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Abstract

Discovering the latent topics within texts has

been a fundamental task for many applica-

tions. However, conventional topic models

suffer different problems in different settings.

The Latent Dirichlet Allocation (LDA) may

not work well for short texts due to the data

sparsity (i.e., the sparse word co-occurrence

patterns in short documents). The Biterm

Topic Model (BTM) learns topics by mod-

eling the word-pairs named biterms in the

whole corpus. This assumption is very strong

when documents are long with rich topic in-

formation and do not exhibit the transitivity

of biterms. In this paper, we propose a novel

way called GraphBTM to represent biterms as

graphs and design Graph Convolutional Net-

works (GCNs) with residual connections to

extract transitive features from biterms. To

overcome the data sparsity of LDA and the

strong assumption of BTM, we sample a fixed

number of documents to form a mini-corpus as

a training instance. We also propose a dataset

called All News extracted from (Thompson,

2017), in which documents are much longer

than 20 Newsgroups. We present an amortized

variational inference method for GraphBTM.

Our method generates more coherent topics

compared with previous approaches. Exper-

iments show that the sampling strategy im-

proves performance by a large margin.

1 Introduction

Topic model (Blei et al., 2003) is one of the most

popular approaches to learn hidden representa-

tions of text. The broad applications of topic

model range from recommender systems (Wang

and Blei, 2011), computer vision (Fei-Fei and

Perona, 2005), to bioinformatics (Rogers et al.,

2005). Conventional topic models learning ap-

proaches are based on Gibbs Sampling (Grif-

fiths and Steyvers, 2004) or Variational Expecta-

tion Maximization (VEM) algorithm (Blei et al.,

2003). Both Gibbs Sampling and VEM are not

directly applicable to new variations of the topic

model. Specifically, the inference algorithm re-

quires re-deriving for any minor changes to the

model.

Recently, a neural network based topic model

inference approach, the Autoencoded Variational

Inference for Topic Model (AVITM), was pro-

posed by (Srivastava and Sutton, 2017). This ap-

proach uses an inference network to directly map

a document to its posterior distribution without

any variational update steps. The proposed in-

ference network is based on the Autoencoding

Variational Bayes (AEVB) (Kingma and Welling,

2013), a stochastic variational inference algorithm

over neural networks. Compared with the sam-

pling based approaches, AVITM can scale to large

datasets. Although it improves the model’s robust-

ness and reduces the computational cost, it still

suffers from the data sparsity in short texts.

Biterm Topic Model (BTM) proposed by

(Cheng et al., 2014) and (Yan et al., 2013) ad-

dresses the shortcoming of data sparsity for mod-

eling the corpus of short texts. It explicitly mod-

els the patterns on top of word co-occurrence fea-

ture (Biterm, the unordered word-pair occurs in

texts) from the corpus. It holds one topic distri-

bution for the whole corpus rather than one doc-

ument. BTM, therefore, is suitable for modeling

short documents like tweets, and online QA texts.

It also achieves better results than LDA in specific

scenarios of the normal texts (Yan et al., 2013).

However, using one topic distribution for all docu-

ments limits the model’s expressiveness when the

documents contain diverse topics.

To address the issue of data sparsity of LDA

when modeling the short texts and the insufficient

corpus-wise topic representation in BTM for nor-

mal texts, we strike a balance between these two

approaches. Instead of modeling biterms in the



whole corpus, we extract biterms inside a fixed-

length text window for every document and sam-

ple n documents to form an instance each time.

As a result, we enhance the input feature with

biterms that capture more word co-occurrence pat-

terns than BOW and also avoid the insufficient

corpus-wised topic representation in BTM. An-

other advantage of biterms is the transitivity. For

example, we have two biterms (A,B) and (A,C).
It is natural to think that B and C may share some

similarities. This transitivity is similar to the graph

structure data. So we model the biterms in a graph

where the words are taken as nodes and the counts

of biterms are the weight of edges. We extract the

information from biterms explicitly by the graph

convolutional network (Kipf and Welling, 2016).

In this paper, we propose a novel Graph-based

inference network for the biterm topic model

(GraphBTM). To the best of our knowledge,

GraphBTM is the first AEVB inference approach

for the biterm topic model with graph enhanced

feature. Our model also strikes a good balance be-

tween LDA and BTM, leverages both advantages,

and achieves better topics coherence scores than

AVITM in two datasets. The main contributions

of our work include:

• We are the first to apply the neural network

based inference approach for the Biterm

Topic Model, and achieve better results in

topic coherence score than previous AEVB

based inference method (AVITM) and online

Variational Inference LDA.

• We propose a data argumentation method to

enhance the input feature with word corre-

lation from biterms in normal text and over-

come the shortcoming of the data sparsity in

LDA and the insufficient corpus-wise topic

representation in BTM.

• We model the biterms as an undirected graph

and adopt a novel graph convolutional net-

work to encode word co-relationship in our

inference network.

• We introduce a new dataset All News

dataset containing 20,000 documents ex-

tracted from 15 news publishers (Thompson,

2017) for topic modeling. TThe documents

are much longer compared with the 20 News-

groups.

2 Background

2.1 Biterm Topic Model

BTM (Cheng et al., 2014) is proposed to solve the

data sparsity problem in the scenario of short texts.

Instead of modeling a single document, BTM con-

siders the whole corpus as a mixture of topics.

BTM collects all unordered word-pairs (biterms)

from each short text or a fixed-length text window

of normal texts. The generative progress of BTM

can be described as follows, where α and β are

two parameters of Dirichlet priors.

1. For each topic z

(a) draw a topic-specific word distribution

φz ∼ Dir(β)

2. Draw a topic distribution θ ∼ Dir(α) for the

whole corpus

3. For each biterm b in the biterm set

(a) draw a topic assignment z ∼ Multi(θ)

(b) draw two words: wi, wj ∼ Multi(φz)

With the procedure above, the joint probability

of a biterm b = (wi, wj) can be written as:

P (b) =
∑

z

P (z)P (wi|z)P (wj |z) (1)

=
∑

z

θzφi|zφj|z (2)

So the likelihood of the whole corpus B is:

P (B|α, β) =
∏

i,j

∑

z

θzφi|zφj|z (3)

2.2 Laplace Approximation of Dirichlet

Both LDA and BTM use the Dirichlet prior over

the topic and word proportions. Wallach et al.

(2009) showed that the Dirichlet prior is important

to producing interpretable topics. However, it is

hard to apply the Dirichlet prior to AEVB directly.

AEVB uses the reparameterization trick (RT) to

obtain a differentiable Monte Carlo estimator for

the variational lower bound (details can be found

in next section), and it is difficult to propose an

effective RT for the Dirichlet prior.

Fortunately, we can approximate Dirichlet dis-

tribution with a logistic normal in the softmax

basis by Laplace approximation (Hennig et al.,





is the adjacency matrix of the graph with self-

connections, IN is the identity matrix, D̃ is the

degree matrix of Ã, W l is a trainable weight ma-

trix in the layer and b is the bias. f denotes a

non-linear activation function, such as ReLU. By

stacking GCN layers, we can incorporate higher

order neighborhoods. To represent the whole

graph, we reduce the dimension of each node to

one by using GCNs and concatenate them as the

final representation of the biterm graph.

From another point of view, we can treat GCNs

as a Laplacian smoothing. Repeatedly applying

Laplacian smoothing may mix the features of ver-

tices and make them indistinguishable (Li et al.,

2018). On the other hand, the transitivity of words

may not be meaningful when the number of hops

(layers) of GCN increases. We solve this prob-

lem by adding shortcut connections between dif-

ferent layers inspired by Residual Networks (He

et al., 2016). What’s more, a recent study showed

that adding the residual connection can help con-

vergence (Li and Yuan, 2017).

3.2 AEVB for Biterm Graphs

Eq. 3 gives us the likelihood of the whole corpus

based on Multi(φz). Here we rewrite the Eq. 3

with latent variables as

p(B|α, β) =

∫

θ





∏

(i,j)

k
∑

z=1

πiπjp(zn|θ)



 p(θ|α)dθ

(8)

where πi = p(wi|zn, β). The inference of poste-

rior p(θ, z|B,α, β) over the hidden variables θ and

z is intractable (Dickey, 1983). Many methods are

proposed to solve this inference problem includ-

ing Gibbs Sampling (Griffiths and Steyvers, 2004)

and variational inference methods. Gibbs Sam-

pling based approaches are computationally inef-

ficient and varitional inference methods like mean

field (Blei et al., 2003) scarify the topic quality

for computational efficiency. Moreover, the ma-

jor problem of these approximate inference algo-

rithms is the inflexibility. Slight changes in model

assumption may require designing a new infer-

ence algorithm. To alleviate this problem, we de-

sign an amortized approximate inference method

similar to AVITM (Srivastava and Sutton, 2017).

It is more flexible compared with other approxi-

mate inference methods and can be applied to any

biterm graphs.

In Eq. 8, there are two latent variables θ and

z, we introduce two free variational parameters γ

over θ and φ over z. Our goal is to approximate

the true posterior p(θ, z|B,α, β) with variational

distribution q(θ, z|γ, φ) = qγ(θ)
∏

k qφ(zk). Then

we can transfer the inference problem as an opti-

mization problem (Blei et al., 2003), which is to

maximize

L(γ, φ|α, β) = logp(B|α, β) (9)

−DKL[q(θ, z|γ, φ)||p(θ, z|B,α, β)]

L is a lower bound to the marginal log likelihood

(ELBO). Following AEVB (Kingma and Welling,

2013), we rewrite the ELBO as

L(γ, φ|α, β) = −DKL +R (10)

where R = Eq[logp(B|z, θ, α, β)]. This form is

intuitive. The first term is the KL divergence be-

tweent the variational distribution and the prior on

the latent variables, and the second term ensures

that the latent variables are good at explaining and

reconstructing the input data.

We use a neural network named inference

network to compute the variational parameters. It

takes the embedding of the biterm graph (sec. 3.1)

as the input and outputs the parameters of the vari-

ational distribution. So the inference network can

be defined as (µb,Σb) = f(b, γ), where µb and Σb

are vectors of length k (topic numbers) and γ are

the network parameters. In our setting, we use the

logistic normal distribution which is an approxi-

mation of the Dirichlet prior to the variational dis-

tribution. We can choose the corresponding vari-

ational distribution qγ(θ) = LN (θ|µb, diag(Σb)),
where diag(·) converts a column vector to a di-

agonal matrix. One important advantage of using

AEVB is that we couple the variational parame-

ters for different inputs, unlike mean field varia-

tional inference, because they are computed from

the same network.

Next is how to compute the expectations respect

to q in R (Eq. 10). Kingma and Welling (2013)

use a differential Monte Carlo estimator with the

reparameterization trick. With RT, instead of sam-

pling from the variational distribution directly, we

sample from a simple distribution that is indepen-

dent of all variational parameters. In this way, the

gradient can be backpropagated through the vari-

ational parameters. For the logistic normal distri-

bution, we can sample from a standard normal dis-

tribution ε ∈ N (0, I).



Although the reparameterization trick helps us

deal with θ, it is hard to deal with the discrete

variable z. Fortunately, we can collapse the dis-

crete variables z and only infer θ with collapsed

inference method (Kurihara et al.) as

p(B|α, β) =

∫

θ





∏

(i,j)

πiπj



 p(θ|α)dθ (11)

where πi = p(wi|β, θ), which is the probability

of one word in the biterm. Now we only need to

sampling from θ.

We can now get our final variational objective

function as (to minimize the negative ELBO)

L = DKL − Eε[
∑

Gb ◦ log(P
TP )] (12)

where Gb is the input biterm graph, P =
σ(β)σ(µ + Σ1/2ε) is probabilities for all the

words based on the input graph and ◦ denotes the

element-wise production. The KL divergence be-

tween two logistic normal distritbutions are

DKL =
1

2
{tr(Σ−1

1 Σ0) + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0)

−K + log
|Σ1|

|Σ0|
} (13)

3.3 Sample Mini-corpus

To alleviate the data sparsity problem of LDA

(Zhu and Xing, 2012; Lin et al., 2014), BTM

learns topics from the aggregated patterns in the

whole corpus. In our observation, this assumption

is too strong for normal texts. Other than BTM,

some approaches in the literature addressed this

problem by aggregating documents into a mini-

corpus before training the topic model. For ex-

ample, in tweets analysis, Weng et al. (2010) ag-

gregated the tweets from one user into a docu-

ment. Hong and Davison (2010) combined the

tweets containing the same word. Inspired by

these strategies, we make the same assumption for

normal text. We first extract all the biterms in each

document and randomly select n documents in the

dataset as a mini-corpus. The biterms of the mini-

corpus simply merge all the biterms from the n

documents. Experiments show that a proper sam-

pling number achieves the best performance.

3.4 Unnormalize the β

The topic-word distribution β is a mixture of

multinomials. One drawback of this formula-

tion is that it cannot predict something that is

sharper than the distributions being mixed (Hin-

ton and Salakhutdinov, 2009). This problem may

result in some poor quality topics. Previous re-

search (Srivastava and Sutton, 2017) shows that

unnormalizing the parameters β and changing

the conditional distribution of wn as wn|β, θ ∼
Multinomial(1, σ(βθ)) can solve this problem.

With the unnormalized β, we can model it as

a decoder network whose weight matrix M =
(m1, . . . ,mK) denotes the weight for all words

under K topics. Applying softmax to row mi will

give us the probabilities under topic i.

4 Experiments

4.1 Datasets and Settings

We demonstrate our model on two datasets: 20

Newsgroups and All News. For All News, we use

the data from kaggle collection (Thompson, 2017)
1, which collects documents from 15 main news

publishers between 2016 and July 2017. Among

these, we randomly select 20,000 documents. In

our preprocessing of the texts, we follow the steps

of tokenization, filtering out stop words, and non-

UTF-8 characters in (Srivastava and Sutton, 2017).

From the statistics summarized in Table 1. We can

know that the 20 Newsgroups dataset is relatively

sparse and the All News has rich information. The

ratio of text lengths less or equal to 30 of the 20

Newsgroups dataset is 28%, which only 2% in the

All News dataset. The average size differs a lot

between these two datasets: 302 for the All News

and 88 for the 20 Newsgroups.

For the generation of the matrix Wg, the selec-

tion of the window size of words is critical, a small

size of window leads to very sparse Wg. Here, we

choose an experience value 30 for the window size

follows the (Yan et al., 2013). For the logistic nor-

mal approximation, we use the Dirichlet distribu-

tion with parameter α as 0.02. Our GraphBTM

approach, including the GCN layers and the in-

ference network are implemented with Pytorch-

v0.4.0 (Paszke et al.). Parameters in our imple-

mented model are optimized by the stochastic op-

timizer Adadelta (Zeiler, 2012) with learning rate

1. To embed the biterm graph, we use a 3-layer

GCNs with size 1995-100, 100-100 and 100-1 for

20 Newsgroups and 5000-1000, 1000-100, 100-1

for ALL News. We use the edge dropout in GCN:

when computing hl, we ignore each node with a

probability of 0.6. We use batch normalization

1https://www.kaggle.com/snapcrack/all-the-news



Datasets Training instances Ratio of <= 30 Avg size Vocabulary Avg Biterms #

20 News 11,259 28% 88 1995 1249

All News 20,000 2% 302 5000 5535

Table 1: Datasets statistics.

Dataset # topics GraphBTM AVITM LDA Online VI

20 News
50 0.28 0.25 0.10

100 0.26 0.23 0.08

All news
50 0.27 0.24 0.14

100 0.26 0.23 0.13

Table 2: Average topic coherence.

Datasets(# Topics) # Samples Score

20 News (k=50)

1 0.24

3 0.28

10 0.25

20 News (k=100)

1 0.21

3 0.26

10 0.25

All news (k=50)

1 0.27

3 0.22

5 0.20

All news (k=100)

1 0.26

3 0.20

5 0.17

Table 3: Results for different sampling numbers in

different setting for the two datasets. Score denotes the

topic coherence score.

(Ioffe and Szegedy, 2015) in inference network

with batch size 100 as same in (Srivastava and Sut-

ton, 2017). We run each model 10 times and take

the average results. Code is available at https:

//github.com/valdersoul/GraphBTM.

The perplexity has been used in the past works

to measure the quality of the generated topics.

However, the perplexity is not shown to be a good

evaluation metric for the topics (Newman et al.,

2010). What’s more, our method models a mini-

corpus instead of a real one and infer the top-

ics through the pattern of biterms, so the perplex-

ity is not suitable to measure the performance of

our approach. To get a more objective measure-

ment of the topics, we adopt ”topic coherence”

as our metric, proposed by (Mimno et al., 2011)

to evaluate the quality of the topics. For a vec-

tor V (z) = (vz1 , ..., v
z
T ) as the top T words of the

topic z, which ordered by the probability p(w|z),

the topic coherence is defined as:

C(z;V (z)) =
T
∑

t=2

t
∑

l=1

log
D(v

(z)
m , v

(z)
l ) + 1

D(v
(z)
l )

.

(14)

where D(v) is the number of the documents that

word v occurred, and D(v, v′) is the number of

the documents that both the words v and v′ oc-

curred. The assumption of the topic coherence is

the words with high frequency in a topic tend to

appear in the same document. This measurement

has been demonstrated to be highly consistent with

the human evaluated quality of the topics.

4.2 Results and Discussions

Comparison with other approaches. We com-

pare our GraphBTM approach with the AVITM

(Srivastava and Sutton, 2017) and the LDA model

(Blei et al., 2003). For AVITM, we use their

results for 20 Newsgroups directly and run the

model using the provided code2. We use the on-

line variational inference for LDA (Hoffman et al.,

2010) implementation by gensim library (Řehůřek

and Sojka, 2010) as our LDA baseline. For both

GraphBTM and AVITM, we run 200 iterations.

Table 2 shows the average topic coherence for

three models on the two datasets. The online VI

LDA works worst in the three models and we

find that on both datasets, the GraphBTM consis-

tently outperforms other two models. We can ver-

ify the quality of the learned topics by displaying

the topic examples in Table 4. The topics from

GraphBTM are more coherent than the topics from

both AVITM and LDA model.

2https://github.com/akashgit/
autoencoding vi for topic models



Effect of the mini-corpus. To study the ef-

fect of our sampling strategy which has been dis-

cussed in section 3.3. Table 3 shows the perfor-

mance of our model with different sample size for

a mini-corpus. For the 20 Newsgroups dataset,

the best performance is achieved when the sam-

ple size is 3. When we do not use our sample

strategy (mini-corpus is 1), the performance drops

by a large margin. From Table 1, we see that the

average size of documents size in 20 Newsgroups

is relatively short (88 compared with 302 in All

News). Therefore, the 20 Newsgroups dataset may

suffer from the sparsity problem. The experiment

shows that our sampling strategy can help to over-

come this problem. When sample size increases,

the performance drops again. The biterm graph

with large sample size may bring the same prob-

lem of the original BTM (insufficient topic repre-

sentation). Compared to 20 Newsgroups dataset,

documents in the All News dataset is longer and

carried more topic information, so the best perfor-

mance is achieved without sampling. We find that

when the sample size is larger than an optimized

value, the topic coherence starts to drop.

Effect of modeling biterms as graphs. To ver-

ify the effect of the graph modeling of biterms.

We also do experiments on AVITM with the

same sampling strategy. We use the sampling

size 3 which achieves the best performance by

GraphBTM in 20 Newsgroups to train AVITM

model. The performance does not change a lot,

with an average score of 0.25 which is the same

as the score without sampling. It is not surprising

to us because AVITM models the topic directly on

the individual document with BOW feature. The

BOW feature captures the word co-occurrence im-

plicitly. So aggregating documents in AVITM can

not enhance the input feature. However, our model

uses GCN to capture the transitivity of biterms and

can benefit from the sampling strategy a lot.

Residual connection. We add the residual con-

nection between the first and second layer of GCN.

On the other hand, it can also help convergence by

adding residual connection (Li and Yuan, 2017).

The residual can also help the network capture

hierarchical information of the biterms. We re-

move the residual connection with the same set-

ting which achieves the best performance in these

two datasets and results in a 0.1 drop in perfor-

mance.

5 Related Work

In this section, we briefly summarize the related

work of the topic model into two categories: nor-

mal texts and short texts.

5.1 Normal Texts

The effort of uncovering the latent semantic repre-

sentation of documents can be dated from the La-

tent Semantic Analysis (LSA) (Deerwester et al.,

1990), which used the singular value decomposi-

tion of the document matrix to get the word pat-

terns. The probabilistic latent semantic analy-

sis (PLSA) (Hofmann, 1999) improved the LSA

model by adding a probabilistic model based on

a mixture decomposition. It assumed that a docu-

ment could be presented as a mixture of topics and

a topic is a distribution over words. LDA added

the Dirichlet priors on topic and word distributions

and proposed a complete generative model.

With the rising of deep learning (LeCun et al.,

2015), researchers achieve significant improve-

ment in many areas including image classifica-

tion (He et al., 2016), speech recognition (Hin-

ton et al., 2012) and named entity recognition (Ma

and Hovy, 2016; Zhu et al., 2018). Many at-

tempts have been made for topic models based

on neural networks (Hinton and Salakhutdinov,

2009; Cao et al., 2015; Miao et al., 2016; Srivas-

tava and Sutton, 2017). Cao et al. (2015) em-

bedded multinomial relationships between docu-

ments, topics, and words in differentiable func-

tions. However, they lost the stochasticity and

Bayesian inference of prior functions. Miao et al.

(2016) introduced the Neural Variational Docu-

ment Model (NVDM), which used Gaussian dis-

tribution over topics and averaged over topic-word

distribution in the logit space. Although they used

the black-box variational inference (VAE), they

did not approximate the Dirichlet prior. Srivas-

tava and Sutton (2017) approximated the Dirich-

let prior with logistic Gaussian using the Laplace

approximation of Hennig et al. (2012) and col-

lapsed the hidden topic value z with a mixture of

experts (Hinton, 2002). This model (AVITM) sig-

nificantly improved the topic coherence compared

with the NVDM model. However, same as the

LDA, AVITM suffers from the data sparsity prob-

lem.



Model Topics

GraphBTM

attack ripem rsa encrypt cipher random key cryptography distribution encryption

turkish turks greek greece armenian genocide turkey armenia armenians island

season score player league game puck pitch win pitcher team

israel lebanese israeli lebanon village attack zone arab territory civilian

oname printf entry buf char contest stream output int remark

AVITM

ripem anonymous pgp rsa posting cipher atheism encrypt usenet atheist

armenian genocide turks turkish muslim massacre turkey armenians armenia greek

season nhl team hockey playoff puck league flyers defensive player

israel israeli lebanese arab lebanon arabs civilian territory palestinian militia

oname printf buf entry os char contest cpu stream remark

LDA

drug food health research medical test used development product

computer system data software business personal ibm information technology

offering common convertible proceeds co due used public filed

agreement agreed acquisition acquire purchase sell subject subsidiary completed

quarter earnings reported income expects fiscal loss per second

Table 4: Five selected topics from all models.

5.2 Short Texts

Early studies on short text topic model mainly fo-

cused on adding external knowledge to enrich the

information of short texts. Phan et al. (2008) firstly

learned hidden topics from substantial external re-

sources to enrich the features in short text. Jin

et al. (2011) leveraged the power of transfer learn-

ing to learn topics on short texts from auxiliary

long text data. However, external knowledge in

some domain may not be available.

Instead of adding external knowledge, one po-

tential way is to add a sparse prior on the topic

distribution. Chien and Chang (2014) used a spike

model to control the sparsity of selected topics.

Lin et al. (2014) used the same idea to add the

sparsity on both topic and word distribution. Dif-

ferent from these approaches, some researchers

tried to enhance data without external knowledge.

Weng et al. (2010) aggregated the tweets from one

user into a document. Hong and Davison (2010)

combined the tweets containing the same words.

Some other used non-probability topic model to

solve this problem. Zhu and Xing (2012) pro-

posed sparse topical coding, which relaxed the

normalization constraint of admixture proportions

and learned hierarchical latent representations.

6 Conclusion and Future Work

We proposed a Graph Enhanced Autoencoding

Variational inference for Biterm Topic Model

(GraphBTM). Our model used a black-box ap-

proximation inference approach to learn topics

through the word co-occurrences (biterms). We

modeled the biterms in the form of a graph where

the nodes are the words and weighted edges are

the counts of the corresponding biterms. On top

of this graph representation, we designed a model

by GCN layers with a residual connection to ef-

fectively extract node representations that preserve

the missing connectivity. To overcome the prob-

lems of data sparsity in LDA and insufficient topic

representation in BTM, we introduced a data ar-

gumentation approach by producing a mini-corpus

with sampled documents. By setting a proper hy-

perparameter of sample size k, we achieved bet-

ter topic coherence scores compared with previous

works.

Our GCN model is based on spectral graph

convolutions, which requires computing the graph

Laplace for each sample. Compared to tasks with

one graph input, we need to compute the graph

Laplace for every input sample, causing substan-

tial computational cost. It is critical to developing

a memory efficient processing and storage strategy

to handle the large-scale graph data when we gen-

eralize GraphBTM to complex tasks. Recently,

fastGCN (Zhang et al., 2018) interpreted graph

convolutions as integral transforms of functions

under probability measures. Our following work

will consider adopting fastGCN to speed up the

process.
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