing back-translation (Iyyer et al., 2018), exploit-
ing machine-generated rules (Ribeiro et al., 2018),
and searching in underlying semantic space (Zhao
et al., 2018). In addition, while preparing our sub-
mission, we became aware of recent work which
target a similar contribution (Kuleshov et al.,
2018; Ebrahimi et al., 2018). We treat these con-
tributions as parallel work.

3 Attack Design

3.1 Threat model

We assume the attacker has black-box access to
the target model; the attacker is not aware of the
model architecture, parameters, or training data,
and is only capable of querying the target model
with supplied inputs and obtaining the output pre-

dictions and their confidence scores. This set-
ting has been extensively studied in the image do-
main (Papernot et al., 2017; Chen et al., 2017a;
Alzantot et al., 2018), but has yet to be explored in
the context of natural language.

3.2 Algorithm

To avoid the limitations of gradient-based attack
methods, we design an algorithm for constructing
adversarial examples with the following goals in
mind. We aim to minimize the number of modified
words between the original and adversarial exam-
ples, but only perform modifications which retain
semantic similarity with the original and syntactic
coherence. To achieve these goals, instead of rely-
ing on gradient-based optimization, we developed
an attack algorithm that exploits population-based
gradient-free optimization via genetic algorithms.

An added benefit of using gradient-free opti-
mization is enabling use in the black-box case;
gradient-reliant algorithms are inapplicable in this
case, as they are dependent on the model being dif-
ferentiable and the internals being accessible (Pa-
pernot et al., 2016; Ebrahimi et al., 2018).

Genetic algorithms are inspired by the process
of natural selection, iteratively evolving a popu-
lation of candidate solutions towards better solu-
tions. The population of each iteration is a called a
generation. In each generation, the quality of pop-
ulation members is evaluated using a fitness func-
tion. “Fitter” solutions are more likely to be se-
lected for breeding the next generation. The next
generation is generated through a combination of
crossover and mutation. Crossover is the pro-
cess of taking more than one parent solution and
producing a child solution from them; it is anal-
ogous to reproduction and biological crossover.
Mutation is done in order to increase the diver-
sity of population members and provide better ex-
ploration of the search space. Genetic algorithms
are known to perform well in solving combina-
torial optimization problems (Anderson and Fer-
ris, 1994; Miihlenbein, 1989), and due to employ-
ing a population of candidate solutions, these al-
gorithms can find successful adversarial examples
with fewer modifications.

Perturb Subroutine: In order to explain our
algorithm, we first introduce the subroutine
Perturb. This subroutine accepts an input sen-
tence X, which can be either a modified sentence
or the same as X;,. It randomly selects a word w
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in the sentence X, and then selects a suitable re-
placement word that has similar semantic mean-
ing, fits within the surrounding context, and in-
creases the target label prediction score.

In order to select the best replacement word,
Perturb applies the following steps:

e Computes the IV nearest neighbors of the se-
lected word according to the distance in the
GloVe embedding space (Pennington et al.,
2014). We used euclidean distance, as we
did not see noticeable improvement using
cosine. We filter out candidates with dis-
tance to the selected word greater than 9.
We use the counter-fitting method presented
in (Mrksi¢ et al., 2016) to post-process the
adversary’s GloVe vectors to ensure that the
nearest neighbors are synonyms. The result-
ing embedding is independent of the embed-
dings used by victim models.

e Second, we use the Google 1 billion words
language model (Chelba et al., 2013) to fil-
ter out words that do not fit within the context
surrounding the word w in X.,,;-. We do so by
ranking the candidate words based on their
language model scores when fit within the re-
placement context, and keeping only the top
K words with the highest scores.

e From the remaining set of words, we pick the
one that will maximize the target label pre-
diction probability when it replaces the word
w 1N Xeyr

o Finally, the selected word is inserted in place
of w, and Perturb returns the resulting sen-
tence.

The selection of which word to replace in the
input sentence is done by random sampling with
probabilities proportional to the number of neigh-
bors each word has within Euclidean distance ¢ in
the counter-fitted embedding space, encouraging
the solution set to be large enough for the algo-
rithm to make appropriate modifications. We ex-
clude common articles and prepositions (e.g. a, to)
from being selected for replacement.

Optimization Procedure: The optimization al-
gorithm can be seen in Algorithm 1. The algo-
rithm starts by creating the initial generation P° of
size S by calling the Perturb subroutine S times
to create a set of distinct modifications to the orig-
inal sentence. Then, the fitness of each popula-
tion member in the current generation is computed
as the target label prediction probability, found by

Algorithm 1 Finding adversarial examples
for i = 1,..., S in population do
PZ»O  Perturb(Xorig, target)
for g = 1,2...G generations do
fori =1, ..., S in population do
-Fz‘gil = f(PZ'gil)target

Xadv = ,P:jrglmaxj F]971
if arg max, f(Xq4p)c ==t then

return x4, > {Found successful attack}
else

Pi] = {Xaav}

p = Normalize(F9~1)

for i = 2, ..., S in population do
Sample parent; from P91 with probs p
Sample parents from P9~ with probs p
child = Crossover(parenty, parents)
childymy = Perturb(child, target)
P? = {childpus}

querying the victim model function f. If a pop-
ulation member’s predicted label is equal to the
target label, the optimization is complete. Other-
wise, pairs of population members from the cur-
rent generation are randomly sampled with prob-
ability proportional to their fitness values. A new
child sentence is then synthesized from a pair of
parent sentences by independently sampling from
the two using a uniform distribution. Finally, the
Perturb subroutine is applied to the resulting
children.

4 Experiments

To evaluate our attack method, we trained models
for the sentiment analysis and textual entailment
classification tasks. For both models, each word
in the input sentence is first projected into a fixed
300-dimensional vector space using GloVe (Pen-
nington et al., 2014). Each of the models used
are based on popular open-source benchmarks,
and can be found in the following repositories”>.
Model descriptions are given below.

Sentiment Analysis: We trained a sentiment
analysis model using the IMDB dataset of movie
reviews (Maas et al., 2011). The IMDB dataset
consists of 25,000 training examples and 25,000
test examples. The LSTM model is composed of
128 units, and the outputs across all time steps are

https://github.com/keras—team/keras/
blob/master/examples/imdb_lstm.py

*https://github.com/Smerity/keras_
snli/blob/master/snli_rnn.py
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Original Text Prediction = Negative. (Confidence = 78.0%)

This movie had acting, plot, and choice of actors. (Leslie Nielsen ...come on!!!)
the one part 1 slightly funny was the battling FBI/CIA agents, but because the audience was
mainly they didn’t understand that theme.

Adversarial Text Prediction = Positive. (Confidence = 59.8%)

This movie had horrific acting, horrific plot, and horrifying choice of actors. (Leslie Nielsen ...come
on!!!) the one part I regarded slightly funny was the battling FBI/CIA agents, but because the audience
was mainly youngsters they didn’t understand that theme.

Table 1: Example of attack results for the sentiment analysis task. Modified words are highlighted in green and
red for the original and adversarial texts, respectively.

Original Text Prediction: Entailment (Confidence = 86%)

Premise: A runner wearing purple strives for the finish line.
Hypothesis: A wants to head for the finish line.

Adversarial Text Prediction: Contradiction (Confidence = 43%)

Premise: A runner wearing purple strives for the finish line.
Hypothesis: A racer wants to head for the finish line.

Table 2: Example of attack results for the textual entailment task. Modified words are highlighted in green and red
for the original and adversarial texts, respectively.

Sentiment Analysis Textual Entailment
% success | % modified || % success | % modified
Perturb baseline 52% 19% - -
Genetic attack 97% 14.7% 70% 23%

Table 3: Comparison between the attack success rate and mean percentage of modifications required by the genetic

attack and perturb baseline for the two tasks.

averaged and fed to the output layer. The test accu-
racy of the model is 90%, which is relatively close
to the state-of-the-art results on this dataset.
Textual Entailment: We trained a textual en-
tailment model using the Stanford Natural Lan-
guage Inference (SNLI) corpus (Bowman et al.,
2015). The model passes the input through a
ReLU “translation” layer (Bowman et al., 2015),
which encodes the premise and hypothesis sen-
tences by performing a summation over the word
embeddings, concatenates the two sentence em-
beddings, and finally passes the output through 3
600-dimensional ReLLU layers before feeding it to
a 3-way softmax. The model predicts whether the
premise sentence entails, contradicts or is neutral
to the hypothesis sentence. The test accuracy of
the model is 83% which is also relatively close to
the state-of-the-art (Chen et al., 2017b).
4.1 Attack Evaluation Results
We randomly sampled 1000, and 500 correctly
classified examples from the test sets of the two
tasks to evaluate our algorithm. Correctly classi-
fied examples were chosen to limit the accuracy
levels of the victim models from confounding our

results. For the sentiment analysis task, the at-
tacker aims to divert the prediction result from
positive to negative, and vice versa. For the tex-
tual entailment task, the attacker is only allowed
to modify the hypothesis, and aims to divert the
prediction result from ‘entailment’ to ‘contradic-
tion’, and vice versa. We limit the attacker to
maximum G = 20 iterations, and fix the hyper-
parameter values to S = 60, N = 8, K = 4, and
6 = 0.5. We also fixed the maximum percentage
of allowed changes to the document to be 20% and
25% for the two tasks, respectively. If increased,
the success rate would increase but the mean qual-
ity would decrease. If the attack does not succeed
within the iterations limit or exceeds the specified
threshold, it is counted as a failure.

Sample outputs produced by our attack are
shown in Tables 1 and 2. Additional outputs can
be found in the supplementary material. Table 3
shows the attack success rate and mean percent-
age of modified words on each task. We compare
to the Perturb baseline, which greedily applies
the Perturb subroutine, to validate the use of
population-based optimization. As can be seen
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from our results, we are able to achieve high suc-
cess rate with a limited number of modifications
on both tasks. In addition, the genetic algorithm
significantly outperformed the Perturb baseline
in both success rate and percentage of words mod-
ified, demonstrating the additional benefit yielded
by using population-based optimization. Testing
using a single TitanX GPU, for sentiment analy-
sis and textual entailment, we measured average
runtimes on success to be 43.5 and 5 seconds per
example, respectively. The high success rate and
reasonable runtimes demonstrate the practicality
of our approach, even when scaling to long sen-
tences, such as those found in the IMDB dataset.

Speaking of which, our success rate on textual
entailment is lower due to the large disparity in
sentence length. On average, hypothesis sentences
in the SNLI corpus are 9 words long, which is
very short compared to IMDB (229 words, lim-
ited to 100 for experiments). With sentences that
short, applying successful perturbations becomes
much harder, however we were still able to achieve
a success rate of 70%. For the same reason, we
didn’t apply the Perturb baseline on the textual
entailment task, as the Perturb baseline fails to
achieve any success under the limits of the maxi-
mum allowed changes constraint.

4.2 User study

We performed a user study on the sentiment anal-
ysis task with 20 volunteers to evaluate how per-
ceptible our adversarial perturbations are. Note
that the number of participating volunteers is sig-
nificantly larger than used in previous studies (Jia
and Liang, 2017; Ebrahimi et al., 2018). The user
study was composed of two parts. First, we pre-
sented 100 adversarial examples to the participants
and asked them to label the sentiment of the text
(i.e., positive or negative.) 92.3% of the responses
matched the original text sentiment, indicating that
our modification did not significantly affect human
judgment on the text sentiment. Second, we pre-
pared 100 questions, each question includes the
original example and the corresponding adversar-
ial example in a pair. Participants were asked to
judge the similarity of each pair on a scale from
1 (very similar) to 4 (very different). The average
rating is 2.23 + 0.25, which shows the perceived
difference is also small.

4.3 Adversarial Training
The results demonstrated in section 4.1 raise the
following question: How can we defend against

these attacks? We performed a preliminary exper-
iment to see if adversarial training (Madry et al.,
2018), the only effective defense in the image do-
main, can be used to lower the attack success rate.
We generated 1000 adversarial examples on the
cleanly trained sentiment analysis model using the
IMDRB training set, appended them to the existing
training set, and used the updated dataset to ad-
versarially train a model from scratch. We found
that adversarial training provided no additional ro-
bustness benefit in our experiments using the test
set, despite the fact that the model achieves near
100% accuracy classifying adversarial examples
included in the training set. These results demon-
strate the diversity in the perturbations generated
by our attack algorithm, and illustrates the diffi-
culty in defending against adversarial attacks. We
hope these results inspire further work in increas-
ing the robustness of natural language models.

5 Conclusion

We demonstrate that despite the difficulties in gen-
erating imperceptible adversarial examples in the
natural language domain, semantically and syntac-
tically similar adversarial examples can be crafted
using a black-box population-based optimization
algorithm, yielding success on both the sentiment
analysis and textual entailment tasks. Our human
study validated that the generated examples were
indeed adversarial and perceptibly quite similar.
We hope our work encourages researchers to pur-
sue improving the robustness of DNNs in the nat-
ural language domain.

Acknowledgement

This research was supported in part by the U.S.
Army Research Laboratory and the UK Ministry
of Defence under Agreement Number W911NF-
16-3-0001, the National Science Foundation under
award # CNS-1705135, OAC-1640813, and IIS-
1760523, and the NIH Center of Excellence for
Mobile Sensor Data-to-Knowledge (MD2K) un-
der award 1-U54EB020404-01. Ahmed Elgohary
is funded by an IBM PhD Fellowship. Any find-
ings in this material are those of the author(s) and
do not reflect the views of any of the above fund-
ing agencies. The U.S. and U.K. Governments are
authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copy-
right notation hereon.

2894



References

Moustafa  Alzantot, Yash  Sharma, Supriyo
Chakraborty, and Mani Srivastava. 2018. Genat-
tack: Practical black-box attacks with gradient-free
optimization. arXiv preprint arXiv:1805.11090.

Edward J Anderson and Michael C Ferris. 1994. Ge-
netic algorithms for combinatorial optimization: the
assemble line balancing problem. ORSA Journal on
Computing, 6.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Empirical Methods in Natural Language Process-

ing.

Nicholas Carlini and David Wagner. 2017. Towards
evaluating the robustness of neural networks. arXiv
preprint arXiv:1608.04644.

Nicholas Carlini and David Wagner. 2018. Audio ad-
versarial examples: Targeted attacks on speech-to-
text. In Advances in neural information processing
systems: Deep Learning and Security Workshop.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi,
and Cho-Jui Hsieh. 2018. EAD: Elastic-net attacks
to deep neural networks via adversarial examples. In
AAAI Conference on Artificial Intelligence.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. 2017a. ZOO: Zeroth order opti-
mization based black-box attacks to deep neural net-
works without training substitute models. In ACM
Workshop on Artificial Intelligence and Security.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017b. Enhanced Istm for
natural language inference. In Association for Com-
putational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Association for Com-
putational Linguistics.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-
ing Representations.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In North American Association for Computational
Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Empirical Methods in Natural Language Process-

ing.

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung
Lau, and Stefano Ermon. 2018. Adversarial ex-
amples for natural language classification problems.
arXiv preprint arXiv:1602.02697.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
2017. Adversarial machine learning at scale. In
International Conference on Learning Representa-
tions.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Association for Computational Linguistics:
Human Language Technologies.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversar-
ial attacks. In International Conference on Learning
Representations.

Nikola Mrksi¢, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gasi¢, Lina Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. 2016. Counter-fitting word vectors to lin-
guistic constraints. In North American Chapter of
the Association for Computational Linguistics.

Heinz Miihlenbein. 1989. Parallel genetic algorithms,
population genetics and combinatorial optimization.
In Workshop on Parallel Processing: Logic, Organi-
zation, and Technology.

N. Papernot, P. McDaniel, A. Swami, and R. Ha-
rang. 2016. Crafting adversarial input sequences
for recurrent neural networks.  arXiv preprint
arXiv:1604.08275.

Nicolas Papernot, Patrick McDaniel, lan Goodfel-
low, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. 2017. Practical black-box attacks against
machine learning. In ACM on Asia Conference on
Computer and Communications Security.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging nlp models. In Association
for Computational Linguistics.

Yash Sharma and Pin-Yu Chen. 2018. Attacking the
madry defense model with 11-based adversarial ex-
amples. In International Conference on Learning
Representations: Workshops.

2895



Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In Inter-
national Conference on Learning Representations.

2896



