

1 To appear in *Computational Brain & Behavior* (2019)

2 **Neuronal Firing Rate as Code Length: A Hypothesis**

3

4 Ning Qian ^a and Jun Zhang ^b

5

6 ^a Department of Neuroscience, Zuckerman Institute, and Department of Physiology &
7 Cellular Biophysics

8 Columbia University, New York, NY 10027

9

10 ^b Department of Psychology and Department of Mathematics

11 University of Michigan, Ann Arbor, MI 48109

12

13

14 Correspondence: Dr. Ning Qian, nq6@columbia.edu

15

16 Dr. Jun Zhang, junz@umich.edu

17

18 **Abstract**

19 Many theories assume that a sensory neuron's higher firing rate indicates a greater
20 probability of its preferred stimulus. However, this contradicts 1) the adaptation
21 phenomena where prolonged exposure to, and thus increased probability of, a stimulus
22 reduces the firing rates of cells tuned to the stimulus; and 2) the observation that
23 unexpected (low probability) stimuli capture attention and increase neuronal firing. Other
24 theories posit that the brain builds predictive/efficient codes for reconstructing sensory
25 inputs. However, they cannot explain that the brain preserves some information while
26 discarding other. We propose that in sensory areas, projection neurons' firing rates are
27 proportional to optimal code length (i.e., negative log estimated probability), and their
28 spike patterns are the code, for useful features in inputs. This hypothesis explains
29 adaptation-induced changes of V1 orientation tuning curves, and bottom-up attention. We
30 discuss how the modern minimum-description-length (MDL) principle may help
31 understand neural codes. Because regularity extraction is relative to a model class
32 (defined by cells) via its optimal universal code (OUC), MDL matches the brain's
33 purposeful, hierarchical processing without input reconstruction. Such processing enables
34 input compression/understanding even when model classes do not contain true models.
35 Top-down attention modifies lower-level OUCs via feedback connections to enhance
36 transmission of behaviorally relevant information. Although OUCs concern lossless data
37 compression, we suggest possible extensions to lossy, prefix-free neural codes for
38 prompt, online processing of most important aspects of stimuli while minimizing
39 behaviorally relevant distortion. Finally, we discuss how neural networks might learn
40 MDL's normalized maximum likelihood (NML) distributions from input data.

41 Keywords: encoding, decoding, Bayesian universal code, Shannon information, rate-
42 distortion, sparse coding, image statistics

43 **1. Introduction**

44 What do neuronal activities mean? This fundamental question on the nature of neural
45 codes has been pondered upon extensively since early recordings of nerve impulses
46 (Adrian 1926). In this paper, we first review two major categories of theories for
47 interpreting responses of sensory neurons. The first category views a sensory neuron's
48 firing rate as indicating the probability that its preferred stimulus is present in the input.
49 The second category contends that sensory neurons provide an efficient or predictive
50 representation of input stimuli, with the goal of reconstructing the input stimuli. We
51 evaluate these and other related theories and point out that they contradict some major
52 experimental facts and sometimes contradict each other. To resolve these contradictions,
53 we propose the new hypothesis that in sensory areas, firing rates of projection neurons
54 are proportional to *optimal code lengths* for coding useful features in input stimuli. We
55 show that this hypothesis, which implies that neurons' spike patterns are the actual codes,
56 can naturally explain observed changes of V1 orientation tuning curves induced by
57 orientation adaptation.

58 Core to our new framework for neural codes is the concept of optimal universal codes
59 (OUCs) arising from modern Minimum Description Length (MDL) principle (Grunwald

60 2007, Rissanen 2001); it differs from older prescriptions of MDL used in some previous
 61 neural models. OUCs balance data explanation and model complexity to avoid over
 62 fitting. We argue that the MDL goals of maximizing regularity extraction for optimal data
 63 compression, prediction, and communication are consistent with the goals of neural
 64 processing and transmission of input stimuli. Indeed, since compression must rely on
 65 regularities in the data, the degree of compression measures the degree of data
 66 understanding. Compared with previous theories of efficient and predictive coding, a
 67 distinctive feature of OUCs in modern MDL is that regularity extraction is relative to a
 68 model class (such as a family of cells indexed by their preferred stimulus properties).
 69 Consequently, OUCs match the brain's purposeful information processing, which cannot
 70 be achieved by reconstruction of input stimuli assumed in previous theories. Different
 71 areas along a sensory hierarchy may implement different model classes for understanding
 72 different levels of regularities in stimuli. To explain the brain's *selective* information
 73 processing we discuss possible extensions of the standard MDL from lossless data
 74 compression to a lossy version, and to the inclusion of top-down modulation that
 75 prioritize neural transmission of more behaviorally important information. We suggest
 76 that neural codes must be prefix free so that the next stage of processing can interpret
 77 incoming spikes online as soon as they are being received. We also discuss how neural
 78 networks might learn and tune a key OUC of MDL, namely the normalized maximum
 79 likelihood (NML) distribution, by sampling input stimuli.

80 2. Evaluations of Major Theories of Neuronal Coding

81 2.1 Firing-rate-as-probability theories

82 An early notion of neural coding is that a sensory neuron's firing rate reflects the strength
 83 of stimulation (Adrian 1926), a higher rate indicating a stronger stimulation. In his
 84 neuron doctrine, Barlow (1972) casts this notion probabilistically by stating that "[h]igh
 85 impulse frequency in such neurons corresponds to high certainty that the trigger feature is
 86 present." The idea is made most explicit in the population-average method for decoding
 87 neuronal activities (Georgopoulos et al 1986). For example, to decode a perceived
 88 orientation $\hat{\theta}$ from the firing rates, $\{r_i\}$, of a set of cells with preferred orientations $\{\theta_i\}$,
 89 the method assumes

$$90 \hat{\theta} = \frac{\sum_i r_i \theta_i}{\sum_i r_i} = \sum_i p_i \theta_i, \quad \text{where } p_i \equiv \frac{r_i}{\sum_j r_j} \quad (1)$$

91 implying that cell i 's firing rate r_i , normalized by the sum of all cells' firing rates $\sum_j r_j$, is
 92 the probability p_i of its preferred orientation θ_i present in the input, and that the perceived
 93 orientation is the expectation of the probability distribution.

94 Other methods for interpreting neuronal responses have also been proposed. For instance,
 95 the maximum-likelihood method (Paradiso 1988) assumes that for a given stimulus

96 orientation θ_s , the responses \mathbf{r} of a set of orientation-tuned cells follow the distribution
 97 $p(\mathbf{r} | \theta_s)$. When a particular set of responses $\{r_i\}$ is observed, $p(\{r_i\} | \theta_s)$ can be viewed
 98 as a distribution function of θ_s (the likelihood function) parameterized by $\{r_i\}$, and the
 99 perceived orientation is assumed to be the θ_s that maximizes the likelihood:

100
$$\hat{\theta} = \arg \max_{\theta_s} p(\{r_i\} | \theta_s). \quad (2)$$

101 By definition, cell i 's response r_i is more likely to be large when stimulus orientation θ_s is
 102 closer to the cell's preferred orientation θ_i . Then, within the response range, a large (or
 103 small) response r_i implies a large (or small) likelihood p that the stimulus orientation θ_s
 104 equals cell i 's preferred orientation θ_i : $p(\text{large } r_i | \theta_s = \theta_i) > p(\text{small } r_i | \theta_s = \theta_i)$. In other
 105 words, the likelihood that a cell's preferred orientation is present in the input stimulus
 106 increases monotonically with the cell's response, similar to the population-average
 107 method (which posits the special case of a linear relationship). Correlations among
 108 different cells' responses do not change the conclusion because the correlations are
 109 significant (and positive) only among cells with similar preferences (Nowak et al 1995,
 110 van Kan et al 1985). One could simply group the cells with similar preferences and argue
 111 that a larger group response implies a larger likelihood that the group's mean preferred
 112 orientation is present in the stimulus.

113 If the prior probability distribution, $p(\theta_s)$, of stimulus orientation is known, then its
 114 product with the likelihood function determines the posterior distribution of θ_s given the
 115 responses $\{r_i\}$, according to the Bayes rule. The Bayesian method (Sanger 1996) posits
 116 that the perceived orientation is the θ_s that maximizes the posterior probability:

117
$$\hat{\theta} = \arg \max_{\theta_s} p(\{r_i\} | \theta_s) p(\theta_s). \quad (3)$$

118 Prior distributions are typically well behaved (smoothly varying) (Weiss et al 2002,
 119 Yuille & Kersten 2006) and thus will not drastically change the aforementioned
 120 relationship between r_i and θ_s in the likelihood function. More importantly, although prior
 121 and likelihood are conceptually different, physiologically the priors that the brain has
 122 learned must be reflected in relevant neuronal responses (Atick & Redlich 1990,
 123 Zhaoping 2014) and thus already included in the relationship between r_i and θ_s for the
 124 likelihood function. Short-term fluctuations of responses to temporary priors (e.g.,
 125 adaptation to a particular θ_s) that are not yet learned by downstream neurons may distort
 126 the relationship between r_i and θ_s , but over longer time scales, these fluctuations and
 127 distortions average out. Therefore, Bayesian decoders must generally retain the property
 128 that large and small responses r_i indicate, respectively, large and small probabilities that
 129 the stimulus orientation θ_s equals the cell's preferred orientation θ_i .

130 In sum, many neural-tuning-based theories, including the well-known population-
131 average, maximum-likelihood, and Bayesian decoders, assume that a cell's firing rate is
132 monotonically related to the probability that its preferred stimulus is present in the input.
133 For simplicity, we refer to this assumption as the *firing-rate-as-probability* assumption.
134 In the population-average method, a cell's firing rate is directly proportional to the
135 probability of its preferred stimulus. In maximum-likelihood and Bayesian methods,
136 firing rates parameterize probability distributions of stimuli but a cell's higher firing rate
137 still generally indicates a greater probability of its preferred stimulus.

138 Despite its intuitive appeal, the firing-rate-as-probability assumption contradicts two
139 major classes of phenomena. First, adaptation to, say, vertical orientation, must increase
140 the brain's estimated probability for vertical orientation; yet the cells tuned to vertical
141 orientation reduce their firing rates to that orientation after the adaptation (Blakemore &
142 Campbell 1969, Fang et al 2005). [The cells' responses to other orientations may increase
143 (Dragoi et al 2000, Felsen et al 2002, Teich, 2003 #289), an observation that we consider
144 in Section 3.3.1 but does not affect the current discussion.] Second, salient stimuli
145 capture our attention and increase neuronal firing rates (Gallant et al 1998, Gottlieb et al
146 1998, Itti & Koch 2001, Zhaoping 2002); yet these are low-probability stimuli such as
147 sudden onset of light or sound, instead of high-probability stimuli such as constant
148 background stimulation. Indeed, if a salient stimulus occurs frequently, it will gradually
149 lose its saliency and evoke less response because the brain adapts to it. The firing-rate-as-
150 probability assumption predicts the opposite.

151 **2.2 Efficient/predictive coding theories**

152 A second prominent category of theories assumes that neurons in a visual area build an
153 efficient or predictive code of input stimulus with the goal of reconstructing the retinal
154 image according to some optimality criteria (Atick & Redlich 1990, Barlow & Foldiak
155 1989, Bell & Sejnowski 1997, Harpur & Prager 1996, Olshausen & Field 1996, Rao &
156 Ballard 1999, Zhaoping 2014). Different theories optimize different cost functions which
157 typically contain a reconstruction error term and a term encouraging a desired code
158 property such as de-correlation, independence, or sparseness. The rationale is that by
159 forcing the models to reconstruct retinal images through efficient representations, they
160 can discover useful statistical regularities in the images.

161 Many efficient/predictive coding theories focus on reproducing important properties of
162 receptive fields without explicitly specifying what neuronal activities represent. One of
163 the theories does specify that activities of neurons projecting to the next stage represent
164 the error between the actual input and the input predicted by the next stage (Rao &
165 Ballard 1999). This assumption is consistent with the adaptation and bottom-up-attention
166 phenomena mentioned above if it is further assumed that stimuli with larger and smaller
167 probabilities are reconstructed/predicted more and less accurately, respectively. However,
168 it is unclear how it may explain a variety of adaptation-induced tuning changes (Section
169 3.3.1). More importantly, by aiming to reconstruct input stimuli, these theories neglect
170 the empirical fact that the brain processes inputs to extract behaviorally relevant
171 information while ignoring irrelevant one; the best example is perhaps the change-
172 blindness demonstrations (Pashler 1988): people are unaware of large, blatant changes

173 between successively flashed images unless their attention is directed to the changes.
174 Moreover, there is a well-known conundrum with the efficient/predictive coding theories:
175 if, for example, the purpose of the visual system is to produce an efficient code that
176 reconstructs retinal images, why, then, are there so many more cells in the visual cortices
177 than on retina? In other words, how could such a great increase of the number of cells
178 involved in coding the same information be called efficient?

179 To address this cell-number conundrum of the efficient/predictive coding theories,
180 Olshausen and Field (1996) proposed that the brain needs a large number of cells to
181 produce a sparse (and over-complete) representation. With appropriate total numbers of
182 units in learning networks, sparse coding models have been successful in explaining
183 some important receptive field properties (Olshausen & Field 2004). It has been argued
184 that sparse coding with a large number of cells is more energy efficient (Balasubramanian
185 et al 2001, Olshausen & Field 2004), and sparsely firing neurons can be constructed from
186 an integrate-and-fire mechanism (Yenduri et al 2012). However, maintaining a large
187 number of cells and their connections incur a great cost. We will argue that a large
188 number of cell is needed for extracting various behaviorally-relevant features from
189 inputs, rather than for input reconstruction. Our MDL based framework suggests that the
190 brain attempts to minimize neuronal firing rates (i.e., code length, Section 3) and thus the
191 number of cells firing at a given time, and in this sense, is consistent with the sparse
192 coding theory.

193 2.3 Other theories

194 An approach related to the efficient coding theories is to measure as many types of
195 natural-image statistics as possible, and use the measurements to explain and predict
196 perceptual phenomena and neuronal responses (Field 1987, Geisler et al 2001, Motoyoshi
197 et al 2007, Sigman et al 2001, Simoncelli & Olshausen 2001, Yang & Purves 2003). For
198 example, the perception of a line segment is enhanced when it is smoothly aligned with
199 neighboring segments (Li & Gilbert 2002). This is known as the Gestalt principle of good
200 continuation, and can be explained by the statistical result that nearby contour segments
201 tend to form a smooth continuation in the real world (Geisler et al 2001, Sigman et al
202 2001). Although extremely powerful in accounting for many perceptual observations that
203 would otherwise be puzzling, these studies either avoid specifying what neuronal
204 responses represent, or use the firing-rate-as-probability assumption and thus inherit its
205 problems discussed above. Indeed, given the image-statistics-based explanation of the
206 Gestalt principle of good continuation, it is unclear why many V1 cells *reduce* firing rates
207 when a contour extends beyond their classical receptive fields (Bolz & Gilbert 1986,
208 Hubel & Wiesel 1968, Li & Li 1994).

209 Normalization models were originally proposed to explain nonlinear response properties
210 of V1 simple cells (Albrecht & Geisler 1991, Heeger 1992). These nonlinearities include
211 contrast saturation and interactions among multiple stimuli. The models have since been
212 applied to other visual areas (Simoncelli & Heeger 1998) and to attentional modulation of
213 visual responses (Reynolds & Heeger 2009), and are regarded as a canonical module of
214 neural computation (Carandini & Heeger 2012). The main assumption is that the actual
215 response r_i of a cell is equal to its linear-filter response R_i normalized by a regularization

216 constant σ plus the pooled linear-filter responses from all cells tuned to the full range of
217 stimulus parameters:

218

$$r_i = r_0 \frac{R_i^n}{\sigma^n + \sum_j R_j^n} \quad (4)$$

219 The power index n introduces additional nonlinearity as suggested by typical contrast
220 saturation curves. r_0 is a scaling constant. There is also a temporal version of the models
221 (Carandini et al 1997).

222 The rationale behind these models is that the normalization factor provides a gain control
223 mechanism to allow a cell's limited dynamic range encode a broad range of stimulus
224 intensity. Given their phenomenological nature and the small number of free parameters,
225 these models are impressive in explaining neuronal responses across a broad range of
226 systems and conditions (Carandini & Heeger 2012). However, in an extracellular-
227 recording test of the model, the constant model parameters for a given V1 cell have to be
228 adjusted to fit data from different stimulus conditions (Carandini et al 1997). Moreover, a
229 circuit that implements normalization via divisive shunting inhibition (Carandini et al
230 1997) is not supported by intracellular recording data (Anderson et al 2000b).

231 Additionally, without modifications, normalization models cannot explain many
232 interesting spatial interaction phenomena. For example, a V1 or MT cell's response to its
233 preferred orientation/direction in the classical receptive field center is suppressed when
234 the surround has the same orientation/direction, but the suppression becomes weaker, or
235 even turns into facilitation, when the surround orientation/direction differs from that of
236 the center (Allman et al 1985, Levitt & Lund 1997, Li & Li 1994, Nelson & Frost 1978).
237 Instead of pooling cross all cells, the normalization factor has to be tailored to select
238 different subgroups for different situations. Other considerations, such as natural image
239 statistics, have to be used to justify such selection. Finally, normalization models focus
240 on reproducing firing rates without specifying what they represent (probabilities, code
241 lengths, or something else).

242 A set of studies aims to reproduce spiking statistics of real neurons. With the increasing
243 availability of multi-single-unit recording data, much of this line of research focuses on
244 how to capture second- and higher-order statistical relationships among multiple neurons
245 (Ganmor et al 2011, Schneidman et al 2006, Shlens et al 2006). While these studies
246 provide useful hints on neural code, they do not in themselves address the nature of
247 neural code. For example, knowing that two neurons have correlated responses to a
248 stimulus does not immediately reveal the coding principle behind such correlation or
249 what firing patterns represent.

250 There are inconsistencies among extant theories. For example, the firing-rate-as-
251 probability hypothesis is incompatible with the efficient/predictive coding hypothesis: the
252 former assumes that projection neurons transmit stimulus probability distributions (or
253 their parameterizations) from one area to another to enable optimal inference based on
254 products of the distributions, whereas the latter implies that the probability distributions

255 be used to code stimuli efficiently for transmission and that projection neurons transmit
256 reconstruction errors. As another example, a proposed implementation of optimal
257 Bayesian inference using parameterized probability distributions (Ma et al 2006) assumes
258 that neurons sum up the firing rates they receive, contradicting nonlinear summation of
259 real neurons emphasized by normalization models (Albrecht & Geisler 1991, Heeger
260 1992).

261 Stocker and Simoncelli (2006) noted that if adaptation to an orientation (adaptor)
262 increases its prior probability, then a Bayesian framework predicts that a subsequently
263 presented test orientation be attracted to the adaptor, contradicting the observed repulsive
264 aftereffect (Gibson & Radner 1937, Meng & Qian 2005). They proposed that adaptation
265 reduces noise in the likelihood function instead of increasing the prior probability of the
266 adapting stimuli. However, the assumption that long exposure to a stimulus does not
267 change its probability is at odds with frequentist probability definition. It also contradicts
268 Bayesian probability definition as it asserts that subjective probability is never updated by
269 prior experience. Moreover, if adaptation to a stimulus does not change its probability,
270 then why should the brain adapt to natural-image statistics, an assumption used in
271 numerous studies? Additionally, the proposal does not save the firing-rate-as-probability
272 assumption because it does not explain why the cells tuned to the adapting stimuli reduce
273 their firing rates after the adaptation. To save the assumption one would have to posit,
274 unreasonably, that adaptation to a stimulus actually *reduced* its probability.

275 Although a typical, prospective Bayesian model incorrectly predicts attractive
276 aftereffects, a recent study suggests that repulsive aftereffects could result from
277 retrospective Bayesian decoding in working memory (Ding et al 2017). According to this
278 new framework, after all task-relevant features are encoded and enter working memory,
279 the brain decodes more reliable, higher-level features first and uses them as priors to
280 constrain the decoding of less reliable, lower-level features, producing repulsion in the
281 process. In other words, although a prior from the adaptor may predict attraction, a
282 different prior from high-level decoding could override it and generate a net repulsion.

283 It seems fair to summarize the state-of-art theories of neuronal coding as the story of the
284 Blind Men and Elephant: each theory captures some important aspects of neural coding
285 and appears plausible in some ways, but it is unclear how they fit together coherently.

286 3. A New Framework for Neural Codes

287 Understanding neural codes is an ambitious task that is unlikely to be accomplished in
288 foreseeable future. Nevertheless, as a small step, we would like to outline a framework,
289 based on the modern MDL principle, which aims to resolve the issues, while retaining the
290 strengths, of the previous theories. In the following, we will first review the modern
291 MDL principle briefly. We will then argue that when this principle is adopted for neural
292 coding, it leads to our main hypothesis that firing rates of projection neurons are
293 proportional to optimal lengths for coding useful features in stimuli. This firing-rate-as-
294 code-length hypothesis is fundamentally different from the firing-rate-as-probability or
295 firing-rate-as-prediction-error hypotheses discussed above. We will apply this hypothesis
296 to explain various changes of V1 orientation tuning curves induced by orientation

adaptation. The hypothesis is also consistent with bottom-up attention because rare (low probability) stimuli should have a long code length, i.e., evoke high firing rate. We further suggest that the MDL framework could be modified to include top-down attention. Since the firing-rate-as-code-length hypothesis implies that spiking patterns are the actual code for useful features in the input, we will speculate on the nature of the code, particularly the prefix-free and lossy properties. Finally, we will discuss how a key distribution from the MDL principle could be learned and tuned as input stimuli are sampled.

3.1 An overview of modern MDL and OUC

We propose that the modern MDL principle (Barron et al 1998, Grunwald 2007, Grunwald et al 2005, Myung et al 2006, Rissanen 1996, Rissanen 2001), built on the concept of OUC [in the form of normalized maximum likelihood (NML) distribution and related codes], provides a viable framework for understanding neural codes. This principle, different from some similarly or identically named theories, was developed for model-class selection, regression, and prediction by maximizing regularity extraction from data. In this section, we briefly review modern MDL.

Our overview of MDL follows Grunwald (2007). Intuitively, understanding a piece of data means extracting regularities in the data that enable prediction of other data drawn from the same source (generalization). And since regularity is redundancy, regularity extraction can be measured by data compression. Thus, to best understand a piece of data is to find a model (i.e., a probability distribution) that minimizes description length of the data. (A model expresses a relationship in the data, which can always be cast as a probability distribution by adding a proper noise distribution.) To avoid over-fitting, the model complexity should also be taken into account. The MDL principle provides a practical way of achieving these goals.

More formally, if the probability mass function $P(x)$ of data samples x 's is known, then the expected code length is minimized when the code for x has a length (Shannon 1948):

$$L(x) = -\log P(x) \quad (5)$$

This is a consequence of the Kraft-McMillan inequality that relates code lengths and probability distributions and the information inequality

$$-\sum_x P(x) \log P(x) < -\sum_x P(x) \log Q(x) \quad (6)$$

for any probability mass function $Q(x) \neq P(x)$. Intuitively, Eq. 5 assigns short and long codes to frequent and rare data samples, respectively, thus minimizing the average code length. Since one can always find a code with length approaching that of Eq. 5, the terms “code” and “probability distribution” are often used interchangeably.

In reality, when a piece of data (e.g., a retinal image) is received, its probability is unspecified. The best one can do is to use any prior knowledge, experience, or belief

334 about the data generation process to produce a model M such that according to M , data
 335 sample x has a probability $P(x|M)$. Then according to this model, the code for x should
 336 have a length $L(x|M) = -\log P(x|M)$. To take the model complexity into account, one
 337 may use the length $L(M)$ of coding M to represent its complexity, and seek a model,
 338 among a class of models \mathcal{M} , that minimizes the total code length:

$$339 \quad L = L(x|M) + L(M) \quad (7)$$

340 as the best description of the data. This is indeed an MDL principle Rissanen (1978)
 341 proposed first, now referred to as the old or crude two-part MDL (Grunwald 2007), and
 342 used by Rao and Ballard (1997, 1999). A major problem is that there is no objective way
 343 of assigning a probability to M (and all other models in the class \mathcal{M}). Consequently, one
 344 could assign a given M different probabilities and thus different code lengths, rendering
 345 Eq. 7 arbitrary. Although one could choose $L(M)$ sensibly for a given situation and
 346 obtain meaningful results with Eq. 7, this approach is *ad hoc*.

347 Rissanen (2001) then developed the modern or refined MDL to overcome this
 348 arbitrariness in Eq. 7. Consider a model class \mathcal{M} consisting of a finite number of models
 349 parameterized by the parameter set θ . For a given piece of data x , each model in the class
 350 prescribes it a probability $P(x|\theta)$ and thus a code with length $-\log P(x|\theta)$. The model
 351 $\hat{\theta}(x)$ that compresses the data x most is the one giving the data maximum likelihood
 352 $P[x|\hat{\theta}(x)]$, with code length $L[x|\hat{\theta}(x)] = -\log P[x|\hat{\theta}(x)]$. However, this degree of
 353 compression is unattainable because in this scheme, different inputs would be encoded by
 354 different probability distributions (i.e., different M 's in the model class \mathcal{M}), and the next
 355 stage could not consistently use or interpret the encoded message. The solution relies on
 356 the concept of a universal code: a single probability distribution $\bar{P}(x)$ defined for a
 357 model class \mathcal{M} such that for any data x , the code for x is almost as short as $L[x|\hat{\theta}(x)]$,
 358 with the difference (termed regret) bounded in some way. The two-part code defined by
 359 Eq. 7 is actually a universal code because one can use a uniform distribution to code
 360 every model in \mathcal{M} with equal probability $1/m$ so that the regret is bounded by $\log m$
 361 where $m=|\mathcal{M}|$ is the number of models in \mathcal{M} . However, there are other, better universal
 362 codes. In particular, there is an optimal universal code (OUC) that minimizes the worst-
 363 case regret and avoids assigning an arbitrary distribution to \mathcal{M} . This so-called minimax
 364 optimal solution is the normalized maximum likelihood (NML) distribution:

$$365 \quad P_{NML}(x) = \frac{P[x|\hat{\theta}(x)]}{\sum_y P[y|\hat{\theta}(y)]} \quad (8)$$

366 where the summation is over the data sample space (Fig. 1). With this distribution, the
 367 regret is the same for all data sample x and is given by:

$$368 \quad \text{regret}_{NML} \equiv -\log P_{NML}(x) + \log P[x|\hat{\theta}(x)] = \log \sum_y P[y|\hat{\theta}(y)] \quad (9)$$

← →
each row normalizes to 1

$P(x_1 \theta_1)$	$P(x_2 \theta_1)$	$P(x_3 \theta_1)$...	$P(x_i \theta_1)$...	$P(x_N \theta_1)$
$P(x_1 \theta_2)$	$P(x_2 \theta_2)$	$P(x_3 \theta_2)$...	$P(x_i \theta_2)$...	$P(x_N \theta_2)$
...
$P(x_1 \theta_j)$	$P(x_2 \theta_j)$	$P(x_3 \theta_j)$...	$P(x_i \theta_j)$...	$P(x_N \theta_j)$
...
$P(x_1 \theta_M)$	$P(x_2 \theta_M)$	$P(x_3 \theta_M)$...	$P(x_i \theta_M)$...	$P(x_N \theta_M)$

369

data: x_1 x_2 x_3 x_i x_N

370 Fig. 1. Illustration of the normalized maximum likelihood (NML) distribution for a model
 371 class \mathcal{M} . The models in the class, $P(\cdot | \theta)$, are parameterized by the parameter set θ . The
 372 x 's in the bottom row represents all possible data samples. Each of the other rows
 373 represents the probability mass function of a given model (a fixed θ) for all data, and
 374 thus sums to 1 (this remains true for probability density functions of continuous data).
 375 Each column represents different probabilities (likelihoods) assigned to a given piece of
 376 data x_i by different models (different θ 's). The model that gives the maximum likelihood
 377 is indicated by a box, and its $\theta \equiv \hat{\theta}(x_i)$ by definition. The maximum likelihoods (the
 378 terms in the boxes) may not sum to 1 because they are from different models. However,
 379 they can be normalized by the sum to produce a proper probability mass function, which
 380 is the normalized maximum likelihood (NML) distribution in Eq. 8. To understand Eq.
 381 11, note that the three terms of the equation are, respectively, the sums of the boxed
 382 terms, the sum of all terms, and the sum of the non-boxed terms.

383

384

385 which is the log of the denominator in Eq. 8. Importantly, this expression also provides a
386 natural definition of the model-class complexity:

387

$$\text{COMP}(\mathcal{M}) \equiv \log \sum_y P[y | \hat{\theta}(y)] \quad (10)$$

388 because the summation indicates how many different data samples can be well explained
389 by the model class. The more data samples the model class can explain well (i.e., large
390 $P[y | \hat{\theta}(y)]$ for many data y 's), the more complex the model class is. Thus, the numerator
391 and denominator of the NML distribution in Eq. 8 represent how well the model class fits
392 a specific piece of data and how complex the model class is, respectively.

393 There are other universal codes, one of which is Bayesian universal code with Jeffery's
394 prior which approximates NML. In the following, we often use NML to represent OUC
395 for simplicity but using other related codes will not change our conclusion.

396 The optimal universal code in the form of NML establishes the modern MDL principle
397 for model-class selection: given a piece of data and multiple, competing model-classes,
398 the one that produces the maximum NML probability explains the data best (Grunwald et
399 al 2005, Myung et al 2006). This MDL principle has been extended to cases where the
400 number of models in a class is not finite and $\text{COMP}(\mathcal{M})$ and NML may not be defined
401 (Grunwald 2007). We will not discuss those extensions because the number of cells in a
402 brain area, and thus the number of models in a model class, is always finite. In this case,
403 $\text{COMP}(\mathcal{M})$ and NML is well defined even when input sample space is continuous (e.g.,
404 orientation). In fact, the sum (or integration for continuous input spaces) in $\text{COMP}(\mathcal{M})$
405 is always smaller than or equal to the number of models in the class (see Fig. 1 caption):

406

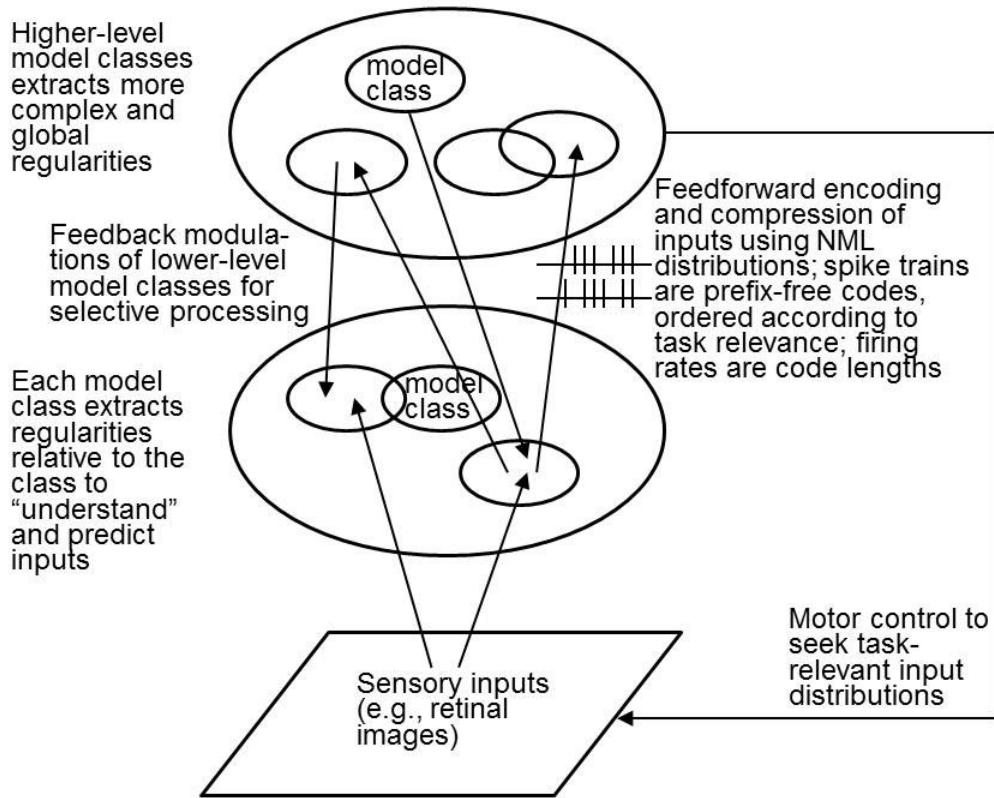
$$\sum_y P[y | \hat{\theta}(y)] = m - \sum_{y,j} P[y | \theta_j \neq \hat{\theta}(y)] \quad (11)$$

407 We finally note that because the NML distribution is defined for a model class, regularity
408 extraction and data compression in the MDL framework are relative to a model class. The
409 true model that produces the data does not have to be a member of a model class in order
410 for the model class to extract useful regularities. Different model classes extract different
411 regularities. We will return to this point later.

412 **3.2 An MDL-based framework for neural coding**

413 Using the MDL concepts reviewed above, we start by assuming that each processing
414 level of the brain implements many model classes, each class in the form of a set of cells
415 tuned to a range of input properties (Fig. 2). For example, in area V1, the set of cells
416 tuned to different orientations (Hubel & Wiesel 1968) can be viewed as forming a model
417 class parameterized by the cells' preferred orientation. Different model classes are
418 concerned with different properties of the input. Since some cells are simultaneously

419



420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

Fig. 2. Schematic for our MDL based framework for neural coding. Large ovals represent brain areas along a processing hierarchy; only two processing levels are shown. Each small oval represents a model class devoted to extracting a certain stimulus regularity; for example, a model class can be a set of V1 cells parameterized by their preferred orientations. Core distinctions between our framework and many other existing ones in interpreting physiology and anatomy include: i) firing rates of projection neurons represent the code lengths of inputs, instead of the probability distributions (or their parameterization) of inputs; ii) each model class can predict inputs based on the regularity it extracts, instead of relying on predictions from a higher-level area; iii) feedback connections from higher-level areas modify lower-level model classes to selectively process inputs according to the current task or goal; and iv) spike trains of projection neurons are a prefix-free code based on an NML distribution. We hypothesize that the process of regularity extraction (as measured by data compression) through the hierarchy is the process of “understanding” the input.

436

437

438 tuned to multiple properties (e.g., orientation, disparity, and motion direction), there are
439 overlaps among cells in different model classes.

440 Each processing level strives to extract regularities from the input and thus should use the
441 MDL principle to balance input explanation and model-class complexity. Different model
442 classes at a processing level extract different (possibly overlapping) regularities that are
443 behaviorally relevant. For example, motion-selective and color-selective cells in V1 form
444 two model classes. If the motion and color of a stimulus are both relevant to the current
445 behavioral task (e.g., catching a flying, red ball), then V1 needs to use both model classes
446 simultaneously. (This is different from traditional applications of MDL to model-class
447 selection, which pick only one model class with the largest NML probability.) Along a
448 processing hierarchy, higher-level areas extract more complex regularities based on
449 simpler regularities extracted at lower levels, suggesting that the MDL principle should
450 be applied hierarchically. For instance, V1 cells may use oriented segments in retinal
451 image to compress data, and the face cells in IT may compress inputs further by
452 exploring regular face configuration and view-independent representation of face
453 identity.

454 Regularity extraction in the MDL framework is relative to a model class, and as such, can
455 be viewed as processing, rather than reconstructing, inputs. Consider a class of cells
456 sensitive to various contrast ranges, each cell responding to input images according to the
457 difference between the luminance levels in the center and surround of its receptive field.
458 These center-surround cells can extract the useful regularity that luminance contrasts
459 likely delineate object boundaries under changing lighting conditions. However, they
460 would be poor at reconstructing the center and surround luminance values separately
461 because their responses depend only on the difference of the values. Similarly, disparity-
462 selective cells form a model class that codes the displacement between an object's left
463 and right retinal images while largely discounting many other aspects of the images (such
464 as the difference in contrast magnitude) (Qian 1994). This model class focuses on the
465 useful relationship between an object's disparity and its distance from the fixation point
466 (Qian 1997) but would have difficulty reconstructing other aspects of the two images.
467 Generally, regularity extraction by a class of cells emphasizes certain relevant input
468 dimensions for specificity while ignoring other, irrelevant dimensions for invariance. In
469 this sense, it can be better viewed as behaviorally-relevant processing than accurate input
470 reconstruction. Thus, the large number of cells in the cortex is needed to process, not
471 reconstruct, the inputs. This avoids the cell-number conundrum of previous
472 efficient/predictive coding theories.

473 Where do model classes in the brain (i.e., sensory cells with various response properties)
474 come from? We assume that the response properties are learned via evolutionary and
475 developmental processes and tuned by experiences to serve functions of the brain and to
476 increase survival. Although low-level visual responses can be explained by image

477 statistics, we suspect that an understanding of neuronal responses across the visual
478 hierarchy must take behavioral tasks into account. This is consistent with recent
479 comparisons between layers in deep neural networks and stages along the visual
480 hierarchy: networks with better performances (for classification tasks) also explain visual
481 responses better (Khaligh-Razavi & Kriegeskorte 2014, Yamins et al 2014). It is possible
482 that a model class and its NML distribution are learned together (see Section 3.9).

483 Consistent with the MDL philosophy, a model class does not have to contain the “true”
484 generative model of the environmental stimuli in order to be useful. For example, the
485 brain does not need to know the exact optics of image formation to see, or the exact
486 Newtonian mechanics to move. In fact, it is well known that exact knowledge of optics or
487 Newtonian mechanics is insufficient to see or move because vision and motor-control
488 problems faced by the brain are ill-posed mathematically (Flash & Hogan 1985, Poggio
489 et al 1985, Tanaka et al 2006) and the brain has to make additional assumptions (in the
490 form of regularities to be extracted by model classes, according to MDL) to solve the
491 problems. An OUC does not have to be (and usually *is not*) a member of the model class.
492 The brain merely approximates the “rules” underlying environmental stimuli through an
493 optimal encoding strategy relative to a model class.

494 Regularity extraction by a model class is essential not only for input processing, but also
495 for input compression to afford efficient information transmission from one level to the
496 next. The MDL principle solves these problems together using OUCs, and the solution is
497 the NML distribution (or related distributions) for a model class (Eq. 8). It is natural to
498 assume that the brain uses an OUC (of a model class) to encode information for
499 transmission because it minimizes the worst-case code length for both efficiency and
500 robustness. However, unlike previous efficient/predictive coding theories that aim to
501 reconstruct the input, here efficiency is relative to a model class serving a function of the
502 brain. As we show in Section 3.3, this difference leads to completely different
503 interpretations of projection neurons’ firing. Finally, input explanation and model-class
504 complexity are balanced in NML (its numerator and denominator, respectively) to extract
505 regularity and avoid over-fitting. This is critical for input understanding, prediction, and
506 generalization.

507 **3.3 Firing-rate-as-code-length hypothesis, adaptation, and bottom-up attention**

508 The above formulation suggests that in each brain area, the pyramidal cells that project to
509 the next level should spike according to the NML distribution (or a related OUC) to
510 efficiently code useful features in inputs. *Thus, projection neurons’ firing rates (spikes*
511 *per unit time) is proportional to the code length, equal to the negative log probability of*
512 *the distribution.* The code-length minimization then becomes firing-rate minimization.
513 Since firing rates of a set of cells are related to the number of cells firing at a given time
514 (analogous to ergodic assumption that time average equals ensemble average), the firing-

515 rate minimization is consistent with sparse coding (Olshausen & Field 1996). A set of
516 projection cells, instead of a single cell, is involved in coding an input for two reasons.
517 First, a set of cells can transmit the most important aspect of the input instantly using
518 their spike pattern at a given time whereas a single cell would need more time to transmit
519 the same information as a sequence of spikes. (Each cell does fire a sequence of spikes,
520 but as we will discuss in Section 3.7, we suggest that latter spikes encode less important
521 aspect of the input instead of a temporal code of the most important aspect of the input.)
522 Second, neurons are noisy and may become dysfunctional; using a set of cells improves
523 the reliability and robustness of transmission.

524 The firing-rate-as-code-length hypothesis naturally accommodates neural adaptation and
525 bottom-up attention phenomena. For adaptation, prolonged exposure to a stimulus
526 (adaptor) transiently increases its probability in the corresponding NML distribution. For
527 example, adaptation to stimulus x increases $P[x | \hat{\theta}(x)]$ in the numerator and its
528 appearance in the sum of the denominator of Eq. 8, with the net effect of increasing
529 $P_{NML}(x)$ (while decreasing NML probability for other stimuli y). Consequently, the code
530 length (firing rate) for the adapting stimulus decreases. Indeed, Eq. 5 suggests that firing-
531 rate (code-length) change equals negative relative probability change:

$$532 \quad \Delta L(x) = -\frac{\Delta P(x)}{P(x)} \quad (12)$$

533 We provide a more detailed analysis in Section 3.3.1 for orientation adaptation. For
534 attention-grabbing salient stimuli, because they are unexpected, low-probability events,
535 the code length (firing rate) is large.

536 We emphasize that our *firing-rate-as-code-length* assumption only applies to projection
537 neurons which transmit information from one brain area to the next. The common *firing-*
538 *rate-as-probability* assumption may apply to local interneurons or alternatively, a more
539 implicit probability representation may be learned (Section 3.9). Once a probability
540 distribution is computed in an area, whether it is the NML distribution of the MDL
541 framework or the posterior distribution of the Bayesian framework, it should be used to
542 minimize code length for efficient information transmission according to Eq. 5. We
543 therefore suggest the following framework for conceptualizing neural processing: when
544 sensory stimuli are processed along a hierarchy, each brain area receives inputs from the
545 lower-level areas, provides new processing by using its own model classes to compute
546 the corresponding NML probabilities of the inputs, and use these probabilities to encode
547 and transmit the inputs to the next level. This encoding process is the process of
548 understanding the inputs because it maximizes regularity extraction from, and
549 compression of, the inputs, according to the model classes in the area.

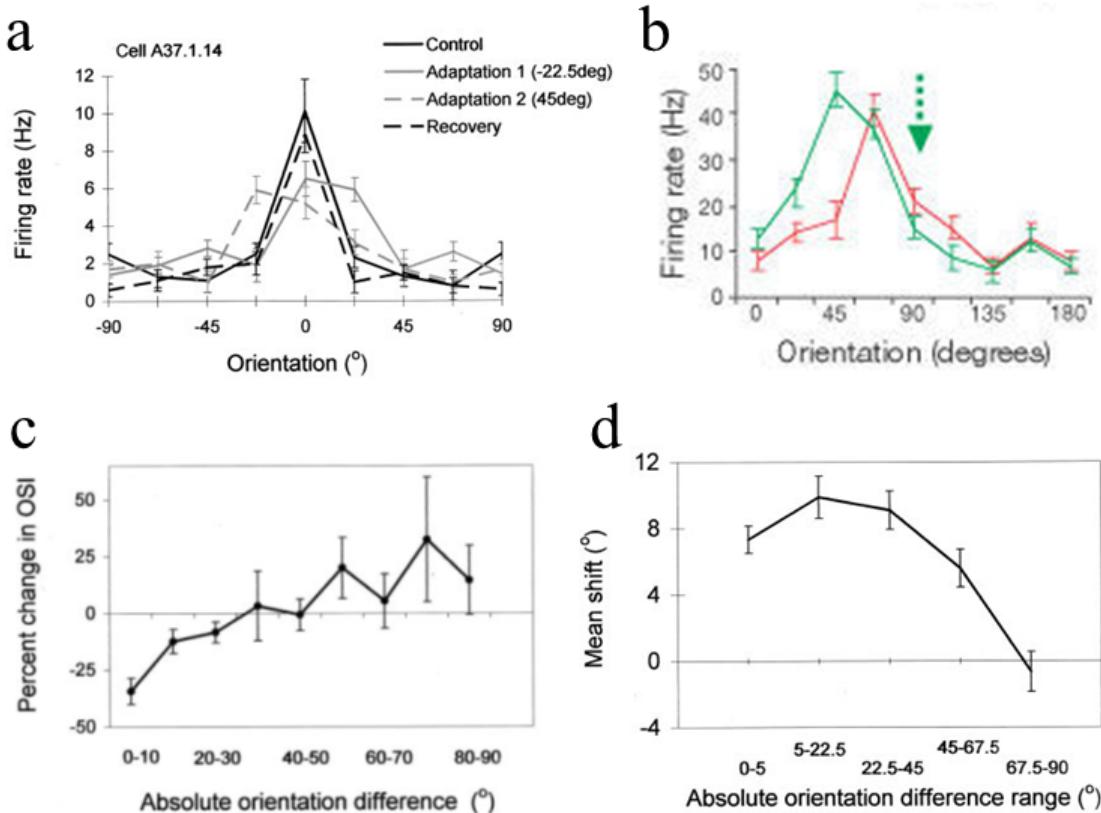
550 3.3.1. Simulating adaptation induced changes of V1 orientation tuning curves

551 Our formulation readily explains the observed response reduction for cells tuned to the
 552 adapted stimulus (Eq. 12). However, it is known that orientation adaptation produces
 553 additional changes to V1 orientation tuning curves (Dragoi et al 2001, Dragoi et al 2000,
 554 Felsen et al 2002, Teich & Qian 2003). Some experimental data from Dragoi et al
 555 (Dragoi et al 2001, Dragoi et al 2000) are shown in Fig. 3. Define the two sides of a cell's
 556 pre-adaptation tuning curve as the near and far sides according to whether the side
 557 includes the adapted orientation or not (e.g., the left and right sides of the red tuning
 558 curve in Fig. 3b are the far and near sides, respectively, because the right side contains
 559 the adapted orientation indicated by the green arrow). Then the adaptation-induced
 560 changes of orientation tuning curves can be summarized as follows. (1) Responses on the
 561 near side of a tuning curve decrease (Fig. 3, a and b). (2) Responses on the far side of the
 562 tuning curves increase (Fig. 3, a and b). (3) For cells whose preferred orientations are
 563 around the adapted orientation, the peaks of their tuning curves shift away from the
 564 adapted orientation (Fig. 3, a, b, and d). (4) Also for cells whose preferred orientations
 565 are around the adapted orientation, their tuning widths become broader (Fig. 3, a, b, and
 566 c). (5) For cells whose preferred orientations are far away from the adapted orientation,
 567 their tuning widths become narrower (Fig. 3c). In Fig. 3c, cells' tuning widths are
 568 quantified by orientation selectivity index (OSI) defined as: $OSI = \sqrt{\alpha^2 + \beta^2} / \gamma$ where
 569 $\alpha = \sum_x r(x) \cos(2x)$, $\beta = \sum_x r(x) \sin(2x)$, $r(x)$ is the firing rate at the sampled stimulus
 570 orientation x , and $\gamma = \text{mean}[r(x)]$. Large and small OSI indicate narrow and broad tuning
 571 widths, respectively.

572 We now demonstrate that the firing-rate-as-code-length hypothesis can explain all of
 573 these observed physiological changes. Consider a set of V1 cells whose preferred
 574 orientations uniformly sample the full 180 deg range. Let cell i 's preferred orientation be
 575 x_i and its firing rate in response to stimulus orientation x be $r(x, x_i)$. According to our
 576 firing-rate-as-code-length hypothesis, $r(x, x_i)$ should be proportional to the length $L(x)$ for
 577 coding x (Eq. 5). Additionally, the cell has an intrinsic orientation tuning function $t(x, x_i)$
 578 according to the feedforward inputs it receives (Hubel & Wiesel 1968, Reid & Alonso
 579 1995, Teich & Qian 2006). We therefore assume that the observed response $r(x, x_i)$ is a
 580 product of the code length and the tuning function:

$$581 \quad r(x, x_i) = L(x) t(x, x_i). \quad (13)$$

582 Before adaptation, all orientations over the full range of π are equally probable so that
 583 $P(x) = P_0 = 1/\pi$ in Eq. 5, indicated by the flat red line in Fig. 4a (we neglect prior
 584 orientation bias here because it is irrelevant to this discussion). Then, $L(x)$ is a constant,
 585 and Eq. 13 implies that $r(x, x_i) \propto t(x, x_i)$. That is, before adaptation, the observed tuning



586
587

588 Fig. 3. Observed changes of V1 orientation tuning curves induced by adaptation. (a) The
589 solid black curve represents the pre-adaptation tuning curve with the preferred orientation
590 centered at 0 deg. The solid and dashed gray curves are the same cell's tuning curves
591 after adaptation at -22.5 deg and 45 deg, respectively. (b) The red and green curves
592 represent a cell's pre- and post-adaptation tuning curves, respectively. The adapted
593 orientation is indicated by the green arrow. The peak response after adaptation was even
594 larger than that before adaptation. (c) Adaptation-induced change of orientation
595 selectivity index (OSI, see text for definition) as a function of the difference between the
596 pre-adaptation preferred orientation and the adapted orientation. Negative and positive
597 OSI change indicate increase and decrease of tuning width, respectively. (d) Adaptation-
598 induced peak shift of tuning curves as a function of the orientation difference between the
599 pre-adaptation preferred orientation and the adapted orientation. Note that the orientation-
600 difference ranges for the first two data points are different from each other and from the
601 remaining three points. Panels *a*, *c*, and *d* are from Dragoi et al. (2000) and panel *b* from
602 Dragai et al. (2001), with permissions.

603

604 curve has the shape of the cell's intrinsic tuning function, which is peaked at preferred
 605 orientation x_i and typically bell-shaped (Schiller et al 1976, Webster & De Valois 1985).
 606 For convenience, we used the following periodic function (Teich & Qian 2003) for $t(x,$
 607 $x_i)$:

$$608 \quad t(x, x_i) = c \{ \cos[2(x - x_i)] + 1 \}^k + b, \quad (14)$$

609 where b and c determine the baseline and peak firing rates in Eq. 14, respectively. The
 610 exponent k controls the tuning width (larger k produces narrower width). Examples of
 611 pre-adaptation tuning curves [i.e., $r(x, x_i)$ as a function of x for fixed x_i] with $k = 4$ are
 612 shown in red in Figs. 4 and 5, panels b to c.

613 Now assume that there is adaptation at 0 deg orientation, and after adaptation,
 614 $P(x) = P_a(x)$. Although we do not yet know exactly how the brain updates $P(x)$
 615 represented by interneurons (see Section 3.9), $P_a(x)$ should have increased values at and
 616 around the adapted orientation, and decreased values at other orientations, as we argued
 617 in connection with Eq. 12. We therefore used the following expression:

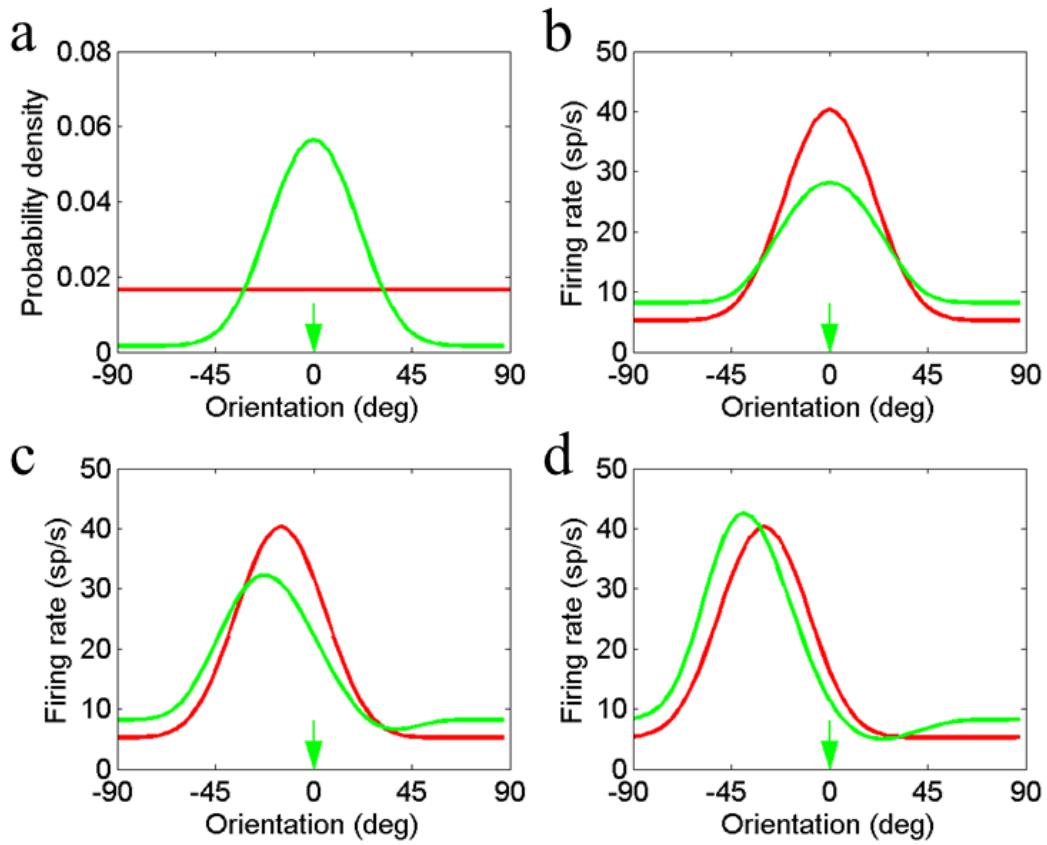
$$618 \quad P_a(x) = P_0 + A \{ z_+ [\cos(2x) + 1]^m - z_- [\cos(2x) + 1]^n \}, \quad (15)$$

619 where the two cosine terms determine the increase and decrease of probabilities at
 620 different orientations, respectively. z_+ and z_- are not free parameters but normalize the
 621 two cosine terms so that $P_a(x)$ is normalized. m and n together control the orientation-
 622 ranges of the probability increase and decrease, and A determines the strength of
 623 adaptation. When $n = 0$, Eq. 15 reduces to:

$$624 \quad P_a(x) = P_0 + A \{ z_+ [\cos(2x) + 1]^m - P_0 \}, \quad (16)$$

625 and an example with $m = 4$ and $A = 0.9$ is shown as the green curve in Fig. 4a. Relative to
 626 the constant baseline $P_0(x)$ (flat red line in Fig. 4a), this $P_a(x)$ has increased values at and
 627 around the adapted orientation and uniformly decreased values at other orientations.
 628 When $n > 0$, $P_a(x)$ has non-uniformly decreased values at the other orientations and an
 629 example with $n = 0.2$, $m = 4$ and $A = 0.9$ is shown as the green curve in Fig. 5a. This
 630 could occur if the updating of $P(x)$ during adaptation depends on the so-called Mexican-
 631 hat connectivity profile among cells tuned to different orientations (Teich & Qian 2006,
 632 Teich & Qian 2010). The broad peaks of $P_a(x)$ in Figs. 4a and 5a reflect the fact that the
 633 brain's estimation of an individual orientation is poor (Ding et al 2017).

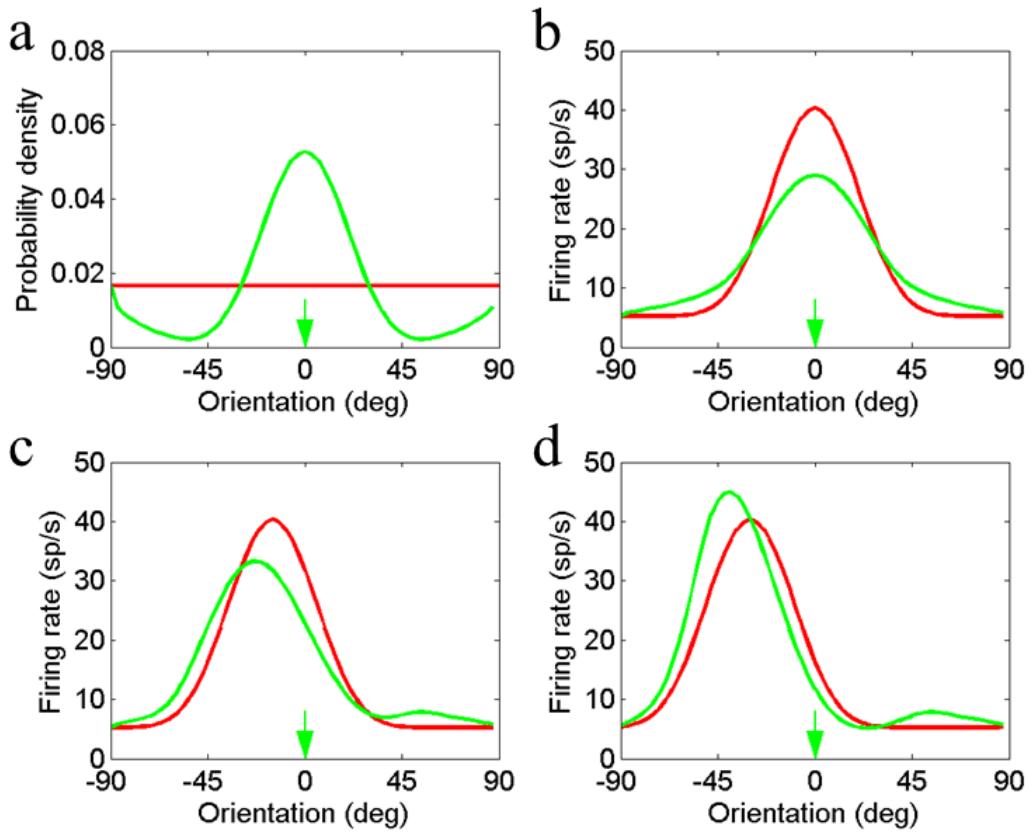
634 Plugging post-adaptation $P(x) = P_a(x)$ into Eqs. 5 and 13, we can then determine the
 635 tuning curves that reflect the adaptation-induced change of code length. Figs. 4 and 5,



636

637 Fig. 4. The firing-rate-as-code-length hypothesis explains the adaptation-induced changes
 638 of orientation tuning curves. The adapted orientation is assumed to be 0 deg indicated by
 639 the green arrow in each panel. (a) The orientation probability distributions before (red)
 640 and after (green) the adaptation. (b-d) Comparison of tuning curves before (red) and after
 641 (green) the adaptation for cells whose preferred orientations are 0, 15, and 30 deg away
 642 from the adapted orientation, respectively.

643



644

645 Fig. 5. The firing-rate-as-code-length hypothesis explains the adaptation-induced changes
 646 of orientation tuning curves. The same simulations as in Fig. 4 except that a Mexican-hat
 647 shaped post-adaptation probability density function is used. The presentation format is
 648 identical to that of Fig. 4.

649

650

651 panels c-d, compare the pre-adaptation (red) and post-adaptation (green) tuning curves
652 for cells whose preferred orientations are 0, 15, and 30 deg away from the adapted
653 orientation at 0 deg (green arrow). These simulation results explain all the adaptation-
654 induced tuning changes listed above.

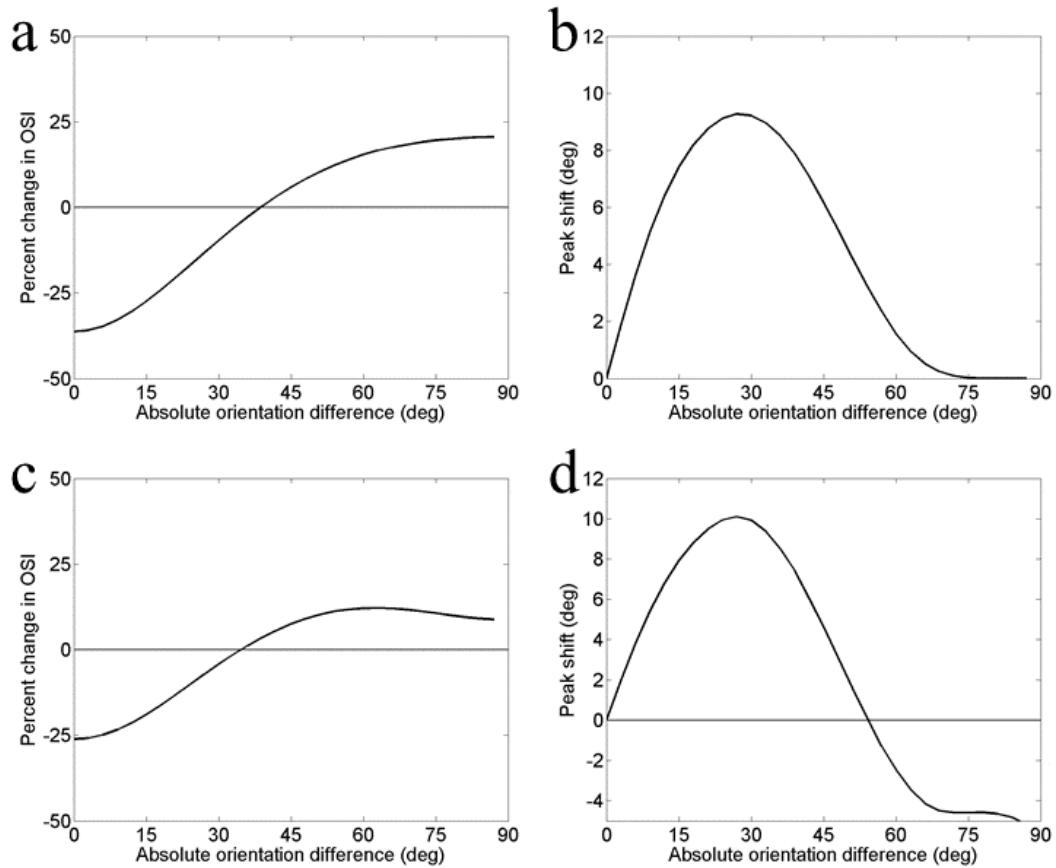
655 Dragoi et al. (2000) measured the adaptation-induced percent change in OSI and shift of
656 tuning peak (Fig. 3, panels c and d). The corresponding simulations using the two
657 different $P_a(x)$ in Fig. 4a and Fig. 5a are shown in Fig. 6. Results similar to the
658 simulations in Figs. 4-6 can be obtained with many other parameters sets.

659 We conclude that the observed tuning changes induced by adaptation may reflect the
660 brain's adjustment of code lengths for different orientations after adaptation. Since at the
661 circuit level, the tuning changes can be explained by modifying recurrent connections
662 among cells (Teich & Qian 2003, Teich & Qian 2010), the recurrent-connection plasticity
663 could be a physiological mechanism for online code-length minimization.

664 Our firing-rate-as-code-length hypothesis calls for a re-interpretation of neuronal tuning
665 curves. Consider, for example, V1 cells tuned to vertical orientation. The traditional view
666 is that when they fire, they signal the presence of vertical orientation on retina. According
667 to the MDL framework, these cells' firing not only signals the presence of vertical
668 orientation. In addition, their firing rates are modulated up or down according to whether
669 vertical orientation is less or more probable than other orientations. This interpretation is
670 also consistent with the observation that natural images usually evoke weaker neural
671 responses than isolated patches of natural images or artificial stimuli (Gallant et al 1998)
672 because the former, with its large context, is more probable than the latter.

673 **3.4 Top-down attention, NML with data prior, and feedback connections**

674 In addition to adaptation and bottom-up attention discussed above, top-down attention
675 can also be incorporated into the MDL framework. In the case of bottom-up attention,
676 salient stimuli, because of their small probabilities reflected in the NML distributions,
677 have longer code lengths and drive cells to higher firing rates. For top-down attention, on
678 the other hand, the brain seeks a specific type of information based on its current
679 functional needs. Such information-seeking could be realized, in the MDL framework, by
680 a top-down modulation of the NML probabilities in lower levels. For example, area V1
681 may normally assign horizontal orientation a certain probability, and the corresponding
682 firing rate, based on actual frequencies of orientations in the input. Now if horizontal
683 orientation becomes subjectively more important (e.g., when searching for a horizontal
684 key slot), then higher-level visual areas could use top-down, feedback connections to V1
685 to reduce the estimated probability of, and thus increase the firing rate to, horizontal
686 orientation. In other words, since rare stimuli are bottom-up salient, the top-down process
687 could instruct lower-level areas to treat a task-relevant stimulus as if it were rare, to boost



689 Fig. 6. The simulated percent change in OSI (a, c) and peak shift (b, d) according to the
 690 firing-rate-as-code-length hypothesis. Simulations using the post-adaptation probability
 691 density in Fig. 4a are shown in panels a and b, and those using the post-adaptation
 692 probability density in Fig. 5a are shown in panels c and d.

694 its saliency. Thus, we must modify the MDL principle to take into account task relevance
695 or subjectivity of information content, an aspect not encompassed by previous
696 efficient/predictive coding theories.

697 Zhang (2011) introduced a positive data prior function, $s(x)$, to modify the NML
698 distribution as:

699

$$P_{NML}(x) = \frac{s(x)P[x | \hat{\theta}(x)]}{\sum_y s(y)P[y | \hat{\theta}(y)]} \quad (17)$$

700 This is precisely what we need for modeling top-down attention. The data prior function
701 $s(x)$ emphasizes certain inputs, at the expense of other inputs, according to the current,
702 task-relevant need of the brain. Specifically, when a certain x is task relevant, top-down
703 attention will reduce its $s(x)$, increasing the code length (firing rate) for it. Alternatively,
704 $s(x)$ can be viewed as modifying the models' likelihood functions in Eq. 17. In fact, there
705 can be a dual relationship between data prior and model prior (Zhang 2011), which
706 produce so-called informative versions of MDL (Grunwald 2007).

707 Thus, according to the MDL framework, a major role of top-down, feedback connections
708 in the brain is for higher levels to modify the lower-level model classes in order to
709 increase transmission of behaviorally relevant information. The framework is consistent
710 with the fact that top-down attention is slower than bottom-up attention because it takes
711 time for high-level areas to send spikes down the feedback connections to modify NML
712 distributions of lower-levels. This is fundamentally different from Rao and Ballard's
713 proposal that feedback connections send higher-level predictions of inputs to the lower
714 level for subtraction (Rao & Ballard 1999). The difference reflects different aims of the
715 two approaches. Rao and Ballard's model, as are typical of most efficient/predictive
716 coding models, aims to reconstruct retinal inputs. Therefore, a high-level sends its input
717 prediction to the lower level, which subtracts this prediction and sends the error to the
718 higher level for improvement. In contrast, our MDL framework focuses on regularity
719 extraction to serve the brain's needs of sensory processing without input reconstruction.
720 Although regularity extraction is the basis for both efficient coding and prediction, in the
721 MDL framework there is no input prediction coming from higher levels for lower-levels
722 to subtract. Instead, NML unifies prediction, regularity extraction, and efficient coding at
723 each level of processing.

724 Top-down processes may also direct motor outputs (including eye movements) to
725 actively seek relevant information in the world.

726 **3.6 Comparison with Existing Models**

727 Our firing-rate-as-code-length hypothesis differs significantly from previous theories. We
728 already mentioned some differences above. Here we recapitulate the discussions and
729 make some further comparisons. Although negative log probability is frequently used in
730 the literature for computational convenience or for linkage to MDL concepts, to our
731 knowledge, the firing-rate-as-code-length hypothesis for interpreting sensory neurons'
732 responses has not been proposed.

733 3.6.1. Predictive coding models

734 Rao and Ballard (1999) used a two-part version of MDL (Rissanen 1978, Rissanen 1983)
735 in their predictive coding model, which, like other efficient/predictive coding models,
736 aims to reconstruct the retinal image. Our NML-based MDL framework is very different
737 in that it uses regularity extraction to serve the brain's functional needs rather than to
738 reconstruct retinal images, and consequently, interprets neuronal responses and
739 connections differently. In particular, Rao and Ballard's model and our framework
740 interpret projection neurons' responses as representing errors of input reconstruction and
741 coding useful features in the input, respectively. Additionally, while they assume that
742 feedback connections carry the higher-level's prediction of the lower-level input, we
743 assume that feedback connections modify the lower-level's model classes to transmit
744 task-relevant information in the input.

745 3.6.2. Firing-rate-as-probability theories

746 Firing-rate-as-probability theories, including a proposed implementation of Bayesian
747 inference (Ma et al 2006), posit that projection neurons transmit probability distributions
748 of input features (or parameterizations of the distributions) whereas we suggest that the
749 probability distributions computed in an area are not transmitted but are used to code
750 input features efficiently and that probability distributions computed in different areas are
751 relative to different model classes and concern different regularities of the inputs. As we
752 noted in Section 2, firing-rate-as-probability theories are not consistent with adaptation
753 and bottom-up-attention phenomena while our framework is. Note that we are not
754 arguing against Bayesian inference, only the firing-rate-as-probability assumption used in
755 many models including those that have been called Bayesian inference models. In fact,
756 the Bayesian universal code with Jeffery's prior asymptotically achieves the minimax
757 optimal regret of the NML code, and may well be used by the brain because of its
758 prequential property which is useful for prediction without a pre-specified time horizon
759 (Grunwald 2007).

760 3.6.3. Saliency models

761 Zhaoping (2002) proposed that V1 constructs a bottom-up saliency map such that, for a
762 given visual scene, firing rate of V1 output neurons increase monotonically with the
763 saliency values of the visual input in the classical receptive fields. There are no separate
764 feature maps for creating such a bottom-up saliency map. Neuronal responses encode
765 universal values of saliency that govern subsequent actions (e.g., saccades). In our

766 framework, neuronal responses are also related to saliency. However, this is realized via
767 neurons' firing rates being proportional to the code lengths for coding useful features.
768 The code lengths are determined by the features' probabilities, which, in turn, are related
769 to the saliency values.

770 Han and Vasconcelos (2010) presented another saliency model for object recognition in
771 biological systems. Motivated by the observation that stimulus features with high bottom-
772 up saliency have a low probability of occurrence, they proposed a top-down saliency
773 measure using log likelihood ratio of Gabor-filter responses to target and non-target
774 objects and demonstrated that this computation can be realized by a selective
775 normalization procedure. In contrast, we assume that the top-down attention modifies
776 lower-level NML distributions for coding relevant stimulus features. More importantly,
777 they eventually let cells' firing rates represent the posterior probability of target object
778 via a nonlinear function of the log likelihood ratio so their model follows the traditional
779 firing-rate-as-probability assumption. Instead, we assume that firing rates represent code
780 length, not probability.

781 3.6.4 Normalization models

782 On first glance, the NML distribution (Eq. 8) resembles the normalization models for
783 sensory responses (Eq. 4), and the NML distribution with a data prior (Eq. 17) resembles
784 the normalization models for attentional modulation (Reynolds & Heeger 2009).
785 However, the normalization factors (denominators) in NML and in normalization models
786 are very different. In NML, the denominator sums the maximum likelihood of a model
787 class across all input data samples. In normalization models, the denominator is a
788 constant plus the summed responses of all cells with a range of tuning (i.e., all cells in a
789 model class) to the current input sample.

790 A key motivation for the normalization models is to fit V1 cells' contrast response
791 curves. Indeed, the form of the normalization models mimics contrast saturation
792 functions. The MDL framework offers an alternative, computational-level explanation of
793 contrast responses, namely that high contrast occurs less frequently than low contrast in
794 the real world; this reflects the fact that the world consists of coherent surfaces of objects
795 and high contrast typically occurs at relatively rare object boundaries whereas low
796 contrast typically occurs at relatively abundant object interiors. Indeed, Ruderman (1994)
797 measured contrast distribution of natural images and his result can be approximated by:

798
$$P(c) = a - b \log(1 + c) \quad (18)$$

799 where c is contrast and a and b are positive constants; the probability decreases with
800 contrast. If, as we postulated earlier, the brain learns this statistical regularity based on
801 the MDL principle, then the corresponding NML distribution for encoding stimulus
802 contrast should reflect the statistics. The contrast responses of projection neurons
803 covering different ranges of contrast should then have the envelope $-\log P(c)$, a curve

804 resembling saturation. Thus, contrast response may not result from shunting inhibition of
805 pooled responses to a given stimulus; rather, it may reflect code-length optimization by a
806 circuit that sample contrast statistics from many stimuli.

807 The MDL framework may also account for phenomena that the normalization models fail
808 to explain. For example, we mentioned above that end-stopped V1 cells fire less when a
809 contour extends beyond their classical receptive fields (Bolz & Gilbert 1986, Hubel &
810 Wiesel 1968). More generally, V1 or MT cells' responses to their preferred
811 orientation/direction within the classical receptive fields are suppressed when the
812 surround has the same orientation/direction, but the suppression becomes weaker, or even
813 turns into facilitation, when the surround orientation/direction differs greatly (Allman et
814 al 1985, Levitt & Lund 1997, Nelson & Frost 1978). The normalization models cannot
815 explain these results because the normalization factor is untuned. Of course, one could
816 modify the normalization models by making the normalization factor follow the observed
817 results; however, this means that the normalization models have to be adjusted *ad hoc* for
818 each specific situation. The MDL framework may be able to explain these experimental
819 findings because when the classical receptive field and its surround have similar
820 (different) stimuli, the presence of the surround stimuli increases (decreases) the
821 probability of the stimuli in the classical receptive field, and consequently, a shorter
822 (longer) code length, in the form of a lower (higher) firing rate, is needed to transmit the
823 information. Similarly, when a contour extends smoothly beyond an end-stopped cell's
824 classical receptive field, the probability of the segment inside the receptive field is
825 increased, leading to a shorter code length (reduced firing) of the cell.

826 **3.7 Lossy MDL and prefix-free neural code**

827 The standard MDL uses the terms "code" and "probability distribution" interchangeably
828 because once a probability distribution is specified, one can always design a lossless,
829 prefix-free code (a.k.a., prefix code) that saturates the Kraft-McMillan inequality such
830 that the code length is equal to negative log probability (Grunwald 2007). In contrast,
831 phenomena such as change blindness (Pashler 1988) suggest that the brain uses a lossy
832 code to transmit behaviorally relevant information and discard irrelevant details of the
833 input. We will therefore speculate on a lossy MDL code as a candidate for neural code.
834 To motivate our proposal, consider the example of seeing something moving in a jungle.
835 The most survival-relevant information may be whether the moving thing is a predator or
836 a pray. If it's a predator, the next most relevant information may be whether it is the type
837 that one could fight against (e.g., a wolf) or better flee from (e.g., a tiger). To optimize
838 survival, the brain should use its visual neurons' first few spikes to transmit the most
839 relevant information, and the next few spikes to transmit the second most relevant
840 information, and so on. Only crude aspects of low-level features that are sufficient for
841 building relevant, high-level categorical decisions should be transmitted quickly. It would
842 be a huge mistake to waste the precious first several spikes on transmitting, for example,

843 the precise orientation of a stripe on the animal's fur. On the other hand, the brain is
844 certainly able to judge the orientation when one is asked to do so in a safe setting.

845 These considerations suggest that a partially transmitted code should be meaningful so
846 that a brain area can start processing inputs immediately after receiving spikes from
847 lower areas, that the code should be as short (efficient) as possible and carry pieces of
848 information ordered according to their behavioral relevance/urgency, and that higher-
849 level areas should instruct lower-level areas on what and how much details to transmit
850 depending on the situation. Therefore, the brain might use entropic, prefix-free codes
851 (based on NML distributions) with earlier spikes carrying more behaviorally important
852 information.

853 Consider the toy example in Table 1 of coding four symbols (column 1) with known
854 probabilities (column 2). Code 1 is fixed length and inefficient (the length of 2
855 bits/symbol is greater than the entropy of 1.75 bits/symbol). Code 2 is the Huffman code,
856 which is entropic (average length 1.75 bits/symbol) and prefix free (no code word is a
857 prefix of another code word). Code 3 reverses the bit order of each code word of Code 2.
858 It is entropic but not prefix free. Although Code 3, like the other two codes, is uniquely
859 decodable (after receiving a whole message, the bit string can be reversed and decoded
860 according to Code 2), a partial message is meaningless. In contrast, a Huffman-coded
861 string can be decoded online as each bit is received without the need to wait for a whole
862 message or a whole code word. For example, the first bit divides choices into A vs (B, C,
863 D). Because each bit of a code word divides the remaining choices into two with equal
864 probabilities, the bits are ordered from the most to least informative. (Although the
865 Huffman code is a symbol code, similar arguments could be made with the entropic,
866 arithmetic coding for blocks of arbitrary lengths.)

867 We propose that the brain might use a Huffman-like code (or arithmetic-like coding)
868 based on NML distributions. Such a code is attractive because of the efficiency, the bit
869 ordering from the most to least informative, and the prefix-free property allowing
870 immediate decoding as each bit comes in. We suggest that neural codes should be similar
871 in that the first spikes of a neuronal population carry the most task/situation-relevant
872 information so that the brain can take most pressing actions at the earliest possible time.
873 The later spikes carry less relevant details that may be truncated by top-down instructions
874 or by a change of inputs (e.g., a saccade to a different part of the world or a changing
875 world), resulting in a lossy code. Experiments that present stimuli for only several to tens
876 of ms provide indirect evidence for the prefix-free and lossy nature of neural codes:
877 subjects could identify global or high-level, categorical features better than local or low-
878 level details (Chen 1982, Navon 1977, Thorpe et al 1996), suggesting that truncated
879 visual transmission is meaningful and that the transmission leading to high-level
880 categorization, which is more behaviorally relevant than low-level details, is prioritized.

Symbol	Probability	Code 1	Code 2	Code 3
A	1/2	00	0	0
B	1/4	01	10	01
C	1/8	10	110	011
D	1/8	11	111	111

881

882 Table 1. Three codes for the four symbols with the given probabilities. Codes 1 and 2 are
 883 prefix free. Codes 2 and 3 are entropic. Code 2 (Huffman) is both prefix free and
 884 entropic.

885

886 In information theory, the rate-distortion curve is a standard tool for studying lossy
887 transmission (Blahut 1972). Each point of the curve specifies the minimum input
888 information that has to be transmitted to the output (i.e., the rate) in order to keep the
889 average distortion under a given value. Equivalently, each point specifies the minimum
890 average distortion for a given rate. The distortion for each input/output pair is pre-
891 defined. (The rate is similar to channel capacity except that the former is the mutual
892 information minimized against the channel transition probabilities whereas the latter is
893 the mutual information maximized against input distribution. We will not distinguish the
894 two terms in the following for simplicity.) The rate-distortion curve has been used as a
895 computational-level theory for understanding discrimination vs. generalization in
896 perception (Sims 2018). The main idea is that when a system transmits inputs whose
897 information (i.e., entropy) exceeds the system's channel capacity, the output will have
898 distortion which determines discrimination between, or generalization across, different
899 inputs. The information bottleneck theory (Tishby et al 2000) is a version of the rate-
900 distortion theory in which the distortion for each input/output pair is not pre-defined, but
901 determined according to how much information the output carries about the input's
902 assigned label (e.g., the label "cat" for an input image). The truncated, lossy code
903 discussed above could be viewed as a possible neural implementation of the rate-
904 distortion function. Specifically, because of limited rate or channel capacity, projection
905 neurons cannot transmit all input information as stimuli stream in, and truncated
906 transmission leads to distortion. If the spikes of a neural code are arranged from the most
907 to least relevance to current behavior, then the distortion with respect to the behavior
908 "label" is minimized for a given rate.

909 The firing-rate-as-code-length hypothesis implies that the channel capacity (firing rates)
910 of projection neurons is greater for lower-probability stimuli which require longer codes.
911 This ensures that unexpected, salient stimuli are not truncated more than common stimuli.

912 **3.8 Encoding vs. decoding**

913 Coding can be divided into encoding and decoding. The engineering notion of encoding
914 and decoding is well defined: When a signal needs to be transmitted over a noisy
915 communication channel of limited capacity (e.g., a phone line), one should encode the
916 signal to compress it (while allowing error correction), transmit it, and then decode it to
917 recover the original signal on the other end. It is widely assumed that the brain does
918 similar encoding and decoding. Our MDL framework suggests that the brain encodes
919 input stimuli into neuronal responses but does not decode the responses to recover the
920 original inputs. The main reason is that, unlike a phone line that has to reproduce the
921 input voice at the other end, the brain never needs to reconstruct the raw sensory inputs it
922 receives. Rather, as we already emphasized, the brain attempts to understand the sensory
923 inputs by processing them. For example, the brain processes the retinal images to reveal
924 objects and their relationships but hardly needs to reconstruct the retinal images because

925 retina is part of the brain and no homunculus exists in the cortex to look at the
926 reconstructed images. More generally, it is hard to imagine that one brain area needs to
927 accurately reconstruct neural firing patterns (spike trains) of another area; rather, a brain
928 area should extract additional regularity from, and thus achieve further understanding of,
929 the input. If the firing patterns of a sensory area are needed, for instance, to guide a
930 certain motor response, then the motor area of the brain should use the firing patterns
931 directly, instead of encoding, transmitting, and decoding. For example, in the unlikely
932 scenario that raw retinal image were needed, the brain would have evolved to use the
933 retinal image instead of decoding a poorer version of it from, say, LGN or V1 responses.

934 One may reasonably identify the brain’s logic of relating neuronal responses to subjective
935 perception as decoding. Note, however, this decoding is fundamentally different from the
936 engineering notion of decoding. Specifically, neuronal responses along hierarchical
937 stages of sensory pathways extract and encode progressively more complex statistical
938 regularities in the input stimuli. A small subset of these responses presumably gives rise
939 to our subjective perception of useful features in inputs without any need of
940 reconstructing the raw inputs. We therefore suggest that neural decoding should be
941 viewed as the link from neuronal responses to perceptual estimation of useful stimulus
942 features, but not as input reconstruction. Also note that encoding and decoding are often
943 related; for example, the population-average method of Eq. 1 is a *decoding* model but it
944 implies that firing rates *encode* the probabilities of preferred stimuli.

945 A related question is whether sensory decoding follows the same low-to-high-level
946 hierarchy of sensory encoding. Many studies assume, often implicitly, that the answer is
947 affirmative. However, a recent study shows that this assumption fails to explain a simple
948 psychophysical experiment, and suggests that visual decoding progresses from high-to-
949 low-level features in working memory, with higher-level features constraining the
950 decoding of lower-level features (Ding et al 2017). Since higher-level features have
951 greater functional significance than lower-level features, this decoding scheme is
952 consistent with the above notion that the brain should prioritize transmission of
953 behaviorally relevant information.

954 **3.9 NML and learning**

955 Given the importance of the NML distribution (or a related OUC as its approximation) in
956 the MDL framework, a relevant question is: how can a brain area produce such a
957 distribution particularly when the input data space is high dimensional? Variational
958 methods in machine learning provide a potential answer as they have demonstrated that
959 neural networks can learn complex probability distributions via gradient decent (Dayan et
960 al 1995, Kingma & Welling 2013) or even a local plasticity rule (Hinton et al 1995). To
961 outline the approach for the NML distribution (Eq. 8), we define the “energy” of a data
962 sample x relative to a model class parameterized by θ as:

963 $E(x) = -\log P[x | \hat{\theta}(x)]$ (19)

964 (i.e., the code length according to the model in the class that maximizes the likelihood of
 965 the sample), and rewrite Eq. 8 in the form of a Boltzmann distribution (with $\beta=1$):

966
$$P_{NML}(x) = \frac{\exp[-E(x)]}{\sum_y \exp[-E(y)]}$$
 (20)

967 The numerator is known as the partition function $Z \equiv \sum_y \exp[-E(y)]$, and the regret and
 968 complexity measure in Eqs. 9 and 10 become $\log Z$. Use the standard definition of
 969 Helmholtz free energy as the mean energy minus entropy:

970
$$A = \sum_x P(x)E(x) + \sum_x P(x)\log P(x)$$
 (21)

971 for any probability distribution $P(x)$. Then (Dayan et al 1995),

972
$$A = -\log Z + KL[P(x) \| P_{NML}(x)]$$
 (22)

973 where KL is the Kullback–Leibler divergence. Since KL is non-negative and minimized
 974 to 0 when the two distributions are equal, A reaches the minimum value of $-\log Z$ when
 975 $P(x) = P_{NML}(x)$. [The physical analogy is that Helmholtz free energy A approaches the
 976 minimum $-\log Z$ when any non-equilibrium distribution $P(x)$ approaches the
 977 equilibrium, Boltzmann distribution $P_{NML}(x)$.] Therefore, if $P(x; \phi)$ is a family of
 978 probability distributions parameterized by weights ϕ of a neural network, then the
 979 network could be trained to approximate $P_{NML}(x)$ by minimizing the cost A in Eq. 21
 980 against ϕ as input data are sampled, and $-A$ is a lower bound for $\log Z$ (Dayan et al 1995,
 981 Hinton et al 1995, Kingma & Welling 2013). If data statistics are changed, the neural
 982 network’s approximation of $P_{NML}(x)$ would change accordingly (as we assumed in the
 983 example of orientation adaptation in Section 3.3.1).

984 Moreover, $E(x)$ and $\log Z$ depend on the model-class parameterization θ , which can also
 985 be implemented as weights of a neural network. One could thus, for example, adjust the
 986 *equilibrium* Helmholtz free energy ($A = -\log Z$) by modifying θ in order to control the
 987 NML regret or complexity ($\log Z$). Since the model-class complexity and the code length
 988 for an input (i.e., neuronal firing rate) may be related to coding sparsity, this could be a
 989 mechanism for adjusting the degree of sparsity. Finally, the learning of the ϕ and θ
 990 parameters could be interleaved.

991 **4. Discussion**

992 Understanding the nature of neural code is of fundamental importance. Although extant
993 theories have been successful in revealing many properties of neural coding, they are not
994 always consistent with major empirical observations or with each other. Our efforts in
995 this project focuses on proposing a novel, modern MDL based framework for
996 characterizing neural code. The framework aims to integrate the strengths of extant
997 theories, explain (or at least be consistent with) more empirical observations, and unify
998 sensory processing and attention. The framework leads to the specific proposal that
999 neural firing rates are proportional to code lengths given by negative log NML
1000 probability distributions (or closely related OUCs) for stimulus features. We showed via
1001 simulations that this firing-rate-as-code-length hypothesis can explain all the observed
1002 changes of V1 orientation tuning curves induced by orientation adaptation.

1003 Our framework contains five essential elements, the combination of which, to our
1004 knowledge, has never been suggested before.

1005 1) The firing rates of sensory projection neurons are proportional to code length, not the
1006 probability or its parameterization, of stimulus features. Indeed, for efficient transmission
1007 of inputs, a system should use a proper probability distribution to encode/compress the
1008 inputs instead of transmitting the probability distribution itself.

1009 2) The code length is based on an OUC (such as NML distribution) of a given model
1010 class which maximizes regularity extraction, predictive ability, and data compression to
1011 achieve input understanding by balancing data fitting and model-class complexity.
1012 Parameters specifying a model class and its NML distribution might be learned or tuned
1013 together.

1014 3) The actual code in the temporal firing pattern of a neuronal population is Huffman-like
1015 such that it has minimal firing rates, is prefix-free, and the order of information
1016 transmission is from the most relevant to the least relevant according to the current task
1017 or goal. In this way, a partially transmitted message is meaningful and can be processed
1018 immediately by the next stage, the system could respond to the most relevant aspect of
1019 input with the shortest delay, and a truncated, lossy transmission would minimize
1020 behaviorally relevant distortion.

1021 4) The brain does not really face a decoding problem in the form of input reconstruction
1022 because the input representation is already in the brain. Rather, the brain extracts useful
1023 stimulus features during efficient encoding, without the need to reconstruct the original
1024 input signal. The brain processes input hierarchically to extract progressively more
1025 complex and global regularities to serve various perceptual and motor functions.

1026 5) Top-down signals are sent to modulate lower-level model classes, direct eyes to
1027 relevant regions, and set prior expectations of data statistics, to allow selective processing
1028 of informative and relevant inputs according to the current task demand.

1029 Needless to say, any theory is only a crude approximation of reality but we hope our
1030 MDL framework will provide a fresh perspective for characterizing neural code. Future
1031 empirical data may be able to evaluate our specific, firing-rate-as-code-length hypothesis
1032 and our speculations on the nature of neural codes in sensory firing patterns.

1033 **Acknowledgements**

1034 We thank Dr. Jay Myung for encouraging us to explore this topic. This work was
1035 supported by AFOSR FA9550-15-1-0439 and NSF 1754211.

1036

1037 **References**

1038 Adrian ED. 1926. The impulses produced by sensory nerve endings. *The Journal of physiology* 61: 1039 49-72

1040 Albrecht DG, Geisler WS. 1991. Motion selectivity and the contrast-response function of simple 1041 cells in the visual cortex. *Visual Neurosci* 7: 531-46

1042 Allman J, Miezin F, McGuinness E. 1985. Stimulus Specific Responses from Beyond the Classical 1043 Receptive Field: Neurophysiological Mechanisms for Local-Global Comparisons in Visual 1044 Neurons. *Annual Review of Neuroscience* 8: 407-30

1045 Anderson JS, Carandini M, Ferster D. 2000b. Orientation tuning of input conductance, excitation, 1046 and inhibition in cat primary visual cortex. *J Neurophysiol* 84: 909-26

1047 Atick JJ, Redlich AN. 1990. Towards a Theory of Early Visual Processing. *Neural Computation* 2: 1048 308-20

1049 Balasubramanian V, Berry MJ, Kimber D. 2001. Metabolically efficient information processing. 1050 *Neural Computation* 13: 799-816

1051 Barlow H. 1972. Single units and sensation: a neuron doctrine for perceptual psychology?

1052 Barlow H, Foldiak P. 1989. Adaptation and decorrelation in the cortex. In *The computing neuron*, 1053 ed. R Durbin, C Miall, G Mitchinson, pp. 54-72. New York: Addison-Wesley

1054 Barron A, Rissanen J, Yu B. 1998. The minimum description length principle in coding and 1055 modeling. *IEEE Transactions on Information Theory* 44: 2743-60

1056 Bell AJ, Sejnowski TJ. 1997. The "independent components" of natural scenes are edge filters. 1057 *Vision Res* 37: 3327-38

1058 Blahut RE. 1972. Computation of channel capacity and rate-distortion functions. *Information 1059 Theory, IEEE Transactions on* 18: 460-73

1060 Blakemore C, Campbell FW. 1969. Adaptation to spatial stimuli. *The Journal of physiology* 200: 1061 11P-13P

1062 Bolz J, Gilbert CD. 1986. Generation of end-inhibition in the visual cortex via interlaminar 1063 connections. *Nature* 320: 362-65

1064 Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. *Nat Rev 1065 Neurosci* 13: 51-62

1066 Carandini M, Heeger DJ, Movshon JA. 1997. Linearity and Normalization in Simple Cells of the 1067 Macaque Primary Visual Cortex. *The Journal of Neuroscience* 17: 8621-44

1068 Chen L. 1982. Topological structure in visual perception. *Science* 218: 699-700

1069 Dayan P, Hinton GE, Neal RM, Zemel RS. 1995. The Helmholtz Machine. *Neural Computation* 7: 1070 889-904

1071 Ding S, Cueva CJ, Tsodyks M, Qian N. 2017. Visual perception as retrospective Bayesian decoding 1072 from high- to low-level features. *Proceedings of the National Academy of Sciences*

1073 Dragoi V, Rivadulla C, Sur M. 2001. Foci of orientation plasticity in visual cortex. *Nature* 411: 80- 1074 6

1075 Dragoi V, Sharma J, Sur M. 2000. Adaptation-induced plasticity of orientation tuning in adult 1076 visual cortex. *Neuron* 28: 287-98

1077 Fang F, Murray SO, Kersten D, He S. 2005. Orientation-Tuned fMRI Adaptation in Human Visual 1078 Cortex. *J Neurophysiol* 94: 4188-95

1079 Felsen G, Shen YS, Yao H, Spor G, Li C, Dan Y. 2002. Dynamic modification of cortical orientation 1080 tuning mediated by recurrent connections. *Neuron* 36: 945-54

1081 Field DJ. 1987. Relations between the statistics of natural images and the response properties of
1082 cortical-cells. *Journal of the Optical Society of America A-Optics Image Science and Vision*
1083 4: 2379-94

1084 Flash T, Hogan N. 1985. The coordination of arm movements - an experimentally confirmed
1085 mathematical-model. *J Neurosci* 5: 1688-703

1086 Gallant JL, Connor CE, Van Essen DC. 1998. Neural activity in areas V1, V2 and V4 during free
1087 viewing of natural scenes compared to controlled viewing. *Neuroreport* 9: 2153-58

1088 Ganmor E, Segev R, Schneidman E. 2011. The Architecture of Functional Interaction Networks in
1089 the Retina. *The Journal of Neuroscience* 31: 3044-54

1090 Geisler WS, Perry JS, Super BJ, Gallogly DP. 2001. Edge co-occurrence in natural images predicts
1091 contour grouping performance. *Vision Res* 41: 711-24

1092 Georgopoulos AP, Schwartz AB, Kettner RE. 1986. Neuronal population coding of movement
1093 direction. *Science* 233: 1416-9

1094 Gibson JJ, Radner M. 1937. Adaptation, after-effect and contrast in the perception of tilted lines.
1095 I. Quantitative studies. *J Exp Psychol* 20: 453-67

1096 Gottlieb JP, Kusunoki M, Goldberg ME. 1998. The representation of visual salience in monkey
1097 parietal cortex. *Nature* 391: 481-84

1098 Grunwald PD. 2007. *The minimum description length principle*. Cambridge, MA: MIT Press.

1099 Grunwald PD, Myung IJ, Pitt MA. 2005. *Advances in minimum description length: theory and*
1100 *applications*. Cambridge, MA: MIT Press.

1101 Han S, Vasconcelos N. 2010. Biologically plausible saliency mechanisms improve feedforward
1102 object recognition. *Vision Res* 50: 2295-307

1103 Harpur GF, Prager RW. 1996. Development of low entropy coding in a recurrent network*.
1104 *Network: Computation in Neural Systems* 7: 277-84

1105 Heeger DJ. 1992. Normalization of cell responses in cat striate cortex. *Visual Neurosci* 9: 181-97

1106 Hinton G, Dayan P, Frey B, Neal R. 1995. The "wake-sleep" algorithm for unsupervised neural
1107 networks. *Science* 268: 1158-61

1108 Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate
1109 cortex. *J Physiol* 195: 215-43

1110 Itti L, Koch C. 2001. Computational modelling of visual attention. *Nat Rev Neurosci* 2: 194-203

1111 Khaligh-Razavi S-M, Kriegeskorte N. 2014. Deep supervised, but not unsupervised, models may
1112 explain IT cortical representation. *PLoS computational biology* 10: e1003915

1113 Kingma DP, Welling M. 2013. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*

1114 Levitt JB, Lund JS. 1997. Contrast dependence of contextual effects in primate visual cortex.
1115 *Nature* 387: 73-76

1116 Li C-Y, Li W. 1994. Extensive integration field beyond the classical receptive field of cat's striate
1117 cortical neurons - Classification and tuning properties. *Vision Res* 34: 2337-55

1118 Li W, Gilbert CD. 2002. Global Contour Saliency and Local Colinear Interactions. *J Neurophysiol*
1119 88: 2846-56

1120 Ma WJ, Beck JM, Latham PE, Pouget A. 2006. Bayesian inference with probabilistic population
1121 codes. *Nat Neurosci* 9: 1432-38

1122 Meng X, Qian N. 2005. The oblique effect depends on perceived, rather than physical,
1123 orientation and direction. *Vision Res* 45: 3402-13

1124 Motoyoshi I, Nishida Sy, Sharan L, Adelson EH. 2007. Image statistics and the perception of
1125 surface qualities. *Nature* 447: 206-09

1126 Myung IJ, Navarro DJ, Pitt MA. 2006. Model selection by normalized maximum likelihood.
1127 *Journal of Mathematical Psychology* 50: 167-79

1128 Navon D. 1977. Forest before trees: The precedence of global features in visual perception.
1129 *Cognitive Psychology* 9: 353-83

1130 Nelson JI, Frost BJ. 1978. Orientation-selective inhibition from beyond the classic visual
1131 receptive field. *Brain Research* 139: 359-65

1132 Nowak LG, Munk MH, Nelson JI, James AC, Bullier J. 1995. Structural basis of cortical
1133 synchronization. I. Three types of interhemispheric coupling. *J Neurophysiol* 74: 2379-
1134 400

1135 Olshausen BA, Field DJ. 1996. Emergence of simple-cell receptive field properties by learning a
1136 sparse code for natural images. *Nature* 381: 607-09

1137 Olshausen BA, Field DJ. 2004. Sparse coding of sensory inputs. *Current Opinion in Neurobiology*
1138 14: 481-87

1139 Paradiso MA. 1988. A theory for the use of visual orientation information which exploits the
1140 columnar structure of striate cortex. *Biol Cybern* 58: 35-49

1141 Pashler H. 1988. Familiarity and visual change detection. *Attention, Perception, & Psychophysics*
1142 44: 369-78

1143 Poggio T, Torre V, Koch C. 1985. Computational vision and regularization theory. *Nature* 317:
1144 314-19

1145 Qian N. 1994. Computing stereo disparity and motion with known binocular cell properties.
1146 *Neural Computation* 6: 390-404

1147 Qian N. 1997. Binocular disparity and the perception of depth. *Neuron* 18: 359-68

1148 Rao RPN, Ballard DH. 1997. Dynamic model of visual recognition predicts neural response
1149 properties in the visual cortex. *Neural Comput* 9: 721-63

1150 Rao RPN, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of
1151 some extra-classical receptive-field effects. *Nat Neurosci* 2: 79-87

1152 Reid RC, Alonso JM. 1995. Specificity of monosynaptic connections from thalamus to visual
1153 cortex. *Nature* 378: 281-4

1154 Reynolds JH, Heeger DJ. 2009. The Normalization Model of Attention. *Neuron* 61: 168-85

1155 Rissanen J. 1978. Modeling by the shortest data description. *Automata* 14: 465-71

1156 Rissanen J. 1983. A universal prior for integers and estimation by minimum description length.
1157 *Annals of Statistics* 11: 416-31

1158 Rissanen J. 1996. Fisher information and stochastic complexity. *IEEE Transactions on Information
1159 Theory* 42: 40-47

1160 Rissanen J. 2001. Strong optimality of the normalized ML models as universal codes and
1161 information in data. *IEEE Information Theory* 47: 1712-17

1162 Ruderman DL. 1994. The statistics of natural images. *Network-Computation in Neural Systems* 5:
1163 517-48

1164 Sanger TD. 1996. Probability density estimation for the interpretation of neural population
1165 codes. *J Neurophysiol* 76: 2790-93

1166 Schiller PH, Finlay BL, Volman SF. 1976. *Quantitative studies of single-cell properties in monkey
1167 striate cortex. II. Orientation specificity and ocular dominance.* 1320-33 pp.

1168 Schneidman E, Berry MJ, Segev R, Bialek W. 2006. Weak pairwise correlations imply strongly
1169 correlated network states in a neural population. *Nature* 440: 1007-12

1170 Shannon CE. 1948. A mathematical theory of communication. *Bell system technical journal* 27

1171 Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, et al. 2006. The Structure of Multi-Neuron
1172 Firing Patterns in Primate Retina. *The Journal of Neuroscience* 26: 8254-66

1173 Sigman M, Cecchi GA, Gilbert CD, Magnasco MO. 2001. On a common circle: Natural scenes and
1174 Gestalt rules. *P Natl Acad Sci USA* 98: 1935-40

1175 Simoncelli EP, Heeger DJ. 1998. A model of neuronal responses in visual area MT. *Vision Res* 38: 743-61

1176 Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. *Annual Review of Neuroscience* 24: 1193-216

1177 Sims CR. 2018. Efficient coding explains the universal law of generalization in human perception. *Science* 360: 652-56

1178 Stocker AA, Simoncelli EP. 2006. Sensory adaptation within a Bayesian framework for perception. In *Advances in Neural Information Processing Systems*, ed. Y Weiss, B Scholkopf, J Platt. Cambridge MA: MIT Press

1179 Tanaka H, Krakauer JW, Qian N. 2006. An optimization principle for determining movement duration. *J Neurophysiol* 95: 3875-86

1180 Teich AF, Qian N. 2003. Learning and adaptation in a recurrent model of V1 orientation selectivity. *J Neurophysiol* 89: 2086-100

1181 Teich AF, Qian N. 2006. Comparison among some models of orientation selectivity. *J Neurophysiol* 96: 404-19

1182 Teich AF, Qian N. 2010. V1 orientation plasticity is explained by broadly tuned feedforward inputs and intracortical sharpening. *Visual Neurosci* 27: 57-73

1183 Thorpe S, Fize D, Marlot C. 1996. Speed of processing in the human visual system. *Nature* 381: 520-22

1184 Tishby N, Pereira FC, Bialek W. 2000. The information bottleneck method. *arXiv:physics/0004057*

1185 van Kan PLE, Scobey RP, Gabor AJ. 1985. Response covariance in cat visual cortex. *Exp Brain Res* 60: 559-63

1186 Webster MA, De Valois RL. 1985. Relationship between spatial-frequency and orientation tuning of striate-cortex cells. *Journal of the Optical Society of America A-Optics & Image Science* 2: 1124-32

1187 Weiss Y, Simoncelli EP, Adelson EH. 2002. Motion illusions as optimal percepts. *Nat Neurosci* 5: 598-604

1188 Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. *Proceedings of the National Academy of Sciences* 111: 8619-24

1189 Yang Z, Purves D. 2003. A statistical explanation of visual space. *Nat Neurosci* 6: 632-40

1190 Yenduri PK, Zhang J, Gilbert A. *Proceedings of the Third International Conference on Intelligent Control and Information Processing, ICICIP 2012* 2012.

1191 Yuille A, Kersten D. 2006. Vision as Bayesian inference: analysis by synthesis? *Trends in Cognitive Sciences* 10: 301-08

1192 Zhang J. 2011. Model selection with informative normalized maximal likelihood: Data prior and model prior. In *Descriptive and Normative Approaches to Human Behavior*, ed. EN Dzhafarov, L Perry, pp. 303-19. New Jersey: World Scientific

1193 Zhaoping L. 2002. A saliency map in primary visual cortex. *Trends in Cognitive Sciences* 6: 9-16

1194 Zhaoping L. 2014. *Understanding vision: theory, models, and data*. London, UK: Oxford University Press.

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217