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Abstract 
A wealth of evidence indicates the existence of a consolidation 

phase, triggered by and following a practice session, wherein new 
memory traces relevant to task performance are transformed and 
honed to represent new knowledge. But, the role of consolidation is 
not well-understood in category learning and has not been studied at 
all under incidental category learning conditions. Here, we 
examined the acquisition, consolidation and retention phases in a 
visuomotor task wherein auditory category information was 
available, but not required, to guide detection of an above-threshold 
visual target across one of four spatial locations. We compared two 
training conditions: (1) Constant, whereby repeated instances of one 
exemplar from an auditory category preceded a visual target, 
predicting its upcoming location; (2) Variable, whereby five distinct 
category exemplars predicted the visual target. Visual detection 
speed and accuracy, as well as the performance cost of randomizing 
the association of auditory category to visual target location, were 
assessed during online performance, again after a 24-hour delay to 
assess the expression of delayed gains, and after 10 days to assess 
retention. Results revealed delayed gains associated with incidental 
auditory category learning and retention effects for both training 
conditions. Offline processes can be triggered even for incidental 
auditory input and lead to category learning; variability of input can 
enhance the generation of incidental auditory category learning. 

Keywords: Category learning, auditory, incidental learning, 
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Introduction 
Although a rich literature documents early phonetic 

category acquisition (Werker, Yeung, & Yoshida, 2012) and 
there is increasing evidence for continued phonetic 
development in later childhood (Zevin, 2012) quite little is 
understood about the learning mechanisms involved. 
Distributional learning, by which listeners are sensitive to the 
statistical regularities across speech categories, is widely 
believed to be significant (Maye, Werker, & Gerken, 2002; 
Thiessen, 2007). However, there are also concerns about 
whether laboratory demonstrations of distributional learning 
may ‘scale’ to real speech input (Lim, Lacerda, & Holt, 2015; 
Pierrehumbert, 2003). Moreover, distributional learning does 
not itself implicate a specific learning mechanism (Lim, Fiez, 
& Holt, 2014). 

One reason it has been challenging to establish the 
mechanism(s) of phonetic category acquisition is that it is 
difficult, if not impossible, to control the distributional detail 
of listeners’ speech experience. Even neonates have had 
prenatal speech experience that shapes perception (DeCasper 
& Spence, 1986). Over the last decade, research has 
circumvented this difficulty by examining acquisition of 
novel non-linguistic auditory categories composed of 
artificial nonspeech sounds to understand the general 
mechanisms available to phonetic acquisition (e.g., 
Goudbeek, Swingley, & Smits, 2009; Holt & Lotto, 2006; 
Holt, Lotto, & Diehl, 2004; Mirman, Holt, & McClelland, 
2004). A benefit of this approach is that experience can be 
tightly controlled to investigate specific mechanistic 
hypotheses, as has been the case in the long-standing and 
productive research literature on visual perceptual category 
learning (e.g., Maddox & Ashby, 2004). 

Incidental Auditory Category Learning 
As in visual category learning, most non-linguistic auditory 
category learning studies have used explicit tasks in which 
listeners are aware of the existence of categories and 
explicitly search for category-diagnostic dimensions by 
making overt decisions to maximize experimenter-provided 
feedback. This work has yielded insights that have translated 
directly to a better understanding of the mechanisms 
available to phonetic category acquisition (Lim & Holt, 
2011). Yet, this work does not model learning conditions in 
which phonetic categories are acquired that are neither 
wholly passive, nor explicit and dependent upon overt 
feedback (Lim et al., 2014). Category learning often occurs 
under more incidental conditions in which listeners are 
actively engaged in environments in which auditory 
categories are associated with rich multimodal cues and 
behaviorally-relevant outcomes. 

In an attempt to model these learning contexts in the 
laboratory, researchers  have developed several incidental 
learning paradigms that, while computer-based and 
consistent with tight experimental control, better capture task 
demands involved in building complex perceptual categories 
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without awareness of the categorization task, overt category 
decisions, or experimenter-provided feedback about 
categorization (Gabay, Dick, Zevin, & Holt, 2015; Wade & 
Holt, 2005). Results from this research indicate that listeners 
can acquire complex auditory (Gabay et al., 2015; Leech, 
Holt, Devlin, & Dick, 2009; Liu & Holt, 2011; Roark & Holt, 
2015; Wade & Holt, 2005) and phonetic (Lim et al., 2015; 
Lim & Holt, 2011) categories via incidental learning. 
Learning generalizes to novel category instances. Moreover, 
adult listeners who incidentally acquire complex non-native 
phonetic categories show transfer of the learning that 
scaffolds word learning in the non-native language (Liu & 
Holt, 2015a). Additionally, incidental learning of non-
linguistic sound categories designed to model some of the 
perceptual dimensions defining difficult non-native phonetic 
categories generalizes to support subsequent non-native 
speech categorization (Liu & Holt, 2015b). 

Altogether, these data indicate that the processes 
underlying incidental learning of non-linguistic sound 
categories inform those available to phonetic category 
acquisition. The distinction of incidental training versus 
passive or explicit training is important because there is 
growing evidence that these learning paradigms draw upon 
neural substrates with distinctive computational specialties 
(Doya, 1999; Maddox & Ashby, 2004; Seger & Miller, 
2010). Emerging evidence suggests that incidental auditory 
category learning engages the procedural learning system 
(striatum of basal ganglia, Lim et al., 2014; Lim, Fiez, 
Wheeler, & Holt, 2013) and recruits putatively speech-
selective cortex for processing newly-acquired non-linguistic 
auditory categories (left posterior superior temporal sulcus, 
pSTS; Leech et al., 2009). Significantly, striatal activation is 
correlated with behavioral incidental learning performance 
and exhibits functional connectivity with the left pSTS region 
sensitive to category learning mentioned above (Lim et al., 
2013). In all, these results demonstrate that both speech and 
nonspeech signals may draw on cortical networks once 
thought to be speech-selective as a function of category 
expertise. This further substantiates the use of non-linguistic 
auditory categories as a test-bed for mechanisms available to 
phonetic acquisition, points to procedural auditory category 
learning (Yi, Maddox, Mumford,  & Chandrasekaran, 2016), 
and establishes incidental learning as a valuable approach to 
understanding mechanisms available to phonetic acquisition.  

Learning Stages in Procedural Skill Acquisition 
In a parallel literature, a growing body of research indicates 
that skill learning is a multi-stage, dynamic process of 
performance and knowledge changes across time (see Karni 
& Korman, 2011). In addition to performance gains that 
occur concurrently with a learning task (online, fast 
learning), delayed performance gains may also evolve in the 
absence of additional practice (offline, slow learning). These 
latter changes involve consolidation processes whereby new 
memory traces become less susceptible to interference, but 
also are transformed and honed to represent new knowledge 
(Dudai, Karni, & Born, 2015), may require sleep (Karni, 

Tanne, Rubenstein, Askenasy, & Sagi, 1994), and are 
accompanied by measurable neural signatures (Ungerleider, 
Doyon, & Karni, 2002). Consolidation is considered a key 
feature of effective skill learning and the attainment of 
fluency (automaticity), central for the establishment of 
procedural memory (Atienza, Cantero, & Stickgold, 2004; 
Dudai et al., 2015). There is considerable evidence for slow 
learning phases reflecting memory consolidation in the motor 
domain (Dudai et al., 2015) and research demonstrates slow 
learning changes associated with consolidation in language 
domain (Davis, Di Betta, Macdonald, & Gaskell, 2009; Earle 
& Myers, 2015; Fenn, Nusbaum, & Margoliash, 2003) 
Although these studies examine consolidation of learning 
across speech signals, the learning was evoked by explicit, 
rather than incidental, training.  

In other domains the behavioral expression of memory 
consolidation is considered a key signature indicating 
establishment of robust, automatic and efficient 
representations (Karni & Bertini, 1997). Therefore, 
investigating incidental auditory category learning across 
several time points will be critical in revealing how memory 
consolidation processes affect procedural auditory category 
learning and phonetic acquisition.  

The Present Study 
The current study is designed to examine the expression of 
consolidation phase gains and retention of incidental auditory 
category learning. These measures afford the construction of 
theoretical bridges to neurobehavioral evidence and 
mechanisms of plasticity (Dorfberger, Adi-Japha, & Karni, 
2007) that putatively underlie auditory category learning.  

The second issue examined in the present studies concerns 
variability. Research in speech category learning has 
emphasized the importance of experiencing high acoustic-
phonetic variability in training. Experience with multiple 
speakers, phonetic contexts, and exemplars seems to promote 
non-native speech category learning and generalization 
among adult learners (Bradlow, Pisoni, Akahane-Yamada, & 
Tohkura, 1997; Iverson, Hazan, & Bannister, 2005; Jamieson 
& Morosan, 1989; Wang, Spence, Jongman, & Sereno, 
1999). As such, the issue of variability in training has been 
influential in empirical and theoretical approaches to speech 
category learning. However, it has arisen from studies of 
extensive training across multiple training sessions spanning 
days or weeks that have examined learning via explicit, 
feedback-driven tasks in which listeners actively search for 
category-diagnostic information. In this way, it has not been 
investigated in a manner to assess consolidation of learning 
gains, or incidental learning. In a previous study of incidental 
auditory category learning, we observed enhanced learning 
when within-category acoustic variability was experienced 
within trials, as compared to across trials (Gabay et al. 2015) 
even when global variability was held constant. The present 
study extends this work to examine the influence of within-
category acoustic variability on consolidation and retention 
of auditory categories. 



Methods  

Participants 
In each experiment, young adult participants were recruited 
from the University of Haifa community. They received 
payment or course credit, had normal or corrected-to-normal 
vision, and reported normal hearing. 24 participants were 
tested in Experiment 1 and 22 were tested in Experiment 2. 

 

Procedure 
Nonspeech stimuli. Figure1a illustrates four auditory 
categories, drawn from prior research (e.g., Wade & Holt, 
2005; Leech et al., 2009; Liu & Holt, 2011; Gabay & Holt, 
2015; Gabay et al., 2015). These sounds have some of the 
spectrotemporal complexity of speech but are unequivocally 
nonspeech owing to their noise and square wave sources 
(Wade & Holt, 2005). Each category has 6 exemplars used in 
training and 5 exemplars withheld to test generalization (not 
shown in Figure 1). Two categories are defined by a 
unidimensional acoustic cue (up- or down-sweep in 
frequency of a higher-frequency component). The other two 
categories are defined in a more complex, multidimensional 
perceptual space (no one acoustic cue uniquely defines 
category membership, see Wade & Holt, 2005).  
 
Systematic Multi-modal Association Time (SMART) Task. 
In the SMART task (Figure 1), participants rapidly detect the 
appearance of a visual target in one of four possible screen 
locations and report its position by pressing a key 
corresponding to the visual location. The primary task is 
visual detection. However, a brief sequence of sounds 
precedes each visual target. Unknown to participants, the 
sounds are drawn from one of four distinct sound categories. 
There is a multimodal (auditory category to visual location) 
correspondence that relates variable sound category 
exemplars to a consistent visual target location and response. 
This mapping is many-to-one, such that multiple, 
acoustically-variable sound category exemplars are 
associated with a single visual location. Likewise, sound 
categories are predictive of the action required to complete 
the primary visual detection task; in the SMART task, 

auditory categories perfectly predict the location of the 
upcoming visual detection target and the corresponding 
response button to be pressed. Thus, learning to treat the 
acoustically variable sounds as functionally equivalent in 
predicting the upcoming location of a visual target may 
facilitate visual detection without requiring overt sound 
categorization decisions or even awareness of category 
structure. The SMART task makes it possible to investigate 
whether participants learn auditory categories incidentally, 
during a largely visuomotor task. 

Participants completed 8 practice trials to acquaint them 
with the visual detection response. Sounds preceded visual 
targets in these practice trials, but there was no category-to-
location correlation. Immediately thereafter there were 6 
training blocks (96 trials, 4 sound categories x 6 exemplars x 
4 repetitions) for which there was a perfect correlation 
between auditory sound category and visual target location 
(Figure 1d). In the seventh block (B7, 48 trials), any sound 
exemplar could precede presentation of the visual target in 
any position; sound category no longer predicts the position 
in which the visual target would appear. A final B8 training 
block restored the relationship between sound category and 
the location of the upcoming visual target.  

Twenty-four hours later on Day 2, participants completed 
a training block (B9) and a shorter (48 trial) random-mapping 
block (B10) and a final training block (B11) to restore the 
mapping. On Day 10, participants completed B12, B13, and 
B14, with a structure identical to the Day 2 blocks. 
Subsequently on Day 10, there was an explicit labeling task 
in which novel sound exemplars drawn from one of the 4 
auditory categories were presented on each of 96 trials and 
participants selected the expected visual target location; no 
target appeared.  

Testing took place in a sound-attenuated chamber with 
participants seated directly in front of a computer monitor. 
Sounds were presented dichotically over headphones (Beyer, 
DT-150). 

Experiments 1 and 2 were identical, except for the manner 
by which within-category exemplar variability was 
experienced. As noted above, five sound exemplars preceded 
the visual target on each trial. In Experiment 1, a single 
category exemplar was randomly chosen and presented five 
times such that within-category exemplar variability was 
experienced across but not within trials. In Experiment 2, 
five unique exemplars drawn from a category preceded the 
visual target. Across experiments, the categories perfectly 
predicted the upcoming target location and, across trials, the 
within-category variability experienced by participants was 
equivalent. However, in Experiment 2 the within-category 
variability was more tightly coupled with the visuomotor 
associations we hypothesize to promote incidental category 
learning. Gabay et al. (2015) hypothesized that the SMART 
task visumotor associations provide ‘representational glue’ 
with which to bind acoustically variable category exemplars. 
By this view, experiencing within-trial acoustic variability 
will result in more robust learning via the tighter coupling of 
category variability with visualmotor task demands. Here, we 

Figure 1. Overview of SMART Paradigm. (A) Four 
nonspeech auditory categories are defined by multiple 
exemplars. (B) Each category is associated with a 
particular visual location, thereby predicting the 
upcoming appearance of a visual target 'X.' (C) 
Participants indicate the target location with a key 
press. (D) Blocks include a Test Block in which the 
category-to-location association is destroyed, and an 



seek to examine how this prediction relates to consolidation 

and 
retention of incidental category learning. 

Results 
Reaction Time (RT) Cost. Following the approach of Gabay 
et al. (2015), we predict that if participants incidentally learn 
sound categories across training blocks then visual detection 
will be slower in the test block relative to the training block 
that preceded it (RT Cost) because the category-to-location 
assignment is randomized in the test block. This covert 
measure of category learning does not require overt auditory 
categorization decisions or explicit labeling. 

Results are presented in Figure 2. Trials for which there 
was a visual detection error (M=2%) or response time (RT) 
longer than 1500 ms or shorter than 100 ms (M=2%) were 
excluded from analyses. A repeated-measures analysis of 
variance (ANOVA) was conducted with RT Cost (repeated 
vs. random block) and Day (1, 2, and 10) as within-subjects 
variables and Training Type (constant vs. variable training) 
as a between-subjects variable and mean reaction time to 
detect the visual target as the dependent variable. The main 
effect of training type was marginally significant, F(1, 
44)=3.71, p=.07, ηp² = .07 suggesting that in general 
participants were somewhat faster in the variable condition 
compared with the constant training condition. There was 
significant main effect of session F(2, 88) = 13.324, 
p=.00001, ηp² = .23, such that participants became faster in 
later sessions (Days 2, 10) compared with the first session 
(Day 1), F(1, 44) =20.49, p=.00004. No significant difference 
was observed between the second and third sessions (Day 
10), F<1, p=.595. The RT Cost main effect was also 
significant, F(1, 44) = 12.5, p=.00097, ηp² = .22 indicating 
that participants on average were faster to detect the visual 
target during the training blocks compared with the test 
blocks. This indicates that participants were sensitive to the 
relationship between sound category and visual target. The 
three-way interaction of session, RT Cost and training type 
was significant, F (2, 88) = 3.43, p=.037, ηp² = .07. Further 
analysis revealed that there was a significant increase in RT 
Cost magnitude in later sessions compared with the initial 
session for the constant training condition. Greater RT costs 
were observed in Day 2 compared with Day 1, F (1, 44) = 
4.56, p=.038 and in Day 10 compared with Day 1, F (1, 44) 

= 5.09, p=.029. There were no differences in RT Cost 
magnitude between Day 10 and Day 2, F=.234 p=.630. For 
the variable training condition, RT Costs were significant in 
all sessions and there were no differences in RT Cost 
magnitude across sessions.  

 
Posttest categorization. As an overt measure of category 
learning, we used participants’ accuracy in explicitly 
matching novel sound exemplars with the visual location 
consistent with the category-location relationship 
encountered in training. The exemplars tested in the overt 
categorization task were not previously encountered. Thus, 
generalization of category learning was required for accurate 
matching. Results are shown in Figure 3. 

Participants undergoing both constant and variable 
incidental training exhibited above-chance overt category 
labeling of novel exemplars (all p's=<.05), (Variable: 
Unidim, t(21)=3.77, p=.001; Multidim, t(21)=2.52, p=.0019; 
Constant: Unidim, t(23)=2.89, p=.008; Multidim, 
t(23)=3.104, p=.005). A repeated measures ANOVA with 
category type (Uni- vs. Multi-dimensional categories) as a 
within subject variable on mean accuracy and training type 
(constant vs. variable) as a between subject factor, showed a 
main effect of category type F (3, 132) = 9.63, p=.003, ηp² = 
.12 such that unidimensional categories were better learned 
than multidimensional categories. There was also a 
significant interaction between category type and training F 
(1, 44) =5.45, p=.024, ηp² = .1 such that unidimensional 
categories were learned better than multidimensional 
categories with variable training, F (1, 44) =14.17, p=.0004, 
whereas no such difference was observed for the constant 
training condition (F<1). 
 

Discussion 
The present study tested consolidation phase gains and 
retention in incidental auditory category learning. Building 
from prior research (Gabay et al., 2015), we employed the 
SMART task in which four novel auditory categories are 
consistently predict the upcoming location of a visual target 
to which participants respond with a keypress to indicate 
target location. Participants were not informed about the 
consistent mapping between audio and visual inputs and 
could potentially perform the task perfectly without relying 

Figure 2. Reaction time (RT) to detect the visual target 
as a function of training block (1-14) and training type 
(variable vs. constant) and session (Day 1, 2 and 10). 

Figure 3. Overt category labeling post-test accuracy as a 
function of training condition and uni- versus 
multidimensional categories. 



on the auditory input. In the context of this largely visuo-
motor task, participants incidentally learned the auditory 
categories, and generalized this learning to novel category-
consistent exemplars. 

Here, training occurred across three sessions to assess 
acquisition, consolidation and retention of the incidentally 
learned auditory category knowledge. Furthermore, the 
nature of the training experience was manipulated to examine 
the influence of variability on each one of these processes.  

Consistent with prior results examining learning within a 
single training session (Gabay et al., 2015), participants 
became reliant on auditory categories to guide visual 
detection, as evident in the RT Cost to visual detection 
reaction time upon the elimination of the consistent category-
to-location mapping. Notably, however, a significant RT cost 
was observed only for the variable training condition by the 
end of the first session. This differs from the observations of 
Gabay et al., who observed a RT Cost in a single session of 
SMART training with no within-trial exemplar variability 
(although this effect was less robust than that observed with 
exemplar variability). 

Nonetheless, by Day 2, learning was evident for both 
conditions across the delay period as a reduction in RT in 
Block 9 relative to Block 8 and an exaggerated RT Cost to 
randomization in Block 10. This pattern of results suggests 
that the association of the auditory categories with specific 
visuomotor contingencies underwent a consolidation phase 
and was strengthened over the delay. These results are 
consistent with the wealth research in motor and visual 
perceptual domains indicating the existence of a 
consolidation phase in the development of skill. Consistent 
with prior reports of consolidation phase 'offline' gains for 
category knowledge (Djonlagic et al., 2009), the present 
results are the first to report consolidation effects for 
incidental learning, and for nonspeech auditory category 
learning.  

Although both types of training, constant or variable, 
elicited offline gains, a reliance on auditory categories to 
guide visual detection (manifested as a RT Cost) developed 
already in the 1st session in the variable condition. This was 
well-maintained over the 24-hour delay. In contrast, there 
were no RT Costs for the constant training condition in the 
initial session. Yet, category acquisition must have been 
underway, as the RT Costs were apparent at 24-hour post-
training. This notion is consistent with a previous report 
(Gabay et al., 2015) of RT Costs under constant training 
already during the initial session, although the costs were 
significantly smaller than those observed under variable 
training. Cohort differences (the mean RT was somewhat 
slower in the present studies compared to the Gabay et al. 
study) or even biases from native language (English vs. 
Hebrew, in the prior and current studies, respectively) may 
potentially have played a role. 

The current results underscore the notion that details of 
training influence the evolution of category acquisition over 
time, perhaps influencing the ultimate learned 
representations. As an important control, future work will 

need to establish the extent to which there are offline gains 
associated with the visual target detection task itself, 
independent of auditory category learning. This will help to 
establish the origins of the increased speed of responses 
observed on Day 2 for both conditions. 

Despite brief, incidental training with entirely novel sound 
categories, the learning gains attained by Day 2 were robustly 
retained 10 days after initial training, as evident by robust RT 
Costs as well as by the above-chance overt labeling of novel 
category-consistent exemplars.   

Taken together these results suggest that 'offline' processes 
resulting in performance gains can be triggered for incidental 
auditory experience associated with but not necessary for a 
visuomotor task. The present study establishes a framework 
for studying the evolution of category representations as they 
emerge over time. 
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