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Abstract

Discovering the latent topics within texts has
been a fundamental task for many applica-
tions. However, conventional topic models
suffer different problems in different settings.
The Latent Dirichlet Allocation (LDA) may
not work well for short texts due to the data
sparsity (i.e., the sparse word co-occurrence
patterns in short documents). The Biterm
Topic Model (BTM) learns topics by mod-
eling the word-pairs named biterms in the
whole corpus. This assumption is very strong
when documents are long with rich topic in-
formation and do not exhibit the transitivity
of biterms. In this paper, we propose a novel
way called GraphBTM to represent biterms as
graphs and design Graph Convolutional Net-
works (GCNs) with residual connections to
extract transitive features from biterms. To
overcome the data sparsity of LDA and the
strong assumption of BTM, we sample a fixed
number of documents to form a mini-corpus as
a training instance. We also propose a dataset
called All News extracted from (Thompson,
2017), in which documents are much longer
than 20 Newsgroups. We present an amortized
variational inference method for GraphBTM.
Our method generates more coherent topics
compared with previous approaches. Exper-
iments show that the sampling strategy im-
proves performance by a large margin.

1 Introduction

Topic model (Blei et al., 2003) is one of the most
popular approaches to learn hidden representa-
tions of text. The broad applications of topic
model range from recommender systems (Wang
and Blei, 2011), computer vision (Fei-Fei and
Perona, 2005), to bioinformatics (Rogers et al.,
2005). Conventional topic models learning ap-
proaches are based on Gibbs Sampling (Grif-
fiths and Steyvers, 2004) or Variational Expecta-
tion Maximization (VEM) algorithm (Blei et al.,

2003). Both Gibbs Sampling and VEM are not
directly applicable to new variations of the topic
model. Specifically, the inference algorithm re-
quires re-deriving for any minor changes to the
model.

Recently, a neural network based topic model
inference approach, the Autoencoded Variational
Inference for Topic Model (AVITM), was pro-
posed by (Srivastava and Sutton, 2017). This ap-
proach uses an inference network to directly map
a document to its posterior distribution without
any variational update steps. The proposed in-
ference network is based on the Autoencoding
Variational Bayes (AEVB) (Kingma and Welling,
2013), a stochastic variational inference algorithm
over neural networks. Compared with the sam-
pling based approaches, AVITM can scale to large
datasets. Although it improves the model’s robust-
ness and reduces the computational cost, it still
suffers from the data sparsity in short texts.

Biterm Topic Model (BTM) proposed by
(Cheng et al., 2014) and (Yan et al., 2013) ad-
dresses the shortcoming of data sparsity for mod-
eling the corpus of short texts. It explicitly mod-
els the patterns on top of word co-occurrence fea-
ture (Biterm, the unordered word-pair occurs in
texts) from the corpus. It holds one topic distri-
bution for the whole corpus rather than one doc-
ument. BTM, therefore, is suitable for modeling
short documents like tweets, and online QA texts.
It also achieves better results than LDA in specific
scenarios of the normal texts (Yan et al., 2013).
However, using one topic distribution for all docu-
ments limits the model’s expressiveness when the
documents contain diverse topics.

To address the issue of data sparsity of LDA
when modeling the short texts and the insufficient
corpus-wise topic representation in BTM for nor-
mal texts, we strike a balance between these two
approaches. Instead of modeling biterms in the



whole corpus, we extract biterms inside a fixed-
length text window for every document and sam-
ple n documents to form an instance each time.
As a result, we enhance the input feature with
biterms that capture more word co-occurrence pat-
terns than BOW and also avoid the insufficient
corpus-wised topic representation in BTM. An-
other advantage of biterms is the transitivity. For
example, we have two biterms (A, B) and (A4, C).
It is natural to think that B and C' may share some
similarities. This transitivity is similar to the graph
structure data. So we model the biterms in a graph
where the words are taken as nodes and the counts
of biterms are the weight of edges. We extract the
information from biterms explicitly by the graph
convolutional network (Kipf and Welling, 2016).

In this paper, we propose a novel Graph-based
inference network for the biterm topic model
(GraphBTM). To the best of our knowledge,
GraphBTM is the first AEVB inference approach
for the biterm topic model with graph enhanced
feature. Our model also strikes a good balance be-
tween LDA and BTM, leverages both advantages,
and achieves better topics coherence scores than
AVITM in two datasets. The main contributions
of our work include:

e We are the first to apply the neural network
based inference approach for the Biterm
Topic Model, and achieve better results in
topic coherence score than previous AEVB
based inference method (AVITM) and online
Variational Inference LDA.

e We propose a data argumentation method to
enhance the input feature with word corre-
lation from biterms in normal text and over-
come the shortcoming of the data sparsity in
LDA and the insufficient corpus-wise topic
representation in BTM.

e We model the biterms as an undirected graph
and adopt a novel graph convolutional net-
work to encode word co-relationship in our
inference network.

e We introduce a new dataset All News
dataset containing 20,000 documents ex-
tracted from 15 news publishers (Thompson,
2017) for topic modeling. TThe documents
are much longer compared with the 20 News-
groups.

2 Background

2.1 Biterm Topic Model

BTM (Cheng et al., 2014) is proposed to solve the
data sparsity problem in the scenario of short texts.
Instead of modeling a single document, BTM con-
siders the whole corpus as a mixture of topics.
BTM collects all unordered word-pairs (biterms)
from each short text or a fixed-length text window
of normal texts. The generative progress of BTM
can be described as follows, where « and 3 are
two parameters of Dirichlet priors.

1. For each topic z

(a) draw a topic-specific word distribution

¢z ~ D”'(B)

2. Draw a topic distribution § ~ Dir(«) for the
whole corpus

3. For each biterm b in the biterm set

(a) draw a topic assignment z ~ Multi(6)
(b) draw two words: w;, w; ~ Multi(¢.)

With the procedure above, the joint probability
of a biterm b = (w;, w;) can be written as:

ZP P(w;|z)

= Z 0-0i1:9;)- (2)

P(wjlz) (1)

So the likelihood of the whole corpus B is:
H Z 0.0i:05. )

2.2 Laplace Approximation of Dirichlet

Both LDA and BTM use the Dirichlet prior over
the topic and word proportions. Wallach et al.
(2009) showed that the Dirichlet prior is important
to producing interpretable topics. However, it is
hard to apply the Dirichlet prior to AEVB directly.
AEVB uses the reparameterization trick (RT) to
obtain a differentiable Monte Carlo estimator for
the variational lower bound (details can be found
in next section), and it is difficult to propose an
effective RT for the Dirichlet prior.

Fortunately, we can approximate Dirichlet dis-
tribution with a logistic normal in the softmazx
basis by Laplace approximation (Hennig et al.,

P(Bla,
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Figure 1: The overall structure of our proposed model GraphBTM. In this example, we sample 4 documents at a
time and embed the aggregated biterm graph by GCNs. The graph embedding is sent to inference network E to
produce the parameters for our variational distribution. We then use RT to generate the Monte Carlo samples. At
last, we use the decoder network 3 to get the word probabilities and reconstruct the aggregated graph.

2012). MacKay (1998) gives the Dirichlet prob-
ability density function in the softmax basis over
the variable x:

P(r|a) = FH Hw )
k k

where = o(z) (softmax) and g(17'z) is an arbi-
trary density for integrability. Hennig et al. (2012)
argued that the Eq. 4 could be approximately in-
dependent for large K (number of topics). So the
covariance matrix of the Dirichlet prior becomes
a diagonal matrix for large K. By this way, we
can approximate the Dirichlet distribution with a
multivariate normal with mean y; and covariance
matrix Y.

K
1
e = logay, — 2= 3 loga (5)

K
1 2 1 1
Sp=—(1— )+ — > — 6

with this approximation in hand, we can easily ap-
ply RT by sampling from ¢ ~ N(0, ) and com-
pute probability m, = o (u + 3, / 2 €).

3 Graph Biterm Topic Model

Before getting into details of GraphBTM, we give
an overall structure of GraphBTM, as shown in
Fig. 1. We extract the biterms from a mini-corpus
(aggregated sampled documents) and embed the
whole biterm graph into a fixed length vector with
the dimension of vocabulary size. Then we use

this graph embedding as the input of our inference
network and get the topic proportion. At last, we
use the decoder network to get the word probabil-
ities and reconstruct the biterm graph.

3.1 Model Biterms as Graphs

Commonly used input feature of topic models is
bag-of-words (BOW) which implicitly capture the
word co-occurrence patterns. BTM models the
word co-occurrence explicitly by directly counting
the word-pairs in a text window. However, using
one-hot encoding for biterms may lose the transi-
tive co-relations. We model collected biterms as
a graph G = (V,€), where V (words as nodes
and |V| is the vocabulary size) and £ (counts of
corresponding biterms in the sample) are sets of
nodes and edges, respectively. In this way, the ad-
jacency matrix A (A € RV*Y) denotes the counts
of biterms in the sample. We also leverage the ma-
trix A as the node feature matrix (A; is the node
feature for the word wy;).

We use GCNs proposed by (Kipf and Welling,
2016), which is a framework used for learning
the graph structure data. Gilmer et al. (2017)
presented a comprehensive overview. Consider
an undirected graph G = (V,€) and a matrix
X € R™™ in where each row is a node feature
Ty € R™ (v € V). One layer GCN encodes in-
formation of a node with its immediate neighbors,
defined as

W= (DTSADTS W b)) ()

where h0 is the input features X, A=A+ Iy



is the adjacency matrix of the graph with self-
connections, Iy is the identity matrix, D is the
degree matrix of A, W' is a trainable weight ma-
trix in the layer and b is the bias. f denotes a
non-linear activation function, such as ReL.U. By
stacking GCN layers, we can incorporate higher
order neighborhoods. To represent the whole
graph, we reduce the dimension of each node to
one by using GCNs and concatenate them as the
final representation of the biterm graph.

From another point of view, we can treat GCNs
as a Laplacian smoothing. Repeatedly applying
Laplacian smoothing may mix the features of ver-
tices and make them indistinguishable (Li et al.,
2018). On the other hand, the transitivity of words
may not be meaningful when the number of hops
(layers) of GCN increases. We solve this prob-
lem by adding shortcut connections between dif-
ferent layers inspired by Residual Networks (He
et al., 2016). What’s more, a recent study showed
that adding the residual connection can help con-
vergence (Li and Yuan, 2017).

3.2 AEVB for Biterm Graphs

Eq. 3 gives us the likelihood of the whole corpus
based on Multi(¢,). Here we rewrite the Eq. 3
with latent variables as

k
p(Bla, B) = /9 1> mimip(zl6) | p(60la)ds
(i,5) z=1
®)

where m; = p(w;|zn, 8). The inference of poste-
rior p(0, z| B, o, 3) over the hidden variables 6 and
z is intractable (Dickey, 1983). Many methods are
proposed to solve this inference problem includ-
ing Gibbs Sampling (Griffiths and Steyvers, 2004)
and variational inference methods. Gibbs Sam-
pling based approaches are computationally inef-
ficient and varitional inference methods like mean
field (Blei et al., 2003) scarify the topic quality
for computational efficiency. Moreover, the ma-
jor problem of these approximate inference algo-
rithms is the inflexibility. Slight changes in model
assumption may require designing a new infer-
ence algorithm. To alleviate this problem, we de-
sign an amortized approximate inference method
similar to AVITM (Srivastava and Sutton, 2017).
It is more flexible compared with other approxi-
mate inference methods and can be applied to any
biterm graphs.

In Eq. 8, there are two latent variables 6 and
z, we introduce two free variational parameters y
over 6 and ¢ over z. Our goal is to approximate
the true posterior p(0, z| B, «, ) with variational
distribution ¢ (6, 2|y, ¢) = ¢4(0) [ [ ¢¢(2x). Then
we can transfer the inference problem as an opti-
mization problem (Blei et al., 2003), which is to
maximize

L(v, ¢la, 8) = logp(Ble, B) ©)
- DKL[Q(gv Zh/a ¢)Hp(97 Z|Ba «, 6)]

L is a lower bound to the marginal log likelihood
(ELBO). Following AEVB (Kingma and Welling,
2013), we rewrite the ELBO as

L(77¢|a76) = _DKL + R

where R = Ey[logp(B|z, 6, a, 3)]. This form is
intuitive. The first term is the KL divergence be-
tweent the variational distribution and the prior on
the latent variables, and the second term ensures
that the latent variables are good at explaining and
reconstructing the input data.

We use a neural network named inference
network to compute the variational parameters. It
takes the embedding of the biterm graph (sec. 3.1)
as the input and outputs the parameters of the vari-
ational distribution. So the inference network can
be defined as (up, Xp) = f(b, ), where u, and X
are vectors of length & (topic numbers) and  are
the network parameters. In our setting, we use the
logistic normal distribution which is an approxi-
mation of the Dirichlet prior to the variational dis-
tribution. We can choose the corresponding vari-
ational distribution ¢, (0) = LN (0|, diag(Xy)),
where diag(-) converts a column vector to a di-
agonal matrix. One important advantage of using
AEVB is that we couple the variational parame-
ters for different inputs, unlike mean field varia-
tional inference, because they are computed from
the same network.

Next is how to compute the expectations respect
to g in R (Eq. 10). Kingma and Welling (2013)
use a differential Monte Carlo estimator with the
reparameterization trick. With RT, instead of sam-
pling from the variational distribution directly, we
sample from a simple distribution that is indepen-
dent of all variational parameters. In this way, the
gradient can be backpropagated through the vari-
ational parameters. For the logistic normal distri-
bution, we can sample from a standard normal dis-
tribution € € N (0, I).

(10)



Although the reparameterization trick helps us
deal with 6, it is hard to deal with the discrete
variable z. Fortunately, we can collapse the dis-
crete variables z and only infer  with collapsed
inference method (Kurihara et al.) as

/ mej p(0la)dd  (11)

(4,4)

p(Bla, B

where m; = p(w;|3,6), which is the probability
of one word in the biterm. Now we only need to
sampling from 6.

We can now get our final variational objective
function as (to minimize the negative ELBO)

E[>  Gyolog(PTP)]

where G} is the input biterm graph, P =
o(B)o(u + X12€) is probabilities for all the
words based on the input graph and o denotes the
element-wise production. The KL divergence be-
tween two logistic normal distritbutions are

L =Dy — (12)

1 _ _
Dkpr 25{”(21 120) + (11— p0) ST (1 — o)

— K +log
IEI

(13)

3.3 Sample Mini-corpus

To alleviate the data sparsity problem of LDA
(Zhu and Xing, 2012; Lin et al., 2014), BTM
learns topics from the aggregated patterns in the
whole corpus. In our observation, this assumption
is too strong for normal texts. Other than BTM,
some approaches in the literature addressed this
problem by aggregating documents into a mini-
corpus before training the topic model. For ex-
ample, in tweets analysis, Weng et al. (2010) ag-
gregated the tweets from one user into a docu-
ment. Hong and Davison (2010) combined the
tweets containing the same word. Inspired by
these strategies, we make the same assumption for
normal text. We first extract all the biterms in each
document and randomly select n documents in the
dataset as a mini-corpus. The biterms of the mini-
corpus simply merge all the biterms from the n
documents. Experiments show that a proper sam-
pling number achieves the best performance.

3.4 Unnormalize the 5

The topic-word distribution § is a mixture of
multinomials. One drawback of this formula-
tion is that it cannot predict something that is

sharper than the distributions being mixed (Hin-
ton and Salakhutdinov, 2009). This problem may
result in some poor quality topics. Previous re-
search (Srivastava and Sutton, 2017) shows that
unnormalizing the parameters § and changing
the conditional distribution of w,, as w,|5,0 ~
Multinomial(1,0(80)) can solve this problem.

With the unnormalized 3, we can model it as
a decoder network whose weight matrix M =
(my,...,mg) denotes the weight for all words
under K topics. Applying softmax to row m; will
give us the probabilities under topic .

4 Experiments

4.1 Datasets and Settings

We demonstrate our model on two datasets: 20
Newsgroups and All News. For All News, we use
the data from kaggle collection (Thompson, 2017)
I which collects documents from 15 main news
publishers between 2016 and July 2017. Among
these, we randomly select 20,000 documents. In
our preprocessing of the texts, we follow the steps
of tokenization, filtering out stop words, and non-
UTEF-8 characters in (Srivastava and Sutton, 2017).
From the statistics summarized in Table 1. We can
know that the 20 Newsgroups dataset is relatively
sparse and the All News has rich information. The
ratio of text lengths less or equal to 30 of the 20
Newsgroups dataset is 28%, which only 2% in the
All News dataset. The average size differs a lot
between these two datasets: 302 for the All News
and 88 for the 20 Newsgroups.

For the generation of the matrix Wy, the selec-
tion of the window size of words is critical, a small
size of window leads to very sparse W,. Here, we
choose an experience value 30 for the window size
follows the (Yan et al., 2013). For the logistic nor-
mal approximation, we use the Dirichlet distribu-
tion with parameter a as 0.02. Our GraphBTM
approach, including the GCN layers and the in-
ference network are implemented with Pytorch-
v0.4.0 (Paszke et al.). Parameters in our imple-
mented model are optimized by the stochastic op-
timizer Adadelta (Zeiler, 2012) with learning rate
1. To embed the biterm graph, we use a 3-layer
GCNs with size 1995-100, 100-100 and 100-1 for
20 Newsgroups and 5000-1000, 1000-100, 100-1
for ALL News. We use the edge dropout in GCN:
when computing h!, we ignore each node with a
probability of 0.6. We use batch normalization

"https://www.kaggle.com/snapcrack/all-the-news



Datasets | Training instances Ratio of <=30 Avgsize Vocabulary Avg Biterms #
20 News 11,259 28% 88 1995 1249
All News 20,000 2% 302 5000 5535
Table 1: Datasets statistics.
Dataset | # topics GraphBTM AVITM LDA Online VI
50 0.28 0.25 0.10
20News | 109 0.26 0.23 0.08
Alln 50 0.27 0.24 0.14
S 100 0.26 0.23 0.13
Table 2: Average topic coherence.
Datasets(# Topics) | # Samples | Score the topic coherence is defined as:
1 0.24
20 News (k=50) 3 0.28 T t D, o) +1
. — > 7l
10 0.25 C(zVE) =3 "log Er—
1 0.21 t=2 |=1 D(vl )
20 News (k=100) 3 0.26 a4
10 0.25 .
I 027 where D(v) is the number of the documents that
All 50 3 0'22 word v occurred, and D(v,v’) is the number of
news (k=30) 5 0'20 the documents that both the words v and v" oc-
1 0.26 curred. The assumption of the topic coherence is
: the words with high frequency in a topic tend to
All news (k=100) 3 0.20 . .
appear in the same document. This measurement
5 0.17 has been demonstrated to be highly consistent with

Table 3: Results for different sampling numbers in
different setting for the two datasets. Score denotes the
topic coherence score.

(Iofte and Szegedy, 2015) in in ference network
with batch size 100 as same in (Srivastava and Sut-
ton, 2017). We run each model 10 times and take
the average results. Code is available at https:
//github.com/valdersoul /GraphBTM.

The perplexity has been used in the past works
to measure the quality of the generated topics.
However, the perplexity is not shown to be a good
evaluation metric for the topics (Newman et al.,
2010). What’s more, our method models a mini-
corpus instead of a real one and infer the top-
ics through the pattern of biterms, so the perplex-
ity is not suitable to measure the performance of
our approach. To get a more objective measure-
ment of the topics, we adopt topic coherence”
as our metric, proposed by (Mimno et al., 2011)
to evaluate the quality of the topics. For a vec-
tor V(®) = (v, ...,v%) as the top T words of the
topic z, which ordered by the probability p(w|z),

the human evaluated quality of the topics.

4.2 Results and Discussions

Comparison with other approaches. We com-
pare our GraphBTM approach with the AVITM
(Srivastava and Sutton, 2017) and the LDA model
(Blei et al., 2003). For AVITM, we use their
results for 20 Newsgroups directly and run the
model using the provided code’. We use the on-
line variational inference for LDA (Hoffman et al.,
2010) implementation by gensim library (Rehtifek
and Sojka, 2010) as our LDA baseline. For both
GraphBTM and AVITM, we run 200 iterations.
Table 2 shows the average topic coherence for
three models on the two datasets. The online VI
LDA works worst in the three models and we
find that on both datasets, the GraphBTM consis-
tently outperforms other two models. We can ver-
ify the quality of the learned topics by displaying
the topic examples in Table 4. The topics from
GraphBTM are more coherent than the topics from
both AVITM and LDA model.

Zhttps://github.com/akashgit/
autoencoding_vi_for_topic_models



Effect of the mini-corpus. To study the ef-
fect of our sampling strategy which has been dis-
cussed in section 3.3. Table 3 shows the perfor-
mance of our model with different sample size for
a mini-corpus. For the 20 Newsgroups dataset,
the best performance is achieved when the sam-
ple size is 3. When we do not use our sample
strategy (mini-corpus is 1), the performance drops
by a large margin. From Table 1, we see that the
average size of documents size in 20 Newsgroups
is relatively short (88 compared with 302 in All
News). Therefore, the 20 Newsgroups dataset may
suffer from the sparsity problem. The experiment
shows that our sampling strategy can help to over-
come this problem. When sample size increases,
the performance drops again. The biterm graph
with large sample size may bring the same prob-
lem of the original BTM (insufficient topic repre-
sentation). Compared to 20 Newsgroups dataset,
documents in the All News dataset is longer and
carried more topic information, so the best perfor-
mance is achieved without sampling. We find that
when the sample size is larger than an optimized
value, the topic coherence starts to drop.

Effect of modeling biterms as graphs. To ver-
ify the effect of the graph modeling of biterms.
We also do experiments on AVITM with the
same sampling strategy. We use the sampling
size 3 which achieves the best performance by
GraphBTM in 20 Newsgroups to train AVITM
model. The performance does not change a lot,
with an average score of 0.25 which is the same
as the score without sampling. It is not surprising
to us because AVITM models the topic directly on
the individual document with BOW feature. The
BOW feature captures the word co-occurrence im-
plicitly. So aggregating documents in AVITM can
not enhance the input feature. However, our model
uses GCN to capture the transitivity of biterms and
can benefit from the sampling strategy a lot.

Residual connection. We add the residual con-
nection between the first and second layer of GCN.
On the other hand, it can also help convergence by
adding residual connection (Li and Yuan, 2017).
The residual can also help the network capture
hierarchical information of the biterms. We re-
move the residual connection with the same set-
ting which achieves the best performance in these
two datasets and results in a 0.1 drop in perfor-
mance.

5 Related Work

In this section, we briefly summarize the related
work of the topic model into two categories: nor-
mal texts and short texts.

5.1 Normal Texts

The effort of uncovering the latent semantic repre-
sentation of documents can be dated from the La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990), which used the singular value decomposi-
tion of the document matrix to get the word pat-
terns. The probabilistic latent semantic analy-
sis (PLSA) (Hofmann, 1999) improved the LSA
model by adding a probabilistic model based on
a mixture decomposition. It assumed that a docu-
ment could be presented as a mixture of topics and
a topic is a distribution over words. LDA added
the Dirichlet priors on topic and word distributions
and proposed a complete generative model.

With the rising of deep learning (LeCun et al.,
2015), researchers achieve significant improve-
ment in many areas including image classifica-
tion (He et al., 2016), speech recognition (Hin-
ton et al., 2012) and named entity recognition (Ma
and Hovy, 2016; Zhu et al., 2018). Many at-
tempts have been made for topic models based
on neural networks (Hinton and Salakhutdinov,
2009; Cao et al., 2015; Miao et al., 2016; Srivas-
tava and Sutton, 2017). Cao et al. (2015) em-
bedded multinomial relationships between docu-
ments, topics, and words in differentiable func-
tions. However, they lost the stochasticity and
Bayesian inference of prior functions. Miao et al.
(2016) introduced the Neural Variational Docu-
ment Model (NVDM), which used Gaussian dis-
tribution over topics and averaged over topic-word
distribution in the logit space. Although they used
the black-box variational inference (VAE), they
did not approximate the Dirichlet prior. Srivas-
tava and Sutton (2017) approximated the Dirich-
let prior with logistic Gaussian using the Laplace
approximation of Hennig et al. (2012) and col-
lapsed the hidden topic value z with a mixture of
experts (Hinton, 2002). This model (AVITM) sig-
nificantly improved the topic coherence compared
with the NVDM model. However, same as the
LDA, AVITM suffers from the data sparsity prob-
lem.



Model

Topics

GraphBTM

attack ripem rsa encrypt cipher random key cryptography distribution encryption
turkish turks greek greece armenian genocide turkey armenia armenians island
season score player league game puck pitch win pitcher team

israel lebanese israeli lebanon village attack zone arab territory civilian

oname printf entry buf char contest stream output int remark

AVITM

ripem anonymous pgp rsa posting cipher atheism encrypt usenet atheist

armenian genocide turks turkish muslim massacre turkey armenians armenia greek
season nhl team hockey playoff puck league flyers defensive player

israel israeli lebanese arab lebanon arabs civilian territory palestinian militia
oname printf buf entry os char contest cpu stream remark

LDA

drug food health research medical test used development product

computer system data software business personal ibm information technology
offering common convertible proceeds co due used public filed

agreement agreed acquisition acquire purchase sell subject subsidiary completed
quarter earnings reported income expects fiscal loss per second

Table 4: Five selected topics from all models.

5.2 Short Texts

Early studies on short text topic model mainly fo-
cused on adding external knowledge to enrich the
information of short texts. Phan et al. (2008) firstly
learned hidden topics from substantial external re-
sources to enrich the features in short text. Jin
etal. (2011) leveraged the power of transfer learn-
ing to learn topics on short texts from auxiliary
long text data. However, external knowledge in
some domain may not be available.

Instead of adding external knowledge, one po-
tential way is to add a sparse prior on the topic
distribution. Chien and Chang (2014) used a spike
model to control the sparsity of selected topics.
Lin et al. (2014) used the same idea to add the
sparsity on both topic and word distribution. Dif-
ferent from these approaches, some researchers
tried to enhance data without external knowledge.
Weng et al. (2010) aggregated the tweets from one
user into a document. Hong and Davison (2010)
combined the tweets containing the same words.
Some other used non-probability topic model to
solve this problem. Zhu and Xing (2012) pro-
posed sparse topical coding, which relaxed the
normalization constraint of admixture proportions
and learned hierarchical latent representations.

6 Conclusion and Future Work

We proposed a Graph Enhanced Autoencoding
Variational inference for Biterm Topic Model
(GraphBTM). Our model used a black-box ap-

proximation inference approach to learn topics
through the word co-occurrences (biterms). We
modeled the biterms in the form of a graph where
the nodes are the words and weighted edges are
the counts of the corresponding biterms. On top
of this graph representation, we designed a model
by GCN layers with a residual connection to ef-
fectively extract node representations that preserve
the missing connectivity. To overcome the prob-
lems of data sparsity in LDA and insufficient topic
representation in BTM, we introduced a data ar-
gumentation approach by producing a mini-corpus
with sampled documents. By setting a proper hy-
perparameter of sample size k, we achieved bet-
ter topic coherence scores compared with previous
works.

Our GCN model is based on spectral graph
convolutions, which requires computing the graph
Laplace for each sample. Compared to tasks with
one graph input, we need to compute the graph
Laplace for every input sample, causing substan-
tial computational cost. It is critical to developing
a memory efficient processing and storage strategy
to handle the large-scale graph data when we gen-
eralize GraphBTM to complex tasks. Recently,
fastGCN (Zhang et al., 2018) interpreted graph
convolutions as integral transforms of functions
under probability measures. Our following work
will consider adopting fastGCN to speed up the
process.
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