
Generalized Batch Normalization: Towards Accelerating Deep Neural Networks

Xiaoyong Yuan∗

University of Florida
chbrian@ufl.edu

Zheng Feng∗

University of Florida
fengzheng@ufl.edu

Matthew Norton
Naval Postgraduate School

mnorton@nps.edu

Xiaolin Li
University of Florida
andyli@ece.ufl.edu

Abstract

Utilizing recently introduced concepts from statistics and quan-
titative risk management, we present a general variant of Batch
Normalization (BN) that offers accelerated convergence of
Neural Network training compared to conventional BN. In
general, we show that mean and standard deviation are not
always the most appropriate choice for the centering and scal-
ing procedure within the BN transformation, particularly if
ReLU follows the normalization step. We present a General-
ized Batch Normalization (GBN) transformation, which can
utilize a variety of alternative deviation measures for scaling
and statistics for centering, choices which naturally arise from
the theory of generalized deviation measures and risk theory
in general. When used in conjunction with the ReLU non-
linearity, the underlying risk theory suggests natural, arguably
optimal choices for the deviation measure and statistic. Uti-
lizing the suggested deviation measure and statistic, we show
experimentally that training is accelerated more so than with
conventional BN, often with improved error rate as well. Over-
all, we propose a more flexible BN transformation supported
by a complimentary theoretical framework that can potentially
guide design choices.

1 Introduction

Training a deep neural network has traditionally been a diffi-
cult task. Issues such as the vanishing and exploding gradient,
see e.g., (Pascanu, Mikolov, and Bengio 2013), make the use
of gradient based optimization techniques difficult from the
perspective of stability and fast convergence. However, new,
seemingly simple tools have emerged to help practitioners
overcome common pitfalls of neural network training. Two
prominent examples are the use of Batch Normalization (BN)
and Rectified Linear Units (ReLU).

Originally proposed by (Ioffe and Szegedy 2015), BN
provides a simple transformation which incentivizes the ho-
mogenization of neural network layer outputs, so as to have
the same scale and mean, eliminating what is referred to as
internal covariate shift. Intuitively, this allows the ‘signal’
flowing through the neural network to maintain a consistent
center and scale, potentially stabilizing gradients and the
training procedure as a whole.
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Consider a single layer of the network which first re-
ceives output from the previous layer h and then applies
an affine transformation to get x = Wh + b, followed
by an element-wise non-linearity to produce output g(x)
which is fed to the next layer. Let x = [x1, x2, · · · , xn]

T de-
note its individual components so that we can write g(x) =
[g(x1), g(x2), ..., g(xn)]

T .
The BN transformation is based upon the following trans-

formation on each dimension j of the input,

x̂j ←
xj − E[xj ]

√

E[(xj − E[xj ])2]
,

where E[xj ] and
√

E[(xj − E[xj ])2] are the mean and stan-
dard deviation of the random variable xj , which are estimated
during training with a batch of training examples.

In this paper, we begin by asking the question: Are mean
and standard deviation the right choice for every network
architecture? This simple question leads us to the main con-
tribution of this paper, which is the observation that batch
normalization can naturally be generalized and improved by
considering the general transformation,

x̂j ←
xj − S(xj)

D(xj)
,

where D is some measure of deviation, not necessarily the
standard deviation, and where S is a statistic which is not
necessarily the mean. While arising from a specific set of
axioms in risk theory, one can think ofD as a general measure
of the non-constancy of x and S as a type of ’center.‘

We show that there exist many different choices for D and
S besides standard deviation and mean, and that by formulat-
ing the batch normalization transformation with these alterna-
tives one can accelerate neural network training compared to
conventional BN and, in some settings, obtain improved pre-
dictive performance. Additionally, we show how the choice
of D and S are driven not only by straightforward intuition,
but also by recently developed theoretical tools from statis-
tics and risk theory. Specifically, the theory of generalized
deviation measures provides us with a wealth of choices for
deviation measure D, which includes standard deviation as
a special case. In addition, for any choice of D, there is a
naturally corresponding statistic S . Thus, choosingD implies
natural choices for S and vice versa.



Besides the simple observation that mean and standard
deviation can be replaced by alternatives, our analysis is
also driven by the observation that the appropriateness of
the choice of D and S is directly tied to the choice of non-
linearity which follows the normalization transformation. We
focus our analysis on the ReLU non-linearity from (Glorot,
Bordes, and Bengio 2011) and (Nair and Hinton 2010), which
has played a significant role in stabilizing and accelerating
neural network training (Krizhevsky, Sutskever, and Hinton
2012; Dahl, Sainath, and Hinton 2013). We show that mean
and standard deviation are not natural choices for centering
and scaling if ReLU follows the normalization transformation.
Risk theory and simple intuition suggest more natural choices.
In fact, we see that one of these choices, the superquantile
deviation, allows explicit control over the level of sparsity
of activation’s; hypothesized to be an important property of
ReLU (Glorot, Bordes, and Bengio 2011). While we focus on
ReLU, this intuition can also be applied to any asymmetric
non-linearity such as Leaky ReLU (Maas, Hannun, and Ng
2013), Exponential Linear Unit (Clevert, Unterthiner, and
Hochreiter 2015), or any other arising from the ReLU family
(e.g. (He et al. 2015)).

We demonstrate on MNIST, CIFAR-10, CIFAR-100, and
SVHN datasets that the speed of convergence of stochastic
gradient descent (SGD) can be increased by simply choosing
a different D and S and that, in some settings, we obtain
improved predictive performance. Our experimental analysis
also serves to support the intuition that ReLU paired with

D =
√

E[(x− E[x])2] and S = E[x] is a mismatch and
that asymmetric choices for D and S which are suggested by
risk theory and intuition do, in fact, work better.

Although much further analysis is needed in this direc-
tion, we show that the use of ReLU’s in tandem with BN
can be tied directly to risk theory via a recently introduced
concept called Buffered Probability of Exceedance (bPOE).
Specifically, the use of normalization followed by a ReLU
gives rise to what can be considered to be the tightest con-
vex approximation to the 0 − 1 loss. This is intriguing
given the history of neural networks began with the con-
cept of 0 − 1 loss (indicator function) neural output which
were then approximated with the sigmoid transformation
as a differentiable surrogate (see e.g. (Rosenblatt 1958;
McCulloch and Pitts 1943)).

2 Batch Normalization

The BN transformation is based upon the following transfor-
mation on each dimension j of the input,

x̂j ←
xj − µj
√

σ2
j + ε

,

where σj and µj are the empirical standard deviation and
mean of the random variable xj , which are estimated during
training with a batch of training examples. Throughout this
paper, we will view x as a random vector which is observed
empirically via the training batches. Thus, during training,

µj =
1

|B|

∑|B|
i=1 x

(i)
j with |B| denoting the size of the training

batch.

The BN procedure follows the actual normalization with
the following linear transformation, where γj , βj are parame-
ters which will be tuned during training,

γj x̂j + βj .

The BN procedure is then followed by the final non-linear
transformation g(γj x̂j + βj). Why is this linear transforma-
tion needed? As noted by (Ioffe and Szegedy 2015), the BN
transformation may not be appropriate or work well in con-
junction with the non-linear transformation g that follows.
Thus, the authors introduced a way to adjust the BN trans-
formation if necessary. However, there is no guarantee that
training will find the right linear transformation and be able
to properly counteract a poor choice of scale and center. In
some sense, this is why it is argued in (Mishkin and Matas
2015) that proper initialization is all that is needed. Assuming
that the centering and scaling are not correct, which is to say
that the trainable linear transformation is necessary to adjust
the center and scale, then BN can be loosley viewed as a type
of data dependent initialization strategy. In this sense, the
additional linear transformation can be used within our pro-
posed scheme in exactly the same way, but with more control
over the initialization where one would hope to select a more
appropriate data-dependent centering and scaling factor.

Cases where the standard BN may not work well in
conjunction with the non-linearity g can be easily illus-
trated, particularly if g is the ReLU non-linearity. Con-
sider a set of outputs {x1, · · · , xN} from a network layer

which have mean zero, i.e., 1
N

∑N

i=1 xi = 0, with ordering
x1 < · · · < xk < 0 < xk+1 < · · · < xN . Assume that we
are then going to divide by some normalization factor, such
as standard deviation, and then feed these values into a ReLU
non-linearity max{0, xi}. The ReLU non-linearity will map
points x1, · · · , xk to zero. Considering this fact, does it make
sense to first divide the whole set of N points by the standard
deviation? Intuitively, it would make more sense to divide by
the variance of only the set of points {xk+1, · · · , xN}. The
variation of the set of points {x1, · · · , xk} is irrelevant given
the fact that a ReLU will follow, sending all of these points
to zero. This consideration is particularly important if the
conditional distributions {x1, · · · , xk} and {xk+1, · · · , xN}
exhibit very different scales and variation. In this case, it
may be more appropriate to use a one-sided measure of
deviation D for the normalization step such as the Right

Semi-Deviation (RSD) 1
N

∑N

i=1 max{0, xi}. Furthermore, a
similar argument can be applied to the centering operation.
Assume, for instance, that the distribution {x1, · · · , xN} is
heavy-tailed, with {x1, · · · , xN−1} having mean zero and
variance 1, but with xN = 100. The mean of all N points will
be very large, and centering the data via mean subtraction
will yield xN − µ as the only term with value larger than
zero. Thus, the application of the ReLU will leave only one
sample as having non-zero value (and gradient), with much
of the valuable learning signal lost because of poor choice of
centering statistic S .

This paper shows that there are other ways to perform
batch normalization, potentially avoiding the need to ad-
just the normalization with the affine transformation (or at



least reducing the amount by which it would need to be ad-
justed), offering accelerated convergence. Generalizations
and variants of BN have been proposed before. For exam-
ple, Klambauer et al. (2017) proposed a self-normalizing
network layer, but is limited to standard feed-forward archi-
tectures. Ba, Kiros, and Hinton (2016) altered BN to work
with recurrent neural networks. Mishkin and Matas (2015)
argue that BN is simply another way to perform initialization,
thus proposing initialization methods that produce similar ef-
fects. The idea of BN was altered to weight normalization by
reparameterizing the weights (Salimans and Kingma 2016;
Chunjie, Qiang, and others 2017). Our proposed approach,
while relying on simple principles, is grounded in a broader
theory and maintains all important flexibility of conventional
BN.

3 Asymmetric Deviation Measures in Risk

Theory

As alluded to in the introduction, it is easy to question the use
of variance as the scale normalizing factor if it is followed
by the ReLU transformation. This gives rise to the obvious
question: What other options do we have that may be more
appropriate? We find, in general, that risk theory provides
us with an entire class of generalized deviation measures to
choose from. In this section, we briefly introduce risk theory
before discussing generalized deviation measures in Section
4 where we introduce the GBN transformation and show that
generalized deviation measures provide us with an array of
alternatives to mean and standard deviation.

Over the past 25 years, risk management theory has played
a crucial role in the development of fundamental statistical
concepts that not only measure risk (Artzner et al. 1999;
Föllmer and Schied 2002; Szegö 2002), but have proven
fundamental to statistical theory and optimization under un-
certainty. A full review of risk theory is beyond the scope
of this paper, but a simple example in the context of finan-
cial engineering can be used to illustrate. Consider an in-
vestment which will yield a loss of x, with x being a ran-
dom monetary loss. Assume we knew the distribution of x,
and we were to ask: How risky is this investment? How can
we measure risk to compare it against other investments y?
An obvious choice would be to look at the expected loss
E[x]. However, this may be inappropriate, as investor ob-
jectives (or distribution of x) may be highly asymmetric.
It may be more appropriate to measure risk with an asym-
metric quantity. One example would be to use the quantile
qα(x) = min{z|P (x ≤ z) ≥ α}, where α ∈ [0, 1] is a prob-
ability level. Its inverse, called Probability of Exceedance
(POE), given by P (x > z) where z ∈ R is some known
threshold, may also be desirable if some threshold z is known
and exceeding such a threshold is undesirable.

One of the primary drivers of risk theory, however, has
been the need to quantify risk in such a way that optimization
can take place (e.g. finding the portfolio with minimal risk).
The quantile, also called the Value-at-Risk, and POE are
numerically troublesome in this context. Specifically, these
functions often prove to be non-convex and discontinuous,
essentially reducing to sums of indicator (0−1 loss) functions.

From this difficulty, more amenable alternatives have arisen.
Two popular alternatives that are relevant to our discus-

sion are the superquantile and Buffered Probability of Ex-
ceedance (bPOE) (Rockafellar and Uryasev 2000; 2002;
Acerbi and Tasche 2002; Mafusalov and Uryasev 2015). The
superquantile is a measure of uncertainty similar to the quan-
tile, but with superior mathematical properties. Formally, the
superquantile, also called Conditional Value-at-Risk (CVaR)
in the financial engineering literature, for a continuously dis-
tributed x is defined as

q̄α(x) = E [x|x > qα(x)] .

For general distributions, the superquantile can be defined by
the following formula,

q̄α(x) = min
γ

γ +
E[x− γ]+

1− α
, (1)

where [·]+ = max{·, 0}.
Similar to qα(x), the superquantile can be used to assess

the tail of the distribution. The superquantile, though, is far
easier to handle in optimization contexts. It also has the im-
portant property that it considers the magnitude of events
within the tail. Therefore, in situations where a distribution
may have a heavy tail, the superquantile accounts for mag-
nitudes of low-probability large-loss tail events while the
quantile does not account for this information.

bPOE is the inverse of the superquantile. In other words,
bPOE calculates one minus the probability level at which the
superquantile equals a specified threshold z. It is calculated
by the formula

p̄z(x) = min
a≥0

E[a(x− z) + 1]+ = min
γ<z

E[x− γ]+

z − γ
,

where [·]+ = max{·, 0}. In addition, we have the following
formula which will be important for our case. Assuming that
p̄z(x) = 1− α, we have that

p̄z(x) =
E[x− qα(x)]

+

q̄α(x)− qα(x)
.

Roughly speaking, bPOE calculates the proportion of worst
case outcomes which average to z.

As it relates to POE, bPOE can be viewed as an opti-
mal convex approximation. More specifically, among law-
invariant functions of x, p̄z(x) is the minimal (tightest) quasi-
convex upper bound of P (x > z) = E[I(x > z)].

These ideas, though, have not been limited to risk manage-
ment and finance. Machine Learning has also been impacted
by this theory. For example, new support vector classifiers
have been generated with superquantile and bPOE concepts
(Takeda and Sugiyama 2008; Norton, Mafusalov, and Urya-
sev 2017; Gotoh and Uryasev 2017) and sequential decision
problems are being formulated with risk in mind (Galichet,
Sebag, and Teytaud 2013; Chow and Ghavamzadeh 2014).

4 Generalized Batch Normalization

In this paper, we define Generalized Batch Normalization
(GBN) to be identical to conventional BN but with standard



deviation replaced by a more general deviation measureD(x)
and the mean replaced by a corresponding statistic S(x). In
other words, we have the transformation,

x̂j ←
xj − S(xj)

D(xj)
.

Here, each choice of D is naturally paired with some S,
which we discuss in the following section. In Section 5, we
implement a suite of these new measures and test them on
the MNIST, CIFAR-10, CIFAR-100, and SVHN datasets,
showing that convergence can be accelerated, and sometime
accuracy improved, by use of different deviation measures
and statistics.

4.1 Generalized Deviation Measures and
Statistics

In (Rockafellar, Uryasev, and Zabarankin 2006), the con-
cept of a generalized deviation measure was introduced to
broaden the statistical view of deviation beyond the single
case of standard deviation, specifically for use in quantitative
risk analysis. These deviation measures follow a very general
set of axioms which we will not delve into here. However,
some examples can be found in Table 1, and they can be un-
derstood intuitively as follows: Deviation measures quantify
the non-constancy of a random variable. As seen in Table 1,
standard deviation is only one of many possibilities, such
as the asymmetric deviation measures RSD and SQD with
α > 0. These measures of deviation look at the variation
only in the right-tail of the distribution of x. It’s easy to see
how this type of asymmetric measure would be of interest in
finance, where it may be important to analyze the variation
of only the largest losses within the right-tail.

The theory of generalized deviation measures is also com-
plemented by the recently introduced theory of the Risk Quad-
rangle. Utilizing functional relationships that are beyond the
scope of this paper, (Rockafellar and Uryasev 2013) shows
that measures of deviation are intimately related to similar
measures of risk, regret, and error. Furthermore, associated
with any measure of deviation is a unique statistic. In short,
however, without getting into too much detail, one can think
of the statistic as a type of ‘center.’ In Table 1, we see how this
intuition plays out, with the corresponding statistics listed in
the right column. For SD, MAD, and RSD, we see that S(x)
is simply the expectation. However, for SQD with α = .5,
we see that S(x) = q.5(x) the median, certainly a different
notion of the ‘center.’ Furthermore, we see that for RBD,
the statistic is the center of the range. However, for SQD
it is important to notice that we can achieve very different
statistics by moving α, which gives us different quantiles.

4.2 Choosing D or S: General Intuition

Now that we are given more options for deviation measures
and statistics, we can begin to think about the benefits and
drawbacks of each within the neural network architecture and
the GBN transformation. Utilizing standard deviation seems
like an intuitive choice. However, this depends heavily on the
shape of the (empirical) distribution of x. If the distribution is
relatively symmetric, then standard deviation will be indica-
tive of the overall scale and the mean will be indicative of

the ‘center’. Similarly, this may hold true if the distribution
does not have heavy tails or outliers on one side or the other.
However, if the distribution of x has e.g. heavy tails, is highly
asymmetric, has outliers, or is multimodal; then the mean
may be a poor choice for the ‘center’ and the deviation of
values to the right of the mean may be dramatically different
than the deviation of values to the left of the mean. In this
case, a quantile may be a more appropriate notion of the
‘center.’ Choosing, for example, the median instead of the
mean assures that we are truly ‘centering’ the data, with half
of the points on the ‘left’ and half on the ‘right.’

Even if the distribution of x is not asymmetric or heavy
tailed, the choice of center is particularly important if normal-
ization is followed by the ReLU activation. Specifically, the
choice of center controls the sparsity of activation’s produced
by the ReLU, since any elements left-of-center will be sent
to zero. ReLU induced sparsity has been hypothesized as
critical to its success (Glorot, Bordes, and Bengio 2011). In
this case, the quantile is a natural choice for center that pro-
vides precise control over such sparsity. If the normalization
centers w.r.t. the quantile at α, exactly α% of activation’s
across the batch will have zero value.

Driving our intuition from the beginning was the idea that
the non-linearity, deviation measure, and statistic should be
chosen in tandem. As mentioned in Section 2, the pairing
of ReLU with typical BN (i.e. standard deviation and mean
normalization) does not seem appropriate given the fact that
standard deviation is symmetric while ReLU is asymmetric.
Thus, in light of Section 2, we find that asymmetric deviation
measures are more appropriate such as RSD or SQD for any
α > 0. In Section 5, we see this intuition confirmed, with
RSD and SQD outperforming SD in terms of convergence
rate and, often times, test error. Although not explored in our
experiments, this intuition applies to any asymmetric non-
linearity such as the Leaky ReLU (Maas, Hannun, and Ng
2013), Exponential Linear Unit (Clevert, Unterthiner, and
Hochreiter 2015), or any other arising from the ReLU family
(e.g. (He et al. 2015)).

4.3 An Optimal Choice

Beyond this simple intuition, we can utilize connections to
risk theory to provide evidence that the ReLU should be used
in tandem with an asymmetric deviation measure. Specifi-
cally, we show that the use of SQD and RSD followed by
ReLU is approximately equivalent to a probabilistic transfor-
mation which mimics an optimal quasiconvex approximation
to the 0− 1 (indicator) loss function.

Intuitively, ReLU’s should be paired with an asymmet-
ric measure of deviation, with candidates including RSD
and SQD. However, a natural choice arises when looking
at the similarities between bPOE and the combination of
the GBN transformation and ReLU non-linearity. Consider a
GBN transformation followed by a ReLU non-linearity. Now,
for the GBN transformation let us choose SQD deviation
measure D(xj) = q̄α(xj − µj) where α is chosen so that
qα(xj) = µj , meaning that we are choosing the probability
level on which the mean sits. This gives us the following
transformation, where the superscript denotes the ith sample



Deviation Measure D(x) Statistic S(x)

Standard Deviation (SD)
√

E[(x− E[x])2] E[x]
Mean Absolute Deviation (MAD) E[|x− E[x]|] E[x]
Right-Semi-Deviation (RSD) E[x− E[x]]+ E[x]
Superquantile Deviations (SQD) for α ∈ (0, 1) q̄α(x− E[x]) qα(x)
Range-Based Deviation (RBD) supx− inf x 1

2
(supx+ inf x)

Worst-Case Deviation (WCD) supx− E[x] supx

Table 1: Examples of deviation measures and their corresponding statistics.[x]+ = max{0, x}

from a batch:

x̂
(i)
j ←

[

x
(i)
j − qα(xj)

q̄α(xj)− qα(xj)

]+

.

This can be re-written as,

x̂
(i)
j ←

[

x
(i)
j − µj

E[xj − µj |xj > µj ]

]+

.

One will immediately notice that this is almost identical to
a conventional BN transformation followed by ReLU with
the only difference being that we are dividing by a one-sided
semi-deviation rather than the two-sided standard deviation.
One will notice, however, the following connection to bPOE:

p̄z(xj) = E

[

xj − qα(xj)

q̄α(xj)− qα(xj)

]+

for threshold z = q̄α(xj). Thus, we see that the combination
of GBN and ReLU yields a transformation based upon bPOE.

If also divided by sample size N , each individual sample x
(i)
j

will yield output 1
N

[

x
(i)
j

−qα(xj)

q̄α(xj)−qα(xj)

]+

∈ (0, 1) with the sum,

1

N

[

x
(i)
j − qα(xj)

q̄α(xj)− qα(xj)

]+

= ¯̂pz(xj) ,

where ¯̂pz(xj) simply denotes the empirical bPOE calculated
from a sample. This means that the overall output distribu-
tion will consist of values in the range [0, 1] with non-zero
items being those that are in the bPOE-tail of the empirical
distribution of xj .

Thus, by combining GBN and ReLU we are effectively
performing a probabilistic transformation, with the transfor-
mation mimicking the optimal quasiconvex approximation to
the 0− 1 loss.

5 Experimental Evaluation

Overall, the first goal of our experiments is to demonstrate
the obvious: All other things being equal, different normal-
ization methods (i.e. different choices for deviation measure
and statistic) lead to different network properties. We then
explore the specifics of these changes. First, we show that
convergence rate and stability of NN training via SGD can
often be improved by utilizing alternative deviation measures.
Improvement is measured relative to conventional BN, which

uses mean and standard deviation as its statistic and devia-
tion measure. Overall, we find that SQD, MAD, and RSD
often lead to increased convergence rates and, sometimes,
increased stability in terms of smoothly decreasing test error
during SGD. Second, we see that these alternative choices
often lead to testing error that is nearly as good as, or better,
than that achieved by standard BN.

For all experiments, GBN is implemented in exactly the
same manner as standard BN, only with mean and variance
replaced by generalized S and D within the batch normaliza-
tion transformation. This includes appropriate inclusion of
the chosen deviation measure and statistic within the gradient
calculation as well as the batch-based estimation of D(xj)
and S(xj) during training and population-based estimation
for inference. This also includes the additional linear transfor-
mation which typically follows the normalization step, before
application of non-linearity. See (Ioffe and Szegedy 2015)
for specifics.

We performed experiments on MNIST, CIFAR-10, CIFAR-
100, and SVHN datasets. We compared the performance of
GBN transformations with 7 different deviation measures and
statistics, including the conventional mean and standard devi-
ation. As indicated in Table 1, we utilized standard SD along
with MAD, RSD, RBD, and SQD with α = .25, .5, and .75
which we denote by SQD1, SQD2, and SQD3 respectively.
We omit WCD since centering w.r.t. supx is obviously a poor
choice when paired with ReLU. Subtracting supx would
make all points less than or equal to zero and the ReLU
would send them all then to zero, producing an untrainable
network without activations.

5.1 MNIST

GBN transformation over time To illustrate the effect
that an asymmetric deviation measure and statistic have on
the distribution of network activations when paired with
ReLU, we observe the predictive error rate and the distri-
bution over one feature before and after the GBN transfor-
mation. We conduct classification on MNIST (LeCun et al.
1998) with neural network architecture LeNet with the input
size of 28x28 and two convolutional layers with kernel size
5, and number of filters 20 and 50 respectively. The batch
normalization is added after each of the convolutional layers
and then followed by a ReLU non-linearity. The compari-
son is performed on standard BN and GBN with deviation
measure SQD1, which has statistic equal to the α = .25 quan-
tile. We choose to observe one feature pixel of the second
convolutional layer’s feature map. Figure 1(a,b) shows this
feature’s distribution density before and after standard BN.
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