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Abstract

Many theories assume that a sensory neuron’s higher firing rate indicates a greater
probability of its preferred stimulus. However, this contradicts 1) the adaptation
phenomena where prolonged exposure to, and thus increased probability of, a stimulus
reduces the firing rates of cells tuned to the stimulus; and 2) the observation that
unexpected (low probability) stimuli capture attention and increase neuronal firing. Other
theories posit that the brain builds predictive/efficient codes for reconstructing sensory
inputs. However, they cannot explain that the brain preserves some information while
discarding other. We propose that in sensory areas, projection neurons’ firing rates are
proportional to optimal code length (i.e., negative log estimated probability), and their
spike patterns are the code, for useful features in inputs. This hypothesis explains
adaptation-induced changes of V1 orientation tuning curves, and bottom-up attention. We
discuss how the modern minimum-description-length (MDL) principle may help
understand neural codes. Because regularity extraction is relative to a model class
(defined by cells) via its optimal universal code (OUC), MDL matches the brain’s
purposeful, hierarchical processing without input reconstruction. Such processing enables
input compression/understanding even when model classes do not contain true models.
Top-down attention modifies lower-level OUCs via feedback connections to enhance
transmission of behaviorally relevant information. Although OUCs concern lossless data
compression, we suggest possible extensions to lossy, prefix-free neural codes for
prompt, online processing of most important aspects of stimuli while minimizing
behaviorally relevant distortion. Finally, we discuss how neural networks might learn
MDL’s normalized maximum likelihood (NML) distributions from input data.

Keywords: encoding, decoding, Bayesian universal code, Shannon information, rate-
distortion, sparse coding, image statistics

1. Introduction

What do neuronal activities mean? This fundamental question on the nature of neural
codes has been pondered upon extensively since early recordings of nerve impulses
(Adrian 1926). In this paper, we first review two major categories of theories for
interpreting responses of sensory neurons. The first category views a sensory neuron’s
firing rate as indicating the probability that its preferred stimulus is present in the input.
The second category contends that sensory neurons provide an efficient or predictive
representation of input stimuli, with the goal of reconstructing the input stimuli. We
evaluate these and other related theories and point out that they contradict some major
experimental facts and sometimes contradict each other. To resolve these contradictions,
we propose the new hypothesis that in sensory areas, firing rates of projection neurons
are proportional to optimal code lengths for coding useful features in input stimuli. We
show that this hypothesis, which implies that neurons’ spike patterns are the actual codes,
can naturally explain observed changes of V1 orientation tuning curves induced by
orientation adaptation.

Core to our new framework for neural codes is the concept of optimal universal codes
(OUCs) arising from modern Minimum Description Length (MDL) principle (Grunwald
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2007, Rissanen 2001); it differs from older prescriptions of MDL used in some previous
neural models. OUCs balance data explanation and model complexity to avoid over
fitting. We argue that the MDL goals of maximizing regularity extraction for optimal data
compression, prediction, and communication are consistent with the goals of neural
processing and transmission of input stimuli. Indeed, since compression must rely on
regularities in the data, the degree of compression measures the degree of data
understanding. Compared with previous theories of efficient and predictive coding, a
distinctive feature of OUCs in modern MDL is that regularity extraction is relative to a
model class (such as a family of cells indexed by their preferred stimulus properties).
Consequently, OUCs match the brain’s purposeful information processing, which cannot
be achieved by reconstruction of input stimuli assumed in previous theories. Different
areas along a sensory hierarchy may implement different model classes for understanding
different levels of regularities in stimuli. To explain the brain’s selective information
processing we discuss possible extensions of the standard MDL from lossless data
compression to a lossy version, and to the inclusion of top-down modulation that
prioritize neural transmission of more behaviorally important information. We suggest
that neural codes must be prefix free so that the next stage of processing can interpret
incoming spikes online as soon as they are being received. We also discuss how neural
networks might learn and tune a key OUC of MDL, namely the normalized maximum
likelihood (NML) distribution, by sampling input stimuli.

2. Evaluations of Major Theories of Neuronal Coding

2.1 Firing-rate-as-probability theories

An early notion of neural coding is that a sensory neuron’s firing rate reflects the strength
of stimulation (Adrian 1926), a higher rate indicating a stronger stimulation. In his
neuron doctrine, Barlow (1972) casts this notion probabilistically by stating that “[h]igh
impulse frequency in such neurons corresponds to high certainty that the trigger feature is
present.” The idea is made most explicit in the population-average method for decoding
neuronal activities (Georgopoulos et al 1986). For example, to decode a perceived
orientation @ from the firing rates, {r}, of a set of cells with preferred orientations {6,},

the method assumes

2l p
O= = Zpﬁi, where p = (1)
]/} E v,
tz J !

i

implying that cell i’s firing rate r;, normalized by the sum of all cells’ firing rates er , 1S
j
the probability p, of its preferred orientation &, present in the input, and that the perceived

orientation is the expectation of the probability distribution.

Other methods for interpreting neuronal responses have also been proposed. For instance,
the maximum-likelihood method (Paradiso 1988) assumes that for a given stimulus
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orientation 6, , the responses r of a set of orientation-tuned cells follow the distribution
p(r|6.). When a particular set of responses {r,}is observed, p({r}|6.) can be viewed
as a distribution function of &, (the likelihood function) parameterized by {r,}, and the

perceived orientation is assumed to be the 6, that maximizes the likelihood:
6 =argmax p({r;}|6,). )
0,

By definition, cell i's response 7, is more likely to be large when stimulus orientation 6, is
closer to the cell’s preferred orientation €, . Then, within the response range, a large (or
small) response 7, implies a large (or small) likelihood p that the stimulus orientation 6,
equals cell i’s preferred orientation @, : p(large 7, |6, =6,) > p(small 7, |6, = 6)). In other

words, the likelihood that a cell’s preferred orientation is present in the input stimulus
increases monotonically with the cell’s response, similar to the population-average
method (which posits the special case of a linear relationship). Correlations among
different cells’ responses do not change the conclusion because the correlations are
significant (and positive) only among cells with similar preferences (Nowak et al 1995,
van Kan et al 1985). One could simply group the cells with similar preferences and argue
that a larger group response implies a larger likelihood that the group’s mean preferred
orientation is present in the stimulus.

If the prior probability distribution, p(8,), of stimulus orientation is known, then its
product with the likelihood function determines the posterior distribution of 6, given the
responses {7}, according to the Bayes rule. The Bayesian method (Sanger 1996) posits

that the perceived orientation is the 6, that maximizes the posterior probability:
0 =argmax p({1;}16,)p(0,). (3)
0,

Prior distributions are typically well behaved (smoothly varying) (Weiss et al 2002,
Yuille & Kersten 2006) and thus will not drastically change the aforementioned

relationship between 7, and 8, in the likelihood function. More importantly, although prior

and likelihood are conceptually different, physiologically the priors that the brain has
learned must be reflected in relevant neuronal responses (Atick & Redlich 1990,
Zhaoping 2014) and thus already included in the relationship between 7, and 6, for the
likelihood function. Short-term fluctuations of responses to temporary priors (e.g.,
adaptation to a particular 6, ) that are not yet learned by downstream neurons may distort
the relationship between 7, and 6, , but over longer time scales, these fluctuations and
distortions average out. Therefore, Bayesian decoders must generally retain the property
that large and small responses 7, indicate, respectively, large and small probabilities that

the stimulus orientation 8, equals the cell’s preferred orientation &, .
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In sum, many neural-tuning-based theories, including the well-known population-
average, maximum-likelihood, and Bayesian decoders, assume that a cell’s firing rate is
monotonically related to the probability that its preferred stimulus is present in the input.
For simplicity, we refer to this assumption as the firing-rate-as-probability assumption.
In the population-average method, a cell’s firing rate is directly proportional to the
probability of its preferred stimulus. In maximum-likelihood and Bayesian methods,
firing rates parameterize probability distributions of stimuli but a cell’s higher firing rate
still generally indicates a greater probability of its preferred stimulus.

Despite its intuitive appeal, the firing-rate-as-probability assumption contradicts two
major classes of phenomena. First, adaptation to, say, vertical orientation, must increase
the brain’s estimated probability for vertical orientation; yet the cells tuned to vertical
orientation reduce their firing rates to that orientation after the adaptation (Blakemore &
Campbell 1969, Fang et al 2005). [The cells’ responses to other orientations may increase
(Dragoi et al 2000, Felsen et al 2002, Teich, 2003 #289), an observation that we consider
in Section 3.3.1 but does not affect the current discussion.] Second, salient stimuli
capture our attention and increase neuronal firing rates (Gallant et al 1998, Gottlieb et al
1998, Itti & Koch 2001, Zhaoping 2002); yet these are low-probability stimuli such as
sudden onset of light or sound, instead of high-probability stimuli such as constant
background stimulation. Indeed, if a salient stimulus occurs frequently, it will gradually
lose its saliency and evoke less response because the brain adapts to it. The firing-rate-as-
probability assumption predicts the opposite.

2.2 Efficient/predictive coding theories

A second prominent category of theories assumes that neurons in a visual area build an
efficient or predictive code of input stimulus with the goal of reconstructing the retinal
image according to some optimality criteria (Atick & Redlich 1990, Barlow & Foldiak
1989, Bell & Sejnowski 1997, Harpur & Prager 1996, Olshausen & Field 1996, Rao &
Ballard 1999, Zhaoping 2014). Different theories optimize different cost functions which
typically contain a reconstruction error term and a term encouraging a desired code
property such as de-correlation, independence, or sparseness. The rationale is that by
forcing the models to reconstruct retinal images through efficient representations, they
can discover useful statistical regularities in the images.

Many efficient/predictive coding theories focus on reproducing important properties of
receptive fields without explicitly specifying what neuronal activities represent. One of
the theories does specify that activities of neurons projecting to the next stage represent
the error between the actual input and the input predicted by the next stage (Rao &
Ballard 1999). This assumption is consistent with the adaptation and bottom-up-attention
phenomena mentioned above if it is further assumed that stimuli with larger and smaller
probabilities are reconstructed/predicted more and less accurately, respectively. However,
it is unclear how it may explain a variety of adaptation-induced tuning changes (Section
3.3.1). More importantly, by aiming to reconstruct input stimuli, these theories neglect
the empirical fact that the brain processes inputs to extract behaviorally relevant
information while ignoring irrelevant one; the best example is perhaps the change-
blindness demonstrations (Pashler 1988): people are unaware of large, blatant changes
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between successively flashed images unless their attention is directed to the changes.
Moreover, there is a well-known conundrum with the efficient/predictive coding theories:
if, for example, the purpose of the visual system is to produce an efficient code that
reconstructs retinal images, why, then, are there so many more cells in the visual cortices
than on retina? In other words, how could such a great increase of the number of cells
involved in coding the same information be called efficient?

To address this cell-number conundrum of the efficient/predictive coding theories,
Olshausen and Field (1996) proposed that the brain needs a large number of cells to
produce a sparse (and over-complete) representation. With appropriate total numbers of
units in learning networks, sparse coding models have been successful in explaining
some important receptive field properties (Olshausen & Field 2004). It has been argued
that sparse coding with a large number of cells is more energy efficient (Balasubramanian
et al 2001, Olshausen & Field 2004), and sparsely firing neurons can be constructed from
an integrate-and-fire mechanism (Yenduri et al 2012). However, maintaining a large
number of cells and their connections incur a great cost. We will argue that a large
number of cell is needed for extracting various behaviorally-relevant features from
inputs, rather than for input reconstruction. Our MDL based framework suggests that the
brain attempts to minimize neuronal firing rates (i.e., code length, Section 3) and thus the
number of cells firing at a given time, and in this sense, is consistent with the sparse
coding theory.

2.3 Other theories

An approach related to the efficient coding theories is to measure as many types of
natural-image statistics as possible, and use the measurements to explain and predict
perceptual phenomena and neuronal responses (Field 1987, Geisler et al 2001, Motoyoshi
et al 2007, Sigman et al 2001, Simoncelli & Olshausen 2001, Yang & Purves 2003). For
example, the perception of a line segment is enhanced when it is smoothly aligned with
neighboring segments (Li & Gilbert 2002). This is known as the Gestalt principle of good
continuation, and can be explained by the statistical result that nearby contour segments
tend to form a smooth continuation in the real world (Geisler et al 2001, Sigman et al
2001). Although extremely powerful in accounting for many perceptual observations that
would otherwise be puzzling, these studies either avoid specifying what neuronal
responses represent, or use the firing-rate-as-probability assumption and thus inherit its
problems discussed above. Indeed, given the image-statistics-based explanation of the
Gestalt principle of good continuation, it is unclear why many V1 cells reduce firing rates
when a contour extends beyond their classical receptive fields (Bolz & Gilbert 1986,
Hubel & Wiesel 1968, Li & Li 1994).

Normalization models were originally proposed to explain nonlinear response properties
of V1 simple cells (Albrecht & Geisler 1991, Heeger 1992). These nonlinearities include
contrast saturation and interactions among multiple stimuli. The models have since been
applied to other visual areas (Simoncelli & Heeger 1998) and to attentional modulation of
visual responses (Reynolds & Heeger 2009), and are regarded as a canonical module of
neural computation (Carandini & Heeger 2012). The main assumption is that the actual
response 7, of a cell is equal to its linear-filter response R; normalized by a regularization
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constant o plus the pooled linear-filter responses from all cells tuned to the full range of
stimulus parameters:

4
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The power index 7 introduces additional nonlinearity as suggested by typical contrast
saturation curves. 7, is a scaling constant. There is also a temporal version of the models

(Carandini et al 1997).

The rationale behind these models is that the normalization factor provides a gain control
mechanism to allow a cell’s limited dynamic range encode a broad range of stimulus
intensity. Given their phenomenological nature and the small number of free parameters,
these models are impressive in explaining neuronal responses across a broad range of
systems and conditions (Carandini & Heeger 2012). However, in an extracellular-
recording test of the model, the constant model parameters for a given V1 cell have to be
adjusted to fit data from different stimulus conditions (Carandini et al 1997). Moreover, a
circuit that implements normalization via divisive shunting inhibition (Carandini et al
1997) is not supported by intracellular recording data (Anderson et al 2000b).
Additionally, without modifications, normalization models cannot explain many
interesting spatial interaction phenomena. For example, a V1 or MT cell’s response to its
preferred orientation/direction in the classical receptive field center is suppressed when
the surround has the same orientation/direction, but the suppression becomes weaker, or
even turns into facilitation, when the surround orientation/direction differs from that of
the center (Allman et al 1985, Levitt & Lund 1997, Li & Li 1994, Nelson & Frost 1978).
Instead of pooling cross all cells, the normalization factor has to be tailored to select
different subgroups for different situations. Other considerations, such as natural image
statistics, have to be used to justify such selection. Finally, normalization models focus
on reproducing firing rates without specifying what they represent (probabilities, code
lengths, or something else).

A set of studies aims to reproduce spiking statistics of real neurons. With the increasing
availability of multi-single-unit recording data, much of this line of research focuses on
how to capture second- and higher-order statistical relationships among multiple neurons
(Ganmor et al 2011, Schneidman et al 2006, Shlens et al 2006). While these studies
provide useful hints on neural code, they do not in themselves address the nature of
neural code. For example, knowing that two neurons have correlated responses to a
stimulus does not immediately reveal the coding principle behind such correlation or
what firing patterns represent.

There are inconsistencies among extant theories. For example, the firing-rate-as-
probability hypothesis is incompatible with the efficient/predictive coding hypothesis: the
former assumes that projection neurons transmit stimulus probability distributions (or
their parameterizations) from one area to another to enable optimal inference based on
products of the distributions, whereas the latter implies that the probability distributions
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be used to code stimuli efficiently for transmission and that projection neurons transmit
reconstruction errors. As another example, a proposed implementation of optimal
Bayesian inference using parameterized probability distributions (Ma et al 2006) assumes
that neurons sum up the firing rates they receive, contradicting nonlinear summation of
real neurons emphasized by normalization models (Albrecht & Geisler 1991, Heeger
1992).

Stocker and Simoncelli (2006) noted that if adaptation to an orientation (adaptor)
increases its prior probability, then a Bayesian framework predicts that a subsequently
presented test orientation be attracted to the adaptor, contradicting the observed repulsive
aftereffect (Gibson & Radner 1937, Meng & Qian 2005). They proposed that adaptation
reduces noise in the likelihood function instead of increasing the prior probability of the
adapting stimuli. However, the assumption that long exposure to a stimulus does not
change its probability is at odds with frequentist probability definition. It also contradicts
Bayesian probability definition as it asserts that subjective probability is never updated by
prior experience. Moreover, if adaptation to a stimulus does not change its probability,
then why should the brain adapt to natural-image statistics, an assumption used in
numerous studies? Additionally, the proposal does not save the firing-rate-as-probability
assumption because it does not explain why the cells tuned to the adapting stimuli reduce
their firing rates after the adaptation. To save the assumption one would have to posit,
unreasonably, that adaptation to a stimulus actually reduced its probability.

Although a typical, prospective Bayesian model incorrectly predicts attractive
aftereffects, a recent study suggests that repulsive aftereffects could result from
retrospective Bayesian decoding in working memory (Ding et al 2017). According to this
new framework, after all task-relevant features are encoded and enter working memory,
the brain decodes more reliable, higher-level features first and uses them as priors to
constrain the decoding of less reliable, lower-level features, producing repulsion in the
process. In other words, although a prior from the adaptor may predict attraction, a
different prior from high-level decoding could override it and generate a net repulsion.

It seems fair to summarize the state-of-art theories of neuronal coding as the story of the
Blind Men and Elephant: each theory captures some important aspects of neural coding
and appears plausible in some ways, but it is unclear how they fit together coherently.

3. A New Framework for Neural Codes

Understanding neural codes is an ambitious task that is unlikely to be accomplished in
foreseeable future. Nevertheless, as a small step, we would like to outline a framework,
based on the modern MDL principle, which aims to resolve the issues, while retaining the
strengths, of the previous theories. In the following, we will first review the modern
MDL principle briefly. We will then argue that when this principle is adopted for neural
coding, it leads to our main hypothesis that firing rates of projection neurons are
proportional to optimal lengths for coding useful features in stimuli. This firing-rate-as-
code-length hypothesis is fundamentally different from the firing-rate-as-probability or
firing-rate-as-prediction-error hypotheses discussed above. We will apply this hypothesis
to explain various changes of V1 orientation tuning curves induced by orientation
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adaptation. The hypothesis is also consistent with bottom-up attention because rare (low
probability) stimuli should have a long code length, i.e., evoke high firing rate. We
further suggest that the MDL framework could be modified to include top-down
attention. Since the firing-rate-as-code-length hypothesis implies that spiking patterns are
the actual code for useful features in the input, we will speculate on the nature of the
code, particularly the prefix-free and lossy properties. Finally, we will discuss how a key
distribution from the MDL principle could be learned and tuned as input stimuli are
sampled.

3.1 An overview of modern MDL and OUC

We propose that the modern MDL principle (Barron et al 1998, Grunwald 2007,
Grunwald et al 2005, Myung et al 2006, Rissanen 1996, Rissanen 2001), built on the
concept of OUC [in the form of normalized maximum likelihood (NML) distribution and
related codes], provides a viable framework for understanding neural codes. This
principle, different from some similarly or identically named theories, was developed for
model-class selection, regression, and prediction by maximizing regularity extraction
from data. In this section, we briefly review modern MDL.

Our overview of MDL follows Grunwald (2007). Intuitively, understanding a piece of
data means extracting regularities in the data that enable prediction of other data drawn
from the same source (generalization). And since regularity is redundancy, regularity
extraction can be measured by data compression. Thus, to best understand a piece of data
is to find a model (i.e., a probability distribution) that minimizes description length of the
data. (A model expresses a relationship in the data, which can always be cast as a
probability distribution by adding a proper noise distribution.) To avoid over-fitting, the
model complexity should also be taken into account. The MDL principle provides a
practical way of achieving these goals.

More formally, if the probability mass function P(x)of data samples x’s is known, then
the expected code length is minimized when the code for x has a length (Shannon 1948):

L(x) =-log P(x) (%)

This is a consequence of the Kraft-McMillan inequality that relates code lengths and
probability distributions and the information inequality

=Y P(x)log P(x) < —Y_ P(x)log O(x) (6)

for any probability mass function Q(x)# P(x) . Intuitively, Eq. 5 assigns short and long
codes to frequent and rare data samples, respectively, thus minimizing the average code
length. Since one can always find a code with length approaching that of Eq. 5, the terms
“code” and “probability distribution” are often used interchangeably.

In reality, when a piece of data (e.g., a retinal image) is received, its probability is
unspecified. The best one can do is to use any prior knowledge, experience, or belief
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about the data generation process to produce a model M such that according to M, data
sample x has a probability P(x|M). Then according to this model, the code for x should
have a length L(x| M) =—-log P(x| M) . To take the model complexity into account, one
may use the length L(M) of coding M to represent its complexity, and seek a model,

among a class of models M, that minimizes the total code length:
L=L(x|M)+L(M) (7)

as the best description of the data. This is indeed an MDL principle Rissanen (1978)
proposed first, now referred to as the old or crude two-part MDL (Grunwald 2007), and
used by Rao and Balllard (1997, 1999). A major problem is that there is no objective way
of assigning a probability to M (and all other models in the class 2M). Consequently, one
could assign a given M different probabilities and thus different code lengths, rendering
Eq. 7 arbitrary. Although one could choose L(M) sensibly for a given situation and

obtain meaningful results with Eq. 7, this approach is ad hoc.

Rissanen (2001) then developed the modern or refined MDL to overcome this
arbitrariness in Eq. 7. Consider a model class M consisting of a finite number of models
parameterized by the parameter set 8. For a given piece of data x, each model in the class
prescribes it a probability P(x | 8) and thus a code with length —log P(x|€) . The model

é(x) that compresses the data x most is the one giving the data maximum likelihood

Plx]| é(x)] , with code length L[x | é(x)] =—log P[x]| é(x)]. However, this degree of
compression is unattainable because in this scheme, different inputs would be encoded by
different probability distributions (i.e., different M’s in the model class M), and the next
stage could not consistently use or interpret the encoded message. The solution relies on
the concept of a universal code: a single probability distribution P(x) defined for a

model class M such that for any data x, the code for x is almost as short as L[ x| é(x)] ,
with the difference (termed regret) bounded in some way. The two-part code defined by
Eq. 7 is actually a universal code because one can use a uniform distribution to code
every model in M with equal probability 1/m so that the regret is bounded by log m
where m=|M| is the number of models in M. However, there are other, better universal
codes. In particular, there is an optimal universal code (OUC) that minimizes the worst-
case regret and avoids assigning an arbitrary distribution to M. This so-called minimax
optimal solution is the normalized maximum likelihood (NML) distribution:

Plx|0(x)]

PNML( ):—A
YL

(8)

where the summation is over the data sample space (Fig. 1). With this distribution, the
regret is the same for all data sample x and is given by:

regret,, =—log P, (x)+log Plx|0(x)]=log > P[y|0(»)] (9)

10
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each row normalizes to 1

P(x4|6,) P(x5/6,) | P(x4/6,) L P(x6,) N P(xn]61)
E P(x,/60,) | P(x,6,) P(x5]9,) it P(x,6,) ik P(xx[6,)
w
w)
0
(&S]
£
k%) P(X1|Gj) P(X2|ej) P(X3|9j) e P(Xi|ej) i P(XN|9]')
=
O
=

P(xy|6h) P(x36y) P(x5/6y0) v P(x|0y) e P(xx|6yp)
data:  x, X5 X5 X; Xy

Fig. 1. Illustration of the normalized maximum likelihood (NML) distribution for a model
class M. The models in the class, P(s , are parameterized by the parameter set 6. The

x's in the bottom row represents all possible data samples. Each of the other rows
represents the probability mass function of a given model (a fixed ) for all data, and
thus sums to 1 (this remains true for probability density functions of continuous data).
Each column represents different probabilities (likelihoods) assigned to a given piece of
data x, by different models (different 6’s). The model that gives the maximum likelihood

is indicated by a box, and its 6 = é(x,.) by definition. The maximum likelihoods (the

terms in the boxes) may not sum to 1 because they are from different models. However,
they can be normalized by the sum to produce a proper probability mass function, which
is the normalized maximum likelihood (NML) distribution in Eq. 8. To understand Eq.
11, note that the three terms of the equation are, respectively, the sums of the boxed
terms, the sum of all terms, and the sum of the non-boxed terms.
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which is the log of the denominator in Eq. 8. Importantly, this expression also provides a
natural definition of the model-class complexity:

COMP(M)=log Y Py |0(»)] (10)

because the summation indicates how many different data samples can be well explained
by the model class. The more data samples the model class can explain well (i.e., large
Ply] é( y)] for many data »’s), the more complex the model class is. Thus, the numerator

and denominator of the NML distribution in Eq. 8 represent how well the model class fits
a specific piece of data and how complex the model class is, respectively.

There are other universal codes, one of which is Bayesian universal code with Jeffery’s
prior which approximates NML. In the following, we often use NML to represent OUC
for simplicity but using other related codes will not change our conclusion.

The optimal universal code in the form of NML establishes the modern MDL principle
for model-class selection: given a piece of data and multiple, competing model-classes,
the one that produces the maximum NML probability explains the data best (Grunwald et
al 2005, Myung et al 2006). This MDL principle has been extended to cases where the
number of models in a class is not finite and COMP(M) and NML may not be defined

(Grunwald 2007). We will not discuss those extensions because the number of cells in a
brain area, and thus the number of models in a model class, is always finite. In this case,
COMP (M) and NML is well defined even when input sample space is continuous (e.g.,

orientation). In fact, the sum (or integration for continuous input spaces) in COMP(M)
is always smaller than or equal to the number of models in the class (see Fig. 1 caption):

2P0 =m=3 Py |6, % 0(y)] (11)

We finally note that because the NML distribution is defined for a model class, regularity
extraction and data compression in the MDL framework are relative to a model class. The
true model that produces the data does not have to be a member of a model class in order
for the model class to extract useful regularities. Different model classes extract different
regularities. We will return to this point later.

3.2 An MDL-based framework for neural coding

Using the MDL concepts reviewed above, we start by assuming that each processing
level of the brain implements many model classes, each class in the form of a set of cells
tuned to a range of input properties (Fig. 2). For example, in area V1, the set of cells
tuned to different orientations (Hubel & Wiesel 1968) can be viewed as forming a model
class parameterized by the cells’ preferred orientation. Different model classes are
concerned with different properties of the input. Since some cells are simultaneously

12



420
421

422
423
424
425
426
427
428
429
430
431
432
433
434
435

436

437

Higher-level
model classes
extracts more
complex and
global
regularities

Feedforward encoding
and compression of
inputs using NML )
distributions; spike trains
are prefix-free codes,
ordered according to
task relevance; ﬁnnﬁw
rates are code lengths

Feedback modula-
tions of lower-level
model classes for
selective processing

Each model
class extracts
regularities
relative to the
class to
“understand”
and predict
inputs

Motor control to

\ / se-lek taisl_(- :
: relevant inpu
Sensory inputs / disrbutions

(e.g., retinal
images)

Fig. 2. Schematic for our MDL based framework for neural coding. Large ovals
represent brain areas along a processing hierarchy; only two processing levels are
shown. Each small oval represents a model class devoted to extracting a certain
stimulus regularity; for example, a model class can be a set of V1 cells
parameterized by their preferred orientations. Core distinctions between our
framework and many other existing ones in interpreting physiology and anatomy
include: 1) firing rates of projection neurons represent the code lengths of inputs,
instead of the probability distributions (or their parameterization) of inputs; 1i)
each model class can predict inputs based on the regularity it extracts, instead of
relying on predictions from a higher-level area; 1i1) feedback connections from
higher-level areas modify lower-level model classes to selectively process inputs
according to the current task or goal; and iv) spike trains of projection neurons are
a prefix-free code based on an NML distribution. We hypothesize that the process
of regularity extraction (as measured by data compression) through the hierarchy
is the process of “understanding” the input.
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tuned to multiple properties (e.g., orientation, disparity, and motion direction), there are
overlaps among cells in different model classes.

Each processing level strives to extract regularities from the input and thus should use the
MDL principle to balance input explanation and model-class complexity. Different model
classes at a processing level extract different (possibly overlapping) regularities that are
behaviorally relevant. For example, motion-selective and color-selective cells in V1 form
two model classes. If the motion and color of a stimulus are both relevant to the current
behavioral task (e.g., catching a flying, red ball), then V1 needs to use both model classes
simultaneously. (This is different from traditional applications of MDL to model-class
selection, which pick only one model class with the largest NML probability.) Along a
processing hierarchy, higher-level areas extract more complex regularities based on
simpler regularities extracted at lower levels, suggesting that the MDL principle should
be applied hierarchically. For instance, V1 cells may use oriented segments in retinal
image to compress data, and the face cells in IT may compress inputs further by
exploring regular face configuration and view-independent representation of face
identity.

Regularity extraction in the MDL framework is relative to a model class, and as such, can
be viewed as processing, rather than reconstructing, inputs. Consider a class of cells
sensitive to various contrast ranges, each cell responding to input images according to the
difference between the luminance levels in the center and surround of its receptive field.
These center-surround cells can extract the useful regularity that luminance contrasts
likely delineate object boundaries under changing lighting conditions. However, they
would be poor at reconstructing the center and surround luminance values separately
because their responses depend only on the difference of the values. Similarly, disparity-
selective cells form a model class that codes the displacement between an object’s left
and right retinal images while largely discounting many other aspects of the images (such
as the difference in contrast magnitude) (Qian 1994). This model class focuses on the
useful relationship between an object’s disparity and its distance from the fixation point
(Qian 1997) but would have difficulty reconstructing other aspects of the two images.
Generally, regularity extraction by a class of cells emphasizes certain relevant input
dimensions for specificity while ignoring other, irrelevant dimensions for invariance. In
this sense, it can be better viewed as behaviorally-relevant processing than accurate input
reconstruction. Thus, the large number of cells in the cortex is needed to process, not
reconstruct, the inputs. This avoids the cell-number conundrum of previous
efficient/predictive coding theories.

Where do model classes in the brain (i.e., sensory cells with various response properties)
come from? We assume that the response properties are learned via evolutionary and
developmental processes and tuned by experiences to serve functions of the brain and to
increase survival. Although low-level visual responses can be explained by image
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statistics, we suspect that an understanding of neuronal responses across the visual
hierarchy must take behavioral tasks into account. This is consistent with recent
comparisons between layers in deep neural networks and stages along the visual
hierarchy: networks with better performances (for classification tasks) also explain visual
responses better (Khaligh-Razavi & Kriegeskorte 2014, Yamins et al 2014). It is possible
that a model class and its NML distribution are learned together (see Section 3.9).

Consistent with the MDL philosophy, a model class does not have to contain the “true”
generative model of the environmental stimuli in order to be useful. For example, the
brain does not need to know the exact optics of image formation to see, or the exact
Newtonian mechanics to move. In fact, it is well known that exact knowledge of optics or
Newtonian mechanics is insufficient to see or move because vision and motor-control
problems faced by the brain are ill-posed mathematically (Flash & Hogan 1985, Poggio
et al 1985, Tanaka et al 2006) and the brain has to make additional assumptions (in the
form of regularities to be extracted by model classes, according to MDL) to solve the
problems. An OUC does not have to be (and usually is nof) a member of the model class.
The brain merely approximates the “rules” underlying environmental stimuli through an
optimal encoding strategy relative to a model class.

Regularity extraction by a model class is essential not only for input processing, but also
for input compression to afford efficient information transmission from one level to the
next. The MDL principle solves these problems together using OUCs, and the solution is
the NML distribution (or related distributions) for a model class (Eq. 8). It is natural to
assume that the brain uses an OUC (of a model class) to encode information for
transmission because it minimizes the worst-case code length for both efficiency and
robustness. However, unlike previous efficient/predictive coding theories that aim to
reconstruct the input, here efficiency is relative to a model class serving a function of the
brain. As we show in Section 3.3, this difference leads to completely different
interpretations of projection neurons’ firing. Finally, input explanation and model-class
complexity are balanced in NML (its numerator and denominator, respectively) to extract
regularity and avoid over-fitting. This is critical for input understanding, prediction, and
generalization.

3.3 Firing-rate-as-code-length hypothesis, adaptation, and bottom-up attention

The above formulation suggests that in each brain area, the pyramidal cells that project to
the next level should spike according to the NML distribution (or a related OUC) to
efficiently code useful features in inputs. Thus, projection neurons’ firing rates (spikes
per unit time) is proportional to the code length, equal to the negative log probability of
the distribution. The code-length minimization then becomes firing-rate minimization.
Since firing rates of a set of cells are related to the number of cells firing at a given time
(analogous to ergodic assumption that time average equals ensemble average), the firing-
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rate minimization is consistent with sparse coding (Olshausen & Field 1996). A set of
projection cells, instead of a single cell, is involved in coding an input for two reasons.
First, a set of cells can transmit the most important aspect of the input instantly using
their spike pattern at a given time whereas a single cell would need more time to transmit
the same information as a sequence of spikes. (Each cell does fire a sequence of spikes,
but as we will discuss in Section 3.7, we suggest that latter spikes encode less important
aspect of the input instead of a temporal code of the most important aspect of the input.)
Second, neurons are noisy and may become dysfunctional; using a set of cells improves
the reliability and robustness of transmission.

The firing-rate-as-code-length hypothesis naturally accommodates neural adaptation and
bottom-up attention phenomena. For adaptation, prolonged exposure to a stimulus
(adaptor) transiently increases its probability in the corresponding NML distribution. For
example, adaptation to stimulus x increases P[x | é(x)] in the numerator and its
appearance in the sum of the denominator of Eq. 8, with the net effect of increasing

P, (x) (while decreasing NML probability for other stimuli y). Consequently, the code

length (firing rate) for the adapting stimulus decreases. Indeed, Eq. 5 suggests that firing-
rate (code-length) change equals negative relative probability change:

_AP(x)

AW == (12)

We provide a more detailed analysis in Section 3.3.1 for orientation adaptation. For
attention-grabbing salient stimuli, because they are unexpected, low-probability events,
the code length (firing rate) is large.

We emphasize that our firing-rate-as-code-length assumption only applies to projection
neurons which transmit information from one brain area to the next. The common firing-
rate-as-probability assumption may apply to local interneurons or alternatively, a more
implicit probability representation may be learned (Section 3.9). Once a probability
distribution is computed in an area, whether it is the NML distribution of the MDL
framework or the posterior distribution of the Bayesian framework, it should be used to
minimize code length for efficient information transmission according to Eq. 5. We
therefore suggest the following framework for conceptualizing neural processing: when
sensory stimuli are processed along a hierarchy, each brain area receives inputs from the
lower-level areas, provides new processing by using its own model classes to compute
the corresponding NML probabilities of the inputs, and use these probabilities to encode
and transmit the inputs to the next level. This encoding process is the process of
understanding the inputs because it maximizes regularity extraction from, and
compression of, the inputs, according to the model classes in the area.
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3.3.1. Simulating adaptation induced changes of V1 orientation tuning curves

Our formulation readily explains the observed response reduction for cells tuned to the
adapted stimulus (Eq. 12). However, it is known that orientation adaptation produces
additional changes to V1 orientation tuning curves (Dragoi et al 2001, Dragoi et al 2000,
Felsen et al 2002, Teich & Qian 2003). Some experimental data from Dragoi et al
(Dragoi et al 2001, Dragoi et al 2000) are shown in Fig. 3. Define the two sides of a cell’s
pre-adaptation tuning curve as the near and far sides according to whether the side
includes the adapted orientation or not (e.g., the left and right sides of the red tuning
curve in Fig. 3b are the far and near sides, respectively, because the right side contains
the adapted orientation indicated by the green arrow). Then the adaptation-induced
changes of orientation tuning curves can be summarized as follows. (1) Responses on the
near side of a tuning curve decrease (Fig. 3, a and b). (2) Responses on the far side of the
tuning curves increase (Fig. 3, a and b). (3) For cells whose preferred orientations are
around the adapted orientation, the peaks of their tuning curves shift away from the
adapted orientation (Fig. 3, a, b, and d). (4) Also for cells whose preferred orientations
are around the adapted orientation, their tuning widths become broader (Fig. 3, a, b, and
c). (5) For cells whose preferred orientations are far away from the adapted orientation,
their tuning widths become narrower (Fig. 3c). In Fig. 3c, cells’ tuning widths are

quantified by orientation selectivity index (OSI) defined as: OSI = +/(” + ° / y where
a= Zxr(x) cos(2x), f= Zxr(x) sin(2x), r(x) is the firing rate at the sampled stimulus

orientation x, and ¥ = mean[r(x)]. Large and small OSI indicate narrow and broad tuning

widths, respectively.

We now demonstrate that the firing-rate-as-code-length hypothesis can explain all of
these observed physiological changes. Consider a set of V1 cells whose preferred
orientations uniformly sample the full 180 deg range. Let cell i’s preferred orientation be
x; and its firing rate in response to stimulus orientation x be 7(x, x;). According to our
firing-rate-as-code-length hypothesis, 7(x, x;) should be proportional to the length L(x) for
coding x (Eq. 5). Additionally, the cell has an intrinsic orientation tuning function #(x, x;)
according to the feedforward inputs it receives (Hubel & Wiesel 1968, Reid & Alonso
1995, Teich & Qian 2006). We therefore assume that the observed response 7(x, x;) is a
product of the code length and the tuning function:

r(x,x,) = L(x)t(x,x,) . (13)

Before adaptation, all orientations over the full range of m are equally probable so that
P(x)=P,=1/rin Eq. 5, indicated by the flat red line in Fig. 4a (we neglect prior
orientation bias here because it is irrelevant to this discussion). Then, L(x) is a constant,
and Eq. 13 implies that7(x, x,) oc #(x, x;) . That 1s, before adaptation, the observed tuning
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Fig. 3. Observed changes of V1 orientation tuning curves induced by adaptation. (a) The
solid black curve represents the pre-adaptation tuning curve with the preferred orientation
centered at 0 deg. The solid and dashed gray curves are the same cell’s tuning curves
after adaptation at -22.5 deg and 45 deg, respectively. (b) The red and green curves
represent a cell’s pre- and post-adaptation tuning curves, respectively. The adapted
orientation is indicated by the green arrow. The peak response after adaptation was even
larger than that before adaptation. (c) Adaptation-induced change of orientation
selectivity index (OSI, see text for definition) as a function of the difference between the
pre-adaptation preferred orientation and the adapted orientation. Negative and positive
OSI change indicate increase and decrease of tuning width, respectively. (d) Adaptation-
induced peak shift of tuning curves as a function of the orientation difference between the
pre-adaptation preferred orientation and the adapted orientation. Note that the orientation-
difference ranges for the first two data points are different from each other and from the
remaining three points. Panels a, ¢, and d are from Dragoi et al. (2000) and panel b from
Dragai et al. (2001), with permissions.
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curve has the shape of the cell’s intrinsic tuning function, which is peaked at preferred
orientation x; and typically bell-shaped (Schiller et al 1976, Webster & De Valois 1985).
For convenience, we used the following periodic function (Teich & Qian 2003) for #(x,
Xi):

t(x,x,) = c{cos[2(x —x,)]+1}* +b, (14)

where b and ¢ determine the baseline and peak firing rates in Eq. 14, respectively. The
exponent k controls the tuning width (larger £ produces narrower width). Examples of
pre-adaptation tuning curves [i.e., 7(x, x;) as a function of x for fixed x;] with k=4 are

shown in red in Figs. 4 and 5, panels b to c.

Now assume that there is adaptation at 0 deg orientation, and after adaptation,
P(x) = P,(x). Although we do not yet know exactly how the brain updates P(x)
represented by interneurons (see Section 3.9), P,(x) should have increased values at and

around the adapted orientation, and decreased values at other orientations, as we argued
in connection with Eq. 12. We therefore used the following expression:

P (x)=PF + A{z,[cos(2x) +1]" —z [cos(2x) +1]"}, (15)

where the two cosine terms determine the increase and decrease of probabilities at
different orientations, respectively. z+ and z. are not free parameters but normalize the

two cosine terms so that P, (x) is normalized. m and n together control the orientation-

ranges of the probability increase and decrease, and A4 determines the strength of
adaptation. When n = 0, Eq. 15 reduces to:

P,(x)= B, + A{z,[cos(2x) + 11" ~ B}, (16)

and an example with m =4 and 4 = 0.9 is shown as the green curve in Fig. 4a. Relative to
the constant baseline F,(x) (flat red line in Fig. 4a), this P, (x) has increased values at and

around the adapted orientation and uniformly decreased values at other orientations.

When n > 0, P, (x) has non-uniformly decreased values at the other orientations and an

example with n = 0.2, m =4 and 4 = 0.9 is shown as the green curve in Fig. 5a. This

could occur if the updating of P(x) during adaptation depends on the so-called Mexican-
hat connectivity profile among cells tuned to different orientations (Teich & Qian 2006,
Teich & Qian 2010). The broad peaks of P, (x) in Figs. 4a and 5a reflect the fact that the

brain’s estimation of an individual orientation is poor (Ding et al 2017).

Plugging post-adaptation P(x) = P,(x) into Egs. 5 and 13, we can then determine the

tuning curves that reflect the adaptation-induced change of code length. Figs. 4 and 5,
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Fig. 4. The firing-rate-as-code-length hypothesis explains the adaptation-induced changes
of orientation tuning curves. The adapted orientation is assumed to be 0 deg indicated by
the green arrow in each panel. (a) The orientation probability distributions before (red)
and after (green) the adaptation. (b-d) Comparison of tuning curves before (red) and after
(green) the adaptation for cells whose preferred orientations are 0, 15, and 30 deg away
from the adapted orientation, respectively.
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panels c-d, compare the pre-adaptation (red) and post-adaptation (green) tuning curves
for cells whose preferred orientations are 0, 15, and 30 deg away from the adapted
orientation at 0 deg (green arrow). These simulation results explain all the adaptation-
induced tuning changes listed above.

Dragoi et al. (2000) measured the adaptation-induced percent change in OSI and shift of
tuning peak (Fig. 3, panels ¢ and d). The corresponding simulations using the two
different P, (x) in Fig. 4a and Fig. 5a are shown in Fig. 6. Results similar to the

simulations in Figs. 4-6 can be obtained with many other parameters sets.

We conclude that the observed tuning changes induced by adaptation may reflect the
brain’s adjustment of code lengths for different orientations after adaptation. Since at the
circuit level, the tuning changes can be explained by modifying recurrent connections
among cells (Teich & Qian 2003, Teich & Qian 2010), the recurrent-connection plasticity
could be a physiological mechanism for online code-length minimization.

Our firing-rate-as-code-length hypothesis calls for a re-interpretation of neuronal tuning
curves. Consider, for example, V1 cells tuned to vertical orientation. The traditional view
is that when they fire, they signal the presence of vertical orientation on retina. According
to the MDL framework, these cells’ firing not only signals the presence of vertical
orientation. In addition, their firing rates are modulated up or down according to whether
vertical orientation is less or more probable than other orientations. This interpretation is
also consistent with the observation that natural images usually evoke weaker neural
responses than isolated patches of natural images or artificial stimuli (Gallant et al 1998)
because the former, with its large context, is more probable than the latter.

3.4 Top-down attention, NML with data prior, and feedback connections

In addition to adaptation and bottom-up attention discussed above, top-down attention
can also be incorporated into the MDL framework. In the case of bottom-up attention,
salient stimuli, because of their small probabilities reflected in the NML distributions,
have longer code lengths and drive cells to higher firing rates. For top-down attention, on
the other hand, the brain seeks a specific type of information based on its current
functional needs. Such information-seeking could be realized, in the MDL framework, by
a top-down modulation of the NML probabilities in lower levels. For example, area V1
may normally assign horizontal orientation a certain probability, and the corresponding
firing rate, based on actual frequencies of orientations in the input. Now if horizontal
orientation becomes subjectively more important (e.g., when searching for a horizontal
key slot), then higher-level visual areas could use top-down, feedback connections to V1
to reduce the estimated probability of, and thus increase the firing rate to, horizontal
orientation. In other words, since rare stimuli are bottom-up salient, the top-down process
could instruct lower-level areas to treat a task-relevant stimulus as if it were rare, to boost
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its saliency. Thus, we must modify the MDL principle to take into account task relevance
or subjectivity of information content, an aspect not encompassed by previous
efficient/predictive coding theories.

Zhang (2011) introduced a positive data prior function, s(x), to modify the NML

distribution as:

S PLx| O]
D s(MPLy| 6]

¥

Py (x) = (17)

This is precisely what we need for modeling top-down attention. The data prior function
s(x) emphasizes certain inputs, at the expense of other inputs, according to the current,
task-relevant need of the brain. Specifically, when a certain x is task relevant, top-down
attention will reduce its s(x), increasing the code length (firing rate) for it. Alternatively,
s(x) can be viewed as modifying the models’ likelihood functions in Eq. 17. In fact, there

can be a dual relationship between data prior and model prior (Zhang 2011), which
produce so-called informative versions of MDL (Grunwald 2007).

Thus, according to the MDL framework, a major role of top-down, feedback connections
in the brain is for higher levels to modify the lower-level model classes in order to
increase transmission of behaviorally relevant information. The framework is consistent
with the fact that top-down attention is slower than bottom-up attention because it takes
time for high-level areas to send spikes down the feedback connections to modify NML
distributions of lower-levels. This is fundamentally different from Rao and Ballard’s
proposal that feedback connections send higher-level predictions of inputs to the lower
level for subtraction (Rao & Ballard 1999). The difference reflects different aims of the
two approaches. Rao and Ballard’s model, as are typical of most efficient/predictive
coding models, aims to reconstruct retinal inputs. Therefore, a high-level sends its input
prediction to the lower level, which subtracts this prediction and sends the error to the
higher level for improvement. In contrast, our MDL framework focuses on regularity
extraction to serve the brain’s needs of sensory processing without input reconstruction.
Although regularity extraction is the basis for both efficient coding and prediction, in the
MDL framework there is no input prediction coming from higher levels for lower-levels
to subtract. Instead, NML unifies prediction, regularity extraction, and efficient coding at
each level of processing.

Top-down processes may also direct motor outputs (including eye movements) to
actively seek relevant information in the world.

3.6 Comparison with Existing Models
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Our firing-rate-as-code-length hypothesis differs significantly from previous theories. We
already mentioned some differences above. Here we recapitulate the discussions and
make some further comparisons. Although negative log probability is frequently used in
the literature for computational convenience or for linkage to MDL concepts, to our
knowledge, the firing-rate-as-code-length hypothesis for interpreting sensory neurons’
responses has not been proposed.

3.6.1. Predictive coding models

Rao and Ballard (1999) used a two-part version of MDL (Rissanen 1978, Rissanen 1983)
in their predictive coding model, which, like other efficient/predictive coding models,
aims to reconstruct the retinal image. Our NML-based MDL framework is very different
in that it uses regularity extraction to serve the brain’s functional needs rather than to
reconstruct retinal images, and consequently, interprets neuronal responses and
connections differently. In particular, Rao and Ballard’s model and our framework
interpret projection neurons’ responses as representing errors of input reconstruction and
coding useful features in the input, respectively. Additionally, while they assume that
feedback connections carry the higher-level’s prediction of the lower-level input, we
assume that feedback connections modify the lower-level’s model classes to transmit
task-relevant information in the input.

3.6.2. Firing-rate-as-probability theories

Firing-rate-as-probability theories, including a proposed implementation of Bayesian
inference (Ma et al 2006), posit that projection neurons transmit probability distributions
of input features (or parameterizations of the distributions) whereas we suggest that the
probability distributions computed in an area are not transmitted but are used to code
input features efficiently and that probability distributions computed in different areas are
relative to different model classes and concern different regularities of the inputs. As we
noted in Section 2, firing-rate-as-probability theories are not consistent with adaptation
and bottom-up-attention phenomena while our framework is. Note that we are not
arguing against Bayesian inference, only the firing-rate-as-probability assumption used in
many models including those that have been called Bayesian inference models. In fact,
the Bayesian universal code with Jeffery’s prior asymptotically achieves the minimax
optimal regret of the NML code, and may well be used by the brain because of its
prequential property which is useful for prediction without a pre-specified time horizon
(Grunwald 2007).

3.6.3. Saliency models

Zhaoping (2002) proposed that V1 constructs a bottom-up saliency map such that, for a
given visual scene, firing rate of V1 output neurons increase monotonically with the
saliency values of the visual input in the classical receptive fields. There are no separate
feature maps for creating such a bottom-up saliency map. Neuronal responses encode
universal values of saliency that govern subsequent actions (e.g., saccades). In our
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framework, neuronal responses are also related to saliency. However, this is realized via
neurons’ firing rates being proportional to the code lengths for coding useful features.
The code lengths are determined by the features’ probabilities, which, in turn, are related
to the saliency values.

Han and Vasconcelos (2010) presented another saliency model for object recognition in
biological systems. Motivated by the observation that stimulus features with high bottom-
up saliency have a low probability of occurrence, they proposed a top-down saliency
measure using log likelihood ratio of Gabor-filter responses to target and non-target
objects and demonstrated that this computation can be realized by a selective
normalization procedure. In contrast, we assume that the top-down attention modifies
lower-level NML distributions for coding relevant stimulus features. More importantly,
they eventually let cells’ firing rates represent the posterior probability of target object
via a nonlinear function of the log likelihood ratio so their model follows the traditional
firing-rate-as-probability assumption. Instead, we assume that firing rates represent code
length, not probability.

3.6.4 Normalization models

On first glance, the NML distribution (Eq. 8) resembles the normalization models for
sensory responses (Eq. 4), and the NML distribution with a data prior (Eq. 17) resembles
the normalization models for attentional modulation (Reynolds & Heeger 2009).
However, the normalization factors (denominators) in NML and in normalization models
are very different. In NML, the denominator sums the maximum likelihood of a model
class across all input data samples. In normalization models, the denominator is a
constant plus the summed responses of all cells with a range of tuning (i.e., all cells in a
model class) to the current input sample.

A key motivation for the normalization models is to fit V1 cells’ contrast response
curves. Indeed, the form of the normalization models mimics contrast saturation
functions. The MDL framework offers an alternative, computational-level explanation of
contrast responses, namely that high contrast occurs less frequently than low contrast in
the real world; this reflects the fact that the world consists of coherent surfaces of objects
and high contrast typically occurs at relatively rare object boundaries whereas low
contrast typically occurs at relatively abundant object interiors. Indeed, Ruderman (1994)
measured contrast distribution of natural images and his result can be approximated by:

P(c)=a—blog(l+c) (18)

where ¢ is contrast and a and b are positive constants; the probability decreases with
contrast. If, as we postulated earlier, the brain learns this statistical regularity based on
the MDL principle, then the corresponding NML distribution for encoding stimulus
contrast should reflect the statistics. The contrast responses of projection neurons
covering different ranges of contrast should then have the envelope —log P(c), a curve
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resembling saturation. Thus, contrast response may not result from shunting inhibition of
pooled responses to a given stimulus; rather, it may reflect code-length optimization by a
circuit that sample contrast statistics from many stimuli.

The MDL framework may also account for phenomena that the normalization models fail
to explain. For example, we mentioned above that end-stopped V1 cells fire less when a
contour extends beyond their classical receptive fields (Bolz & Gilbert 1986, Hubel &
Wiesel 1968). More generally, V1 or MT cells’ responses to their preferred
orientation/direction within the classical receptive fields are suppressed when the
surround has the same orientation/direction, but the suppression becomes weaker, or even
turns into facilitation, when the surround orientation/direction differs greatly (Allman et
al 1985, Levitt & Lund 1997, Nelson & Frost 1978). The normalization models cannot
explain these results because the normalization factor is untuned. Of course, one could
modify the normalization models by making the normalization factor follow the observed
results; however, this means that the normalization models have to be adjusted ad hoc for
each specific situation. The MDL framework may be able to explain these experimental
findings because when the classical receptive field and its surround have similar
(different) stimuli, the presence of the surround stimuli increases (decreases) the
probability of the stimuli in the classical receptive field, and consequently, a shorter
(longer) code length, in the form of a lower (higher) firing rate, is needed to transmit the
information. Similarly, when a contour extends smoothly beyond an end-stopped cell’s
classical receptive field, the probability of the segment inside the receptive field is
increased, leading to a shorter code length (reduced firing) of the cell.

3.7 Lossy MDL and prefix-free neural code

The standard MDL uses the terms “code” and “probability distribution” interchangeably
because once a probability distribution is specified, one can always design a lossless,
prefix-free code (a.k.a., prefix code) that saturates the Kraft-McMillan inequality such
that the code length is equal to negative log probability (Grunwald 2007). In contrast,
phenomena such as change blindness (Pashler 1988) suggest that the brain uses a lossy
code to transmit behaviorally relevant information and discard irrelevant details of the
input. We will therefore speculate on a lossy MDL code as a candidate for neural code.
To motivate our proposal, consider the example of seeing something moving in a jungle.
The most survival-relevant information may be whether the moving thing is a predator or
a pray. If it’s a predator, the next most relevant information may be whether it is the type
that one could fight against (e.g., a wolf) or better flee from (e.g., a tiger). To optimize
survival, the brain should use its visual neurons’ first few spikes to transmit the most
relevant information, and the next few spikes to transmit the second most relevant
information, and so on. Only crude aspects of low-level features that are sufficient for
building relevant, high-level categorical decisions should be transmitted quickly. It would
be a huge mistake to waste the precious first several spikes on transmitting, for example,
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the precise orientation of a stripe on the animal’s fur. On the other hand, the brain is
certainly able to judge the orientation when one is asked to do so in a safe setting.

These considerations suggest that a partially transmitted code should be meaningful so
that a brain area can start processing inputs immediately after receiving spikes from
lower areas, that the code should be as short (efficient) as possible and carry pieces of
information ordered according to their behavioral relevance/urgency, and that higher-
level areas should instruct lower-level areas on what and how much details to transmit
depending on the situation. Therefore, the brain might use entropic, prefix-free codes
(based on NML distributions) with earlier spikes carrying more behaviorally important
information.

Consider the toy example in Table 1 of coding four symbols (column 1) with known
probabilities (column 2). Code 1 is fixed length and inefficient (the length of 2
bits/symbol is greater than the entropy of 1.75 bits/symbol). Code 2 is the Huffman code,
which is entropic (average length 1.75 bits/symbol) and prefix free (no code word is a
prefix of another code word). Code 3 reverses the bit order of each code word of Code 2.
It is entropic but not prefix free. Although Code 3, like the other two codes, is uniquely
decodable (after receiving a whole message, the bit string can be reversed and decoded
according to Code 2), a partial message is meaningless. In contrast, a Huffman-coded
string can be decoded online as each bit is received without the need to wait for a whole
message or a whole code word. For example, the first bit divides choices into A vs (B, C,
D). Because each bit of a code word divides the remaining choices into two with equal
probabilities, the bits are ordered from the most to least informative. (Although the
Huffman code is a symbol code, similar arguments could be made with the entropic,
arithmetic coding for blocks of arbitrary lengths.)

We propose that the brain might use a Huffman-like code (or arithmetic-like coding)
based on NML distributions. Such a code is attractive because of the efficiency, the bit
ordering from the most to least informative, and the prefix-free property allowing
immediate decoding as each bit comes in. We suggest that neural codes should be similar
in that the first spikes of a neuronal population carry the most task/situation-relevant
information so that the brain can take most pressing actions at the earliest possible time.
The later spikes carry less relevant details that may be truncated by top-down instructions
or by a change of inputs (e.g., a saccade to a different part of the world or a changing
world), resulting in a lossy code. Experiments that present stimuli for only several to tens
of ms provide indirect evidence for the prefix-free and lossy nature of neural codes:
subjects could identify global or high-level, categorical features better than local or low-
level details (Chen 1982, Navon 1977, Thorpe et al 1996), suggesting that truncated
visual transmission is meaningful and that the transmission leading to high-level
categorization, which is more behaviorally relevant than low-level details, is prioritized.
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A 172 00 0 0

B 1/4 01 10 01
C 1/8 10 110 011
D 1/8 11 111 111

881

882  Table 1. Three codes for the four symbols with the given probabilities. Codes 1 and 2 are
883  prefix free. Codes 2 and 3 are entropic. Code 2 (Huffman) is both prefix free and
884  entropic.

885
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In information theory, the rate-distortion curve is a standard tool for studying lossy
transmission (Blahut 1972). Each point of the curve specifies the minimum input
information that has to be transmitted to the output (i.e., the rate) in order to keep the
average distortion under a given value. Equivalently, each point specifies the minimum
average distortion for a given rate. The distortion for each input/output pair is pre-
defined. (The rate is similar to channel capacity except that the former is the mutual
information minimized against the channel transition probabilities whereas the latter is
the mutual information maximized against input distribution. We will not distinguish the
two terms in the following for simplicity.) The rate-distortion curve has been used as a
computational-level theory for understanding discrimination vs. generalization in
perception (Sims 2018). The main idea is that when a system transmits inputs whose
information (i.e., entropy) exceeds the system’s channel capacity, the output will have
distortion which determines discrimination between, or generalization across, different
inputs. The information bottleneck theory (Tishby et al 2000) is a version of the rate-
distortion theory in which the distortion for each input/output pair is not pre-defined, but
determined according to how much information the output carries about the input’s
assigned label (e.g., the label “cat” for an input image). The truncated, lossy code
discussed above could be viewed as a possible neural implementation of the rate-
distortion function. Specifically, because of limited rate or channel capacity, projection
neurons cannot transmit all input information as stimuli stream in, and truncated
transmission leads to distortion. If the spikes of a neural code are arranged from the most
to least relevance to current behavior, then the distortion with respect to the behavior
“label” is minimized for a given rate.

The firing-rate-as-code-length hypothesis implies that the channel capacity (firing rates)
of projection neurons is greater for lower-probability stimuli which require longer codes.
This ensures that unexpected, salient stimuli are not truncated more than common stimuli.

3.8 Encoding vs. decoding

Coding can be divided into encoding and decoding. The engineering notion of encoding
and decoding is well defined: When a signal needs to be transmitted over a noisy
communication channel of limited capacity (e.g., a phone line), one should encode the
signal to compress it (while allowing error correction), transmit it, and then decode it to
recover the original signal on the other end. It is widely assumed that the brain does
similar encoding and decoding. Our MDL framework suggests that the brain encodes
input stimuli into neuronal responses but does not decode the responses to recover the
original inputs. The main reason is that, unlike a phone line that has to reproduce the
input voice at the other end, the brain never needs to reconstruct the raw sensory inputs it
receives. Rather, as we already emphasized, the brain attempts to understand the sensory
inputs by processing them. For example, the brain processes the retinal images to reveal
objects and their relationships but hardly needs to reconstruct the retinal images because
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retina is part of the brain and no homunculus exists in the cortex to look at the
reconstructed images. More generally, it is hard to imagine that one brain area needs to
accurately reconstruct neural firing patterns (spike trains) of another area; rather, a brain
area should extract additional regularity from, and thus achieve further understanding of,
the input. If the firing patterns of a sensory area are needed, for instance, to guide a
certain motor response, then the motor area of the brain should use the firing patterns
directly, instead of encoding, transmitting, and decoding. For example, in the unlikely
scenario that raw retinal image were needed, the brain would have evolved to use the
retinal image instead of decoding a poorer version of it from, say, LGN or V1 responses.

One may reasonably identify the brain’s logic of relating neuronal responses to subjective
perception as decoding. Note, however, this decoding is fundamentally different from the
engineering notion of decoding. Specifically, neuronal responses along hierarchical
stages of sensory pathways extract and encode progressively more complex statistical
regularities in the input stimuli. A small subset of these responses presumably gives rise
to our subjective perception of useful features in inputs without any need of
reconstructing the raw inputs. We therefore suggest that neural decoding should be
viewed as the link from neuronal responses to perceptual estimation of useful stimulus
features, but not as input reconstruction. Also note that encoding and decoding are often
related; for example, the population-average method of Eq. 1 is a decoding model but it
implies that firing rates encode the probabilities of preferred stimuli.

A related question is whether sensory decoding follows the same low-to-high-level
hierarchy of sensory encoding. Many studies assume, often implicitly, that the answer is
affirmative. However, a recent study shows that this assumption fails to explain a simple
psychophysical experiment, and suggests that visual decoding progresses from high-to-
low-level features in working memory, with higher-level features constraining the
decoding of lower-level features (Ding et al 2017). Since higher-level features have
greater functional significance than lower-level features, this decoding scheme is
consistent with the above notion that the brain should prioritize transmission of
behaviorally relevant information.

3.9 NML and learning

Given the importance of the NML distribution (or a related OUC as its approximation) in
the MDL framework, a relevant question is: how can a brain area produce such a
distribution particularly when the input data space is high dimensional? Variational
methods in machine learning provide a potential answer as they have demonstrated that
neural networks can learn complex probability distributions via gradient decent (Dayan et
al 1995, Kingma & Welling 2013) or even a local plasticity rule (Hinton et al 1995). To
outline the approach for the NML distribution (Eq. 8), we define the “energy” of a data
sample x relative to a model class parameterized by @ as:
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E(x) =—log P[x| 0(x)] (19)

(i.e., the code length according to the model in the class that maximizes the likelihood of
the sample), and rewrite Eq. 8 in the form of a Boltzmann distribution (with f=1):

__exp[-E(x)]
P (¥) = S explEQ)] (20)

The numerator is known as the partition function Z = Zexp[—E (»)], and the regret and
y
complexity measure in Eqs. 9 and 10 become log Z . Use the standard definition of

Helmholtz free energy as the mean energy minus entropy:

A=) P(x)E(x)+ ) P(x)log P(x) (21)

for any probability distribution P(x). Then (Dayan et al 1995),
A=—10gZ + KLIP(x) || Py, (¥)] (22)

where KL is the Kullback—Leibler divergence. Since KL is non-negative and minimized
to 0 when the two distributions are equal, 4 reaches the minimum value of —log Z when
P(x)=P,,, (x). [The physical analogy is that Helmholtz free energy 4 approaches the
minimum —log Z when any non-equilibrium distribution P(x) approaches the
equilibrium, Boltzmann distribution Pz (x).] Therefore, if P(x;@)1s a family of
probability distributions parameterized by weights ¢ of a neural network, then the
network could be trained to approximate P,,, (x) by minimizing the cost 4 in Eq. 21
against ¢ as input data are sampled, and —4 is a lower bound for log Z (Dayan et al 1995,
Hinton et al 1995, Kingma & Welling 2013). If data statistics are changed, the neural
network’s approximation of A, (x) would change accordingly (as we assumed in the

example of orientation adaptation in Section 3.3.1).

Moreover, E(x) and log Z depend on the model-class parameterization 8, which can also
be implemented as weights of a neural network. One could thus, for example, adjust the
equilibrium Helmholtz free energy ( A = —log Z ) by modifying 6 in order to control the

NML regret or complexity (log Z ). Since the model-class complexity and the code length

for an input (i.e., neuronal firing rate) may be related to coding sparsity, this could be a
mechanism for adjusting the degree of sparsity. Finally, the learning of the ¢ and 6

parameters could be interleaved.
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4. Discussion

Understanding the nature of neural code is of fundamental importance. Although extant
theories have been successful in revealing many properties of neural coding, they are not
always consistent with major empirical observations or with each other. Our efforts in
this project focuses on proposing a novel, modern MDL based framework for
characterizing neural code. The framework aims to integrate the strengths of extant
theories, explain (or at least be consistent with) more empirical observations, and unify
sensory processing and attention. The framework leads to the specific proposal that
neural firing rates are proportional to code lengths given by negative log NML
probability distributions (or closely related OUCs) for stimulus features. We showed via
simulations that this firing-rate-as-code-length hypothesis can explain all the observed
changes of V1 orientation tuning curves induced by orientation adaptation.

Our framework contains five essential elements, the combination of which, to our
knowledge, has never been suggested before.

1) The firing rates of sensory projection neurons are proportional to code length, not the
probability or its parameterization, of stimulus features. Indeed, for efficient transmission
of inputs, a system should use a proper probability distribution to encode/compress the
inputs instead of transmitting the probability distribution itself.

2) The code length is based on an OUC (such as NML distribution) of a given model
class which maximizes regularity extraction, predictive ability, and data compression to
achieve input understanding by balancing data fitting and model-class complexity.
Parameters specifying a model class and its NML distribution might be learned or tuned
together.

3) The actual code in the temporal firing pattern of a neuronal population is Huffman-like
such that it has minimal firing rates, is prefix-free, and the order of information
transmission is from the most relevant to the least relevant according to the current task
or goal. In this way, a partially transmitted message is meaningful and can be processed
immediately by the next stage, the system could respond to the most relevant aspect of
input with the shortest delay, and a truncated, lossy transmission would minimize
behaviorally relevant distortion.

4) The brain does not really face a decoding problem in the form of input reconstruction
because the input representation is already in the brain. Rather, the brain extracts useful
stimulus features during efficient encoding, without the need to reconstruct the original
input signal. The brain processes input hierarchically to extract progressively more
complex and global regularities to serve various perceptual and motor functions.

5) Top-down signals are sent to modulate lower-level model classes, direct eyes to
relevant regions, and set prior expectations of data statistics, to allow selective processing
of informative and relevant inputs according to the current task demand.
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Needless to say, any theory is only a crude approximation of reality but we hope our
MDL framework will provide a fresh perspective for characterizing neural code. Future
empirical data may be able to evaluate our specific, firing-rate-as-code-length hypothesis
and our speculations on the nature of neural codes in sensory firing patterns.
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