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Abstract 18 

Many theories assume that a sensory neuron’s higher firing rate indicates a greater 19 
probability of its preferred stimulus. However, this contradicts 1) the adaptation 20 
phenomena where prolonged exposure to, and thus increased probability of, a stimulus 21 

reduces the firing rates of cells tuned to the stimulus; and 2) the observation that 22 
unexpected (low probability) stimuli capture attention and increase neuronal firing. Other 23 
theories posit that the brain builds predictive/efficient codes for reconstructing sensory 24 
inputs. However, they cannot explain that the brain preserves some information while 25 
discarding other. We propose that in sensory areas, projection neurons’ firing rates are 26 

proportional to optimal code length (i.e., negative log estimated probability), and their 27 
spike patterns are the code, for useful features in inputs. This hypothesis explains 28 
adaptation-induced changes of V1 orientation tuning curves, and bottom-up attention. We 29 

discuss how the modern minimum-description-length (MDL) principle may help 30 
understand neural codes. Because regularity extraction is relative to a model class 31 
(defined by cells) via its optimal universal code (OUC), MDL matches the brain’s 32 

purposeful, hierarchical processing without input reconstruction. Such processing enables 33 
input compression/understanding even when model classes do not contain true models. 34 

Top-down attention modifies lower-level OUCs via feedback connections to enhance 35 
transmission of behaviorally relevant information. Although OUCs concern lossless data 36 
compression, we suggest possible extensions to lossy, prefix-free neural codes for 37 

prompt, online processing of most important aspects of stimuli while minimizing 38 
behaviorally relevant distortion. Finally, we discuss how neural networks might learn 39 

MDL’s normalized maximum likelihood (NML) distributions from input data.    40 

Keywords: encoding, decoding, Bayesian universal code, Shannon information, rate-41 

distortion, sparse coding, image statistics 42 

1. Introduction 43 

What do neuronal activities mean? This fundamental question on the nature of neural 44 
codes has been pondered upon extensively since early recordings of nerve impulses 45 
(Adrian 1926). In this paper, we first review two major categories of theories for 46 

interpreting responses of sensory neurons. The first category views a sensory neuron’s 47 
firing rate as indicating the probability that its preferred stimulus is present in the input. 48 
The second category contends that sensory neurons provide an efficient or predictive 49 
representation of input stimuli, with the goal of reconstructing the input stimuli. We 50 
evaluate these and other related theories and point out that they contradict some major 51 

experimental facts and sometimes contradict each other. To resolve these contradictions, 52 
we propose the new hypothesis that in sensory areas, firing rates of projection neurons 53 

are proportional to optimal code lengths for coding useful features in input stimuli. We 54 
show that this hypothesis, which implies that neurons’ spike patterns are the actual codes, 55 
can naturally explain observed changes of V1 orientation tuning curves induced by 56 
orientation adaptation.  57 

Core to our new framework for neural codes is the concept of optimal universal codes 58 
(OUCs) arising from modern Minimum Description Length (MDL) principle (Grunwald 59 
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2007, Rissanen 2001); it differs from older prescriptions of MDL used in some previous 60 
neural models. OUCs balance data explanation and model complexity to avoid over 61 
fitting. We argue that the MDL goals of maximizing regularity extraction for optimal data 62 
compression, prediction, and communication are consistent with the goals of neural 63 

processing and transmission of input stimuli. Indeed, since compression must rely on 64 
regularities in the data, the degree of compression measures the degree of data 65 
understanding. Compared with previous theories of efficient and predictive coding, a 66 
distinctive feature of OUCs in modern MDL is that regularity extraction is relative to a 67 
model class (such as a family of cells indexed by their preferred stimulus properties). 68 

Consequently, OUCs match the brain’s purposeful information processing, which cannot 69 
be achieved by reconstruction of input stimuli assumed in previous theories. Different 70 
areas along a sensory hierarchy may implement different model classes for understanding 71 
different levels of regularities in stimuli. To explain the brain’s selective information 72 

processing we discuss possible extensions of the standard MDL from lossless data 73 
compression to a lossy version, and to the inclusion of top-down modulation that 74 

prioritize neural transmission of more behaviorally important information. We suggest 75 
that neural codes must be prefix free so that the next stage of processing can interpret 76 
incoming spikes online as soon as they are being received. We also discuss how neural 77 

networks might learn and tune a key OUC of MDL, namely the normalized maximum 78 
likelihood (NML) distribution, by sampling input stimuli.  79 

2. Evaluations of Major Theories of Neuronal Coding 80 

2.1 Firing-rate-as-probability theories 81 

An early notion of neural coding is that a sensory neuron’s firing rate reflects the strength 82 

of stimulation (Adrian 1926), a higher rate indicating a stronger stimulation. In his 83 

neuron doctrine, Barlow (1972) casts this notion probabilistically by stating that “[h]igh 84 
impulse frequency in such neurons corresponds to high certainty that the trigger feature is 85 
present.” The idea is made most explicit in the population-average method for decoding 86 

neuronal activities (Georgopoulos et al 1986). For example, to decode a perceived 87 

orientation ̂ from the firing rates, { }ir , of a set of cells with preferred orientations { }i , 88 

the method assumes 89 
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implying that cell i’s firing rate ir , normalized by the sum of all cells’ firing rates j

j

r , is 91 

the probability ip of its preferred orientation i present in the input, and that the perceived 92 

orientation is the expectation of the probability distribution.  93 

Other methods for interpreting neuronal responses have also been proposed. For instance, 94 
the maximum-likelihood method (Paradiso 1988) assumes that for a given stimulus 95 
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orientation s , the  responses r of a set of orientation-tuned cells follow the distribution96 

. When a particular set of responses { }ir is observed, ({ } | )i sp r   can be viewed 97 

as a distribution function of s (the likelihood function) parameterized by { }ir , and the 98 

perceived orientation is assumed to be the s that maximizes the likelihood: 99 

 ˆ argmax ({ } | )
s

i sp r


  . (2) 100 

By definition, cell i's response ir is more likely to be large when stimulus orientation s is 101 

closer to the cell’s preferred orientation i . Then, within the response range, a large (or 102 

small) response ir implies a large (or small) likelihood p that the stimulus orientation s103 

equals cell i’s preferred orientation i : (large | ) (small | )i s i i s ip r p r      . In other 104 

words, the likelihood that a cell’s preferred orientation is present in the input stimulus 105 
increases monotonically with the cell’s response, similar to the population-average 106 

method (which posits the special case of a linear relationship). Correlations among 107 
different cells’ responses do not change the conclusion because the correlations are 108 

significant (and positive) only among cells with similar preferences (Nowak et al 1995, 109 
van Kan et al 1985). One could simply group the cells with similar preferences and argue 110 
that a larger group response implies a larger likelihood that the group’s mean preferred 111 

orientation is present in the stimulus. 112 

If the prior probability distribution, ( )sp  , of stimulus orientation is known, then its 113 

product with the likelihood function determines the posterior distribution of s given the 114 

responses { }ir , according to the Bayes rule. The Bayesian method (Sanger 1996) posits 115 

that the perceived orientation is the s that maximizes the posterior probability: 116 

 ˆ arg max ({ } | ) ( )
s

i s sp r p


   . (3) 117 

Prior distributions are typically well behaved (smoothly varying) (Weiss et al 2002, 118 

Yuille & Kersten 2006) and thus will not drastically change the aforementioned 119 

relationship between ir  and s in the likelihood function. More importantly, although prior 120 

and likelihood are conceptually different, physiologically the priors that the brain has 121 
learned must be reflected in relevant neuronal responses (Atick & Redlich 1990, 122 

Zhaoping 2014) and thus already included in the relationship between ir  and s for the 123 

likelihood function. Short-term fluctuations of responses to temporary priors (e.g., 124 

adaptation to a particular s ) that are not yet learned by downstream neurons may distort 125 

the relationship between ir  and s , but over longer time scales, these fluctuations and 126 

distortions average out. Therefore, Bayesian decoders must generally retain the property 127 

that large and small responses ir  indicate, respectively, large and small probabilities that 128 

the stimulus orientation s equals the cell’s preferred orientation i . 129 

( | )sp r
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In sum, many neural-tuning-based theories, including the well-known population-130 
average, maximum-likelihood, and Bayesian decoders, assume that a cell’s firing rate is 131 
monotonically related to the probability that its preferred stimulus is present in the input. 132 
For simplicity, we refer to this assumption as the firing-rate-as-probability assumption. 133 

In the population-average method, a cell’s firing rate is directly proportional to the 134 
probability of its preferred stimulus. In maximum-likelihood and Bayesian methods, 135 
firing rates parameterize probability distributions of stimuli but a cell’s higher firing rate 136 
still generally indicates a greater probability of its preferred stimulus. 137 

Despite its intuitive appeal, the firing-rate-as-probability assumption contradicts two 138 

major classes of phenomena. First, adaptation to, say, vertical orientation, must increase 139 
the brain’s estimated probability for vertical orientation; yet the cells tuned to vertical 140 
orientation reduce their firing rates to that orientation after the adaptation (Blakemore & 141 

Campbell 1969, Fang et al 2005). [The cells’ responses to other orientations may increase 142 
(Dragoi et al 2000, Felsen et al 2002,Teich, 2003 #289), an observation that we consider 143 
in Section 3.3.1 but does not affect the current discussion.] Second, salient stimuli 144 

capture our attention and increase neuronal firing rates (Gallant et al 1998, Gottlieb et al 145 
1998, Itti & Koch 2001, Zhaoping 2002); yet these are low-probability stimuli such as 146 
sudden onset of light or sound, instead of high-probability stimuli such as constant 147 

background stimulation. Indeed, if a salient stimulus occurs frequently, it will gradually 148 
lose its saliency and evoke less response because the brain adapts to it. The firing-rate-as-149 

probability assumption predicts the opposite.  150 

2.2 Efficient/predictive coding theories 151 

A second prominent category of theories assumes that neurons in a visual area build an 152 

efficient or predictive code of input stimulus with the goal of reconstructing the retinal 153 

image according to some optimality criteria (Atick & Redlich 1990, Barlow & Foldiak 154 
1989, Bell & Sejnowski 1997, Harpur & Prager 1996, Olshausen & Field 1996, Rao & 155 
Ballard 1999, Zhaoping 2014). Different theories optimize different cost functions which 156 

typically contain a reconstruction error term and a term encouraging a desired code 157 
property such as de-correlation, independence, or sparseness. The rationale is that by 158 

forcing the models to reconstruct retinal images through efficient representations, they 159 
can discover useful statistical regularities in the images.  160 

Many efficient/predictive coding theories focus on reproducing important properties of 161 
receptive fields without explicitly specifying what neuronal activities represent. One of 162 

the theories does specify that activities of neurons projecting to the next stage represent 163 
the error between the actual input and the input predicted by the next stage (Rao & 164 

Ballard 1999). This assumption is consistent with the adaptation and bottom-up-attention 165 
phenomena mentioned above if it is further assumed that stimuli with larger and smaller 166 
probabilities are reconstructed/predicted more and less accurately, respectively. However, 167 
it is unclear how it may explain a variety of adaptation-induced tuning changes (Section 168 
3.3.1). More importantly, by aiming to reconstruct input stimuli, these theories neglect 169 

the empirical fact that the brain processes inputs to extract behaviorally relevant 170 
information while ignoring irrelevant one; the best example is perhaps the change-171 
blindness demonstrations (Pashler 1988): people are unaware of large, blatant changes 172 
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between successively flashed images unless their attention is directed to the changes. 173 
Moreover, there is a well-known conundrum with the efficient/predictive coding theories: 174 
if, for example, the purpose of the visual system is to produce an efficient code that 175 
reconstructs retinal images, why, then, are there so many more cells in the visual cortices 176 

than on retina? In other words, how could such a great increase of the number of cells 177 
involved in coding the same information be called efficient?  178 

To address this cell-number conundrum of the efficient/predictive coding theories, 179 
Olshausen and Field (1996) proposed that the brain needs a large number of cells to 180 
produce a sparse (and over-complete) representation. With appropriate total numbers of 181 

units in learning networks, sparse coding models have been successful in explaining 182 
some important receptive field properties (Olshausen & Field 2004). It has been argued 183 
that sparse coding with a large number of cells is more energy efficient (Balasubramanian 184 

et al 2001, Olshausen & Field 2004), and sparsely firing neurons can be constructed from 185 
an integrate-and-fire mechanism (Yenduri et al 2012). However, maintaining a large 186 
number of cells and their connections incur a great cost. We will argue that a large 187 

number of cell is needed for extracting various behaviorally-relevant features from 188 
inputs, rather than for input reconstruction. Our MDL based framework suggests that the 189 
brain attempts to minimize neuronal firing rates (i.e., code length, Section 3) and thus the 190 

number of cells firing at a given time, and in this sense, is consistent with the sparse 191 
coding theory.  192 

2.3 Other theories 193 

An approach related to the efficient coding theories is to measure as many types of 194 
natural-image statistics as possible, and use the measurements to explain and predict 195 

perceptual phenomena and neuronal responses (Field 1987, Geisler et al 2001, Motoyoshi 196 

et al 2007, Sigman et al 2001, Simoncelli & Olshausen 2001, Yang & Purves 2003). For 197 
example, the perception of a line segment is enhanced when it is smoothly aligned with 198 
neighboring segments (Li & Gilbert 2002). This is known as the Gestalt principle of good 199 

continuation, and can be explained by the statistical result that nearby contour segments 200 
tend to form a smooth continuation in the real world (Geisler et al 2001, Sigman et al 201 

2001). Although extremely powerful in accounting for many perceptual observations that 202 
would otherwise be puzzling, these studies either avoid specifying what neuronal 203 
responses represent, or use the firing-rate-as-probability assumption and thus inherit its 204 
problems discussed above. Indeed, given the image-statistics-based explanation of the 205 

Gestalt principle of good continuation, it is unclear why many V1 cells reduce firing rates 206 
when a contour extends beyond their classical receptive fields (Bolz & Gilbert 1986, 207 

Hubel & Wiesel 1968, Li & Li 1994).  208 

Normalization models were originally proposed to explain nonlinear response properties 209 
of V1 simple cells (Albrecht & Geisler 1991, Heeger 1992). These nonlinearities include 210 
contrast saturation and interactions among multiple stimuli. The models have since been 211 
applied to other visual areas (Simoncelli & Heeger 1998) and to attentional modulation of 212 

visual responses (Reynolds & Heeger 2009), and are regarded as a canonical module of 213 
neural computation (Carandini & Heeger 2012). The main assumption is that the actual 214 

response ir  
of a cell is equal to its linear-filter response iR

 
normalized by a regularization 215 
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constant plus the pooled linear-filter responses from all cells tuned to the full range of 216 
stimulus parameters: 217 

 
0

n

i
i n n

j

j

R
r r

R



 (4) 218 

The power index n introduces additional nonlinearity as suggested by typical contrast 219 

saturation curves. 
0r is a scaling constant. There is also a temporal version of the models 220 

(Carandini et al 1997). 221 

The rationale behind these models is that the normalization factor provides a gain control 222 

mechanism to allow a cell’s limited dynamic range encode a broad range of stimulus 223 

intensity. Given their phenomenological nature and the small number of free parameters, 224 

these models are impressive in explaining neuronal responses across a broad range of 225 
systems and conditions (Carandini & Heeger 2012). However, in an extracellular-226 

recording test of the model, the constant model parameters for a given V1 cell have to be 227 
adjusted to fit data from different stimulus conditions (Carandini et al 1997). Moreover, a 228 

circuit that implements normalization via divisive shunting inhibition (Carandini et al 229 
1997) is not supported by intracellular recording data (Anderson et al 2000b). 230 
Additionally, without modifications, normalization models cannot explain many 231 

interesting spatial interaction phenomena. For example, a V1 or MT cell’s response to its 232 
preferred orientation/direction in the classical receptive field center is suppressed when 233 

the surround has the same orientation/direction, but the suppression becomes weaker, or 234 
even turns into facilitation, when the surround orientation/direction differs from that of 235 

the center (Allman et al 1985, Levitt & Lund 1997, Li & Li 1994, Nelson & Frost 1978). 236 
Instead of pooling cross all cells, the normalization factor has to be tailored to select 237 

different subgroups for different situations. Other considerations, such as natural image 238 
statistics, have to be used to justify such selection. Finally, normalization models focus 239 
on reproducing firing rates without specifying what they represent (probabilities, code 240 

lengths, or something else).  241 

A set of studies aims to reproduce spiking statistics of real neurons. With the increasing 242 
availability of multi-single-unit recording data, much of this line of research focuses on 243 
how to capture second- and higher-order statistical relationships among multiple neurons 244 
(Ganmor et al 2011, Schneidman et al 2006, Shlens et al 2006). While these studies 245 
provide useful hints on neural code, they do not in themselves address the nature of 246 

neural code. For example, knowing that two neurons have correlated responses to a 247 

stimulus does not immediately reveal the coding principle behind such correlation or 248 

what firing patterns represent. 249 

There are inconsistencies among extant theories. For example, the firing-rate-as-250 
probability hypothesis is incompatible with the efficient/predictive coding hypothesis: the 251 
former assumes that projection neurons transmit stimulus probability distributions (or 252 
their parameterizations) from one area to another to enable optimal inference based on 253 
products of the distributions, whereas the latter implies that the probability distributions 254 


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be used to code stimuli efficiently for transmission and that projection neurons transmit 255 
reconstruction errors. As another example, a proposed implementation of optimal 256 
Bayesian inference using parameterized probability distributions (Ma et al 2006) assumes 257 
that neurons sum up the firing rates they receive, contradicting nonlinear summation of 258 

real neurons emphasized by normalization models (Albrecht & Geisler 1991, Heeger 259 
1992).  260 

Stocker and Simoncelli (2006) noted that if adaptation to an orientation (adaptor) 261 
increases its prior probability, then a Bayesian framework predicts that a subsequently 262 
presented test orientation be attracted to the adaptor, contradicting the observed repulsive 263 

aftereffect (Gibson & Radner 1937, Meng & Qian 2005). They proposed that adaptation 264 
reduces noise in the likelihood function instead of increasing the prior probability of the 265 
adapting stimuli. However, the assumption that long exposure to a stimulus does not 266 

change its probability is at odds with frequentist probability definition. It also contradicts 267 
Bayesian probability definition as it asserts that subjective probability is never updated by 268 
prior experience. Moreover, if adaptation to a stimulus does not change its probability, 269 

then why should the brain adapt to natural-image statistics, an assumption used in 270 
numerous studies? Additionally, the proposal does not save the firing-rate-as-probability 271 
assumption because it does not explain why the cells tuned to the adapting stimuli reduce 272 

their firing rates after the adaptation. To save the assumption one would have to posit, 273 
unreasonably, that adaptation to a stimulus actually reduced its probability.  274 

Although a typical, prospective Bayesian model incorrectly predicts attractive 275 
aftereffects, a recent study suggests that repulsive aftereffects could result from 276 
retrospective Bayesian decoding in working memory (Ding et al 2017). According to this 277 

new framework, after all task-relevant features are encoded and enter working memory, 278 

the brain decodes more reliable, higher-level features first and uses them as priors to 279 
constrain the decoding of less reliable, lower-level features, producing repulsion in the 280 
process. In other words, although a prior from the adaptor may predict attraction, a 281 

different prior from high-level decoding could override it and generate a net repulsion.  282 

It seems fair to summarize the state-of-art theories of neuronal coding as the story of the 283 

Blind Men and Elephant: each theory captures some important aspects of neural coding 284 
and appears plausible in some ways, but it is unclear how they fit together coherently.  285 

3. A New Framework for Neural Codes 286 

Understanding neural codes is an ambitious task that is unlikely to be accomplished in 287 

foreseeable future. Nevertheless, as a small step, we would like to outline a framework, 288 
based on the modern MDL principle, which aims to resolve the issues, while retaining the 289 
strengths, of the previous theories. In the following, we will first review the modern 290 

MDL principle briefly. We will then argue that when this principle is adopted for neural 291 
coding, it leads to our main hypothesis that firing rates of projection neurons are 292 
proportional to optimal lengths for coding useful features in stimuli. This firing-rate-as-293 
code-length hypothesis is fundamentally different from the firing-rate-as-probability or 294 
firing-rate-as-prediction-error hypotheses discussed above. We will apply this hypothesis 295 
to explain various changes of V1 orientation tuning curves induced by orientation 296 
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adaptation. The hypothesis is also consistent with bottom-up attention because rare (low 297 
probability) stimuli should have a long code length, i.e., evoke high firing rate. We 298 
further suggest that the MDL framework could be modified to include top-down 299 
attention. Since the firing-rate-as-code-length hypothesis implies that spiking patterns are 300 

the actual code for useful features in the input, we will speculate on the nature of the 301 
code, particularly the prefix-free and lossy properties. Finally, we will discuss how a key 302 
distribution from the MDL principle could be learned and tuned as input stimuli are 303 
sampled.  304 

3.1 An overview of modern MDL and OUC   305 

We propose that the modern MDL principle (Barron et al 1998, Grunwald 2007, 306 
Grunwald et al 2005, Myung et al 2006, Rissanen 1996, Rissanen 2001), built on the 307 

concept of OUC [in the form of normalized maximum likelihood (NML) distribution and 308 
related codes], provides a viable framework for understanding neural codes. This 309 
principle, different from some similarly or identically named theories, was developed for 310 
model-class selection, regression, and prediction by maximizing regularity extraction 311 

from data. In this section, we briefly review modern MDL.  312 

Our overview of MDL follows Grunwald (2007). Intuitively, understanding a piece of 313 
data means extracting regularities in the data that enable prediction of other data drawn 314 

from the same source (generalization). And since regularity is redundancy, regularity 315 
extraction can be measured by data compression. Thus, to best understand a piece of data 316 

is to find a model (i.e., a probability distribution) that minimizes description length of the 317 
data. (A model expresses a relationship in the data, which can always be cast as a 318 
probability distribution by adding a proper noise distribution.) To avoid over-fitting, the 319 

model complexity should also be taken into account. The MDL principle provides a 320 

practical way of achieving these goals.  321 

More formally, if the probability mass function of data samples x’s is known, then 322 

the expected code length is minimized when the code for x has a length (Shannon 1948):  323 

 ( ) log ( )L x P x   (5) 324 

This is a consequence of the Kraft-McMillan inequality that relates code lengths and 325 
probability distributions and the information inequality 326 

 ( ) log ( ) ( ) log ( )
x x

P x P x P x Q x     (6) 327 

for any probability mass function . Intuitively, Eq. 5 assigns short and long 328 

codes to frequent and rare data samples, respectively, thus minimizing the average code 329 
length. Since one can always find a code with length approaching that of Eq. 5, the terms 330 
“code” and “probability distribution” are often used interchangeably.  331 

In reality, when a piece of data (e.g., a retinal image) is received, its probability is 332 
unspecified. The best one can do is to use any prior knowledge, experience, or belief 333 

( )P x

( ) ( )Q x P x
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about the data generation process to produce a model M such that according to M, data 334 
sample x has a probability P(x|M). Then according to this model, the code for x should 335 

have a length . To take the model complexity into account, one 336 

may use the length of coding M to represent its complexity, and seek a model, 337 

among a class of models M, that minimizes the total code length: 338 

 ( | ) ( )L L x M L M   (7) 339 

as the best description of the data. This is indeed an MDL principle Rissanen (1978) 340 
proposed first, now referred to as the old or crude two-part MDL (Grunwald 2007), and 341 
used by Rao and Balllard (1997, 1999). A major problem is that there is no objective way 342 

of assigning a probability to M (and all other models in the class M). Consequently, one 343 

could assign a given M different probabilities and thus different code lengths, rendering 344 

Eq. 7 arbitrary. Although one could choose sensibly for a given situation and 345 

obtain meaningful results with Eq. 7, this approach is ad hoc. 346 

Rissanen (2001) then developed the modern or refined MDL to overcome this 347 

arbitrariness in Eq. 7. Consider a model class M consisting of a finite number of models 348 

parameterized by the parameter set θ. For a given piece of data x, each model in the class 349 

prescribes it a probability and thus a code with length . The model 350 

 that compresses the data x most is the one giving the data maximum likelihood351 

, with code length . However, this degree of 352 

compression is unattainable because in this scheme, different inputs would be encoded by 353 

different probability distributions (i.e., different M’s in the model class M), and the next 354 

stage could not consistently use or interpret the encoded message. The solution relies on 355 

the concept of a universal code: a single probability distribution  defined for a 356 

model class M such that for any data x, the code for x is almost as short as , 357 

with the difference (termed regret) bounded in some way. The two-part code defined by 358 

Eq. 7 is actually a universal code because one can use a uniform distribution to code 359 

every model in M with equal probability 1/m so that the regret is bounded by log m 360 

where m=|M| is the number of models in M. However, there are other, better universal 361 

codes. In particular, there is an optimal universal code (OUC) that minimizes the worst-362 

case regret and avoids assigning an arbitrary distribution to M. This so-called minimax 363 

optimal solution is the normalized maximum likelihood (NML) distribution: 364 

 
ˆ[ | ( )]

( )
ˆ[ | ( )]

NML

y

P x x
P x

P y y







 (8) 365 

where the summation is over the data sample space (Fig. 1). With this distribution, the 366 

regret is the same for all data sample x and is given by: 367 

 ˆ ˆregret log ( ) log [ | ( )] log [ | ( )]NML NML

y

P x P x x P y y       (9) 368 

( | ) log ( | )L x M P x M 

( )L M

( )L M

( | )P x  log ( | )P x 

ˆ( )x

ˆ[ | ( )]P x x ˆ ˆ[ | ( )] log [ | ( )]L x x P x x  

( )P x

ˆ[ | ( )]L x x
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 369 

Fig. 1. Illustration of the normalized maximum likelihood (NML) distribution for a model 370 

class M. The models in the class, ( | )P  , are parameterized by the parameter set  . The 371 

'x s in the bottom row represents all possible data samples. Each of the other rows 372 

represents the probability mass function of a given model (a fixed  ) for all data, and 373 
thus sums to 1 (this remains true for probability density functions of continuous data). 374 

Each column represents different probabilities (likelihoods) assigned to a given piece of 375 

data ix by different models (different  ’s). The model that gives the maximum likelihood 376 

is indicated by a box, and its ˆ( )ix  by definition. The maximum likelihoods (the 377 

terms in the boxes) may not sum to 1 because they are from different models. However, 378 
they can be normalized by the sum to produce a proper probability mass function, which 379 

is the normalized maximum likelihood (NML) distribution in Eq. 8. To understand Eq. 380 
11, note that the three terms of the equation are, respectively, the sums of the boxed 381 
terms, the sum of all terms, and the sum of the non-boxed terms.  382 

 383 

  384 
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which is the log of the denominator in Eq. 8. Importantly, this expression also provides a 385 
natural definition of the model-class complexity: 386 

 ˆCOMP( ) log [ | ( )]
y

P y y M  (10) 387 

because the summation indicates how many different data samples can be well explained 388 
by the model class. The more data samples the model class can explain well (i.e., large 389 

 for many data y’s), the more complex the model class is. Thus, the numerator 390 

and denominator of the NML distribution in Eq. 8 represent how well the model class fits 391 
a specific piece of data and how complex the model class is, respectively.  392 

There are other universal codes, one of which is Bayesian universal code with Jeffery’s 393 

prior which approximates NML. In the following, we often use NML to represent OUC 394 
for simplicity but using other related codes will not change our conclusion. 395 

The optimal universal code in the form of NML establishes the modern MDL principle 396 
for model-class selection: given a piece of data and multiple, competing model-classes, 397 

the one that produces the maximum NML probability explains the data best (Grunwald et 398 
al 2005, Myung et al 2006). This MDL principle has been extended to cases where the 399 

number of models in a class is not finite and  and NML may not be defined 400 

(Grunwald 2007). We will not discuss those extensions because the number of cells in a 401 

brain area, and thus the number of models in a model class, is always finite. In this case, 402 

 and NML is well defined even when input sample space is continuous (e.g., 403 

orientation).  In fact, the sum (or integration for continuous input spaces) in  404 

is always smaller than or equal to the number of models in the class (see Fig. 1 caption): 405 

 
,

ˆ ˆ[ | ( )] [ | ( )]j

y y j

P y y m P y y       (11) 406 

We finally note that because the NML distribution is defined for a model class, regularity 407 
extraction and data compression in the MDL framework are relative to a model class. The 408 

true model that produces the data does not have to be a member of a model class in order 409 
for the model class to extract useful regularities. Different model classes extract different 410 
regularities. We will return to this point later. 411 

3.2 An MDL-based framework for neural coding   412 

Using the MDL concepts reviewed above, we start by assuming that each processing 413 

level of the brain implements many model classes, each class in the form of a set of cells 414 

tuned to a range of input properties (Fig. 2). For example, in area V1, the set of cells 415 

tuned to different orientations (Hubel & Wiesel 1968) can be viewed as forming a model 416 

class parameterized by the cells’ preferred orientation. Different model classes are 417 

concerned with different properties of the input. Since some cells are simultaneously  418 

  419 

ˆ[ | ( )]P y y

COMP( )M

COMP( )M
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420 
Fig. 2. Schematic for our MDL based framework for neural coding. Large ovals 421 
represent brain areas along a processing hierarchy; only two processing levels are 422 

shown. Each small oval represents a model class devoted to extracting a certain 423 
stimulus regularity; for example, a model class can be a set of V1 cells 424 

parameterized by their preferred orientations. Core distinctions between our 425 
framework and many other existing ones in interpreting physiology and anatomy 426 
include:  i) firing rates of projection neurons represent the code lengths of inputs, 427 

instead of the probability distributions (or their parameterization) of inputs;  ii) 428 

each model class can predict inputs based on the regularity it extracts, instead of 429 
relying on predictions from a higher-level area; iii) feedback connections from 430 
higher-level areas modify lower-level model classes to selectively process inputs 431 
according to the current task or goal; and iv) spike trains of projection neurons are 432 
a prefix-free code based on an NML distribution. We hypothesize that the process 433 

of regularity extraction (as measured by data compression) through the hierarchy 434 
is the process of “understanding” the input. 435 

 436 

  437 
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tuned to multiple properties (e.g., orientation, disparity, and motion direction), there are 438 

overlaps among cells in different model classes.  439 

Each processing level strives to extract regularities from the input and thus should use the 440 

MDL principle to balance input explanation and model-class complexity. Different model 441 

classes at a processing level extract different (possibly overlapping) regularities that are 442 

behaviorally relevant. For example, motion-selective and color-selective cells in V1 form 443 

two model classes. If the motion and color of a stimulus are both relevant to the current 444 

behavioral task (e.g., catching a flying, red ball), then V1 needs to use both model classes 445 

simultaneously. (This is different from traditional applications of MDL to model-class 446 

selection, which pick only one model class with the largest NML probability.) Along a 447 

processing hierarchy, higher-level areas extract more complex regularities based on 448 

simpler regularities extracted at lower levels, suggesting that the MDL principle should 449 

be applied hierarchically. For instance, V1 cells may use oriented segments in retinal 450 

image to compress data, and the face cells in IT may compress inputs further by 451 

exploring regular face configuration and view-independent representation of face 452 

identity. 453 

Regularity extraction in the MDL framework is relative to a model class, and as such, can 454 

be viewed as processing, rather than reconstructing, inputs. Consider a class of cells 455 

sensitive to various contrast ranges, each cell responding to input images according to the 456 

difference between the luminance levels in the center and surround of its receptive field. 457 

These center-surround cells can extract the useful regularity that luminance contrasts 458 

likely delineate object boundaries under changing lighting conditions. However, they 459 

would be poor at reconstructing the center and surround luminance values separately 460 

because their responses depend only on the difference of the values. Similarly, disparity-461 

selective cells form a model class that codes the displacement between an object’s left 462 

and right retinal images while largely discounting many other aspects of the images (such 463 

as the difference in contrast magnitude) (Qian 1994). This model class focuses on the 464 

useful relationship between an object’s disparity and its distance from the fixation point 465 

(Qian 1997) but would have difficulty reconstructing other aspects of the two images. 466 

Generally, regularity extraction by a class of cells emphasizes certain relevant input 467 

dimensions for specificity while ignoring other, irrelevant dimensions for invariance. In 468 

this sense, it can be better viewed as behaviorally-relevant processing than accurate input 469 

reconstruction. Thus, the large number of cells in the cortex is needed to process, not 470 

reconstruct, the inputs. This avoids the cell-number conundrum of previous 471 

efficient/predictive coding theories.  472 

Where do model classes in the brain (i.e., sensory cells with various response properties) 473 

come from? We assume that the response properties are learned via evolutionary and 474 

developmental processes and tuned by experiences to serve functions of the brain and to 475 

increase survival. Although low-level visual responses can be explained by image 476 
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statistics, we suspect that an understanding of neuronal responses across the visual 477 

hierarchy must take behavioral tasks into account. This is consistent with recent 478 

comparisons between layers in deep neural networks and stages along the visual 479 

hierarchy: networks with better performances (for classification tasks) also explain visual 480 

responses better (Khaligh-Razavi & Kriegeskorte 2014, Yamins et al 2014). It is possible 481 

that a model class and its NML distribution are learned together (see Section 3.9).  482 

Consistent with the MDL philosophy, a model class does not have to contain the “true” 483 

generative model of the environmental stimuli in order to be useful. For example, the 484 

brain does not need to know the exact optics of image formation to see, or the exact 485 

Newtonian mechanics to move. In fact, it is well known that exact knowledge of optics or 486 

Newtonian mechanics is insufficient to see or move because vision and motor-control 487 

problems faced by the brain are ill-posed mathematically (Flash & Hogan 1985, Poggio 488 

et al 1985, Tanaka et al 2006) and the brain has to make additional assumptions (in the 489 

form of regularities to be extracted by model classes, according to MDL) to solve the 490 

problems. An OUC does not have to be (and usually is not) a member of the model class. 491 

The brain merely approximates the “rules” underlying environmental stimuli through an 492 

optimal encoding strategy relative to a model class. 493 

Regularity extraction by a model class is essential not only for input processing, but also 494 

for input compression to afford efficient information transmission from one level to the 495 

next. The MDL principle solves these problems together using OUCs, and the solution is 496 

the NML distribution (or related distributions) for a model class (Eq. 8). It is natural to 497 

assume that the brain uses an OUC (of a model class) to encode information for 498 

transmission because it minimizes the worst-case code length for both efficiency and 499 

robustness. However, unlike previous efficient/predictive coding theories that aim to 500 

reconstruct the input, here efficiency is relative to a model class serving a function of the 501 

brain. As we show in Section 3.3, this difference leads to completely different 502 

interpretations of projection neurons’ firing. Finally, input explanation and model-class 503 

complexity are balanced in NML (its numerator and denominator, respectively) to extract 504 

regularity and avoid over-fitting. This is critical for input understanding, prediction, and 505 

generalization.  506 

3.3 Firing-rate-as-code-length hypothesis, adaptation, and bottom-up attention 507 

The above formulation suggests that in each brain area, the pyramidal cells that project to 508 

the next level should spike according to the NML distribution (or a related OUC) to 509 

efficiently code useful features in inputs. Thus, projection neurons’ firing rates (spikes 510 

per unit time) is proportional to the code length, equal to the negative log probability of 511 

the distribution. The code-length minimization then becomes firing-rate minimization. 512 

Since firing rates of a set of cells are related to the number of cells firing at a given time 513 

(analogous to ergodic assumption that time average equals ensemble average), the firing-514 
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rate minimization is consistent with sparse coding (Olshausen & Field 1996). A set of 515 

projection cells, instead of a single cell, is involved in coding an input for two reasons. 516 

First, a set of cells can transmit the most important aspect of the input instantly using 517 

their spike pattern at a given time whereas a single cell would need more time to transmit 518 

the same information as a sequence of spikes. (Each cell does fire a sequence of spikes, 519 

but as we will discuss in Section 3.7, we suggest that latter spikes encode less important 520 

aspect of the input instead of a temporal code of the most important aspect of the input.) 521 

Second, neurons are noisy and may become dysfunctional; using a set of cells improves 522 

the reliability and robustness of transmission.  523 

The firing-rate-as-code-length hypothesis naturally accommodates neural adaptation and 524 

bottom-up attention phenomena. For adaptation, prolonged exposure to a stimulus 525 

(adaptor) transiently increases its probability in the corresponding NML distribution. For 526 

example, adaptation to stimulus x increases in the numerator and its 527 

appearance in the sum of the denominator of Eq. 8, with the net effect of increasing528 

 (while decreasing NML probability for other stimuli y). Consequently, the code 529 

length (firing rate) for the adapting stimulus decreases. Indeed, Eq. 5 suggests that firing-530 

rate (code-length) change equals negative relative probability change: 531 

 
( )

( )
( )

P x
L x

P x


    (12) 532 

We provide a more detailed analysis in Section 3.3.1 for orientation adaptation. For 533 

attention-grabbing salient stimuli, because they are unexpected, low-probability events, 534 

the code length (firing rate) is large.  535 

We emphasize that our firing-rate-as-code-length assumption only applies to projection 536 

neurons which transmit information from one brain area to the next. The common firing-537 

rate-as-probability assumption may apply to local interneurons or alternatively, a more 538 

implicit probability representation may be learned (Section 3.9). Once a probability 539 

distribution is computed in an area, whether it is the NML distribution of the MDL 540 

framework or the posterior distribution of the Bayesian framework, it should be used to 541 

minimize code length for efficient information transmission according to Eq. 5. We 542 

therefore suggest the following framework for conceptualizing neural processing: when 543 

sensory stimuli are processed along a hierarchy, each brain area receives inputs from the 544 

lower-level areas, provides new processing by using its own model classes to compute 545 

the corresponding NML probabilities of the inputs, and use these probabilities to encode 546 

and transmit the inputs to the next level. This encoding process is the process of 547 

understanding the inputs because it maximizes regularity extraction from, and 548 

compression of, the inputs, according to the model classes in the area.  549 

ˆ[ | ( )]P x x

( )NMLP x
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3.3.1. Simulating adaptation induced changes of V1 orientation tuning curves 550 

Our formulation readily explains the observed response reduction for cells tuned to the 551 

adapted stimulus (Eq. 12). However, it is known that orientation adaptation produces 552 

additional changes to V1 orientation tuning curves (Dragoi et al 2001, Dragoi et al 2000, 553 

Felsen et al 2002, Teich & Qian 2003). Some experimental data from Dragoi et al 554 

(Dragoi et al 2001, Dragoi et al 2000) are shown in Fig. 3. Define the two sides of a cell’s 555 

pre-adaptation tuning curve as the near and far sides according to whether the side 556 

includes the adapted orientation or not (e.g., the left and right sides of the red tuning 557 

curve in Fig. 3b are the far and near sides, respectively, because the right side contains 558 

the adapted orientation indicated by the green arrow). Then the adaptation-induced 559 

changes of orientation tuning curves can be summarized as follows. (1) Responses on the 560 

near side of a tuning curve decrease (Fig. 3, a and b). (2) Responses on the far side of the 561 

tuning curves increase (Fig. 3, a and b). (3) For cells whose preferred orientations are 562 

around the adapted orientation, the peaks of their tuning curves shift away from the 563 

adapted orientation (Fig. 3, a, b, and d). (4) Also for cells whose preferred orientations 564 

are around the adapted orientation, their tuning widths become broader (Fig. 3, a, b, and 565 

c). (5) For cells whose preferred orientations are far away from the adapted orientation, 566 

their tuning widths become narrower (Fig. 3c). In Fig. 3c, cells’ tuning widths are 567 

quantified by orientation selectivity index (OSI) defined as: 2 2OSI ( /    where 568 

( )cos(2 )
x
r x x  , ( )sin(2 )

x
r x x  , r(x) is the firing rate at the sampled stimulus 569 

orientation x, and mean[ ( )]r x  . Large and small OSI indicate narrow and broad tuning 570 

widths, respectively. 571 

We now demonstrate that the firing-rate-as-code-length hypothesis can explain all of 572 

these observed physiological changes. Consider a set of V1 cells whose preferred 573 

orientations uniformly sample the full 180 deg range. Let cell i’s preferred orientation be 574 

xi and its firing rate in response to stimulus orientation x be r(x, xi). According to our 575 

firing-rate-as-code-length hypothesis, r(x, xi) should be proportional to the length L(x) for 576 

coding x (Eq. 5). Additionally, the cell has an intrinsic orientation tuning function t(x, xi) 577 

according to the feedforward inputs it receives (Hubel & Wiesel 1968, Reid & Alonso 578 

1995, Teich & Qian 2006). We therefore assume that the observed response r(x, xi) is a 579 

product of the code length and the tuning function: 580 

 ( , ) ( ) ( , )i ir x x L x t x x . (13) 581 

Before adaptation, all orientations over the full range of π are equally probable so that582 

0( ) 1 /P x P   in Eq. 5, indicated by the flat red line in Fig. 4a (we neglect prior 583 

orientation bias here because it is irrelevant to this discussion). Then, L(x) is a constant, 584 

and Eq. 13 implies that ( , ) ( , )i ir x x t x x . That is, before adaptation, the observed tuning  585 



18 
 

 586 
 587 

Fig. 3. Observed changes of V1 orientation tuning curves induced by adaptation. (a) The 588 
solid black curve represents the pre-adaptation tuning curve with the preferred orientation 589 

centered at 0 deg. The solid and dashed gray curves are the same cell’s tuning curves 590 

after adaptation at -22.5 deg and 45 deg, respectively.  (b) The red and green curves 591 
represent a cell’s pre- and post-adaptation tuning curves, respectively. The adapted 592 
orientation is indicated by the green arrow. The peak response after adaptation was even 593 

larger than that before adaptation. (c) Adaptation-induced change of orientation 594 
selectivity index (OSI, see text for definition) as a function of the difference between the 595 

pre-adaptation preferred orientation and the adapted orientation. Negative and positive 596 
OSI change indicate increase and decrease of tuning width, respectively. (d) Adaptation-597 
induced peak shift of tuning curves as a function of the orientation difference between the 598 
pre-adaptation preferred orientation and the adapted orientation. Note that the orientation-599 

difference ranges for the first two data points are different from each other and from the 600 
remaining three points. Panels a, c, and d are from Dragoi et al. (2000) and panel b from 601 

Dragai et al. (2001), with permissions. 602 

  603 
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curve has the shape of the cell’s intrinsic tuning function, which is peaked at preferred 604 

orientation xi and typically bell-shaped (Schiller et al 1976, Webster & De Valois 1985). 605 

For convenience, we used the following periodic function (Teich & Qian 2003) for t(x, 606 

xi): 607 

 ( , ) {cos[2( )] 1}k

i it x x c x x b    , (14) 608 

where b and c determine the baseline and peak firing rates in Eq. 14, respectively. The 609 

exponent k controls the tuning width (larger k produces narrower width). Examples of 610 

pre-adaptation tuning curves [i.e., r(x, xi) as a function of x for fixed xi] with k = 4 are 611 

shown in red in Figs. 4 and 5, panels b to c.  612 

Now assume that there is adaptation at 0 deg orientation, and after adaptation,613 

( ) ( )aP x P x . Although we do not yet know exactly how the brain updates ( )P x  614 

represented by interneurons (see Section 3.9), ( )aP x should have increased values at and 615 

around the adapted orientation, and decreased values at other orientations, as we argued 616 

in connection with Eq. 12. We therefore used the following expression: 617 

 
0( ) { [cos(2 ) 1] [cos(2 ) 1] }m n

aP x P A z x z x      , (15) 618 

where the two cosine terms determine the increase and decrease of probabilities at 619 

different orientations, respectively. z+ and z- are not free parameters but normalize the 620 

two cosine terms so that ( )aP x is normalized. m and n together control the orientation-621 

ranges of the probability increase and decrease, and A determines the strength of 622 

adaptation. When n = 0, Eq. 15 reduces to: 623 

 
0 0( ) { [cos(2 ) 1] }m

aP x P A z x P    , (16) 624 

and an example with m = 4 and A = 0.9 is shown as the green curve in Fig. 4a. Relative to 625 

the constant baseline 0( )P x (flat red line in Fig. 4a), this ( )aP x has increased values at and 626 

around the adapted orientation and uniformly decreased values at other orientations. 627 

When n > 0, ( )aP x has non-uniformly decreased values at the other orientations and an 628 

example with n = 0.2, m = 4 and A = 0.9 is shown as the green curve in Fig. 5a. This 629 

could occur if the updating of ( )P x during adaptation depends on the so-called Mexican-630 

hat connectivity profile among cells tuned to different orientations (Teich & Qian 2006, 631 

Teich & Qian 2010). The broad peaks of ( )aP x in Figs. 4a and 5a reflect the fact that the 632 

brain’s estimation of an individual orientation is poor (Ding et al 2017). 633 

Plugging post-adaptation ( ) ( )aP x P x into Eqs. 5 and 13, we can then determine the 634 

tuning curves that reflect the adaptation-induced change of code length. Figs. 4 and 5,  635 
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 636 

Fig. 4. The firing-rate-as-code-length hypothesis explains the adaptation-induced changes 637 

of orientation tuning curves. The adapted orientation is assumed to be 0 deg indicated by 638 
the green arrow in each panel. (a) The orientation probability distributions before (red) 639 
and after (green) the adaptation. (b-d) Comparison of tuning curves before (red) and after 640 

(green) the adaptation for cells whose preferred orientations are 0, 15, and 30 deg away 641 
from the adapted orientation, respectively.  642 

  643 
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 644 

Fig. 5. The firing-rate-as-code-length hypothesis explains the adaptation-induced changes 645 
of orientation tuning curves. The same simulations as in Fig. 4 except that a Mexican-hat 646 

shaped post-adaptation probability density function is used. The presentation format is 647 
identical to that of Fig. 4.  648 

 649 

  650 
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panels c-d, compare the pre-adaptation (red) and post-adaptation (green) tuning curves 651 

for cells whose preferred orientations are 0, 15, and 30 deg away from the adapted 652 

orientation at 0 deg (green arrow). These simulation results explain all the adaptation-653 

induced tuning changes listed above.  654 

Dragoi et al. (2000) measured the adaptation-induced percent change in OSI and shift of 655 

tuning peak (Fig. 3, panels c and d). The corresponding simulations using the two 656 

different ( )aP x in Fig. 4a and Fig. 5a are shown in Fig. 6. Results similar to the 657 

simulations in Figs. 4-6 can be obtained with many other parameters sets. 658 

We conclude that the observed tuning changes induced by adaptation may reflect the 659 

brain’s adjustment of code lengths for different orientations after adaptation. Since at the 660 

circuit level, the tuning changes can be explained by modifying recurrent connections 661 

among cells (Teich & Qian 2003, Teich & Qian 2010), the recurrent-connection plasticity 662 

could be a physiological mechanism for online code-length minimization.   663 

Our firing-rate-as-code-length hypothesis calls for a re-interpretation of neuronal tuning 664 

curves. Consider, for example, V1 cells tuned to vertical orientation. The traditional view 665 

is that when they fire, they signal the presence of vertical orientation on retina. According 666 

to the MDL framework, these cells’ firing not only signals the presence of vertical 667 

orientation. In addition, their firing rates are modulated up or down according to whether 668 

vertical orientation is less or more probable than other orientations. This interpretation is 669 

also consistent with the observation that natural images usually evoke weaker neural 670 

responses than isolated patches of natural images or artificial stimuli (Gallant et al 1998) 671 

because the former, with its large context, is more probable than the latter.  672 

3.4 Top-down attention, NML with data prior, and feedback connections 673 

In addition to adaptation and bottom-up attention discussed above, top-down attention 674 

can also be incorporated into the MDL framework. In the case of bottom-up attention, 675 

salient stimuli, because of their small probabilities reflected in the NML distributions, 676 

have longer code lengths and drive cells to higher firing rates. For top-down attention, on 677 

the other hand, the brain seeks a specific type of information based on its current 678 

functional needs. Such information-seeking could be realized, in the MDL framework, by 679 

a top-down modulation of the NML probabilities in lower levels. For example, area V1 680 

may normally assign horizontal orientation a certain probability, and the corresponding 681 

firing rate, based on actual frequencies of orientations in the input. Now if horizontal 682 

orientation becomes subjectively more important (e.g., when searching for a horizontal 683 

key slot), then higher-level visual areas could use top-down, feedback connections to V1 684 

to reduce the estimated probability of, and thus increase the firing rate to, horizontal 685 

orientation. In other words, since rare stimuli are bottom-up salient, the top-down process 686 

could instruct lower-level areas to treat a task-relevant stimulus as if it were rare, to boost  687 
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 688 

Fig. 6. The simulated percent change in OSI (a, c) and peak shift (b, d) according to the 689 

firing-rate-as-code-length hypothesis. Simulations using the post-adaptation probability 690 
density in Fig. 4a are shown in panels a and b, and those using the post-adaptation 691 

probability density in Fig. 5a are shown in panels c and d. 692 

  693 



24 
 

its saliency. Thus, we must modify the MDL principle to take into account task relevance 694 

or subjectivity of information content, an aspect not encompassed by previous 695 

efficient/predictive coding theories.  696 

Zhang (2011) introduced a positive data prior function, , to modify the NML 697 

distribution as: 698 

  (17) 699 

This is precisely what we need for modeling top-down attention. The data prior function 700 

emphasizes certain inputs, at the expense of other inputs, according to the current, 701 

task-relevant need of the brain. Specifically, when a certain x is task relevant, top-down 702 

attention will reduce its s(x), increasing the code length (firing rate) for it. Alternatively, 703 

can be viewed as modifying the models’ likelihood functions in Eq. 17. In fact, there 704 

can be a dual relationship between data prior and model prior (Zhang 2011), which 705 

produce so-called informative versions of MDL (Grunwald 2007). 706 

Thus, according to the MDL framework, a major role of top-down, feedback connections 707 

in the brain is for higher levels to modify the lower-level model classes in order to 708 

increase transmission of behaviorally relevant information. The framework is consistent 709 

with the fact that top-down attention is slower than bottom-up attention because it takes 710 

time for high-level areas to send spikes down the feedback connections to modify NML 711 

distributions of lower-levels. This is fundamentally different from Rao and Ballard’s 712 

proposal that feedback connections send higher-level predictions of inputs to the lower 713 

level for subtraction (Rao & Ballard 1999). The difference reflects different aims of the 714 

two approaches. Rao and Ballard’s model, as are typical of most efficient/predictive 715 

coding models, aims to reconstruct retinal inputs. Therefore, a high-level sends its input 716 

prediction to the lower level, which subtracts this prediction and sends the error to the 717 

higher level for improvement. In contrast, our MDL framework focuses on regularity 718 

extraction to serve the brain’s needs of sensory processing without input reconstruction. 719 

Although regularity extraction is the basis for both efficient coding and prediction, in the 720 

MDL framework there is no input prediction coming from higher levels for lower-levels 721 

to subtract. Instead, NML unifies prediction, regularity extraction, and efficient coding at 722 

each level of processing.  723 

Top-down processes may also direct motor outputs (including eye movements) to 724 

actively seek relevant information in the world. 725 

3.6 Comparison with Existing Models 726 

( )s x
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Our firing-rate-as-code-length hypothesis differs significantly from previous theories. We 727 
already mentioned some differences above. Here we recapitulate the discussions and 728 
make some further comparisons. Although negative log probability is frequently used in 729 
the literature for computational convenience or for linkage to MDL concepts, to our 730 

knowledge, the firing-rate-as-code-length hypothesis for interpreting sensory neurons’ 731 
responses has not been proposed. 732 

3.6.1. Predictive coding models 733 

Rao and Ballard (1999) used a two-part version of MDL (Rissanen 1978, Rissanen 1983) 734 
in their predictive coding model, which, like other efficient/predictive coding models, 735 

aims to reconstruct the retinal image. Our NML-based MDL framework is very different 736 
in that it uses regularity extraction to serve the brain’s functional needs rather than to 737 

reconstruct retinal images, and consequently, interprets neuronal responses and 738 
connections differently. In particular, Rao and Ballard’s model and our framework 739 
interpret projection neurons’ responses as representing errors of input reconstruction and 740 
coding useful features in the input, respectively. Additionally, while they assume that 741 

feedback connections carry the higher-level’s prediction of the lower-level input, we 742 
assume that feedback connections modify the lower-level’s model classes to transmit 743 
task-relevant information in the input.   744 

3.6.2. Firing-rate-as-probability theories 745 

Firing-rate-as-probability theories, including a proposed implementation of Bayesian 746 

inference (Ma et al 2006), posit that projection neurons transmit probability distributions 747 

of input features (or parameterizations of the distributions) whereas we suggest that the 748 

probability distributions computed in an area are not transmitted but are used to code 749 

input features efficiently and that probability distributions computed in different areas are 750 

relative to different model classes and concern different regularities of the inputs. As we 751 

noted in Section 2, firing-rate-as-probability theories are not consistent with adaptation 752 

and bottom-up-attention phenomena while our framework is. Note that we are not 753 

arguing against Bayesian inference, only the firing-rate-as-probability assumption used in 754 

many models including those that have been called Bayesian inference models. In fact, 755 

the Bayesian universal code with Jeffery’s prior asymptotically achieves the minimax 756 

optimal regret of the NML code, and may well be used by the brain because of its 757 

prequential property which is useful for prediction without a pre-specified time horizon 758 

(Grunwald 2007).  759 

3.6.3. Saliency models 760 

Zhaoping (2002) proposed that V1 constructs a bottom-up saliency map such that, for a 761 

given visual scene, firing rate of V1 output neurons increase monotonically with the 762 
saliency values of the visual input in the classical receptive fields. There are no separate 763 
feature maps for creating such a bottom-up saliency map. Neuronal responses encode 764 

universal values of saliency that govern subsequent actions (e.g., saccades). In our 765 
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framework, neuronal responses are also related to saliency. However, this is realized via 766 
neurons’ firing rates being proportional to the code lengths for coding useful features. 767 
The code lengths are determined by the features’ probabilities, which, in turn, are related 768 
to the saliency values.   769 

Han and Vasconcelos (2010) presented another saliency model for object recognition in 770 
biological systems. Motivated by the observation that stimulus features with high bottom-771 
up saliency have a low probability of occurrence, they proposed a top-down saliency 772 
measure using log likelihood ratio of Gabor-filter responses to target and non-target 773 
objects and demonstrated that this computation can be realized by a selective 774 

normalization procedure. In contrast, we assume that the top-down attention modifies 775 
lower-level NML distributions for coding relevant stimulus features. More importantly, 776 
they eventually let cells’ firing rates represent the posterior probability of target object 777 

via a nonlinear function of the log likelihood ratio so their model follows the traditional 778 
firing-rate-as-probability assumption. Instead, we assume that firing rates represent code 779 
length, not probability. 780 

3.6.4 Normalization models 781 

On first glance, the NML distribution (Eq. 8) resembles the normalization models for 782 

sensory responses (Eq. 4), and the NML distribution with a data prior (Eq. 17) resembles 783 

the normalization models for attentional modulation (Reynolds & Heeger 2009). 784 

However, the normalization factors (denominators) in NML and in normalization models 785 

are very different. In NML, the denominator sums the maximum likelihood of a model 786 

class across all input data samples. In normalization models, the denominator is a 787 

constant plus the summed responses of all cells with a range of tuning (i.e., all cells in a 788 

model class) to the current input sample.  789 

A key motivation for the normalization models is to fit V1 cells’ contrast response 790 

curves. Indeed, the form of the normalization models mimics contrast saturation 791 

functions. The MDL framework offers an alternative, computational-level explanation of 792 

contrast responses, namely that high contrast occurs less frequently than low contrast in 793 

the real world; this reflects the fact that the world consists of coherent surfaces of objects 794 

and high contrast typically occurs at relatively rare object boundaries whereas low 795 

contrast typically occurs at relatively abundant object interiors. Indeed, Ruderman (1994) 796 

measured contrast distribution of natural images and his result can be approximated by:  797 

  (18) 798 

where c is contrast and a and b are positive constants; the probability decreases with 799 

contrast. If, as we postulated earlier, the brain learns this statistical regularity based on 800 

the MDL principle, then the corresponding NML distribution for encoding stimulus 801 

contrast should reflect the statistics. The contrast responses of projection neurons 802 

covering different ranges of contrast should then have the envelope , a curve 803 

( ) log(1 )P c a b c  

log ( )P c
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resembling saturation. Thus, contrast response may not result from shunting inhibition of 804 

pooled responses to a given stimulus; rather, it may reflect code-length optimization by a 805 

circuit that sample contrast statistics from many stimuli.  806 

The MDL framework may also account for phenomena that the normalization models fail 807 

to explain. For example, we mentioned above that end-stopped V1 cells fire less when a 808 

contour extends beyond their classical receptive fields (Bolz & Gilbert 1986, Hubel & 809 

Wiesel 1968). More generally, V1 or MT cells’ responses to their preferred 810 

orientation/direction within the classical receptive fields are suppressed when the 811 

surround has the same orientation/direction, but the suppression becomes weaker, or even 812 

turns into facilitation, when the surround orientation/direction differs greatly (Allman et 813 

al 1985, Levitt & Lund 1997, Nelson & Frost 1978). The normalization models cannot 814 

explain these results because the normalization factor is untuned. Of course, one could 815 

modify the normalization models by making the normalization factor follow the observed 816 

results; however, this means that the normalization models have to be adjusted ad hoc for 817 

each specific situation. The MDL framework may be able to explain these experimental 818 

findings because when the classical receptive field and its surround have similar 819 

(different) stimuli, the presence of the surround stimuli increases (decreases) the 820 

probability of the stimuli in the classical receptive field, and consequently, a shorter 821 

(longer) code length, in the form of a lower (higher) firing rate, is needed to transmit the 822 

information. Similarly, when a contour extends smoothly beyond an end-stopped cell’s 823 

classical receptive field, the probability of the segment inside the receptive field is 824 

increased, leading to a shorter code length (reduced firing) of the cell.  825 

3.7 Lossy MDL and prefix-free neural code  826 

The standard MDL uses the terms “code” and “probability distribution” interchangeably 827 

because once a probability distribution is specified, one can always design a lossless, 828 

prefix-free code (a.k.a., prefix code) that saturates the Kraft-McMillan inequality such 829 

that the code length is equal to negative log probability (Grunwald 2007). In contrast, 830 

phenomena such as change blindness (Pashler 1988) suggest that the brain uses a lossy 831 

code to transmit behaviorally relevant information and discard irrelevant details of the 832 

input. We will therefore speculate on a lossy MDL code as a candidate for neural code. 833 

To motivate our proposal, consider the example of seeing something moving in a jungle. 834 

The most survival-relevant information may be whether the moving thing is a predator or 835 

a pray. If it’s a predator, the next most relevant information may be whether it is the type 836 

that one could fight against (e.g., a wolf) or better flee from (e.g., a tiger). To optimize 837 

survival, the brain should use its visual neurons’ first few spikes to transmit the most 838 

relevant information, and the next few spikes to transmit the second most relevant 839 

information, and so on. Only crude aspects of low-level features that are sufficient for 840 

building relevant, high-level categorical decisions should be transmitted quickly. It would 841 

be a huge mistake to waste the precious first several spikes on transmitting, for example, 842 
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the precise orientation of a stripe on the animal’s fur. On the other hand, the brain is 843 

certainly able to judge the orientation when one is asked to do so in a safe setting.  844 

These considerations suggest that a partially transmitted code should be meaningful so 845 

that a brain area can start processing inputs immediately after receiving spikes from 846 

lower areas, that the code should be as short (efficient) as possible and carry pieces of 847 

information ordered according to their behavioral relevance/urgency, and that higher-848 

level areas should instruct lower-level areas on what and how much details to transmit 849 

depending on the situation. Therefore, the brain might use entropic, prefix-free codes 850 

(based on NML distributions) with earlier spikes carrying more behaviorally important 851 

information.  852 

Consider the toy example in Table 1 of coding four symbols (column 1) with known 853 

probabilities (column 2). Code 1 is fixed length and inefficient (the length of 2 854 

bits/symbol is greater than the entropy of 1.75 bits/symbol). Code 2 is the Huffman code, 855 

which is entropic (average length 1.75 bits/symbol) and prefix free (no code word is a 856 

prefix of another code word). Code 3 reverses the bit order of each code word of Code 2. 857 

It is entropic but not prefix free. Although Code 3, like the other two codes, is uniquely 858 

decodable (after receiving a whole message, the bit string can be reversed and decoded 859 

according to Code 2), a partial message is meaningless. In contrast, a Huffman-coded 860 

string can be decoded online as each bit is received without the need to wait for a whole 861 

message or a whole code word. For example, the first bit divides choices into A vs (B, C, 862 

D). Because each bit of a code word divides the remaining choices into two with equal 863 

probabilities, the bits are ordered from the most to least informative. (Although the 864 

Huffman code is a symbol code, similar arguments could be made with the entropic, 865 

arithmetic coding for blocks of arbitrary lengths.)  866 

We propose that the brain might use a Huffman-like code (or arithmetic-like coding) 867 

based on NML distributions. Such a code is attractive because of the efficiency, the bit 868 

ordering from the most to least informative, and the prefix-free property allowing 869 

immediate decoding as each bit comes in. We suggest that neural codes should be similar 870 

in that the first spikes of a neuronal population carry the most task/situation-relevant 871 

information so that the brain can take most pressing actions at the earliest possible time. 872 

The later spikes carry less relevant details that may be truncated by top-down instructions 873 

or by a change of inputs (e.g., a saccade to a different part of the world or a changing 874 

world), resulting in a lossy code. Experiments that present stimuli for only several to tens 875 

of ms provide indirect evidence for the prefix-free and lossy nature of neural codes: 876 

subjects could identify global or high-level, categorical features better than local or low-877 

level details (Chen 1982, Navon 1977, Thorpe et al 1996), suggesting that truncated 878 

visual transmission is meaningful and that the transmission leading to high-level 879 

categorization, which is more behaviorally relevant than low-level details, is prioritized.  880 
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Symbol Probability Code 1 Code 2 Code 3 

A 1/2 00 0 0 

B 1/4 01 10 01 

C 1/8 10 110 011 

D 1/8 11 111 111 

 881 

Table 1. Three codes for the four symbols with the given probabilities. Codes 1 and 2 are 882 

prefix free. Codes 2 and 3 are entropic. Code 2 (Huffman) is both prefix free and 883 

entropic.  884 

  885 
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In information theory, the rate-distortion curve is a standard tool for studying lossy 886 

transmission (Blahut 1972). Each point of the curve specifies the minimum input 887 

information that has to be transmitted to the output (i.e., the rate) in order to keep the 888 

average distortion under a given value. Equivalently, each point specifies the minimum 889 

average distortion for a given rate. The distortion for each input/output pair is pre-890 

defined. (The rate is similar to channel capacity except that the former is the mutual 891 

information minimized against the channel transition probabilities whereas the latter is 892 

the mutual information maximized against input distribution. We will not distinguish the 893 

two terms in the following for simplicity.) The rate-distortion curve has been used as a 894 

computational-level theory for understanding discrimination vs. generalization in 895 

perception (Sims 2018). The main idea is that when a system transmits inputs whose 896 

information (i.e., entropy) exceeds the system’s channel capacity, the output will have 897 

distortion which determines discrimination between, or generalization across, different 898 

inputs. The information bottleneck theory (Tishby et al 2000) is a version of the rate-899 

distortion theory in which the distortion for each input/output pair is not pre-defined, but 900 

determined according to how much information the output carries about the input’s 901 

assigned label (e.g., the label “cat” for an input image). The truncated, lossy code 902 

discussed above could be viewed as a possible neural implementation of the rate-903 

distortion function. Specifically, because of limited rate or channel capacity, projection 904 

neurons cannot transmit all input information as stimuli stream in, and truncated 905 

transmission leads to distortion. If the spikes of a neural code are arranged from the most 906 

to least relevance to current behavior, then the distortion with respect to the behavior 907 

“label” is minimized for a given rate.  908 

The firing-rate-as-code-length hypothesis implies that the channel capacity (firing rates) 909 

of projection neurons is greater for lower-probability stimuli which require longer codes. 910 

This ensures that unexpected, salient stimuli are not truncated more than common stimuli.    911 

3.8 Encoding vs. decoding 912 

Coding can be divided into encoding and decoding. The engineering notion of encoding 913 

and decoding is well defined: When a signal needs to be transmitted over a noisy 914 

communication channel of limited capacity (e.g., a phone line), one should encode the 915 

signal to compress it (while allowing error correction), transmit it, and then decode it to 916 

recover the original signal on the other end. It is widely assumed that the brain does 917 

similar encoding and decoding. Our MDL framework suggests that the brain encodes 918 

input stimuli into neuronal responses but does not decode the responses to recover the 919 

original inputs. The main reason is that, unlike a phone line that has to reproduce the 920 

input voice at the other end, the brain never needs to reconstruct the raw sensory inputs it 921 

receives. Rather, as we already emphasized, the brain attempts to understand the sensory 922 

inputs by processing them. For example, the brain processes the retinal images to reveal 923 

objects and their relationships but hardly needs to reconstruct the retinal images because 924 
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retina is part of the brain and no homunculus exists in the cortex to look at the 925 

reconstructed images. More generally, it is hard to imagine that one brain area needs to 926 

accurately reconstruct neural firing patterns (spike trains) of another area; rather, a brain 927 

area should extract additional regularity from, and thus achieve further understanding of, 928 

the input. If the firing patterns of a sensory area are needed, for instance, to guide a 929 

certain motor response, then the motor area of the brain should use the firing patterns 930 

directly, instead of encoding, transmitting, and decoding. For example, in the unlikely 931 

scenario that raw retinal image were needed, the brain would have evolved to use the 932 

retinal image instead of decoding a poorer version of it from, say, LGN or V1 responses.  933 

One may reasonably identify the brain’s logic of relating neuronal responses to subjective 934 

perception as decoding. Note, however, this decoding is fundamentally different from the 935 

engineering notion of decoding. Specifically, neuronal responses along hierarchical 936 

stages of sensory pathways extract and encode progressively more complex statistical 937 

regularities in the input stimuli. A small subset of these responses presumably gives rise 938 

to our subjective perception of useful features in inputs without any need of 939 

reconstructing the raw inputs. We therefore suggest that neural decoding should be 940 

viewed as the link from neuronal responses to perceptual estimation of useful stimulus 941 

features, but not as input reconstruction. Also note that encoding and decoding are often 942 

related; for example, the population-average method of Eq. 1 is a decoding model but it 943 

implies that firing rates encode the probabilities of preferred stimuli. 944 

A related question is whether sensory decoding follows the same low-to-high-level 945 

hierarchy of sensory encoding. Many studies assume, often implicitly, that the answer is 946 

affirmative. However, a recent study shows that this assumption fails to explain a simple 947 

psychophysical experiment, and suggests that visual decoding progresses from high-to-948 

low-level features in working memory, with higher-level features constraining the 949 

decoding of lower-level features (Ding et al 2017). Since higher-level features have 950 

greater functional significance than lower-level features, this decoding scheme is 951 

consistent with the above notion that the brain should prioritize transmission of 952 

behaviorally relevant information.  953 

3.9 NML and learning 954 

Given the importance of the NML distribution (or a related OUC as its approximation) in 955 

the MDL framework, a relevant question is: how can a brain area produce such a 956 

distribution particularly when the input data space is high dimensional? Variational 957 

methods in machine learning provide a potential answer as they have demonstrated that 958 

neural networks can learn complex probability distributions via gradient decent (Dayan et 959 

al 1995, Kingma & Welling 2013) or even a local plasticity rule (Hinton et al 1995). To 960 

outline the approach for the NML distribution (Eq. 8), we define the “energy” of a data 961 

sample x relative to a model class parameterized by θ as: 962 



32 
 

 ˆ( ) log [ | ( )]E x P x x   (19) 963 

(i.e., the code length according to the model in the class that maximizes the likelihood of 964 

the sample), and rewrite Eq. 8 in the form of a Boltzmann distribution (with β=1): 965 

 
exp[ ( )]

( )
exp[ ( )]

NML

y

E x
P x

E y





 (20) 966 

The numerator is known as the partition function exp[ ( )]
y

Z E y  , and the regret and 967 

complexity measure in Eqs. 9 and 10 become log Z . Use the standard definition of 968 

Helmholtz free energy as the mean energy minus entropy:  969 

 ( ) ( ) ( ) log ( )
x x

A P x E x P x P x    (21) 970 

for any probability distribution ( )P x . Then (Dayan et al 1995),  971 

 log [ ( ) || ( )]NMLA Z KL P x P x    (22) 972 

where KL is the Kullback–Leibler divergence. Since KL is non-negative and minimized 973 

to 0 when the two distributions are equal, A reaches the minimum value of log Z when974 

( ) ( )NMLP x P x .  [The physical analogy is that Helmholtz free energy A approaches the 975 

minimum log Z when any non-equilibrium distribution P(x) approaches the 976 

equilibrium, Boltzmann distribution PNML(x).] Therefore, if ( ; )P x  is a family of 977 

probability distributions parameterized by weights   of a neural network, then the 978 

network could be trained to approximate ( )NMLP x by minimizing the cost A in Eq. 21 979 

against   as input data are sampled, and –A is a lower bound for log Z (Dayan et al 1995, 980 

Hinton et al 1995, Kingma & Welling 2013). If data statistics are changed, the neural 981 

network’s approximation of ( )NMLP x  would change accordingly (as we assumed in the 982 

example of orientation adaptation in Section 3.3.1). 983 

Moreover, E(x) and log Z depend on the model-class parameterization θ, which can also 984 

be implemented as weights of a neural network. One could thus, for example, adjust the 985 

equilibrium Helmholtz free energy ( logA Z  ) by modifying θ in order to control the 986 

NML regret or complexity ( log Z ). Since the model-class complexity and the code length 987 

for an input (i.e., neuronal firing rate) may be related to coding sparsity, this could be a 988 

mechanism for adjusting the degree of sparsity. Finally, the learning of the   and θ 989 

parameters could be interleaved.  990 
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4. Discussion 991 

Understanding the nature of neural code is of fundamental importance. Although extant 992 
theories have been successful in revealing many properties of neural coding, they are not 993 
always consistent with major empirical observations or with each other. Our efforts in 994 

this project focuses on proposing a novel, modern MDL based framework for 995 
characterizing neural code. The framework aims to integrate the strengths of extant 996 
theories, explain (or at least be consistent with) more empirical observations, and unify 997 
sensory processing and attention. The framework leads to the specific proposal that 998 
neural firing rates are proportional to code lengths given by negative log NML 999 

probability distributions (or closely related OUCs) for stimulus features. We showed via 1000 
simulations that this firing-rate-as-code-length hypothesis can explain all the observed 1001 
changes of V1 orientation tuning curves induced by orientation adaptation. 1002 

Our framework contains five essential elements, the combination of which, to our 1003 
knowledge, has never been suggested before.  1004 

1) The firing rates of sensory projection neurons are proportional to code length, not the 1005 

probability or its parameterization, of stimulus features. Indeed, for efficient transmission 1006 
of inputs, a system should use a proper probability distribution to encode/compress the 1007 

inputs instead of transmitting the probability distribution itself.  1008 

2) The code length is based on an OUC (such as NML distribution) of a given model 1009 
class which maximizes regularity extraction, predictive ability, and data compression to 1010 

achieve input understanding by balancing data fitting and model-class complexity. 1011 
Parameters specifying a model class and its NML distribution might be learned or tuned 1012 

together.  1013 

3) The actual code in the temporal firing pattern of a neuronal population is Huffman-like 1014 

such that it has minimal firing rates, is prefix-free, and the order of information 1015 
transmission is from the most relevant to the least relevant according to the current task 1016 
or goal. In this way, a partially transmitted message is meaningful and can be processed 1017 

immediately by the next stage, the system could respond to the most relevant aspect of 1018 
input with the shortest delay, and a truncated, lossy transmission would minimize 1019 

behaviorally relevant distortion.  1020 

4) The brain does not really face a decoding problem in the form of input reconstruction 1021 
because the input representation is already in the brain. Rather, the brain extracts useful 1022 

stimulus features during efficient encoding, without the need to reconstruct the original 1023 
input signal. The brain processes input hierarchically to extract progressively more 1024 
complex and global regularities to serve various perceptual and motor functions.  1025 

5) Top-down signals are sent to modulate lower-level model classes, direct eyes to 1026 

relevant regions, and set prior expectations of data statistics, to allow selective processing 1027 
of informative and relevant inputs according to the current task demand.  1028 
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Needless to say, any theory is only a crude approximation of reality but we hope our 1029 
MDL framework will provide a fresh perspective for characterizing neural code. Future 1030 
empirical data may be able to evaluate our specific, firing-rate-as-code-length hypothesis 1031 
and our speculations on the nature of neural codes in sensory firing patterns.   1032 
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