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Abstract
Most contextual bandit algorithms minimize regret against the best fixed policy, a questionable
benchmark for non-stationary environments that are ubiquitous in applications. In this work, we
develop several efficient contextual bandit algorithms for non-stationary environments by equipping
existing methods for i.i.d. problems with sophisticated statistical tests so as to dynamically adapt
to a change in distribution.

We analyze various standard notions of regret suited to non-stationary environments for these
algorithms, including interval regret, switching regret, and dynamic regret. When competing with
the best policy at each time, one of our algorithms achieves regret O(

√
ST ) if there are T rounds

with S stationary periods, or more generallyO(∆1/3T 2/3) where ∆ is some non-stationarity mea-
sure. These results almost match the optimal guarantees achieved by an inefficient baseline that is
a variant of the classic Exp4 algorithm. The dynamic regret result is also the first one for efficient
and fully adversarial contextual bandit.

Furthermore, while the results above require tuning a parameter based on the unknown quantity
S or ∆, we also develop a parameter free algorithm achieving regret min{S1/4T 3/4,∆1/5T 4/5}.
This improves and generalizes the best existing result ∆0.18T 0.82 by Karnin and Anava (2016)
which only holds for the two-armed bandit problem.

1. Introduction

Algorithms for the contextual bandit problem have been developed for adversarial (Auer et al.,
2002), stochastic (Agarwal et al., 2014; Langford and Zhang, 2008) and hybrid (Rakhlin and Srid-
haran, 2016a; Syrgkanis et al., 2016b) environments. Despite the specific setting, however, almost
all these works minimize the classical notion of regret that compares the reward of the algorithm
to the best fixed policy in hindsight. This is a natural benchmark when the data generating mech-
anism is essentially stationary, so that a fixed policy can attain a large reward. However, in many
applications of contextual bandits, we are faced with an extremely non-stationary world. For in-
stance, the pool of available news stories or blog articles rapidly evolves in content personalization
domains, and people’s preferences typically exhibit trends on daily, weekly and seasonal scales. In
such cases, one wants to compete with an appropriately adaptive sequence of benchmark policies,
for the baseline to be meaningful.

c 2018 H. Luo, C.-Y. Wei, A. Agarwal & J. Langford.
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Prior works in a context-free setting (that is, the multi-armed bandit problem) have studied re-
gret to a sequence of actions, whenever that sequence is slowly changing under some appropriate
measure (see e.g. (Auer et al., 2002; Besbes et al., 2014, 2015; Karnin and Anava, 2016; Wei et al.,
2016)). A natural generalization to the contextual setting would be to compete with a sequence of
policies, all chosen from some policy class. Extension of the prior context-free works to the con-
textual setting indeed yields algorithms with such guarantees, as we show with a baseline example
(Exp4.S). However, the computation and storage of the resulting algorithms are both linear in the
cardinality of the policy class, making tractable implementation impossible except for very small
policy classes.

To overcome the computational obstacle, all previous works on efficient contextual bandits as-
sume access to an optimization oracle which can find the policy with the largest reward on any
dataset containing context-reward pairs (Langford and Zhang, 2008; Agarwal et al., 2014; Rakhlin
and Sridharan, 2016a; Syrgkanis et al., 2016b). Given such an oracle, however, it is known that
no efficient low-regret algorithms exist in the fully adversarial setting (Hazan and Koren, 2016,
Theorem 25), even without any challenges of non-stationarity. Consequently all previous works
explicitly rely on assumptions such as i.i.d. contexts, or even i.i.d. context-reward pairs.

As a warm-up and also an example to show the difficulty of the problem, we first consider a
general approach to convert an algorithm for the stationary setting to an algorithm that can deal
with non-stationary data. The idea is to combine different copies of the base algorithm, each of
which starts at a different time to learn over different data segments. This can be seen as a natural
generalization of the approach of Hazan and Seshadhri (2007) for the full information setting. We
build on a recent result of Agarwal et al. (2017) to deal with the additional challenges due to partial
feedback and use BISTRO+ (Syrgkanis et al., 2016b) as the base algorithm since it is efficient and
requires no statistical assumption on the rewards. However, unlike the full information setting, the
regret rates degrade after this conversion as we show, making this general approach unsatisfying.

We next consider a more specific approach by equipping existing algorithms for the i.i.d. setting,
such as EPOCH-GREEDY (Langford and Zhang, 2008) and the statistically more efficient approach
of Agarwal et al. (2014), with some sophisticated statistical tests to detect non-stationarity (the
resulting algorithms are called ADA-GREEDY and ADA-ILTCB respectively). Once such non-
stationarity is detected, the algorithms restart from scratch. The exact tests are algorithm-specific
and based on verifying certain concentration inequalities which the algorithm relies upon, but the
general idea might be applicable to extending other contextual bandit algorithms as well.

We present strong theoretical guarantees for our algorithms, in terms of interval regret, switching
regret and dynamic regret (defined in Section 2). A high-level outcome of our analysis is that the
algorithms enjoy a regret bound on any time interval that is sufficiently stationary (called interval
regret), compared with the best fixed policy for that interval. This general result has important
corollaries, discussed in Section 4. For example, if the data-generating process is typically i.i.d.,
except there are hard switches in the data distribution every so often, then our algorithms perform as
if they knew the change points in advance, up to a small penalty in regret (called switching regret).
More generally, if the data distribution is slowly drifting, we can still provide meaningful regret
bounds (called dynamic regret) when competing to the best policy at each time (instead of a fixed
policy across all rounds).

These results are summarized in Table 1. The highlight is that our computationally efficient
algorithm ADA-ILTCB enjoys almost the same guarantee as the inefficient baseline Exp4.S for
all three regret measures, which is optimal in light of the existing results for the special case of
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Table 1: Comparisons of different results presented in this work. “OE?” indicates whether the algo-
rithm is Oracle-Efficient or not. T is the total number of rounds, I is the interval on which
interval regret is measured, S is the number of i.i.d. periods, ∆ is the reward variation, and
∆̄ ≥ ∆ is the total variation, all defined in Section 2. These parameters are assumed to be
known for the column “tuned” but unknown for the column “param-free”.2 Dependence
on other parameters are omitted. Results for BISTRO+ assumes a transductive setting,
and interval regret for the last three algorithms assumes (approximately) i.i.d. data on I.

Algorithm OE?
Interval Regret Switching Regret Dynamic Regret

param-free tuned param-free tuned param-free tuned

Exp4.S (baseline) N
√
T

p
|I| S

√
T

√
ST

√
∆T

2
3 ∆

1
3T

2
3

Corral BISTRO+ Y T
3
4 T

1
4

p
|I| ST

3
4

√
ST

3
4

√
∆T

5
6 ∆

1
3T

5
6

ADA-GREEDY Y T
1
6

p
|I| |I|

2
3

√
ST

2
3 S

1
3T

2
3

√
∆T

3
4 ∆

1
4T

3
4

ADA-ILTCB Y
√
T

p
|I| S

√
T

√
ST ∆̄T

2
3 ∆̄

1
3T

2
3

ADA-BINGREEDY Y T
3
4 S

1
4T

3
4 ∆

1
5T

4
5

multi-armed bandit. Importantly, the dynamic regret bounds for our algorithms hold under a fully
adversarial setting.1 As far as we know, this is the first result on adversarial and efficient contextual
bandits.

All the results above, including those for Exp4.S, require tuning a parameter in terms of some
unknown quantity. Otherwise the results degrade as shown in Table 1 and become vacuous when the
non-stationarity measure (the number of stationary periods S or the reward variation ∆) is large. Our
final contribution is a parameter-free variant of ADA-GREEDY, called ADA-BINGREEDY, which
achieves better regret (even compared to Exp4.S) in the regime when S or ∆ is large and unknown.
Importantly, this result even improves upon the best existing result by Karnin and Anava (2016) for
the context-free setting, where a regret bound of order ∆0.18T 0.82 is shown for the two-armed bandit
problem. We improve the bound to min{S1/4T 3/4,∆1/5T 4/5} and also significantly generalize it
to the multi-armed and contextual setting.

Related work. The idea of testing for non-stationarity in bandits was studied in (Bubeck and
Slivkins, 2012) and (Auer and Chiang, 2016) for a very different purpose. The closest bounds to
those in Table 1 are in the non-contextual setting (Auer et al., 2002; Besbes et al., 2014, 2015;
Wei et al., 2016) as mentioned earlier. Chakrabarti et al. (2009) study a context-free setup where
the action set changes. To the best our knowledge, oracle-efficient contextual bandit algorithms for
non-stationary environments were only studied before in (Syrgkanis et al., 2016a), where a reduction
from competing with a switching policy sequence to competing with a fixed policy was proposed.
However, the reduction cannot be applied to the i.i.d methods (Langford and Zhang, 2008; Agarwal

1. Note that this does not contradict with the hardness results in (Hazan and Koren, 2016) since the bound is data-
dependent and could be linear in T in the worst case.

2. Other (incomparable) bounds for the “param-free” column are also possible. See discussions in respective sections.
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et al., 2014), and it heavily relies on knowing the number of switches and the transductive setting.
Additionally, this approach gives no guarantees on interval regret or dynamic regret, unlike our
results.

2. Preliminaries

The contextual bandits problem is defined as follows. Let X be an arbitrary context space and K be
the number of actions. Let [n] denote the set {1, . . . , n} for any integer n. A mapping π : X → [K]
is called a policy and the learner is given a fixed set of policies Π. For simplicity, we assume
Π is a finite set but with a large cardinality N = |Π|. Ahead of time, the environment decides
T distributions D1, . . . ,DT on X × [0, 1]K , and draws T context-reward pairs (xt, rt) ∼ Dt for
t = 1, . . . , T independently.3 Then at each round t = 1, . . . , T , the environment reveals xt to the
learner, the learner picks an action at ∈ [K] and observes its reward rt(at). The regret of the learner
with respect to a policy π at round t is rt(π(xt))−rt(at). Most existing results on contextual bandits
focus on minimizing cumulative regret against any fixed policy π ∈ Π:

PT
t=1 rt(π(xt))− rt(at).

To better deal with non-stationary environments, we consider several related notions of regret.
The first one is cumulative regret with respect to a fixed policy on a time interval I, which we call
interval regret on I. Specifically, we use the notation I = [s, s0] for s ≤ s0 and s, s0 ∈ [T ] to denote
the set {s, s + 1, . . . , s0} and call it a time interval (starting from round s to round s0). The regret
with respect to a fixed π ∈ Π on a time interval I is then defined as

P
t∈I rt(π(xt))−rt(at). This is

similar to the notion of adaptive and strongly adaptive regret (Hazan and Seshadhri, 2007; Daniely
et al., 2015). We use the term interval regret without any specific interval when the choice is clear
from context.

Interval regret is useful in studying more general regret measures for non-stationary environ-
ments. Specifically, we aim at the most challenging benchmark, that is, the cumulative rewards
achieved by using the best policy at each time. Formally, let Rt(π) := E(x,r)∼Dt

r(π(x)) be the
expected reward of policy π under Dt and π?

t := argmaxπ∈ΠRt(π) be the optimal policy at round
t. Then the aforementioned general regret is defined as

PT
t=1 rt(π

?
t (xt))− rt(at). It is well-known

that in general no sub-linear regret is achievable with this definition.
However, one can bound such regret in terms of some quantity that measures the non-stationarity

of the environment and achieve meaningful results whenever such quantity is not too large. One
example is to count the number of switches in the distribution sequence, that is,

PT
t=2 1{Dt 6=

Dt−1}. We denote this by S − 1 (so that S is the number of i.i.d. segments) and call a regret bound
in terms of S switching regret.

Switching regret might be meaningless if the distribution is slowly drifting, leading to a
large number of switches but overall a small amount of variation in the distribution. To cap-
ture this situation, we also consider another type of non-stationarity measure, generalizing a
similar notion from the multi-armed bandit literature (Besbes et al., 2014). Specifically, de-
fine ∆ =

PT
t=2 maxπ∈Π |Rt(π) − Rt−1(π)| to be the variation of reward distributions. Note

that this is a lower bound on the sum of total variation between consecutive distributions ∆̄ =PT
t=2 kDt −Dt−1kTV =

PT
t=2

R
[0,1]K

R
X Dt(x, r)−Dt−1(x, r) dxdr (see Lemma 9 for a proof).

We call regret bounds in terms of ∆ or ∆̄ dynamic regret.

3. That is, the data generating process is oblivious to the algorithm.
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All algorithms we consider construct a distribution pt over actions at round t and then sample
at ∼ pt. The importance weighted reward estimator is defined as brt(a) = rt(a)

pt(a)1{a = at}, ∀a ∈
[K]. For an interval I, we use RI(π) and bRI(π) to denote the average expected and empirical re-
wards of π over I respectively, that is,RI(π) = 1

|I|
P

t∈I Rt(π) and bRI(π) = 1
|I|
P

t∈I brt(π(xt)).

The empirically best policy on interval I is defined as π̂I = argmaxπ∈Π
bRI(π). The number of

i.i.d. periods, the reward variation, and the total variation on an interval I = [s, s0] are respectively
defined as SI = 1 +

Ps0

τ=s+1 1{Dτ 6= Dτ−1}, ∆I :=
Ps0

τ=s+1 maxπ∈Π |Rτ (π)−Rτ−1(π)|, and
∆̄I :=

Ps0

τ=s+1 kDτ −Dτ−1kTV.
We use DX

t to denote the marginal distribution of Dt over X , and Et to denote the conditional
expectation given everything before round t. Finally, we are interested in efficient algorithms as-
suming access to an optimization oracle (Agarwal et al., 2014):

Definition 1 The argmax oracle (AMO) is an algorithm which takes any set S of context-reward
pairs (x, r) ∈ X × RK as inputs and outputs any policy in argmaxπ∈Π

P
(x,r)∈S r(π(x)).

An algorithm is oracle-efficient if its total running time and the number of oracle calls are both
polynomial in T,K and lnN , excluding the running time of the oracle itself.

In the rest of the paper, we start with discussing interval regret in Section 3, followed by
the implications for switching/dynamic regret in Section 4. The parameter-free algorithm ADA-
BINGREEDY is then discussed in Section 5.

3. Interval Regret

In this section we present several algorithms with interval regret guarantees. As a starter and a
baseline, we first point out that a generalization of the Exp3.S algorithm (Auer et al., 2002) and
Fixed-Share (Herbster and Warmuth, 1998) to the contextual bandit setting, which we call Exp4.S,
already provides a strong interval regret guarantee as shown by the following theorem. We include
the algorithm and the proof in Appendix B. Crucially, Exp4.S requires maintaining weights for each
policy and is thus not oralce-efficient.

Theorem 2 Exp4.S with parameter L ensures that for any time interval I such that |I| ≤ L, we
have E

P
t∈I rt(π(xt))− rt(at) ≤ O(

p
LK ln(NL)) for any π ∈ Π, where the expectation is

with respect to the randomness of both the algorithm and the environment.

Note that in bandit settings, it is impossible to achieve regret O(
p
|I|) for all interval I simul-

taneously (Daniely et al., 2015). When |I| is unknown, a safe choice is to pick L = T (this is
how we obtain the results in the “param-free” column of Table 1 for interval regret). Next we prove
statements similar to Theorem 2 but with oracle-efficient algorithms.

A general approach. In the full information setting, a general approach to convert an algorithm
with classic regret guarantee to another with interval regret is to combine different copies of the al-
gorithm with an expert algorithm, each of which starts at a different time step to learn over different
time intervals. This works well in the full information setting where one has correct feedback to up-
date all the base algorithms, but becomes challenging in the bandit setting. We show in Appendix G
how to leverage recent results by Agarwal et al. (2017) and Wei and Luo (2018) to deal with such
challenges. As an example we use the BISTRO+ algorithm (Syrgkanis et al., 2016b; Rakhlin and
Sridharan, 2016b) as the base algorithm since it is oracle-efficient and allows adversarial rewards.
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Theorem 3 In the transductive setting, Algorithm 5 in Appendix G guarantees that for any time
interval I such that |I| ≤ L and any policy π ∈ Π, we have E

P
t∈I rt(π(xt))− rt(at) ≤eO(T

1
4 (LK)

1
2 (lnN)

1
4 ).

Unlike the full information setting, this general approach results in worse regret rates and is
unsatisfying (BISTRO+ achieves eO(T 2/3) for the classic regret and here we only obtain eO(T 3/4)).
In the following subsections, we turn to different approaches.

3.1. ADA-GREEDY

The simplest oracle-efficient contextual bandit algorithm is the EPOCH-GREEDY method (Langford
and Zhang, 2008) which assumes i.i.d. data. In this section, we extend the related -GREEDY

algorithm to enjoy a small interval regret on any interval with a small variation.
-GREEDY plays uniformly at random with a small probability and otherwise follows the

empirically best policy πt = argmaxπ∈Π
bR[1,t−1](π). The number of oracle calls can be

greatly reduced if the learner updates the best policy only at t = 1, 2, 4, 8, . . . (that is, πt =
argmaxπ∈Π

bR[1,2blog2 tc−1](π)). ADA-GREEDY, described in Algorithm 1, behaves similarly to this
version of -GREEDY. The difference is that at each round, an additional non-stationarity test is ex-
ecuted. The test monitors whether there is a policy performing significantly better on recent samples
(collected in a doubling manner), compared to the policy that the algorithm is using. Intuitively, if
such a policy exists, there should have been a significant shift in the distribution. In this case, the
algorithm restarts from scratch.

In addition, the algorithm also resets every L rounds for some parameter L (Line 9). This
prevents the risk of slow detection of a distribution change, but at the same time also causes some
extra penalty when the environment is stationary. The parameter L trades these two kinds of costs,
and can be selected based on prior knowledge about the environment.

We call the rounds between resets an epoch (so epoch i is the interval [Ti + 1, Ti+1]), and the
rounds between updates of the empirically best policy a block (so block j of epoch i is the interval
[Ti + 2j−1, Ti + 2j − 1]).

Note that there are only two places where we need to invoke the oracle: computing π̂(i,j) and
π̂A (π̂B is simply equal to π̂(i,j)), and it is thus clear that at most O(lnL) = O(lnT ) oracle calls
are used per round.

We prove the following result for ADA-GREEDY, stating a regret bound for all intervals with
length smaller than L and variation smaller than another parameter v of the algorithm.

Theorem 4 With probability at least 1− δ, for all time intervals I such that |I| ≤ L and ∆I ≤ v,
ADA-GREEDY with parameters L, v and δ guarantees for any π ∈ Π,4X

t∈I
rt(π(xt))− rt(at) ≤ eO |I|v + L

1
6

p
K|I| ln(N/δ) + K ln(N/δ) .

Note that whenever v = O(L− 1
3 ), the rate of the regret above is of order eO(L2/3) (since |I| ≤

L), which matches the ordinary regret bound of EPOCH-GREEDY ( eO(T 2/3)). While a condition on
both the interval length and variation is seemingly strong and the bound seems to be meaningful only
for very small v, we emphasize that 1) sublinear regret via oracle-efficient algorithms is impossible

4. We use notation eO to suppress dependence on logarithmic factors in L, T,K and ln(N/δ).
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Algorithm 1 ADA-GREEDY

1 Input: largest allowed interval length L and variation v, allowed failure probability δ

2 Define: µ = min
n

1
K , L− 1

3

q
ln(N/δ)

K

o
, βI = 2

q
ln(4T 2N/δ)

µ|I| + ln(4T 2N/δ)
µ|I|

3 Initialize: i = 1, T1 = 0. . i indexes an epoch
4 for j = 1, 2, . . . do . j indexes a block
5 Compute π̂(i,j) = argmaxπ∈Π

bR[Ti+1,Ti+2j−1−1](π) . or arbitrary if j = 1

6 for t = Ti + 2j−1, . . . , Ti + 2j − 1 do
7 Set pt(a) = µ + (1−Kµ)1{a = π̂(i,j)(xt)},∀a ∈ [K]

8 Play at ∼ pt and receive rt(at)
9 if (t ≥ Ti + L) or (j > 1 and NONSTATTEST(t) = True) then

10 Ti+1 ← t, i← i + 1
11 goto Line 4

Procedure NONSTATTEST(t)
12 ‘ = 1
13 while ‘ ≤ t− Ti do
14 Let A , [t− ‘ + 1, t] and B , [Ti + 1, Ti + 2j−1 − 1]

15 if bRA(π̂A) > bRA(π̂B) + 2(βA + βB + 2v) then return True
16 ‘← 2‘

17 return False

under a fully adversarial setting even for the classic regret (Hazan and Koren, 2016) and 2) based
on Theorem 4 we can in fact derive strong dynamic regret bounds that hold without any assumption
on the distribution sequence (see Section 4).

3.2. ADA-ILTCB

Although being fairly simple, ADA-GREEDY is suboptimal just as EPOCH-GREEDY is suboptimal
for stationary environments. In this section we propose ADA-ILTCB, a variant of ILOVETO-
CONBANDITS (Agarwal et al., 2014), which achieves the optimal regret rate while also being
oracle-efficient. The idea is similar to ADA-GREEDY, but the statistical checks are more involved.

For a policy π and an interval I, we denote the expected and empirical regret of π by RegI(π) =

maxπ0∈ΠRI(π0) −RI(π) and dRegI(π) = maxπ0∈Π
bRI(π0) − bRI(π) respectively. For a context

x and a distribution over the policies Q ∈ ∆Π := {Q ∈ RN
+ :

P
π∈Π Q(π) = 1}, the projected

distribution over the actions is denoted by Q(·|x) such that Q(a|x) =
P

π:π(x)=aQ(π), ∀a ∈ [K].
The smoothed projected distribution with a minimum probability µ is defined as Qµ(·|x) = µ1 +
(1−Kµ)Q(·|x) where 1 is the all-one vector. Like (Agarwal et al., 2014), we keep track of a bound
on the variance of the reward estimates and define for a policy π, an interval I and a distribution
Q ∈ ∆Π

bVI(Q, π) =
1

|I|
X
t∈I

1

Qµ(π(xt)|xt)
, VI(Q, π) =

1

|I|
X
t∈I

Ex∼DX
t

1

Qµ(π(x)|x)
.

7
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Algorithm 2 ADA-ILTCB
1 Input: largest allowed interval length L and variation v, allowed failure probability δ

2 Define: µ = min
n

1
2K , L− 1

2

q
ln(8T 2N2/δ) ln(L)

K

o
, C1 = 4, C2 = 106, C3 = 1.1 × 103, C4 =

41, C5 = 1200, C6 = 6.4
3 Initialize: i = 1, T1 = 0 . i indexes an epoch
4 for j = 1, 2, . . . do . j indexes a block
5 Let Q(i,j) be a solution to (OP) with parameter µ and data from [Ti + 1, Ti + 2j−1 − 1]

6 for t = Ti + 2j−1, . . . , Ti + 2j − 1 do
7 Set pt(a) = Qµ

t (a|xt),∀a ∈ [K] where Qt = Q(i,j)

8 Play at ∼ pt and receive rt(at)
9 if (t ≥ Ti + L) or (NONSTATTEST(t) = True) then

10 Ti+1 ← t, i← i + 1
11 goto Line 4

Procedure NONSTATTEST(t)
12 ‘ = 1
13 while ‘ ≤ t− Ti − 1 do
14 Let A , [t− ‘, t− 1] and B , [Ti + 1, Ti + 2j−1 − 1]

15 if maxπ∈Π

ndRegB(π)− C1
dRegA(π)

o
> C2LKµ

‘ + C3v then return True

16 if maxπ∈Π

ndRegA(π)− C1
dRegB(π)

o
> C2LKµ

‘ + C3v then return True

17 if maxπ∈Π

nbVA(Qt, π)− C4
bVB(Qt, π)

o
> C5LK

‘ + C6v
µ then return True

18 ‘← 2‘

19 return False

Similar to ADA-GREEDY, the proposed algorithm ADA-ILTCB (Algorithm 2) proceeds like
the base algorithm (ILOVETOCONBANDITS in this case) with additional tests to detect the non-
stationarity of the environment. We define an epoch and a block similar to those of ADA-GREEDY.
The algorithm solves the optimization (OP) defined in (Agarwal et al., 2014) (and included in Ap-
pendix D) at the beginning of each block using the data collected in that epoch so far. The solution
of (OP) is denoted by Qt, a sparse distribution over Π, and the learner samples actions based on
Qµ

t (·|xt).
At each round, the NONSTATTEST checks whether the empirical regret or the variance of reward

estimates of any policy has changed significantly in a recent interval (i.e., [t−‘, t−1]), compared to
the interval from which we compute Qt (i.e., [Ti+1, Ti+2j−1−1]). If so, the algorithm restarts with
a new epoch. Note that detecting the change of regret is similar to detecting the change of reward;
but different from ADA-GREEDY, here we also check the change of reward estimate variance. This
inherits from the tighter variance control in ILOVETOCONBANDITS, the key to obtaining better
regret compared to -GREEDY.

Oracle-Efficiency. Note that Lines 15, 16 and 17 can all be implemented by one call of the AMO
oracle each, after using two extra oracle calls to compute maxπ0∈Π

bRB(π0) and maxπ0∈Π
bRA(π0)

in advance. Specifically, let S = {(xτ , −1
2j−1−1

brτ )}τ∈B ∪ {(xτ , C1
‘ brτ )}τ∈A, then the left hand

8
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side of the inequality in Line 15 can be rewritten as maxπ
P

(x,r)∈S r(π(x)) + maxπ0∈Π
bRB(π0)−

C1 maxπ0∈Π
bRA(π0), where clearly the first term can be computed by one oracle call and the rests

are precomputed already. Similarly, Line 17 can be computed by feeding the oracle with examples
{(xτ , 1

‘
1

Qµ
τ (·|xτ )

)}τ∈A ∪ {(xτ , −C4

2j−1−1
1

Qµ
τ (·|xτ )

)}τ∈B .

Agarwal et al. (2014) showed that the optimization problem (OP) can be solved by eO(1/µ)
oracle calls and the solution has only eO(1/µ) non-zero coordinates. Note that we only solve (OP)
at the beginning of each block. Since there are O(lnL) blocks in an epoch, the total oracle calls in
an epoch is bounded by eO ln(L)/µ = eO(

√
LK), which amortizes to eO(S0√LK/T ) per round

if there are S0 epochs (in Section 4 we relate S0 to S or ∆̄).
We next present the interval regret guarantee of ADA-ILTCB, which improves from eO(L

2
3 ) toeO(

√
L) compared to ADA-GREEDY (see Appendix D for the proof), except that it holds for interval

with total variation ∆̄I (instead of reward variation ∆I) bounded by v due to the fact that variation
in the context is important for the variance control (Line 17).

Theorem 5 With probability at least 1 − δ, for any interval I such that |I| ≤ L and ∆̄I ≤ v,
ADA-ILTCB with parameters L, v, and δ guarantees for any π ∈ Π,X

t∈I
rt(π(xt))− rt(at) ≤ eO |I|v +

p
LK ln(N/δ) .

4. Implications

In this section we discuss the implications of interval regret guarantees on switching/dynamic regret,
both of which are meaningful performance measures for non-stationary environments.

Switching Regret. We begin with switching regret, which is pretty straightforward. One only
needs to divide the entire time interval [1, T ] into several i.i.d. subintervals with length bounded by
L, and then apply the interval regret guarantee on each of these subintervals since the best policy
π?
t remains the same on each of these subintervals (for ADA-GREEDY and ADA-ILTCB we can

simply set the variation tolerance v to be 0). We take Exp4.S as an example and state the results
below (see Appendix B for the proof), while similar results for other algorithms are summarized in
Table 1.

Corollary 1 Exp4.S with parameter L ensures E
hPT

t=1 rt(π
?
t (xt))− rt(at)

i
≤eO T√

L
+ S
√
L
√
K lnN where S = 1 +

PT
t=2 1{Dt 6= Dt−1}.

If S is known, then setting L = T/S gives a bound of eO(
√
STK lnN). Otherwise setting L

with different values leads to different bounds that are incomparable. For example, setting L = T

leads to eO(S
√
TK lnN) while setting L =

√
T leads to eO((T

3
4 + ST

1
4 )
√
K lnN). No matter

how L is tuned, however, these bounds all become vacuous (Ω(T )) when S is large enough but still
sublinear in T , an issue addressed later in Section 5.

Dynamic Regret. We now move on to discuss dynamic regret in terms of the variation measures
∆ or ∆̄ (recall ∆ =

PT
t=2 maxπ∈Π |Rt(π)−Rt−1(π)| and ∆̄ =

PT
t=2 kDt −Dt−1kTV). We first

point out that previous works (Besbes et al., 2015; Zhang et al., 2017) have studied a reduction from
dynamic regret to interval regret, restated below:

9
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Lemma 6 Let {Ii = [si, ti]}i∈[n] be time intervals that partition [1, T ]. We have

TX
t=1

Et [rt(π
?
t (xt))− rt(at)] ≤

nX
i=1

X
t∈Ii

Et rt(π
?
si(xt))− rt(at) + 2

X
i∈[n]

|Ii|∆Ii .

We include the proof in Appendix F for completeness. Partitioning [1, T ] into intervals with
equal length L0 ≤ L, applying this lemma and Theorem 2, and using the fact

P
i∈[n] ∆Ii ≤ ∆

directly lead to the following result for Exp4.S.

Corollary 2 Exp4.S with parameter L ensures that E
hPT

t=1 rt(π
?
t (xt))− rt(at)

i
≤eO min0≤L0≤L

n
T
L0

√
LK lnN + L0∆

o
.

Again, if ∆ is known one can tune L optimally to get a bound eO(T
2
3 (∆K lnN)

1
3 +√

TK lnN), similar to the optimal dynamic regret in multi-armed bandits (Besbes et al., 2014).
When ∆ is unknown, different values of L give different and in general incomparable bounds.
For example, setting L = T

2
3 leads to eO(T

2
3

√
∆(K lnN)

1
4 + T

2
3

√
K lnN) (with L0 =

min{T 2/3, T 2/3(K lnN)1/4/
√

∆} in this case), which is again vacuous for large ∆.
Similar arguments also provide a dynamic regret bound for CORRAL with BISTRO+ in the

transductive setting, as shown in Table 1 (also see Corollary 5 in Appendix G). However, the exact
same argument above does not apply to ADA-GREEDY and ADA-ILTCB directly since its interval
regret guarantee requires ∆I ≤ v. It turns out, however, one can set v to some carefully selected
value and partition [1, T ] correspondingly so that every subinterval satisfies |I| ≤ L and ∆I ≤ v, to
obtain the following results that hold in a completely adversarial setting.5 The proofs are included
in Appendix F.

Corollary 3 With probability at least 1 − δ, ADA-GREEDY with parameter L, δ and v = L−1/3

ensures that
TX
t=1

rt(π
?
t (xt))− rt(at) ≤ eO T

L1/3
+ L1/3

√
∆T K ln(N/δ) .

Specifically, if ∆ is known, setting L = min{(T/∆)
3
4 , T} gives eO((∆

1
4T

3
4 + T

2
3 )K ln(N/δ));

otherwise, setting L = T
3
4 gives eO((

√
∆ + 1)T

3
4K ln(N/δ)).

Corollary 4 With probability at least 1 − δ, ADA-ILTCB with parameter L, δ and v = L− 1
2

ensures that
TX
t=1

rt(π
?
t (xt))− rt(at) ≤ eO T√

L
+ ∆̄L K ln(N/δ) .

If ∆̄ is known, setting L = min{(T/∆̄)
2
3 , T} gives eO((∆̄

1
3T

2
3 +
√
T )K ln(N/δ)); otherwise,

setting L = T
2
3 gives eO((∆̄ + 1)T

2
3K ln(N/δ)).

One can see that again the result for ADA-ILTCB is better than that of ADA-GREEDY, and is
in fact very close to that of the inefficient baseline Exp4.S, except that it is in terms of the slightly
larger variation measure ∆̄.

5. The dependence on K ln(N/δ) in these results is slightly loose for conciseness and could be tightened.

10
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Algorithm 3 ADA-BINGREEDY

1 Input: allowed failure probability δ

2 Define: βI = 2
q

ln(4T 2N/δ)
µI |I| + ln(4T 2N/δ)

µI |I| , where µI , min
t∈I

µt and µt is defined below, αI =

2
q

K ln(4T 2N/δ)
|I| + K ln(4T 2N/δ)

|I|
3 Initialize: t = 1, i = 1, T1 = 0 . i indexes an epoch
4 for j = 1, 2, . . . do . j indexes a block
5 Compute π̂(i,j) = argmaxπ∈Π

bR[Ti+1,Ti+2j−1−1](π) . or arbitrary if j = 1

6 H = 2j−1 . H is block length
7 for b = 1, 2, . . . ,

√
H do . b indexes a bin, each with length

√
H

8 Make bin b an exploration bin with probability 1/
√
b; otherwise an exploitation bin

9 for τ = 1, . . . ,
√
H do . loop through rounds in bin b

10 Let µt = min
n

1
K , (t− Ti)

− 1
3

q
ln(N/δ)

K

o
11 Set pt(a) =

(
1
K , if bin b is an exploration bin,
µt + (1−Kµt)1{a = π̂(i,j)(xt)}, if bin b is an exploitation bin.

12 Play at ∼ pt and receive rt(at)
13 if j > 1 and (bin b is exploration bin) and (NONSTATTEST(t) = True) then
14 Ti+1 ← t, t← t + 1, i← i + 1
15 goto Line 4

16 t← t + 1

Procedure NONSTATTEST(t)
17 ‘ = 1
18 while [t− ‘ + 1, t] is a subset of the current bin do
19 Let A , [t− ‘ + 1, t] and B , [Ti + 1, Ti + 2j−1 − 1]

20 if bRA(π̂A) > bRA(π̂B) + 2(αA + βB) then return True
21 ‘← 2‘

22 return False

5. Achieving Switching/Dynamic Regret with No Parameters

As mentioned, when the parameter S or ∆ is unknown, our algorithms achieve regret of the formeO(Sc1T c2) or eO(∆c1T c2) for some exponents c1 and c2 such that c1 + c2 > 1, which is vacuous
when S or ∆ is large. The hope here is to obtain a bound with c1 + c2 = 1 as in the case when
the parameters are known. Observe that if an algorithm was able to achieve interval regret o(|I|)
simultaneously for all intervals I, which is called strongly adaptive algorithm (Daniely et al., 2015),
then by similar reductions discussed in Section 4 one could derive switching/dynamic regret with
c1 + c2 = 1. However, it was shown by Daniely et al. (2015) that a strongly adaptive algorithm is
impossible for the bandit setting.

Despite this negative result, Karnin and Anava (2016) developed new techniques and proposed
a parameter-free algorithm for the two-armed bandit setting with dynamic regret eO(∆0.18T 0.82).

11
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While their algorithm and analysis do not directly generalize to the multi-armed or contextual
setting, here we extract their idea of bin-based exploration and incorporate it into our ADA-
GREEDY algorithm, leading to a parameter-free algorithm called ADA-BINGREEDY with regreteO(min{S

1
4T

3
4 ,∆

1
5T

4
5 }). This improves and generalizes the result of Karnin and Anava (2016)

significantly.
Similar to ADA-GREEDY, ADA-BINGREEDY computes the empirical best policy at the be-

ginning of each block, and plays it throughout that block, except for some exploration steps. The
differences are 1) each block is further divided into bins with equal length; 2) in addition to the small
probability of exploration µt at each round, some bins are randomly selected for pure exploration;
3) the non-stationarity test is only executed in exploration bins, and only checks for intervals within
the bin; 4) parameters L and v are removed and the exploration probability µt is set adaptively.
Clearly ADA-BINGREEDY is still oracle-efficient.

Comparing the non-stationarity tests of ADA-GREEDY and ADA-BINGREEDY, one can see that
the term βA = eO(1/

√
µ‘) in the former is replaced by the term αA = eO(

p
K/‘) in the latter. This

is due to the lower variance of reward estimates from the pure exploration bin and plays a crucial
role in our analysis to achieve the following bound.

Theorem 7 With probability at least 1− 6δ, ADA-BINGREEDY with parameter δ guarantees

TX
t=1

rt(π
?
t (xt))− rt(at) ≤ eO K ln(N/δ) min

n
S

1
4T

3
4 ,∆

1
5T

4
5 + T

3
4

o
.

This bound is sublinear as long as S or ∆ is sublinear, and is stronger than those in the “param-
free” column of Table 1 if S = Ω(T 1/3) or ∆ = Ω(T 4/9) (but still sublinear). One might wonder
whether combining the bin-based exploration idea with ADA-ILTCB leads to even better results.
The answer is unfortunately no because the dominant part of the regret is not from the -greedy part
of the algorithm but the bin explorations. We leave the question of whether better results of this
kind are possible as a future direction.

Due to the existence of exploration bins, ADA-BINGREEDY can have poor regret on some
intervals. In fact, we can only show a loose eO(T

3
4 ) interval regret bound for this algorithm as

shown in Table 1. For completeness, we provide a proof in Appendix H.

6. Conclusions

In this work we take the first step in studying the problem of non-stationary contextual bandit. We
propose several new algorithms and provide a number of achievable results under various regret
notions. More future directions include 1) deriving algorithms with long term memory so as to
identify distributions experienced before (Bousquet and Warmuth, 2002); 2) designing simpler and
more practical algorithms, given that our current methods have several impractical aspects such as
restarting.

Acknowledgement. CYW is grateful for the support of NSF Grant #1755781.
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Appendix A. Preliminaries

Our analysis relies on the following Freedman’s inequality.

Lemma 8 ((Beygelzimer et al., 2011)) Let X1, . . . , Xn ∈ R be a sequence of random variables
such that Xi ≤ R and E[Xi|Xi−1, . . . , X1] = 0 for all i ∈ [n]. Then for any δ ∈ (0, 1) and
λ ∈ [0, 1/R], with probability at least 1− δ, we have

nX
i=1

Xi ≤ (e− 2)λV +
ln(1/δ)

λ

where V =
Pn

i=1 E[X2
i |Xi−1, . . . , X1]. Specifically, picking λ = min

q
ln(1/δ)

V , 1
R , we havePn

i=1 Xi ≤ 2
p

V ln(1/δ) + R ln(1/δ).

The following lemmas relates the two variation notions we use.

Lemma 9 For any interval I, ∆I ≤ ∆̄I .

Proof Let π be any policy,

|Rt(π)−Rt−1(π)| = E(x,r)∼Dt
[r(π(x))]− E(x,r)∼Dt−1

[r(π(x))]

=

Z
[0,1]K

Z
X

(Dt(x, r)−Dt−1(x, r))r(π(x))dxdr

≤
Z

[0,1]K

Z
X
Dt(x, r)−Dt−1(x, r) dxdr

= kDt −Dt−1kTV .

Thus, maxπ∈Π |Rt(π)−Rt−1(π)| ≤ kDt −Dt−1kTV. Summing over I gives ∆I ≤ ∆̄I .

Appendix B. Exp4.S Algorithm and Proofs

Algorithm 4 Exp4.S
Input: largest interval length of interest L
Define η =

p
ln(NL)/LK and µ = 1/NL

Initialize Pt ∈ ∆Π to be the uniform distribution over policies.
for t = 1, . . . , T do

see xt, play at ∼ pt where pt(a) =
P

π:π(xt)=a Pt(π), ∀a ∈ [K]

receive rt(at) and construct bct(a) = 1−rt(a)
pt(a) 1{a = at}, ∀a ∈ [K]

set P̃t+1(π) ∝ Pt(π) exp(−ηbct(π(xt))), ∀π ∈ Π
set Pt+1(π) = (1−Nµ)P̃t+1(π) + µ, ∀π ∈ Π

end
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The Exp4.S algorithm is presented in Algorithm 4, which is a direct generalization of Exp3.S (Auer
et al., 2002). Note that we use loss estimates bct instead of reward estimate brt in the multiplicative
update, and naturally we define ct = 1− rt.
Proof [Proof of Theorem 2] Using the fact e−y ≤ 1 − y + y2 for any y ≥ 0, ln(1 + y) ≤ y and
ct(a) ∈ [0, 1], we have

ln

 X
π0∈Π

Pt(π
0) exp(−ηbct(π0(xt)))

!
≤ ln

 X
π0∈Π

Pt(π
0)(1− ηbct(π0(xt)) + η2bct(π0(xt))

2

!
= ln 1− ηct(at) + η2bct(at)ct(at) ≤ −ηct(at) + η2bct(at).

On the other hand, we have for any fixed π,

ln

 X
π0∈Π

Pt(π
0) exp(−ηbct(π0(xt)))

!
= ln

Pt(π) exp(−ηbct(π(xt)))

P̃t+1(π)

= ln
Pt(π)(1−Nµ)

Pt+1(π)− µ
− ηbct(π(xt))

≥ ln(1−Nµ) + ln
Pt(π)

Pt+1(π)
− ηbct(π(xt))

≥ −2Nµ + ln
Pt(π)

Pt+1(π)
− ηbct(π(xt))

where the last step is by the fact Nµ ≤ 1
2 and thus ln( 1

1−Nµ) = ln(1 + Nµ
1−Nµ) ≤ ln(1 + 2Nµ) ≤

2Nµ. Combining the above two displayed equations, summing over t ∈ I, telescoping and rear-
ranging gives X

t∈I
ct(at)− bct(π(xt)) ≤

ln(1/µ) + 2LNµ

η
+ η

X
t∈I
bct(at).

Taking the expectation on both sides, using the fact Eat∼pt [bct(at)] ≤ K, and plugging ct(a) =
1− rt(a), η and µ finish the proof.

Proof [Proof of Corollary 1] We first partition [1, T ] evenly into T/L intervals, then within each
interval, further partition it into several subintervals so thatDt remains the same on each subinterval.
Since the number of switches is at most S− 1, this process results in at most T/L+S subintervals,
each with length at most L. We can now apply Theorem 2 to each subinterval and sum up the regrets
to get the claim bounds.

Appendix C. Proofs for ADA-GREEDY

Before we prove the theorems, we first define some notations that facilitate the analysis. These
notations are used throughout Appendix C, D, and E. In ADA-GREEDY and ADA-ILTCB, we define
FLAGt = (t ≥ Ti + L) or (j > 1 and NONSTATTEST(t) = True), where i and j are the epoch and
block indices t is in. This is exactly the condition that triggers the rerun of the algorithm. In all three
algorithms, we let B(i, j) , [Ti + 1, Ti + 2j−1 − 1]; sometimes when i, j are already specified, we
simply write B. Note that when j = 1, B = [Ti + 1, Ti], which is an empty set. In this case, instead
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of defining βB (which is used in ADA-GREEDY and ADA-BINGREEDY) to be infinity, we let it to
be zero. This just makes some analysis easier.

Below we state a few useful lemmas before proving the main theorem.

Lemma 10 For any interval I such that ∆I ≤ v, we have for any sub-intervals I1, I2 ⊆ I and
any π ∈ Π,

|RI1(π)−RI2(π)| ≤ v.

Proof The proof involves noticing for that any two rounds s, t ∈ I and π ∈ Π, |Rs(π)−Rt(π)| ≤
v. This is easily seen using triangle inequality, since assuming s < t,

|Rs(π)−Rt(π)| ≤
tX

τ=s+1

|Rτ (π)−Rτ−1(π)| ≤
X
τ∈I
|Rτ (π)−Rτ−1(π)| ≤ v.

The lemma is now immediate, since

|RI1(π)−RI2(π)| ≤ 1

|I1|
1

|I2|
X
s∈I1

X
t∈I2

|Rs(π)−Rt(π)| ≤ v.

Definition 11 (EVENT1) Define EVENT1 to be the following event: for all I ⊆ [1, T ] and all
π ∈ Π,

bRI(π)−RI(π) ≤ βI . (1)

Recall brt(a) = rt(a)
pt(a)1{a = at} ≤ 1/µ and Et[brt(π(xt))] = Rt(π),Et[brt(π(xt))

2] ≤ 1/µ. By
Freedman’s inequality (Lemma 8) and a union bound, we have with probability at least 1 − δ/2,
EVENT1 holds.

Lemma 12 Consider an interval I where |I| ≤ L and ∆I ≤ v. If EVENT1 holds, then there is at
most one t ∈ I such that FLAGt = True (FLAGt is defined at the beginning of Appendix C).

Proof Let there be multiple such time instances. Let t0, t ∈ I be two consecutive ones and t0 < t.
Note that FLAGt = True has two possible cases: t ≥ t0 + L or (j > 1 and NONSTATTEST(t) =
True). The former case cannot happen because |I| ≤ L. Now assume the latter. Let i, j be the
epoch and block index at time t respectively. Define A = [t− ‘ + 1, t] to be the interval that makes
NONSTATTEST(t) return True, and define B = [t0 + 1, t0 + 2j−1 − 1]. Then NONSTATTEST(t) =
True implies

bRA(π̂A) > bRA(π̂B) + 2βA + 2βB + 4v. (2)
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By the optimality of π̂B , We have bRB(π̂A) ≤ bRB(π̂B). (3)

Combining Eq. (2) and Eq. (3), we see that either π = π̂A or π = π̂B will make the following
inequality hold: bRA(π)− bRB(π) > βA + βB + 2v. (4)

Thus,

RA(π)−RB(π) ≥ bRA(π)− bRB(π) − βA − βB (by (1))

> βA + βB + 2v − βA − βB ≥ 2v. (by (4))

On the other hand, by Lemma 10, we actually have RA(π) − RB(π) ≤ v, which leads to a
contradiction. Thus we can conclude that such t does not exist.

Proof [Proof of Theorem 4] We condition on EVENT1. When this event holds true, by Lemma 12,
there is at most one t ∈ I such that FLAGt is True (that is, rerun triggered at t). With this fact, we
can focus on the case in which FLAGt is False for all t ∈ I. If there is actually a t0 ∈ I such that
FLAGt0 = True, we can divide I into I1 ∪ {t0} ∪ I2 and bound the regret in I1 and I2 separately.
The total regret on I would then be bounded by their sum plus 1, which is still of the same order.

We will also use the fact (proven in Lemma 10) that by the condition ∆I ≤ v, we have for any
I1, I2 ⊂ I and π ∈ Π,

|RI1(π)−RI2(π)| ≤ v. (5)

Let I = [s, e]. For any t ∈ I, define ‘t = 2blog2(t−s+1)c (i.e., ‘t is the longest ‘ ∈ {1, 2, 4, 8, . . .}
such that [t − ‘ + 1, t] ⊆ I). Now focus on a specific t that is in epoch i and block j. Denote
A = [t − ‘t + 1, t], B = [Ti + 1, Ti + 2j−1 − 1]. Assuming the case described above (i.e., for all
τ ∈ I, FLAGτ = False), we have for j > 1 and any π ∈ Π,

Rt(π) ≤ RA(π) + v ≤ bRA(π) + βA + v (by (5) and (1))

≤ bRA(π̂A) + βA + v (by the optimality of π̂A)

≤ bRA(π̂B) + 3βA + 2βB + 5v (NONSTATTEST(t) = False)

≤ RA(π̂B) + 4βA + 2βB + 5v ≤ Rt(π̂B) + 4βA + 2βB + 6v. (by (1) and (5))

Note that βB = O(βA) because |B| = 2j−1 − 1 ≥ 2j−1
3 ≥ t−Ti

3 ≥ ‘t
3 = |A|

3 .
Now using this bound for all t ∈ I and noting that there is at most one round with j = 1, we

can bound the sum of conditional expected regrets byX
t∈I

Et[rt(π(xt))− rt(at)] ≤
X
t∈I

(Rt(π
?
t )−Rt(π̂B) + Kµ)

≤ O

 X
t∈I

(v + β[t−‘t+1,t] + Kµ)

!

= Õ

 
|I|v +

X
t∈I

 s
ln(N/δ)

µ‘t
+

ln(N/δ)

µ‘t
+ Kµ

!!
= Õ |I|v + L

1
6

p
K|I| ln(N/δ) + L

1
3

p
K ln(N/δ) ,
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where in the last step we use the fact |I|L− 1
3 ≤ L

1
6

p
|I| for |I| ≤ L. Finally, applying Hoeffding-

Azuma inequality finishes the proof.

Appendix D. Omitted Details for ADA-ILTCB

Optimization Problem (OP)

Given a time interval I and minimum probability µ, find Q ∈ ∆Π such that for constant
B = 5× 105: X

π∈Π

Q(π)dRegI(π) ≤ 2BKµ (6)

∀π ∈ Π : bVI(Q, π) ≤ 2K +
dRegI(π)

Bµ
(7)

Figure 1: A subroutine for ADA-ILTCB, adapted from (Agarwal et al., 2014)

The optimization problem (OP) needed for ADA-ILTCB is included in Figure 1. It is almost
identical to the one proposed in (Agarwal et al., 2014) except: 1) Instead of returning a sub-
distribution, our version returns an exact distribution. However, as discussed in (Agarwal et al.,
2014) this makes no real difference since given a sub-distribution which satisfies Eq. (6) and Eq. (7),
one can always put all the remaining weight on the empirical best policy argmaxπ

bRI(π) to obtain
a distribution that still satisfies those two constraints. 2) The constant B used in (Agarwal et al.,
2014) is 100. It is also clear from the proof of (Agarwal et al., 2014) that the value of this constant
does not affect the feasibility of (OP) nor the efficiency of finding the solution.

Let d = ln(8T 2N2/δ) ln(L). Without loss of generality, below we assume L ≥ 4Kd so that

µ = min{ 1
2K ,

q
d

KL} =
q

d
LK . Indeed, if L < 4Kd, then the bound in Theorem 5 holds trivially

since L ≤ 2
√
LKd. The fact d/µ = LKµ will be used frequently. We use Vt as a shorthand for

V{t}, that is, Vt(Q, π) = Ex∼DX
t

h
1

Qµ(π(x)|x)

i
.

We first state two lemmas that relates the variation of Regt(π) and Vt(Q, π) to ∆̄, and then two
lemmas on the concentration bounds of empirical reward and empirical variance.

Lemma 13 For any interval I such that ∆̄I ≤ v, we have for any sub-intervals I1, I2 ⊆ I and
any π ∈ Π,

RegI1(π)− RegI2(π) ≤ 2v.

Proof Let π?
I1 = argmaxπ∈ΠRI1(π) and π?

I2 = argmaxπ∈ΠRI2(π). Then

RegI1(π)− RegI2(π) = RI1(π?
I1)−RI1(π)−RI2(π?

I2) +RI2(π).
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By Lemma 10, we have

−∆I ≤ RI2(π)−RI1(π) ≤ ∆I ,

and

−∆I ≤ RI1(π?
I2)−RI2(π∗

I2) ≤ RI1(π?
I1)−RI2(π?

I2) ≤ RI1(π?
I1)−RI2(π?

I1) ≤ ∆I .

Combining them and using ∆I ≤ ∆̄I (Lemma 9), we get the desired bound.

Lemma 14 For any interval I such that ∆̄I ≤ v, we have for any sub-intervals I1, I2 ⊆ I, any
distribution Q over Π, and any π ∈ Π,

VI1(Q, π)− VI2(Q, π) ≤ v

µ
.

Proof For any s, t ∈ I (assuming s < t), any Q, and π ∈ Π,

Vs(Q, π)− Vt(Q, π) = EDX
s

1

Qµ(π(x)|x)
− EDX

t

1

Qµ(π(x)|x)

=

Z
X

(DX
s (x)−DX

t (x))
1

Qµ(π(x)|x)
dx

≤ 1

µ

Z
X
DX

s (x)−DX
t (x) dx

≤ 1

µ

tX
τ=s+1

kDτ −Dτ−1kTV ≤
v

µ
.

Therefore,

VI1(Q, π)− VI2(Q, π) ≤ 1

|I1|
1

|I2|
X
s∈I1

X
t∈I2

Vs(Q, π)− Vt(Q, π) ≤ v

µ
.

Lemma 15 With probability at least 1− δ/4, ADA-ILTCB ensures that for all distributions Q ∈
∆Π, all π ∈ Π, all intervals I,

bVI(Q, π) ≤ 6.4VI(Q, π) +
80LK

|I|
, VI(Q, π) ≤ 6.4bVI(Q, π) +

80LK

|I|
. (8)

Proof This is a consequence of the contexts being drawn independently. A similar argument
of (Agarwal et al., 2014, Lemma 10) shows that with probability at least 1 − δ/4, the differencesbVI(Q, π)− 6.4VI(Q, π) and VI(Q, π)− 6.4bVI(Q, π) are both bounded by

75 ln(N)

µ2|I|
+

6.3 ln(8T 2N2/δ)

µ|I|
≤ 75LK

|I|
+

6.3d

µ|I|
=

75LK

|I|
+

6.3LKµ

|I|
≤ 80LK

|I|
,

which completes the proof.
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Lemma 16 With probability at least 1 − δ/4, ADA-ILTCB ensures that for all π ∈ Π and all
intervals I,

| bRI(π)−RI(π)| ≤ µ

|I| ln(L)

X
t∈I

Vt(Qt, π) +
LKµ

|I|
. (9)

Proof By (Agarwal et al., 2014, Lemma 11), for any choice of λ ∈ [0, µ], we have with probability
at least 1− δ/4, for all π ∈ Π and all intervals I,

| bRI(π)−RI(π)| ≤ λ

|I|
X
t∈I

Vt(Qt, π) +
ln(8T 2N/δ)

λ|I|
.

Picking λ = µ/ ln(L) and using the fact ln(8T 2N/δ) ln(L) ≤ d and d/µ = LKµ complete the
proof.

Definition 17 (EVENT2) Let EVENT2 be the event that both Eq. (8) and (9) hold for all π ∈ Π, all
intervals I and all Q ∈ ∆Π. This event happens with probability at least 1− δ/2.

Next we prove the following key lemma on the concentration of empirical regrets.

Lemma 18 Conditioning on EVENT2, for any π ∈ Π, any interval I such that |I| ≤ L, ∆̄I ≤ v,
and there is no rerun triggered in I (i.e., ∀t ∈ I, FLAGt = False), we have

RegI(π) ≤ 2dRegI(π) +
D1LKµ

|I|
+ D2v, dRegI(π) ≤ 2RegI(π) +

D1LKµ

|I|
+ D2v, (10)

where D1 , 2× 105 and D2 , 360.

Proof We prove the lemma by induction on the length of I. For the base case |I| = 1, the bounds
hold trivially since both RegI(π) and dRegI(π) are bounded by 1/µ = LKµ/d ≤ D1LKµ. Now
assuming that the statement holds for any I 0 such that |I 0| ≤ L0 < L, we prove below it holds for
any I such that |I| = L0 + 1 too.

Let I = [s, e] belong to epoch i and block j. For every t ∈ [s + 1, e], define ‘t = 2blog2(t−s)c

(i.e., ‘t is the longest ‘ ∈ {1, 2, 4, 8, . . .} such that [t − ‘, t − 1] ⊆ I). Based on the induction
assumption, we first prove the property Vt(Qt, π) ≤ RegI(π)

2µ + O LK
t−s+1 + v

µ for all π: when
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t ∈ [s + 1, e],

Vt(Qt, π) ≤ V[t−‘t,t−1](Qt, π) +
v

µ
(by Lemma 14)

≤ 6.4bV[t−‘t,t−1](Qt, π) +
80LK

‘t
+

v

µ
(by Eq. (8))

≤ 263bV[Ti+1,Ti+2j−1−1](Qt, π) +
7.76× 103LK

‘t
+

42v

µ
(by Line 17)

≤ 5.26× 10−4

µ
dReg[Ti+1,Ti+2j−1−1](π) +

8.29× 103LK

‘t
+

42v

µ
(by Eq. (7) and L ≥ ‘t)

≤ 2.11× 10−3

µ
dReg[t−‘t,t−1](π) +

8.82× 103LK

‘t
+

43v

µ
(by Line 15)

≤ 4.22× 10−3

µ
Reg[t−‘t,t−1](π) +

9.25× 103LK

‘t
+

44v

µ
(by inductive assumption)

≤ RegI(π)

2µ
+

1.9× 104LK

t− s + 1
+

45v

µ
; ( by Lemma 13 and t− s + 1 ≤ 2‘t)

(11)

when t = s, Eq.(11) also holds because Vs(Qs, π) ≤ 1
µ ≤

√
LK

t−s+1 .

Let π?
I = argmaxπRI(π) and bπI = argmaxπ

bRI(π). We will now establish the inductive
hypothesis. For any π, RegI(π)−dRegI(π) is bounded by

(RI(π?
I)−RI(π))− ( bRI(π?

I)− bRI(π)) (by optimality of bπI)

≤ µ

|I| ln(L)

X
t∈I

(Vt(Qt, π) + Vt(Qt, π
?
I)) +

2LKµ

|I|
(by Lemma 16)

≤ 1

2
RegI(π) +

 
3.8× 104LKµ

|I| ln(L)

X
t∈I

1

t− s + 1

!
+

2LKµ

|I|
+ 90v

(by Eq. (11) and RegI(π?
I) = 0)

≤ 1

2
RegI(π) +

6× 104LKµ

|I|
+ 90v. (12)

Rearranging proves the first statement of Eq. (10). Similarly, we can bound dRegI(π)− RegI(π) as
follows:

( bRI(bπI)− bRI(π))− (RI(bπI)−RI(π)) (by optimality of π?
I)

≤ µ

|I| ln(L)

X
t∈I

(Vt(Qt, π) + Vt(Qt, bπI)) +
2LKµ

|I|
(by Lemma 16)

≤ 1

2
(RegI(π) + RegI(bπI)) +

 
3.8× 104LKµ

|I| ln(L)

X
t∈I

1

t− s + 1

!
+

2LKµ

|I|
+ 90v (by Eq. (11))

≤ 1

2
RegI(π) +

9.9× 104LKµ

|I|
+ 180v, (13)
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where the last step is by applying Eq. (12) to bπI and using the fact dRegI(bπI) = 0. Rearranging
proves the second statement of Eq. (10), which completes the induction.

Lemma 19 Consider an interval I where |I| ≤ L and ∆̄I ≤ v. If the event EVENT2 holds, then
there is at most one t ∈ I such that FLAGt = True.

Proof If there are multiple such time instances, let t0, t ∈ I be consecutive ones, and let i and j be
the epoch and block indices at time t. For FLAG(t) = True, there are two possibilities: t ≥ t0 + L
or (j > 1 and NONSTATTEST(t) = True). The former would not happen because |I| ≤ L. Thus
the latter holds. Since j > 1, we have t ≥ t0 + 2. By our construction, I 0 , [t0 + 1, t − 1] is an
interval in which no rerun is triggered, and ∆̄I0 ≤ v holds. Using Lemma 18 on I 0, we have for any
1 ≤ ‘ ≤ t− t0 − 1,

dReg[t0+1,t0+2j−1−1](π) ≤ 2Reg[t0+1,t0+2j−1−1](π) +
2× 105LKµ

2j−1 − 1
+ 360v (by Lemma 18)

≤ 2Reg[t−‘,t−1](π) +
2× 105LKµ

2j−1 − 1
+ 364v (by Lemma 13)

≤ 4dReg[t−‘,t−1](π) +
8× 105LKµ

‘
+ 1084v,

(by Lemma 18 and ‘ ≤ t− t0 − 1 ≤ 2j − 2)

dReg[t−‘,t−1](π) ≤ 2Reg[t−‘,t−1](π) +
2× 105LKµ

‘
+ 360v (by Lemma 18)

≤ 2Reg[t0+1,t0+2j−1−1](π) +
2× 105LKµ

‘
+ 364v (by Lemma 13)

≤ 4dReg[t0+1,t0+2j−1−1](π) +
1× 106LKµ

‘
+ 1084v,

(by Lemma 18 and ‘ ≤ t− t0 − 1 ≤ 2j − 2)

bV[t−‘,t−1](Q, π) ≤ 6.4V[t−‘,t−1](Q, π) +
80LK

‘
(by Eq. (8))

≤ 6.4V[t0+1,t0+2j−1−1](Q, π) +
80LK

‘
+ 6.4v (by Lemma 13)

≤ 41bV[t0+1,t0+2j−1−1](Q, π) +
1104LK

‘
+ 6.4v. (by Eq. (8) and ‘ ≤ 2j − 2)

Therefore, at time t, NONSTATTEST(t) should return True, which contradicts our assumption.

We can now prove Theorem 5.
Proof [Proof of Theorem 5] Conditioning on EVENT2, we can focus on the case when there is no
rerun in I (i.e., ∀t ∈ I, FLAGt = False). This is because by Lemma 19, there is at most one t0 ∈ I
such that FLAGt0 = True. Suppose this t0 exists, we can decompose I into I1 ∪ {t0} ∪ I2, where
FLAGt = False for all t ∈ I1 or I2, and then we can apply our proof to I1 and I2 separately. The
regret in I would then be bounded by their sum plus 1, which is still of the same order.
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With notation s, ‘t, i, j from the proof of Lemma 18, for any t ∈ I and t ≥ s + 2, we haveX
π∈Π

Qt(π)RegI(π)

≤
X
π∈Π

Qt(π)Reg[t−‘t,t−1](π) + 2v (by Lemma 13)

≤ 2
X
π∈Π

Qt(π)dReg[t−‘t,t−1](π) +
D1LKµ

‘t
+ (D2 + 2)v (by Lemma 18)

≤ 2C1

X
π∈Π

Qt(π)dReg[Ti+1,Ti+2j−1−1](π) + (2C2 + D1)
LKµ

‘t
+ (2C3 + D2 + 2)v

(by Line 16)

≤ 4BC1Kµ + (2C2 + D1)
LKµ

‘t
+ (2C3 + D2 + 2)v (by Eq. (6))

= O LKµ

t− s + 1
+ v . (L ≥ ‘t ≥ (t− s + 1)/2)

Therefore, the sum of conditional expected regrets
P

t∈I Et[rt(π(xt))− rt(at)] is bounded by

LKµ + (1−Kµ)
X
t∈I

X
π∈Π

Qt(π)RegI(π) = eO(|I|v + LKµ) = eO |I|v +
p

LK ln(N/δ) .

The theorem now follows by an application of the Hoeffding-Azuma inequality.

Appendix E. Omitted Details for ADA-BINGREEDY

In ADA-BINGREEDY, the bin length is set to H
1
2 , and the probability of an exploration bin is b−

1
2 .

These two values are not clear before we derive the regret bound and select them optimally. In the
following analysis, we will keep them as variables before reaching the final steps. Specifically, we
let the bin length be Hγ (therefore Line 7 would be a for-loop from 1 to H1−γ , while Line 9 from
1 to Hγ); and we let the exploration probability at Line 8 be b−θ.

In ADA-BINGREEDY, if an interval I is an subinterval of an exploration bin, by Freedman’s
inequality, with probability at least 1− δ/T 2,

bRI(π)−RI(π) ≤ αI . (14)

For a general interval I, we have with probability at least 1− δ/T 2,

bRI(π)−RI(π) ≤ βI . (15)

We now define the high probability event that is used in ADA-BINGREEDY’s analysis:

Definition 20 (EVENT3) Define EVENT3 to be the following event: for all π ∈ Π, all interval
I ⊆ [1, T ], Eq.(14) holds if I is an subinterval of an exploration bin; Eq.(15) holds if otherwise.
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A union bound over these events implies that EVENT3 holds with probability at least 1− δ/2.
In this subsection, we use S0 to denote the total number of epochs in the whole time horizon,

and use E1, E2, . . . , ES0 to denote individual epochs. Besides, we denote K 0 = K ln(N/δ). We also
use notations that are defined at the beginning of Appendix C.

We analyze ADA-BINGREEDY under the switching and drifting distribution settings in the fol-
lowing two subsections respectively.

E.1. Switching Regret

Lemma 21 With probability at least 1− δ/2, S0 ≤ S.

Proof It suffices to prove that under EVENT3, at any time t if there is no distribution change from
the start of the epoch, the algorithm will not rerun.

Let t be in epoch i and block j, and is in an exploration bin. Suppose DTi+1 = DTi+2 =
· · · = Dt. For any ‘ such that [t − ‘ + 1, t] is a subset of the bin, denoting A = [t − ‘ + 1, t] and
B = [Ti + 1, Ti + 2j−1 − 1]. When j > 1, we have for any π,bRA(π) ≤ RA(π) + αA (by (14))

= RB(π) + αA (the distribution does not change from Ti to t)

≤ bRB(π) + αA + βB (by (15))

≤ bRB(π̂B) + αA + βB (by the optimality of π̂B)

≤ RB(π̂B) + αA + 2βB (by (15))

= RA(π̂B) + αA + 2βB (the distribution does not change from Ti to t)

≤ bRA(π̂B) + 2αA + 2βB. (by (14))

Therefore, NONSTATTEST(t) would return False. Hence, conditioned on EVENT3, the algorithm
ends an epoch only when there is some distribution change. This proves the lemma.

Definition 22 (flat bin) A bin I in epoch i and block j is called a flat bin if for all π ∈ Π and for
all [s, e] such that 1) [s, e] ⊆ I and 2) e− s+ 1 = 2q for some nonnegative integer q, the following
holds (with B(i, j) = [Ti + 1, Ti + 2j−1 − 1]):

R[s,e](π) ≤ R[s,e](π̂(i,j)) + 2βB(i,j)(π) + 4α[s,e]. (16)

The above definition basically says that in a flat bin, π̂(i,j) performs well in the sense that for any
π, R[s,e](π)−R[s,e](π̂(i,j)) is small in all sub-intervals [s, e] such that e− s + 1 = 2q. Since in an
exploitation bin, the learner mostly plays π̂(i,j), we have the following lemma saying that the regret
contributed from flat exploitation bins is small.

Lemma 23 ADA-BINGREEDY always ensures the following:

TX
t=1

Et[rt(π
?
t (xt))− rt(at)]1{t is in flat exploitation bins}

≤ eO √
K 0 S0 1

4T
3
4 +
√
ST + K 0 √S0T + S .
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Proof The proof will go through several stages: we sequentially calculate the regret in a bin, a
block, an epoch, and then the whole time horizon; the regret in a later level is simply a summation
over its previous level. Most proofs in this section are all in this form.

• Regret in a bin. Let I be a flat exploitation bin that lies in epoch i and block j. Partition
I into [s1, e1], . . . , [sSI , eSI ] such that for every k ∈ [SI ], [sk, ek] is an i.i.d. interval. For
every t ∈ [sk, ek], define ‘t = 2log2bt−sk+1c (that is, the longest ‘ ∈ {1, 2, 4, 8, . . .} such that
[t− ‘ + 1, t] ⊆ [sk, ek]). By the definition of flat bin, we have for all π,

Rt(π) = R[t−‘t+1,t](π) ([sk, ek] is i.i.d.)

≤ R[t−‘t+1,t](π̂(i,j)) + 2βB(i,j) + 4α[t−‘t+1,t] (I is a flat bin)

= Rt(π̂(i,j)) + 2βB(i,j) + 4α[t−‘t+1,t]. ([sk, ek] is i.i.d.)

Therefore,

Rt(π)−Rt(π̂(i,j)) ≤ eO βB(i,j) +

r
K 0

‘t
+

K 0

‘t

!
= eO βB(i,j) +

s
K 0

t− sk + 1
+

K 0

t− sk + 1

!
.

Thus, X
t∈I

Et[rt(π
?
t (xt))− rt(at)]

≤
X
t∈I

(Rt(π
?
t (xt))−Rt(π̂(i,j))) +

X
t∈I

Kµt

=

SIX
k=1

ekX
t=sk

(Rt(π
?
t (xt))−Rt(π̂(i,j))) +

X
t∈I

Kµt

≤ eO SIX
k=1

p
K 0(ek − sk + 1) + K 0 +

X
t∈I

(βB(i,j) + Kµt)

!

≤ eO pK 0SI |I|+ K 0SI +
X
t∈I

(βB(i,j) + Kµt)

!
,

where in the last inequality, we use Cauchy-Schwarz inequality.

• Regret in a block. Now we compute the regret contributed from flat explotation bins in a block
J whose epoch and block indices are i and j respectively. Assume there are Γ bins in J . Then
|J | ≤ 2j−1 and Γ ≤ 2(j−1)(1−γ) by the algorithm. Let I1, I2, . . . , IΓ be the bins in J , we havePΓ

b=1 SIb ≤ SJ +Γ (because the boundaries between bins can cut a stationary interval into two).

26



EFFICIENT CONTEXTUAL BANDITS IN NON-STATIONARY WORLDS

By our conclusion at the previous stage,X
t∈J

Et[(rt(π
?
t (xt))− rt(at))]1{t is in flat exploitation bins}

≤
ΓX

b=1

eO q
K 0SIb |Ib|+ K 0SIb +

X
t∈J

eO(βB(i,j) + Kµt)

≤ eO p
K 0(SJ + Γ)|J |+ K 0(SJ + Γ) +

X
t∈J

eO(βB(i,j) + Kµt) (Cauchy-Schwarz)

≤ eO √
K 0

p
SJ |J |+ 2(j−1)(1− γ

2
) + K 0 SJ + 2(j−1)(1−γ) +

X
t∈J

eO(βB(i,j) + Kµt).

(Γ ≤ 2(j−1)(1−γ) and |J | ≤ 2j−1)

• Regret in an epoch. Now we compute the regret in an epoch E . There are dlog2(1 + |E|)e
blocks in the epoch E , and we denote them by J1,J2, . . . ,Jdlog2(1+|E|)e. Similarly, we havePdlog2(1+|E|)e

j=1 SJj ≤ SE + dlog2(1 + |E|)e. Summing up the regret in individual blocks and
again using Cauchy-Schwarz inequality, we getX
t∈E

Et[(rt(π
?
t (xt))− rt(at))]1{t is in flat exploitation bins}

≤ eO
√K 0

pSE |E|+
dlog2(1+|E|)eX

j=1

2(j−1)(1− γ
2

)

+ K 0

SE +

dlog2(1+|E|)eX
j=1

2(j−1)(1−γ)


+ eO X

t∈E
(
√
K 0(t− Ti)

− 1
3 + K 0(t− Ti)

− 2
3 )

!
= eO √

K 0
p
SE |E|+ |E|1−

γ
2 + |E|

2
3 + K 0 SE + |E|1−γ + |E|

1
3

= eO √
K 0

p
SE |E|+ |E|

3
4 + K 0 SE + |E|

1
2

• Regret in the whole time horizon. Finally, we sum the bound over epochs and use Hölder’s
inequality. Again, we have

PS0

i=1 SE ≤ S + S0.

TX
t=1

Et[(rt(π
?
t (xt))− rt(at))]1{t is in flat exploitation bins}

≤ eO √
K 0

p
(S + S0)T + S0 1

4T
3
4 + K 0(S + S0 + S0 1

2T
1
2 )

≤ eO √
K 0 S0 1

4T
3
4 +
√
ST + K 0 √S0T + S .

Given we have low regret in flat exploitation bins, in the following two lemmas we bound the
number of rounds in non-flat bins or exploration bins.
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Lemma 24 With probability at least 1− δ,

TX
t=1

1{t is in exploration bins} ≤ eO S0 1
4T

3
4 .

Proof

• Regret in a block. We first look at a block J whose block index is j. Recall that in this block,
bin length is set to 2(j−1)γ . Conditioned on all history before J , in J we have

2(j−1)(1−γ)X
b=1

Ebin(b)[1{bin b is exploration}] ≤
2(j−1)(1−γ)X

b=1

b−θ ≤ O(2(j−1)(1−γ)(1−θ)),

where we slightly overload the notation, using Ebin(b) to denote that expectation conditioned
on all history before bin b. Applying Hoeffiding-Azuma’s inequality, with probability at lest
1 − δ/(T log2 T ), the number of exploration bins in J is upper bound by eO(2(j−1)(1−γ)(1−θ) +

2
1
2

(j−1)(1−γ)). In other words,X
t∈J

1{t is in exploration bins} ≤ 2(j−1)γ × eO(2(j−1)(1−γ)(1−θ) + 2
1
2

(j−1)(1−γ))

= eO(2(j−1)(1−θ+γθ) + 2
1
2

(j−1)(1+γ)).

Using a union bound, we know that with probability 1 − δ, the above bound holds for all j and
all blocks with index j in the whole time horizon. The T log2 T factor is because there can be
at most log2 T different j’s and at most T blocks with index j. We call this EVENT4. In the
following stages, we condition on EVENT4.

• Regret in an epoch. Now sum the bound in the previous stage over blocks in an epoch E .
Conditioning on EVENT4, we have

X
t∈E

1{t is in exploration bins} ≤ eO
dlog2(1+|E|)eX

j=1

2(j−1)(1−θ+γθ) + 2
1
2

(j−1)(1+γ)


= eO |E|1−θ+γθ + |E|

1
2

+ 1
2
γ = eO |E|

3
4 .

• Regret in the whole time horizon. Finally, we sum over epochs in the whole time horizon and
use union bound. Conditioning on EVENT4, we have

TX
t=1

1{t is in exploration bins} ≤ eO S0X
i=1

|Ei|
3
4

!
≤ eO S0 1

4T
3
4 ,

where in the final step we use Hölder’s inequality.
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Lemma 25 With probability at least 1− δ,

TX
t=1

1{t is in non-flat bins} ≤ eO S0 1
4T

3
4 .

Proof

• Regret in an epoch. Let I be a non-flat bin whose epoch and block indices are i and j. Then
there exists some [s, e] ⊆ I such that e− s + 1 = 2q and

R[s,e](π) > R[s,e](π̂(i,j)) + 2βB(i,j)(π) + 4α[s,e].

Note that this can only holds for j > 1. Furthermore, if EVENT3 holds and I happens to be an
exploration bin, then we have

R[s,e](π)− bR[s,e](π) ≤ α[s,e],

R[s,e](π̂(i,j))− bR[s,e](π̂(i,j)) ≤ α[s,e].

Combining the three inequalities, we get

bR[s,e](π) > bR[s,e](π̂(i,j)) + 2βB(i,j)(π) + 2α[s,e].

This event will make NONSTATTEST(e) = True, which then triggers the rerun. The above
argument indicates that as long as EVENT3 holds, the non-flat bins in an epoch would only include
the first non-flat exploration bins (in which the whole epoch ends) and all non-flat exploitation
bins that appear before it. Therefore, the key is to bound the number of non-flat exploitation bins
that occur before the first non-flat exploration bin.

For an epoch E , let j∗ denote the last block index in it. Define X to be the number of non-flat
exploitation bins in E that appear before the first non-flat exploration bin. Note the following two
facts: 1) the decision for a bin to be exploration or exploitation is independent of its flatness, 2) a
bin with index b is exploitation with probability 1−b−θ ≤ 1−pmin, where pmin , 2−(j∗−1)(1−γ)θ.
Therefore, the probability Pr{X > x} is upper bounded by (1 − pmin)x. This is because when
X > x, the first x non-flat bins in the epoch all need to be exploitation bins. Picking x to be
ln(2T/δ)
pmin

= 2(j∗−1)(1−γ)θ ln(2T/δ) ≤ |E|(1−γ)θ ln(2T/δ), we get Pr{X > x} ≤ (1 − pmin)x ≤
(1/e)ln(2T/δ) = δ

2T .

Define EVENT5 to be that in every epoch, the quantity X is smaller than |E|(1−γ)θ ln(2T/δ).
Since there are at most T epochs, a union bound guarantees that EVENT5 holds with probability
at least 1− δ/2.

Thus, when EVENT3 and EVENT5 both hold, we haveX
t∈E

1{t is in non-flat bins} ≤ |E|γ × eO |E|(1−γ)θ = eO(|E|
3
4 )

because the bin length is at most |E|γ .
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• Regret in the whole time horizon. Finally we sum this over epochs and use union bound. From
the above discussions, with probability at least 1−(1−Pr(EVENT3))−(1−Pr(EVENT5)) ≥ 1−δ,

TX
t=1

1{t is in non-flat bins} ≤ eO S0X
i=1

|Ei|
3
4

!
≤ eO(S0 1

4T
3
4 ).

Proof [Proof of Theorem 7 (Part I: switching regret)] Combining Lemma 21, 23, 24, and 25, we see
that with probability at least 1− 5δ/2,

TX
t=1

Et[rt(π
?
t (xt))− rt(at)] ≤

TX
t=1

Et[rt(π
?
t (xt))− rt(at)]1{t is in flat exploitation bins}

+ 1{t is in exploration bins}+ 1{t is in non-flat bins}

≤ eO √
K 0S

1
4T

3
4 + K 0√ST .

Applying Hoeffding-Azuma inequality shows that with probability at least 1− 3δ,

TX
t=1

rt(π
?
t (xt))− rt(at) = eO √

K 0S
1
4T

3
4 + K 0√ST .

E.2. Dynamic Regret

Lemma 26 With probability 1− δ/2, S0 ≤ eO(1 + K 0− 2
5 ∆

4
5T

1
5 ).

Proof Suppose that EVENT3 holds. When the NONSTATTEST(t) returns True at some t in epoch i
and block j, we have (let A = [t− ‘ + 1, t], B = B(i, j) = [Ti + 1, Ti + 2j−1 − 1]):

bRA(π̂A) > bRA(π̂B) + 2βB + 4αA.

By the optimality of π̂B , we have

bRB(π̂A) ≤ bRB(π̂B).

The above two inequalities indicate for either π = π̂A or π = π̂B ,

bRA(π)− bRB(π) > βB + 2αA.

Since EVENT3 holds,

bRA(π)−RA(π) ≤ αA,bRB(π)−RB(π) ≤ βB.
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Combining the above three inequalities, we get

RA(π)−RB(π) > αA.

Since RA(π) − RB(π) ≤ ∆E and αA = Ω
q

K0

‘ = Ω(K 0 1
2 |E|−

γ
2 ), we have ∆E ≥

Ω(K 0 1
2 |E|−

γ
2 ). Now invoke this lower bound for all epochs in which rerun has been triggered

(i.e., E1, . . . , ES0−1). By Hölder’s inequality,

S0 − 1 ≤

 
S0−1X
i=1

|Ei|−
γ
2

! 2
2+γ
 

S0−1X
i=1

|Ei|

! γ
2+γ

≤ Õ

K
0− 1

2+γ

 
S0−1X
i=1

∆Ei

! 2
2+γ

T
γ

2+γ


≤ Õ K

0− 1
2+γ ∆

2
2+γ T

γ
2+γ

= Õ K 0− 2
5 ∆

4
5T

1
5 .

Lemma 27 ADA-BINGREEDY always ensures the following

TX
t=1

Et[rt(π
?
t (xt))− rt(at)]1{t is in flat-exploitation bins} ≤ eO K 0∆

1
3T

2
3 + K 0S0 1

4T
3
4 .

Proof

• Regret in a bin. If I is an flat exploitation bin in epoch i and block j, then for all [s, e] ⊆ I such
that e− s + 1 = 2q, we have for all π,

R[s,e](π) ≤ R[s,e](π̂(i,j)) + 2βB(i,j) + 4α[s,e],

which implies (by expanding the definition ofR[s,e](π)),

eX
t=s

Et[rt(π(xt))− rt(at)] ≤
eX

t=s

(Rt(π)−Rt(π̂(i,j)) + Kµt)

≤ eO pK 0(e− s + 1) + K 0 +

eX
t=s

(βB(i,j) + Kµt)

!
. (17)

Now we divide the whole bin into intervals of length L0 = 2q for some integer q. Then we can
use Lemma 6 to relate the dynamic regret in the whole bin to the sum of interval regret against a
fixed policy on each of the intervals (that is, Eq. (17)).

One subtle issue is that there might be one interval (the last one) whose length is less than L0.
This interval can be further divided into no more than log2 L

0 subintervals whose length are all
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of 2’s powers. As a whole, there are no more than |I|
L0 + log2 L

0 intervals each of length no more
than L0. By Lemma 6 and Eq. (17), we have

X
t∈I

Et[rt(π
?
t (xt))− rt(at)] ≤ eO |I|

L0 + log2 L
0 (
√
K 0L0 + K 0) + L0∆I +

X
t∈I

(βB(i,j) + Kµt)

!
.

Picking L0 = min 2blog2 |I|c, 2
2
3

log2(|I|/∆I) , the right-hand side is further bounded by

eO K 0|I|
2
3 ∆

1
3
I + K 0|I|

1
2 +

X
t∈I

(βB(i,j) + Kµt)

!

• Regret in an epoch. Next, we sum the regret over flat exploitation bins in an epoch. Note there
are at most eO(|E|1−γ) bins in an epoch E . Using Hölder’s inequality, we haveX

t∈E
Et[rt(π

?
t (xt))− rt(at)]1{t is in flat exploitation bins}

≤ eO K 0|E|
2
3 ∆

1
3
E + K 0|E|1−

γ
2 + K 0 1

2 |E|
2
3

= eO K 0|E|
2
3 ∆

1
3
E + K 0|E|

3
4 .

• Regret in the whole time horizon. Summing over epochs and using Hölder’s inequality, we get

TX
t=1

Et[rt(π
?
t (xt))− rt(at)]1{t is in flat exploitation bins} = eO K 0∆

1
3T

2
3 + K 0S0 1

4T
3
4 .

Proof [Proof of Theorem 7 (Part II: dynamic regret)] Combining Lemma 26, 27, 24, and 25, we see
that with probability at least 1− 5δ/2,

TX
t=1

Et[rt(π
?
t (xt))− rt(at)] ≤ eO K 0∆

1
3T

2
3 + K 0 1 + ∆

4
5T

1
5

1
4
T

3
4 ≤ eO K 0∆

1
5T

4
5 + K 0T

3
4 .

Applying Hoeffding-Azuma inequality shows that with probability at least 1− 3δ,

TX
t=1

rt(π
?
t (xt))− rt(at) = eO K 0∆

1
5T

4
5 + K 0T

3
4 .

The theorem finally follows by a union bound combining the switching regret bound and the dy-
namic regret bound we have proven.
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Appendix F. Omitted Proofs in Section 4

Proof [of Lemma 6] It suffices to show that for any i ∈ [n],X
t∈Ii

Et [rt(π
?
t (xt))− rt(at)] ≤

X
t∈Ii

Et rt(π
?
si(xt))− rt(at) + 2|Ii|∆Ii

The theorem follows by summing up the regrets over all intervals.
Indeed, one can rewrite the regret as follows:X

t∈Ii

Et [rt(π
?
t (xt))− rt(at)] =

X
t∈Ii

Et rt(π
?
si(xt))− rt(at) +

X
t∈Ii

Et rt(π
?
t (xt))− rt(π

?
si(xt))

=
X
t∈Ii

Et rt(π
?
si(xt))− rt(at) +

X
t∈Ii

Rt(π
?
t )−Rt(π

?
si) .

The last term can be further decomposed as:

X
t∈Ii

 
Rsi(π

?
t )−Rsi(π

?
si) +

tX
τ=si+1

(Rτ (π?
t )−Rτ−1(π?

t )) +
tX

τ=si+1

Rτ−1(π?
si)−Rτ (π?

si)

!

where Rsi(π
?
t ) ≤ Rsi(π

?
si) by definition and the rest is bounded by 2∆Ii . This finishes the proof.

Proof [of Corollary 3] The proof of Theorem 4 shows that with probability at least 1 − δ/2,
ADA-GREEDY ensures that for any interval I such that |I| ≤ L and ∆I ≤ L−1/3, we haveP

t∈I Et[rt(π(xt)) − rt(at)] ≤ eO |I|L− 1
3 + L

1
6

p
|I|K ln(N/δ) + K ln(N/δ) for any π. We

can thus first partition [1, T ] evenly into T/L intervals, then within each interval, further partition it
sequentially into several largest subintervals so that for each of them the variation is at most v. Since
the total variation is ∆, it is clear that this results in at most S0 ≤ T/L + ∆/L−1/3 subintervals
(denote them as I1, . . . , IS0), each of which satisfies the conditions of Theorem 4. Using Lemma 6,
we get

TX
t=1

Et[rt(π
?
t (xt))− rt(at)] ≤

S0X
i=1

eO |Ii|L− 1
3 + L

1
6

p
|Ii|K ln(N/δ) + K ln(N/δ) + |Ii|∆Ii

≤ eO T

L1/3
+ L

1
6

√
S0T + S0 K ln(N/δ)

≤ eO T

L1/3
+ L

1
3

√
∆T +

T

L
+ ∆L

1
3 K ln(N/δ)

≤ eO T

L1/3
+ L

1
3

√
∆T K ln(N/δ) ,

where in the second inequality we use Cauchy-Schwarz inequality and in the last one we use the
fact ∆ ≤ T . Finally using Hoeffding-Azuma inequality leads to the claimed bound.
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Proof [of Corollary 4] The proof follows the same arguments as in Corollary 3 except that now the
interval regret is bounded by eO |I|√

L
+
p
LK ln(N/δ) , and S0 ≤ T/L + ∆̄/L−1/2. Thus,

TX
t=1

Et[rt(π
?
t (xt))− rt(at)] ≤ eO T√

L
+ S0pLK ln(N/δ) + ∆̄L

≤ eO T√
L

+ ∆̄L K ln(N/δ) .

Using Hoeffding-Azuma inequality gives the bound.

Appendix G. Omitted Details for Corralling BISTRO+

Algorithm 5 Corralling BISTRO+
1 Input: Contexts x1, . . . , xT and parameter L

2 Define γ = 1/T, β = e
1

lnT , η = min{ 1
810 ,

p
T/ lnN/(LK)},M = dTηe

3 Initialize m = 1, η1(i) = η, ρ1(i) = 2M for all i ∈ [M ], w1 = w̄1 = 1
M , q1 ∈ ∆M s.t. q1(1) = 1

4 Initialize B1, a new copy of BISTRO+
5 for t = 1 to T do
6 Receive suggested action ait from base algorithm Bi for each i ∈ [m]

7 Sample it ∼ qt, play at = aitt , receive reward rt(at)

8 Construct estimated losses ‘t(i) = 1−rt(at)
qt(it)

1{i = it}+ (1− rt(at))1{i > m}, ∀i ∈ [M ]

9 Send feedback ‘t(i) to Bi for each i ∈ [m]
10 Compute wt+1 ∈ ∆M s.t.

1

wt+1(i)
=

1

wt(i)
+ ηt(i)(‘t(i) + zt(i)− λ)

where λ is a normalization factor and zt(i) = 6ηt(i)wt(i)(‘t(i)− (1− rt(at)))
2

11 Set w̄t+1 = (1− γ)wt+1 + γ 1
M

12 for i = 1 to M do
13 if 1

w̄t+1(i) > ρt(i) then set ρt+1(i) = 2
w̄t+1(i) , ηt+1(i) = βηt(i)

14 else set ρt+1(i) = ρt(i), ηt+1(i) = ηt(i)

15 if t is a multiple of dT/Me then
16 Update m← m + 1
17 Initialize Bm, a new copy of BISTRO+

18 Set qt+1(i) = w̄t+1(i)Pm
j=1 w̄t+1(j)

, ∀i ∈ [m]

We describe the idea of using CORRAL with BISTRO+ as base algorithms (see Algorithm 5 for
the pseudocode). Conceptually we always maintain M base algorithms, and use CORRAL almost
in a black-box manner as in (Agarwal et al., 2017). However, crucially the i-th copy of the base
algorithm only starts after the end of round (i − 1)dT/Me, in order to provide regret guarantee
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starting from that round (or close to that round). Therefore, the extra work here is to make sure
CORRAL does not pick algorithms that have not started, and also to come up with “virtual rewards”
for algorithms before they start.

More concretely, at each time we maintain m ≤ M copies of the base algorithm and a distri-
bution qt over them (note that although qt is in the simplex ∆M := {q ∈ RM

+ :
PM

i=1 q(i) = 1},
the algorithm always ensure qt(i) = 0, ∀i > m). First we receive suggested actions ait from each
base algorithm Bi. Then we sample a base algorithm it ∼ qt and play according to its action, that
is, at = aitt . After receiving its reward rt(at) (or equivalently its cost 1 − rt(at)), we construct
estimated loss for each of the M algorithms: for algorithms that have started, this is simply the
importance weighted loss; for algorithms that have not started, this is the actual loss of the picked
action (see Line 8). Next, we send the estimated losses to the m algorithms that have started, and
update several variables that CORRAL itself maintains, including the distributions wt and w̄t and the
thresholds ρt (Line 10 to 14). Finally, we re-normalize the weights w̄t+1 over the started algorithms
(including possibly a newly started one) to obtain qt+1 and proceed to the next round.

Another additional difference from the original CORRAL is the way we update wt (Line 10).
Here we follow the improved version proposed by Wei and Luo (2018) and incorporate an extra
correction term zt into the loss vector ‘t. In the original CORRAL zt is simply the zero vector.
However, with this more carefully chosen zt we can eventually improve the bound, replacing some
dependence on T by L, as shown in our proof.

Proof [Proof of Theorem 3] For any time interval I = [s, t] with |I| ≤ L, if |I| ≤ T/M then the
regret bound holds trivially. Otherwise, there must be a round s0 ∈ I such that s0 − s ≤ T/M , and
there is a new copy of BISTRO+ added to the pool at round s0. Denote this new copy by Bi? . The
interval regret on I is then clearly bounded by T/M plus the interval regret on [s0, t].

Let ct(a) = 1− rt(a), ∀a ∈ [K] and mτ be the value of m at round τ before Line 15. Then for
any policy π, we rewrite the interval regret on [s0, t] as:

E

"
tX

τ=s0

rτ (π(xτ ))− rτ (aτ )

#
= E

"
tX

τ=s0

cτ (aτ )− ‘τ (i?) + ‘τ (i?)− cτ (π(xτ ))

#

= E

"
tX

τ=1

cτ (aτ )− ‘τ (i?)

#
+ E

"
tX

τ=s0

cτ (ai
?

τ )− cτ (π(xτ ))

#

= E

"
tX

τ=1

mτX
i=1

qτ (i)‘τ (i)− ‘τ (i?)

#
+ E

"
tX

τ=s0

cτ (ai
?

τ )− cτ (π(xτ ))

#

= E

"
tX

τ=1

MX
i=1

w̄τ (i)‘τ (i)− ‘τ (i?)

#
+ E

"
tX

τ=s0

cτ (ai
?

τ )− cτ (π(xτ ))

#
(∗)

where the second equality uses the fact cτ (aτ ) = ‘τ (i?) for τ < s0 and Eiτ∼qτ [‘τ (i?)] = cτ (ai
?

τ )
for τ ≥ s0, and the last equality holds because

MX
i=1

w̄τ (i)‘τ (i) =

 
mτX
i=1

w̄τ (i)

!
mτX
i=1

qτ (i)‘τ (i) +

 
MX

i=mτ+1

w̄τ (i)

!
mτX
i=1

qτ (i)‘τ (i) =

mτX
i=1

qτ (i)‘τ (i).
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Here the first equality follows since qτ (i)
Pmτ

j=1 w̄τ (j) = w̄τ (i) for i ≤ mτ and ‘τ (i) =Pmτ
j=1 qτ (j)‘τ (j) for i > mτ by definitions.
Next we bound the two terms in (∗). The first term is essentially the regret of the master,

corresponding to the update in Line 10. Using results from (Wei and Luo, 2018),6 we obtain

E

"
tX

τ=1

MX
i=1

w̄τ (i)‘τ (i)− ‘τ (i?)

#

≤ eO M

η
+ η

tX
τ=1

E wτ (i?)(‘τ (i?)− (1− rτ (aτ )))2

!
− E

ρt,i?

40η lnT

= eO M

η
+ η

tX
τ=s0

E wτ (i?)(‘τ (i?)− (1− rτ (aτ )))2

!
− E

ρt,i?

40η lnT

≤ eO M

η
+ Lη − E

ρt,i?

40η lnT

where the equality holds because by construction ‘τ (i?) = (1 − rτ (aτ )) for all τ < s0.7 For the
second term in (∗), we apply Lemma 17 of (Agarwal et al., 2017) to obtain

E

"
tX

τ=s0

cτ (ai
?

τ )− cτ (π(xτ ))

#
= E

h
ρ

1/3
t,i?

i
(LK)

2
3 (lnN)

1
3 .

Combining and proceeding similarly as the proof of Theorem 7 of (Agarwal et al., 2017) we have

E

"
tX

τ=s0

rτ (π(xτ ))− rτ (aτ )

#
≤ eO M

η
+ Lη − E

ρt,i?

40η lnT
+ E

h
ρ

1/3
t,i?

i
(LK)

2
3 (lnN)

1
3

≤ eO M

η
+ Lη + LK

p
η lnN .

Adding back the extra T/M term discussed above and plugging in the value of η and M lead toeO(T
1
4 (LK)

1
2 (lnN)

1
4 +
√
T ). Note that the term

√
T is dominant only when L ≤

√
T , in which

case even the first term is superlinear in L and becomes vacuous. We can therefore drop the second
term and obtain the claimed bound.

We finally include the dynamic regret guarantee for this algorithm, which is again a direct
application of Lemma 6 combined with Theorem 3, similar to Corollary 2.

Corollary 5 In the transductive setting, Algorithm 5 guarantees

E

"
TX
t=1

rt(π
?
t (xt))− rt(at)

#
= eO min

0≤L0≤L

T

L0 T
1
4 (LK)

1
2 (lnN)

1
4 + ∆L0 .

If ∆ is known, optimally setting L = min{T
5
6K

1
3 (lnN)

1
6 /∆

2
3 , T} gives eO(∆

1
3T

5
6K

1
3 (lnN)

1
6 +

T
3
4K

1
2 (lnN)

1
4 ); otherwise, setting L = T

5
6 gives eO((

√
∆ + 1)T

5
6K

1
2 (lnN)

1
4 ).

6. This is not explicitly given in (Wei and Luo, 2018), but is a direct application of their Theorem 2 with mt,i = ‘t,it
in their notation.

7. This is the exact place where we obtain some improvement over the original CORRAL by using results of (Wei and
Luo, 2018).
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Proof sketch. The proof follows the same procedure as in Corollary 2: partition [1, T ] into T
L0

intervals each of length L0, plug in the interval regret guarantee for each interval (Theorem 3), and
then apply Lemma 6 to obtain the claimed dynamic regret.

Appendix H. Interval Regret for ADA-BINGREEDY

Theorem 28 Let I be an interval with ∆I = 0. Then ADA-BINGREEDY with parameter δ guar-
antees that with probability at least 1− 5δ,X

t∈I
rt(π(xt))− rt(at) = eO(

√
K 0T

3
4 + K 0√T )

for any π ∈ Π, where K 0 = K ln(N/δ).

Proof In the proof of Lemma 21, we have shown that with probability at least 1−δ/2, if there is no
distribution change, an epoch will not rerun. This implies that with probability 1 − δ/2, the rerun
is triggered at most once in I. Below we assume this event indeed holds. Let I = I1 ∪ {t0} ∪ I2,
where in I1 and I2 rerun is never triggered.

We can view I2 as a fresh epoch with no distribution change in it. Reusing Lemma 23, 24, and
25’s epoch regret intermediate results (i.e., those Regret in an epoch paragraphs in the proofs) with
SI2 = 1, we get X

t∈I2

Et[rt(π(xt))− rt(at)] = eO(
√
K 0T

3
4 + K 0√T )

with probability at least 1− 2δ.
For I1, we can decompose it into Jj0 ∪Jj0+1∪· · ·∪Jj∗ , where Jj0+1, · · · ,Jj∗−1 are complete

blocks with block indices j0 + 1, . . . , j∗−1 respectively, while Jj0 and Jj∗ are possibly incomplete
blocks (rerun is triggered in Jj∗). For j = j0+1, . . . , j∗, we can bound the regret in flat exploitation
bins in Jj by reusing the block regret result in the proof of Lemma 23 with SJj = 1. Applying
the last bound in the Regret in a block part of Lemma 23, the regret in flat exploitation bins in
Jj0+1 ∪ . . . ∪ Jj∗ can be bounded byX

t∈Jj0+1∪···∪Jj∗

Et[rt(π(xt))− rt(at)]1{t is in flat-exploitation bins}

= eO
 j∗X

j=j0+1

√
K 0 2(j−1)× 3

4 + K 0 2(j−1)× 1
2

+ eO(
√
K 0T

2
3 + K 0T

1
3 )

= eO(
√
K 0T

3
4 + K 0√T ).

The sum of regret in exploration bins or in non-flat bins can be bounded by eO(T
3
4 ) with probability

1 − 2δ by Lemma 24 and 25’s epoch regret results. Finally, the regret in Jj0 can be bounded by
|Jj0 | = eO(

√
T ). Combining all above and using Hoeffding-Azuma inequality complete the proof.
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