In vitro Anti-Biofilm Activity of Oregon Mineral Technologies Blue Clay

Katherine M. Caflisch, Suzannah M. Schmidt-Malan, Jayawant N. Mandrekar, Melissa J. Karau, Jonathan P. Nicklas, Robin Patel, Lynda B. Williams

Background: Oregon Mineral Technologies (OMT) Blue Clay is a natural clay that has demonstrated possible antibacterial activity but has not been specifically evaluated for antibiofilm activity. Here, we assessed activity of OMT Blue Clay in an *in vitro* model of monomicrobial biofilms with a view towards understanding potential activity against wound biofilms.

Materials: Monomicrobial biofilms grown on medical-grade Teflon discs were incubated for 24 h with either OMT Blue Clay or OMT Blue Clay leachate (200 mg/mL), followed by comparison of population density via quantitative culture to that of controls. Bacterial species selection was based on prevalence in wounds (Table). All testing was performed in triplicate.

Results: OMT Blue Clay exposure resulted in statistically significant reductions in population density for all organisms tested compared with controls (p≤0.05) (Table). Treatment with OMT Blue Clay Leachate likewise resulted in statistically significant population density attenuation compared with controls for all organisms except for IDRL-6169. aureus Clay versus leachate formulations supported statistically significant increased population reductions for five of the twelve organisms tested.

Organism	Control	Clay	Leachate
o. gamen	Log ₁₀ cfu/cm ²	Log ₁₀	Log ₁₀ cfu/cm ²
Staphylococcus aureus IDRL-6169	5.51	0.10*#	6.09
Staphylococcus epidermidis RP62A	6.25	0.10*#	0.50*
Streptococcus pyogenes IDRL-7467	3.07	0.10*	0.10*
Streptococcus dysgalactiae IDRL-10052	3.76	0.10*	0.10*
Pseudomonas aeruginosa IDRL-11465	7.02	0.55*	2.10*
P. aeruginosa IDRL-10628	7.15	0.58*	1.93*
Enterobacter cloacae IDRL-10306	6.51	2.21*#	3.75*
E. cloacae IDRL-10375	6.45	1.14*#	3.08*
Acinetobacter baumannii ARLG-1268	5.23	0.10*	0.89*
Klebsiella pneumoniae IDRL-10377	6.43	3.31*#	1.54*
Escherichia coli IDRL-10366	5	1.24*	0.93*
E. coli ATCC 25922	6.26	1.02*	2.10*

Table 1. Bacterial species tested against clay and leachate. Note * denotes statistically significant population reduction (p≤0.05) compared to controls and # denotes significantly significant reduction compared to the leachate treatment.

Conclusion: OMT Blue Clay demonstrates promising in vitro activity against biofilms.