
1 

A Tight Convergence Analysis for Stochastic Gradient Descent with 

Delayed Updates 

 Yossi Arjevani Ohad Shamir 

Weizmann Institute of Science 
Rehovot 7610001, Israel 

{yossi.arjevani,ohad.shamir}@weizmann.ac.il 

Nathan Srebro 

TTI Chicago 

Chicago, IL 60637 
nati@ttic.edu 

Abstract 

We provide tight finite-time convergencebounds for gradient descent and stochastic gradient 

descent on quadratic functions, when the gradients are delayed and reflect iterates from τ rounds ago. 

First, we show that without stochastic noise, delays strongly affect the attainable optimization error: In 

fact, the error can be as bad as non-delayed gradient descent ran on only 1/τ of the gradients. In sharp 

contrast, we quantify how stochastic noise makes the effect of delays negligible, improving on previous 

work which only showed this phenomenon asymptotically or for much smaller delays. Also, in the 

context of distributed optimization, the results indicate that the performance of gradient descent with 

delays is competitive with synchronous approaches such as mini-batching. Our results are based on a 

novel technique for analyzing convergence of optimization algorithms using generating functions. 

1 Introduction 

Gradient-based optimization methods are widely used in machine learning and other large-scale 

applications, due to their simplicity and scalability. However, in their standard formulation, they are also 

strongly synchronous and iterative in nature: In each iteration, the update step is based on the gradient at 

the current iterate, and we need to wait for this computation to finish before moving to the next iterate. 

For example, to minimize some function F, plain stochastic gradient descent initializes at some point w0, 

and computes iterates of the form 

 wk+1 = wk − η(∇F(wk) + ξk) , (1) 

where ∇F(wk) is the gradient of F at wk, η is the step size and ξ1,ξ2,... are independent zero-mean noise 

terms. Unfortunately, in several important applications, a direct implementation of this is too costly. For 

example, consider a setting where we wish to optimize a function F using a distributed platform, consisting 

of several machines with shared memory. We can certainly implement gradient descent, by letting one of 

the machines compute the gradient at each iteration, but this is clearly wasteful, since just one machine is 

non-idle at any given time. Thus, it is highly desirable to use methods which parallelize the computation. 

One approach is to employ mini-batch gradient methods, which parallelize the computation of the 

stochastic gradient, and their analysis is relatively well understood (e.g. [6, 5, 19, 24]). However, these 

methods are still generally iterative and synchronous in nature, and hence can suffer from problems such 

as having to wait for the slowest machine at each iteration. 

A second and popular approach is to utilize asynchronous gradient methods. With these methods, each 

update step is not necessarily based just on the gradient of the current iterate, but possibly on the 

gradients of earlier iterates (often called stale updates). For example, when optimizing a function using 

several machines, each machine might read the current iterate from a shared parameter server, compute 

arXiv:1806.10188v1  [math.OC]  26 Jun 201 

http://arxiv.org/abs/1806.10188v1
http://arxiv.org/abs/1806.10188v1


2 

the gradient at that iterate, and then update the parameters, even though other machines might have 

performed other updates to the parameters in the meantime. Although such asynchronous methods often 

work well in practice, analyzing them is much trickier than synchronous methods. 

In our work, we focus on arguably the simplest possible variant of these methods, where we perform 

plain stochastic gradient descent on a convex function F on Rd, with a fixed delay of τ > 0 in the gradient 

computation: 

 wk+1 = wk − η(∇F(wk−τ) + ξk) , (2) 

where we assume that w0 = w1 = ... = wτ. Compared to Eq. (1), we see that the gradient is computed with 

respect to wk−τ rather than wk. Already in this simple formulation, the precise effect of the delay on the 

convergence rate is not completely clear. For example, for a given number of iterations k, how large can τ 

be before we might expect a significant deterioration in the accuracy? And under what conditions? 

Although there exist some prior results in this direction (which we survey in the related work section 

below), these questions have remained largely open. 

In this paper, we aim at providing a tight, finite-time convergence analysis for stochastic gradient 

descent with delays, focusing on the simple case where F is a convex quadratic function. Although a 

quadratic assumption is non-trivial, it arises naturally in problems such as least squares, and is an 

important case study since all smooth and convex function are locally quadratic close to their minimum 

(hence, our results should still hold in a local sense). In future work, we hope to show that our results are 

also applicable more generally. 

First, we consider the case of deterministic delayed gradient descent (DGD, defined in Eq. (2) with ξk = 

0). Assuming the step size η is chosen appropriately, we prove that 

 

after k iterations, over the class of λ-strongly convex µ-smooth quadratic functions with a minimum at w∗, 

and 

 

over the class of µ-smooth convex quadratic functions with minimum at w∗. In terms of iteration 

complexity, the number of iterations k required to achieve a fixed optimization error of at most ǫ in the 

strongly convex and the convex cases is therefore 

  and  (3) 

respectively, where κ := µ/λ is the so-called condition number1. When τ is a bounded constant, these 

bounds match the known iteration complexity of standard gradient descent without delays [17]. However, 

as τ increases, both bounds deteriorate linearly with τ. Notably, in our setting of delayed gradients, this 

                                                           

1 Following standard convention, we use here the O-notation to hide constants, and tilde O˜-notation to hide constants and 

factors polylogarithmic in the problem parameters. 



3 

implies that DGD is no better than a trivial algorithm, which performs a single gradient step, and then waits 

for τ rounds till the delayed gradient is received, before performing the next step (thus, the algorithm is 

equivalent to non-delayed gradient descent with k/τ gradient steps, resulting in the same linear 

deterioration of the iteration complexity with τ). 

Despite these seemingly weak guarantees, we show that they are in fact tight in terms of τ, by proving 

that this linear dependence on τ is unavoidable with standard gradient-based methods (including gradient 

descent). The dependence on the other problem parameters in our lower bounds is a bit weaker than our 

upper bounds, but can be matched by an accelerated gradient descent procedure (see Sec. 3 for more 

details). 

In the second part of our paper, we consider the case of stochastic delayed gradient descent (SDGD, 

defined in (2)). Assuming ξk satisfies E[kξkk2] ≤ σ2 and that the step size η is appropriately tuned, we prove 

that 

  . (4) 

for λ-strongly convex, µ-smooth quadratic functions with minimum at w∗, and 

 . (5) 

for µ-smooth convex quadratic functions. In terms of iteration complexity, these correspond to 

  and  

in the strongly convex and convex cases respectively, where again κ := µ/λ. As in the deterministic case, 

when τ is a bounded constant, these bounds match the known iteration complexity bounds for standard 

gradient descent without delays [3, 20]. Moreover, these bounds match the bounds for the deterministic 

case in Eq. (3) when σ2 = 0 (i.e. zero noise), as they should. However, in sharp contrast to the deterministic 

case, the dependence on τ in Eq. (6) is quite different: The delay τ only appears in second-order terms (as 

ǫ → 0), and its influence becomes negligible when ǫ is small enough. The same effect can be seen in Eq. 

(4) and Eq. (5): Once the number of iterations k is large enough, the first term in both bounds dominates, 

and τ no longer plays a role. More specifically: 

• In the strongly convex case, the effect of the delay becomes negligible once the target accuracy ǫ is 

sufficiently smaller than O˜(σ2/(µτ)), or when the number of iterations k is sufficiently larger than Ω(˜ 

τµ/λ). In other words, assuming the condition number µ/λ is bounded, we can have the delay τ nearly 

as large as the total number of iterations k (up to log-factors), without significant deterioration in the 

convergence rate. Note that this is a mild requirement, since if τ ≥ k, the algorithm receives no gradients 

and makes no updates. 

• In the convex case, the effect of the delay becomes negligible once the target accuracy ǫ is sufficiently 

smaller than O˜(σ2/(µτ)), or when the number of iterations k is sufficiently larger than Ω((˜ kw0 − 



4 

w∗kµτ/σ)2). Compared to the strongly convex case, here the regime is the same in terms of ǫ, but the 

regime in terms of k is more restrictive: We need k to scale quadratically (rather than linearly) with τ. 

 
Thus, the maximal delay τ with no performance deterioration is order of √k. 

Finally, it is interesting to compare our bounds to those of mini-batch stochastic gradient descent 

(SGD), which can be seen as a synchronous gradient-based method to cope with delays, especially in 

distributed optimization and learning problems [6, 5, 1]. In mini-batch SGD, each update step is performed 

only after accumulating and averaging a mini-batch of b stochastic gradients, all with respect to the same 

point: 

 , 

Although the algorithm makes an update only every b stochastic gradient computations, the averaging 

reduces the stochastic noise, and helps speed up convergence. Moreover, this can be seen as a particular 

type of algorithm with delayed updates (with the delay correspond to b), as we use ∇F(wk) to compute 

iterate wk+b. The important difference is that it is an inherently synchronous method, that waits for all b 

stochastic gradients to be computed before performing an update step. Remarkably, the bounds we 

proved above for delayed SGD are essentially identical to those known for mini-batch SGD, with the delay 

τ replaced by the mini-batch size b (at least in the convex case where mini-batch SGD has been more 

thoroughly analyzed). This indicates that an asynchronous method like delayed SGD can potentially match 

the performance of synchronous methods like mini-batch SGD, even without requiring synchronization – 

an important practical advantage. 

Analyzing gradient descent with delays is notoriously tricky, due to the dependence of the updates on 

iterates produced many iterations ago. The technique we introduce for deriving our upper bounds is 

primarily based on generating functions, and might be useful for studying other optimization algorithms. 

We discuss this approach more thoroughly in Section 2. The rest of the paper is devoted mostly to 

presenting the formal theorems and an explanation of how they are derived (with technical details 

relegated to the supplementary material). 

Related Work 

There is a huge literature on asynchronous versions of gradient-based methods (see for example the 

seminal book [2]), including treating the effect of delay. However, most of these do not consider the 

setting we study here. For example, there has been much recent interest in asynchronous algorithms, in 

a model where there is a delay in updating individual coordinates in a shared parameter vector (e.g., the 

Hogwild! algorithm of [18], or more recently [14, 13]). Of course, this is a different model than ours, where 

the updates use a full gradient vector. Other works (such as [21]) focus on a setting where different agents 

in a network can perform local communication, which is again a different model than ours. Yet other works 

focus on sharp but asymptotic results, and do not provide guarantees after a fixed number k of iterations 

(e.g., [4]). 



5 

Moving closer to our setting, [15] showed convergence for delayed gradient descent, with the result 

shown in an adversarial online learning setting, for general convex functions, and this bound is known to 

bep implying an τ/k convergence rate for convex functions. A similar bound on average regret has been 

optimal [10]. These results differ from our setting, in that they consider possibly non-smooth functions, in 

 
which the dependence on k is no better than 1/√k even without delays and no noise, and where the delay 

τ 

 
always plays a significant role. In contrast, we focus here on smooth functions, where rates better than 

1/√k are possible, and where the effect of τ is more subtle. In [7], the authors study a setting very similar 

to ours in the deterministic case, and manage to prove a linear convergence rate, but for a less standard 

algorithm, different than the one we study here (with iterates of the form wt+1 = wt−τ − ∇F(wt−τ)). 

Perhaps the works closest to ours are [1, 8], which study stochastic gradient descent with delayed 

gradients. Moreover, they consider a setting more general than ours, where the delay at each iteration is 

any integer up to τ (rather than fixed τ), and the functions are not necessarily quadratic. On the flip side, 

their bounds are significantly weaker. For example, for smooth convex functions and an appropriate step 

size, [1, Corollary 1] show a bound of 

 . 

in terms of k,τ,σ. Note that this bound is vacuous in the deterministic or near-deterministic case (where σ2 

≈ 0), and is weaker than our bounds. With a different choice of the step size, it is possible to get a non-

vacuous bound even if σ2 → 0, but the dependence on τ becomes even stronger. [8] improve the bound 

to  and  . 

Oin the convex and strongly convex case respectively. Even if√ σ2 = 0, the iteration complexity is O(τ2/ǫ) 

and 

(τ2/ǫ), and implies a quadratic dependence on τ (whereas in our bounds the scaling is linear). When 

σ2 is positive, the effect of delay on the bound is negligible only up to  (in contrast to 

O˜(√k) or even O˜(k) in our bounds). We note that there are several other works which study a similar 

setting (such as [22]), but do not result in bounds which improve on the above. 

Finally, we note that [12] attempt to show that for stochastic gradient descent with delayed updates, 

the dependence on the delay τ is negligible after sufficiently many iterations. Unfortunately, as pointed 

out in [1], the analysis contains a bug which make the results invalid. 



6 

2 Framework and the Generating Functions Approach 

Throughout, we will assume that F is a convex quadratic function specified by 

  (7) 

where A ∈ Rd×d is a positive semi-definite matrix whose eigenvalues a1,...,ad are in [0,µ] (where µ is the 

smoothness parameter), b ∈ Rd and c ∈ R. To make the optimization problem meaningful, we further 

assume that F is bounded from below, which implies that it has some minimizer w∗ ∈ Rd at which the 

gradient vanishes (for completeness, we provide a proof in Lemma 3 in the supplementary material). 

Letting ek = wk − w∗, it is easily verified that 

  , (8) 

so our goal will be to analyze the dynamics of ek. 

To explain our technique, consider the iterates of DGD on the function F, which can be written as wk+1 

= wk−η∇F(wk−τ) = wk−η(Awk−τ +b). Since ∇F(w∗) = 0, we have w∗ = w∗−η(Aw∗+b), by which it follows 

that the error term ek = wk −w∗, satisfies the recursion ek+1 = ek −ηAek−τ, and (by definition of the 

algorithm) e0 = e1 = ... = eτ. By some simple arguments, our analysis then boils down to bounding the 

elements of the scalar-valued version of this sequence, namely 

  (9) 

for some integer τ ≥ 0 and non-negative real number α ≥ 0. To analyze this sequence, we rely on tools 

from the area of generating functions, which have proven very effective in studying growth rates of 

sequences in many areas of mathematics. We now turn to briefly describe these functions and our 

approach (for general surveys on generating functions, see [25, 9, 23], to name a few). 

Generally speaking, generating functions are formal power series associated with infinite sequences 

of numbers . Concretely, given a sequence (bk) of numbers in a ring R, we define the corresponding 

generating function as a formal power series in z, defined as . The set of all formal 

power series in z over R is denoted by R[[z]]. Moreover, given two power series defined by sequences 

(ak) and (ck), we can define their addition as the power series corresponding to (ak + ck), and their 

multiplication as the coefficients of the Cauchy product of the power series, namely (Pk akzk)(Pk ckzk) = 

Pk(Pkl=0 alck−l)zk. 

In particular, over the reals, R[[z]] endowed with addition and multiplication is a commutative ring, and 

the set of matrices with elements in R[[z]] (with the standard addition and multiplication operations) 

forms a matrix algebra, denoted by M(R[[z]]). We will often use the fact that any matrix, whose entries 



7 

are power series with scalar coefficients, can also be written as a power series with matrix-valued 

coefficients: More formally, M(R[[z]]) is naturally identified with the ring of formal power series with real 

matrix coefficients M(R)[[z]]. To extract the coefficients of a given M(z) ∈ M(R[[z]]), we shall use the 

conventional bracket notation [zk]M(z), defined to be a matrix whose entries are the k’th coefficients of 

the respective formal power series. 

Returning to Eq. (9), we write (bk) as a formal power series denoted by f(z), and proceed as follows, 

 (10) 

Denoting 

πα(z) := 1 − z + αzτ+1 

and rearranging terms gives 

  (11) 

(by a well-known fact, πα(z) is invertible in R[[z]], as its constant term 1 is trivially invertible in R – see 

surveys mentioned above). We now see that the problem of bounding the coefficients (bk) is reduced to 

that of estimating the coefficients of the rational function 1/πα(z), written as a power series. Note that 

for the analogous problem where the elements of the sequence are vectors  and the factor α is 

replaced by αA for some square matrix A, the same derivation as above yields

 
(likewise, I − z + Az is invertible in M(R)[[z]] as its constant term I is invertible in M(R)). 

To estimate the coefficients of 1/πα(z), we form its corresponding partial fraction decomposition. 

First, we note that as a polynomial of degree τ +1, πα(z) has τ + 1 roots ζ1,...,ζτ+1 (possibly complex-valued, 

and all non-zero since πα(0) = 1 for any α ∈ R). Assuming α is chosen so that all the roots are distinct 

(equivalently, ), we have by a standard derivation 

. 

Thus, 

  . (12) 

To bound the magnitude of , we invoke the following lemma, whose proof (in the 
supplementary material) relies on some tools from complex analysis: 



8 

Lemma 1. Let α ∈ (0,1/20(τ + 1)], and assume |ζ1| ≤ |ζ2| ≤ ··· ≤ |ζτ+1|, then 

1. ζ1 is a real scalar satisfying 1/ζ1 ≤ 1 − α, and for . 

2. , for any i ∈ [τ + 1]. 

With this lemma at hand, we have 

, 

where the last inequality is due to 

Lemma 5 (provided in the 

supplementary material). Moreover, one can use elementary arguments to show that |[zk]1/πα(z)| ≤ 1 , 

as long as α ∈ [0,1/τ] (see 

Lemma 2 in the supplementary material). Overall, for any τ ≥ 0, we have 

, 

(13) 

which, using Eq. (11), gives the 

desired bounds on the elements  defined in Eq. (9). 

3 Deterministic Delayed Gradient Descent 

We start by analyzing the convergence of DGD for λ-strongly convex and µ-smooth quadratic functions, 

where the eigenvalues of A are assumed to lie in [λ,µ] for some µ ≥ λ > 0. 

Following the same line of the derivation as in Eq. (10), we obtain e(z) = (I − Iz + ηAzτ+1)−1e0. 

Letting [d] := {1,2,... ,d}, it follows that for any k ≥ (τ + 1)ln(2(τ + 1)), 

(14) 

, 

where (a) follows by the linearity,(that reveals that the 

spectral norm of a matrix polynomial equals the absolute value 

of the same polynomial in one of its eigenvalues), (c) by Ineq. 13 for ηµ ∈ (0,1/(20(τ + 1))], and (d) by 



9 

the fact that ai ≥ λ for all i. Moreover, by Eq. (8) and the fact that all eigenvalues of A are at most µ, we 

arrive at the following bound: 

Theorem 1. For any delay τ ≥ 0 and k ≥ (τ + 1)ln(2(τ + 1)), running DGD with step size η ∈ 

(0,1/(20µ(τ + 1))] on a µ-smooth, λ-strongly convex quadratic function yields 

F(wk) − F(w∗) ≤ 5µ(1 − ηλ)2(k+1) kw0 − w∗k2. 

In particular, setting η = Ω(1/µτ), we get that 

 . 

Note that the assumption that k ≥ (τ + 1)ln(2(τ + 1)) is very mild, since if k ≤ τ then the algorithm 

trivially makes no updates after k rounds. 

We now turn to analyze the case of µ-smooth convex quadratic functions, where the eigenvalues of 

the matrix A are assumed to lie in [0,µ]. Following the same derivation as in Ineq. 14 and using Ineq. 8, we 

have for any k ≥ (τ + 1)ln(2(τ + 1)) and η ∈ (0,1/(20µ(τ + 1))], 

(15) 

, 

where e = 2.718... is Euler’s number, (a) is by the fact that the spectral norm of a matrix polynomial equals 

the absolute value of the same polynomial in one of its eigenvalues, and (b) is by the fact that 

 for any i ∈ [d] (see Lemma 7 in the supplementary material).We have 

thus arrived at the following bound for the convex case: 

Theorem 2. For any delay τ ≥ 0 and k ≥ (τ + 1)ln(2(τ + 1)), running DGD with step size η ∈ 

(0,1/(20µ(τ + 1))] on a µ-smooth convex quadratic function yields 

 . 

In particular, if we set η = Ω(1/µτ), we get that 

 . 

As discussed in the introduction, the theorems above imply that a delay of τ increases the iteration 

complexity by a factor of τ. We now show lower bounds which imply that this linear dependence on τ is 

unavoidable, for a large family of gradient-based algorithms (of which gradient descent is just a special 



10 

case). Specifically, we will consider any iterative algorithm producing iterates w0,w1,... which satisfies the 

following: 

 w0 = ... = wτ = 0 and ∀k ≥ t, wk+1 ∈ span{∇F(w0),∇F(w1),...,∇F(wk−τ)} . (16) 

This is a standard assumption in proving optimization lower bounds (see [17]), and is satisfied by most 

standard gradient-based methods, and in particular our DGD algorithm. We also note that this algorithmic 

assumption can be relaxed at the cost of a more involved proof, similar to [16, 26] in the non-delayed 

case. 

Theorem 3. Consider any algorithm satisfying Eq. (16). Then the following holds for any k ≥ τ + 1 and 

sufficiently large dimensionality d: 

• There exists a µ-smooth, λ-strongly convex function F over Rd, such that 

 . 

• There exists a µ-smooth, convex quadratic function F over Rd, such that 

 . 

The proof of the theorem is very similar to standard optimization lower bounds for gradient-based 

methods without delays (e.g. [17, 11]), and is presented in the supplementary material. In fact, our main 

contribution is to recognize that the proof technique easily extends to incorporate delays. 

In terms of iteration complexity, these bounds correspond to  in 

the strongly convex case, and  in the convex case, which show that the linear 

dependence on τ is inevitable. The dependence on the other problem parameters is somewhat better 

than in our upper bounds, but this is not just an artifact of the analysis: In our delayed setting, the lower 

bounds can be matched by running accelerated gradient descent (AGD) [17], where each time we perform 

an accelerated gradient descent step, and then stay idle for τ iterations till we get the gradient of the 

current point. Overall, we perform k/τ accelerated gradient steps, and can apply the standard analysis of 

AGD to get an iteration complexity which is τ times the iteration complexity of AGD without delays. These 

match the lower bounds above up to constants. We believe it is possible to prove a similar upper bound 

for AGD performing an update with a delayed gradient at every iteration (like our DGD procedure), but 

the analysis is more challenging than for plain gradient descent, and we leave it to future work. 



11 

4 Stochastic Delayed Gradient Descent 

In this section, we study the case of noisy (stochastic) gradient updates, and the SDGD algorithm, in which 

the influence of the delay is quite different than in the noiseless case. Instantiating SDGD for quadratic 

F(w) (defined in (7)) results in the following update rule 

 wk+1 = wk − η∇F(wk−τ + ǫk) = wk − η(Awk−τ + b + ξk) , (17) 

where ξk, k ≥ 0 are independent zero-mean noise terms satisfying E[kξtk2] ≤ σ2. As before, in terms of the 

error term ek = wk − w∗, Eq. (17) reads as ek+1 = ek − ηAek−τ − ηξk. Given a realization of (ξk), we denote its 

associated formal power series by . By an analysis similar to before, we get that the 

formal power series of the error terms (ek) satisfies 

e(z) = (I − Iz + ηAzτ+1)−1(e0 − ηg(z)) . 

We can now bound the error terms by extracting the corresponding coefficients of e(z). Letting D := (I − 

Iz + ηAzτ+1)−1, we have for any k ≥ (τ + 1)ln(2(τ + 1)) 

  (18) 

where (a) follows by the linearity of the bracket operation [zk] and the assumption that E[ξk] = 0 for all k 

(hence E[g(z)] = 0), (b) follows by the Cauchy product for formal power series, and (c) by the hypothesis 

that ξk are independent and satisfy E[kξkk2] ≤ σ2 for all k. We then upper bound both terms, building on 

Ineq. 13 (see the supplementary material for a full derivation), resulting in the following theorem: 

Theorem 4. Assuming the step η satisfies holds for SDGD: 

, and k ≥ (τ + 1)ln(2(τ + 1)), the following 

• For λ-strongly convex, µ-smooth quadratic convex functions, E[F(wk) − F(w∗)] is at most 

 . 

In particular, by tuning η appropriately, 



12 

 . 

• For µ-smooth quadratic convex functions, E[F(wk) − F(w∗)] is at most 

 . 

In particular, by tuning η appropriately, 

 . 

As discussed in the introduction in detail, the theorem implies that the effect of τ is negligible once k 

is sufficiently large. 

Acknowledgements 

This work was supported by NSF-BSF award 1718970.  

 

References 

[1] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Advances in Neural 

Information Processing Systems, pages 873–881, 2011. 

[2] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numerical methods, 

volume 23. Prentice hall Englewood Cliffs, NJ, 1989. 

[3] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends R 

in Machine Learning, 8(3-4):231–357, 2015. 

[4] Sorathan Chaturapruek, John C Duchi, and Christopher Ré. Asynchronous stochastic convex 

optimization: the noise is in the noise and sgd don’t care. In Advances in Neural Information 

Processing Systems, pages 1531–1539, 2015. 

[5] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via 

accelerated gradient methods. In Advances in neural information processing systems, pages 1647– 

1655, 2011. 

[6] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction 

using mini-batches. Journal of Machine Learning Research, 13(Jan):165–202, 2012. 

[7] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. A delayed proximal gradient 

method with linear convergence rate. In Machine Learning for Signal Processing (MLSP), 2014 IEEE 

International Workshop on, pages 1–6. IEEE, 2014. 



13 

[8] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch 

algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control, 

61(12):3740– 3754, 2016. 

[9] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. cambridge University press, 2009. 

[10] Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Online learning under delayed feedback. In 

Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1453–

1461, 2013. 

[11] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. arXiv preprint 

arXiv:1507.02000, 2015. 

[12] John Langford, Alex J Smola, and Martin Zinkevich. Slow learners are fast. Advances in Neural 

Information Processing Systems, 22:2331–2339, 2009. 

[13] Rémi Leblond, Fabian Pederegosa, and Simon Lacoste-Julien. Improved asynchronous parallel 

optimization analysis for stochastic incremental methods. arXiv preprint arXiv:1801.03749, 2018. 

[14] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and 

Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. arXiv preprint 

arXiv:1507.06970, 2015. 

[15] A Nedic, Dimitri P Bertsekas, and Vivek S Borkar. Distributed asynchronous incremental subgradient´ 

methods. Studies in Computational Mathematics, 8(C):381–407, 2001. 

[16] AS Nemirovsky and DB Yudin. Problem complexity and method efficiency in optimization. 1983. 

Willey-Interscience, New York, 1983. 

[17] Yurii Nesterov. Introductory lectures on convex optimization, volume 87. Springer Science & Business 

Media, 2004. 

[18] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to 

parallelizing stochastic gradient descent. In Advances in neural information processing systems, pages 

693–701, 2011. 

[19] Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In 

Communication, 

Control, and Computing (Allerton), 2014 52nd Annual Allerton Conference on, pages 850–857. IEEE, 2014. 

[20] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: 

Convergence results and optimal averaging schemes. In International Conference on Machine 

Learning, pages 71– 79, 2013. 

[21] Benjamin Sirb and Xiaojing Ye. Decentralized consensus algorithm with delayed and stochastic 

gradients. arXiv preprint arXiv:1604.05649, 2016. 



14 

[22] Suvrit Sra, Adams Wei Yu, Mu Li, and Alexander J Smola. Adadelay: Delay adaptive distributed 

stochastic convex optimization. arXiv preprint arXiv:1508.05003, 2015. 

[23] Richard P Stanley. Enumerative combinatorics. vol. i, the wadsworth & brooks/cole mathematics 

series, wadsworth & brooks, 1986. 

[24] Martin Takác, Avleen Singh Bijral, Peter Richtárik, and Nati Srebro. Mini-batch primal and dual 

methods for svms. In ICML (3), pages 1022–1030, 2013. 

[25] Herbert S Wilf. generatingfunctionology. AK Peters/CRC Press, 2005. 

[26] Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives. 

In Advances in neural information processing systems, pages 3639–3647, 2016.  



15 

A Proof of Lemma 1 

Recall thatz + αzτ+1, and its roots, denoted by ζi, are ordered such that |ζ1| ≤ |ζ2| ≤ 

 . In order to bound from above the magnitude of 

1/ζi, we analyze a related polynomial 

pα(z) = zτ+1πa(1/z) which takes the following explicit form 

pα(z) = zτ+1 − zτ + α = (z − 1)zτ + α. 

The roots of pα are precisely 1/ζi (note that, πa(0) = 1 = 06 , hence ζi = 06 , i ∈ {1,...,τ + 1}). Thus, bounding 

from above (below) the magnitude of the roots of pα(z) gives an upper (lower) bound for |1/ζi|. 

We first establish that for any  has a real-valued root in . 

Indeed, for any such α, we have on the one hand,  

pα(1 − α) = − α(1 − α)τ + α = α(1 − (1 − α)τ) 

and on the other hand (using the fact that (1 − 1/2x)x ≥ 1/2 for all x ≥ 1), 

≥ 0, 

 , (19) 

so by continuity of pz, we get that a real-valued root exists in . 

Next, we show that τ non-dominant roots of pα are of absolute value smaller than . To 

this end, we invoke Rouché’s theorem, which states that for any two holomorphic 

functions f,g in some region K ⊆ C with closed contour ∂K, iffor any z ∈ ∂K, then f and 

f + g have the same number of zeros (counted with multiplicity) inside . In particular, choosing f(z) = −zτ, 

g(z) = zτ+1+α and K = {z : |z| ≤ R}, it follows that if |zτ+1 + α| < | − zτ| for all z such that |z| = R, then f + g 

(which equals our polynomial pα) has the same number of zeros as f = −zτ inside K (namely, exactly τ). 

However, since pα is a degree τ +1 polynomial, it has exactly τ +1 roots, so the only root of absolute value 

larger than R is the real-valued one we found earlier. It remains to verify the 

condition |zτ+1 +α| < |−zτ| for all z such that . For that, it is sufficient to show that |zτ+1| + α < |zτ| for all 

such z, or equivalently, + . 



16 

 

By the inequality 1 − 1/(x + 1) ≥ exp(−1/x) (see Lemma 4 below), we have 

 
It is straightforward to verify that 

implying that  

where in the last inequality we used the assumption that . As mentioned earlier, the roots 

of pα are exactly the reciprocals of the roots of πα, therefore we conclude 

 . (20) 

We now turn to bound |πα′ (ζi
)| from above. By definition, any root of πa satisfies . Thus, 

 (note that as mentioned in the first part of the proof, ζi = 06). This, in turn, gives 

 . (21) 

In the previous parts of the proof, we showed that the distance from any root of pα to the contour {z | |z| 

= 1 − 1/(τ + 1)} is bounded from below by  (Ineq. 19 and Ineq. 20), therefore 



17 

, 

thus concluding the proof. 

B Technical Lemmas 

Lemma 2. For any α ∈ [0,1/τ] and k ≥ 0, it holds that |[zk]1/πα(z)| ≤ 1. 

Proof. Recall that by Eq. (11), . Therefore, suffices it to prove that (bk) (defined in 9) with b0 

= 1 and α ∈ [0,1/τ], satisfies |bk| ≤ 1 for any k ≥ 0. 

For the sake of simplicity, we slightly extend (bk) to the negative indices by defining b−τ = b−τ+1 = ··· = 

b−1 = 1. We proceed by full induction. The base case holds trivially by the definition of the initial conditions 

of bk. For the induction step, suppose that |b0|,...,|bk| ≤ 1. We have bk+1 = bk − αbk−τ, and 

therefore 

. 

Using the recurrence relation again, this equals 

 . 

By the induction hypothesis, this equals (1 − α)bk + αrk, where |rk| ≤ ατ ≤ 1. Thus, bk+1 is a weighted average 

of bk and rk which are both in [−1,+1] by the induction hypothesis and the above, implying that we must 

have bk+1 ∈ [−1,+1] as well. Thus, proving the induction step. 

 

Lemma 3. Let be a convex quadratic function defined over 

Rd. If F is bounded from below, then F has a minimizer at which the gradient vanishes. 

Proof. Since F is convex and twice differentiable, A is positive semidefinite. In particular, we have Rd = 

ker(A) ⊕ im(A) (namely, the direct sum of the null space and the image space of A). Thus, b can be 

expressed as a sum of two orthogonal vectors b = b⊥ + b¯, where b⊥ ∈ ker(A) and b¯ ∈ im(A). For any α ∈ 

R, we have 



18 

F(αb⊥) = 1((b⊥)⊤Ab⊥)α2 + αb⊤b⊥ = αkb⊥k2. 

2 

By the hypothesis, F is bounded from below, hence b⊥ must vanish (otherwise we can take α → −∞ and 

make F as negative as we wish). In particular, b = b¯ ∈ im(A). Let y ∈ Rd be such that Ay = b, then ∇F(−y) 

= A(−y) + b = 0. Lastly, F is convex, therefore −y must be a (global) minimizer, thus concluding the proof.

  

Lemma 4. For any x > 0, it holds that 1 − 1/(x + 1) ≥ exp(−1/x). 

Proof. Since (ln(1 + x))′ = 1/(1 + x) > 0 for any x > −1, it follows by the mean-value theorem that for any 

x > 0 

 

for some ξ ∈ (0,x), hence ln(1 + x) ≤ x for any x > 0. In particular, for any x > 0 we have 

. 

Taking the exponent of both sides yields the desired lower bound.  

Lemma 5. Let τ ≥ 0. If α ∈ (0,1/(20(τ + 1)] then 

 . 

In particular, for k ≥ (τ + 1)ln(2(τ + 1)) − 1, we have 

 . (22) 

Proof. 

 , 

where the latter inequality follows from that fact that . Now, 

 



19 

k 2 

∗ k 2 ≥ 
P d 

i = m +1 q 2 i 

P d 
i q 2 i = q 2( m +1) 1 − q 2( d − m − 1) 

1 − q 2 d ≥ 
1 

2 
q 2( m +1) ≥ 

1 

2 
exp 

 
− 

4( m +1) 
√ 

κ − 1 

 

Lastly, to derive Ineq. 22, we have 

, 

where the last inequality by the assumption k ≥ (τ + 1)ln(2(τ + 1)) − 1. 

 

C Proof of Thm. 3 

The proof technique is based on a construction, first presented in [17, Section 2.1.2], which has been 

proven effective in various settings of optimization since then. 

First, we address the strongly convex case. Given µ > λ > 0, we consider the following function (devised 

by [11]): 

 , (23) 

where κ = µ/λ as before, ǫ1 denotes the first unit vector, and A is a d × d matrix defined as follows 

  . (24) 

It can be easily verified that F is µ-smooth and λ-strongly convex function. Moreover, by [11, Lemma 8], it 

follows that the minimizer of f is w∗ = (q,q2,...,qd) where q = (√κ − 1)/(√κ + 1). In particular, if w ∈ Rd is a 

vector whose all non-zero entries are located in the first m coordinates, where m is such that 

d ≥ m/2 + log(1/2)/log(q2), then 

kw , (25) kw 
=1 

where the last two inequalities follow from [11, Lemma 9.b] and Lemma 4, respectively. Therefore, by 

bookkeeping which entries of the iterates are non-zero, we can bound from below the distance to the 

minimizer. 

To this end, we will need the following lemma which, based on the tridiagonal structure of the Hessian of 

F, determines the non-zero entries: 

Lemma 6. Let F : Rd → R be a convex quadratic function specified as follows w, 

where A is a tridiagonal matrix and c,d are real scalars. Assuming that the iterates produced by a given 

optimization algorithm satisfy w0 = ··· = wτ = 0 and 



20 

∀k ≥ τ, wk+1 ∈ span{∇F(w0),∇F(w1),...,∇F(wk−τ)}, 

then wk ∈ span{ǫ0,ǫ1,...,ǫ⌊k/(τ+1)⌋} for all k ≥ 0 (where ǫ0 denotes the vector of all zeros, and ǫi denote the i’th 

standard unit vector). 

Proof. First, note that, given a vector w ∈ Rd, such that w ∈ span{ǫ0,ǫ1,...,ǫm} for some m ≥ 0, we have 

∇F(w) = cAw + dǫ1. 

Since the entries of w are all zero start from the m + 1 coordinate, cAw is a linear combination of the first 

m columns of A. Being a A tridiagonal matrix, it follows that all the entries of cAw are zero, except for its 

first m + 1 coordinates, that is, cAw ∈ span{ǫ0,ǫ1 ...,ǫm+1}. Together, ∇F(w) = cAw + dǫ1 ∈ span{ǫ1 ...,ǫm+1}. 

We proceed by full induction. For k = 0,...,τ, the claim holds trivially. Now, assume the claim holds for 

all i ≤ k, where k ≥ τ, we show that the claim holds for k + 1. By the induction hypothesis, 

wi ∈ span{ǫ0,ǫ1,...,ǫ⌊i/(τ+1)⌋} for all i ≤ k. Therefore, by the first part of the proof, we have, ∇F(wi) ∈ 

span{ǫ1,ǫ2,...,ǫ⌊i/(τ+1)⌋+1} for all i ≤ k, by which we conclude that span{∇F(w0),∇F(w1),...,∇F(wk−τ)} ⊆ 

span{ǫ1,ǫ2,...,ǫ⌊(k−τ)/(τ+1)⌋+1}. Thus, by the linear span assumption, it follows that 

 wk+1 ∈ span{ǫ1,ǫ2,...,ǫ⌊(k−τ)/(τ+1)⌋+1}. (26) 

Observing that, 

⌊(k − τ)/(τ + 1)⌋ + 1 = ⌊(k − τ)/(τ + 1) + 1⌋ = ⌊(k + 1)/(τ + 1)⌋, 

concludes the proof.  

Overall, by Lemma 6, the k’th iterate wk, has all its entries zero, expect for (possibly) the first ⌊k/(τ+1)⌋ 

first coordinates. By Ineq. 25, for any , we then have 

kw  

 . 

For the convex case, we use a construction (devised by [17]) similar to that of the strongly convex case. 

Let µ > 0 be fixed and consider the following function 

 , 

where Ak is a d × d matrix defined as follows 



21 

−21 

A = 

···00 

−1 

2 

··· 

0 

0 

0 

−1 

··· 

0 

0 

0 
0 

··· 

0 

0 

··· 
··· 
··· 

··· 

··· 

0d−k,k 

0 
0 

··· 

−1 

0 

0 
0 

··· 

2 

−1 

0 
0 

··· 

−1 

2 

 

0k,d−k 

, 

0d−k,d−k 

where 0m,n is an m×n zero matrix. Given an iteration number k such that , we 

take our function . Using Lemma 6, the only (possibly) non-zero entries of the k’th 

iterate wk are the first ⌊k/(τ + 1)⌋ coordinates. Thus, following the same lines of proof as in [17, Theorem 

2.1.6] yields 

 . 

D Proof of Thm. 4 

We will first state and prove the following auxiliary lemma: 

Lemma 7. The following holds for any η > 0: 

• For any k ≥ 1, 

, 

 where e = 2.718... is Euler’s number. In particular, ηa)2(i+1) ≤ 

, where Hk denotes the 

• If, in addition, we assume that a > λ for some constant λ > 0, then 

. 

Proof. By the well-known inequality 1 + x ≤ exp(x), x ∈ R, and since for the domain over which we optimize 

it holds that 1 − ηa > 0, we have for any k ≥ 1 



22 

a(1 − ηa)k ≤ aexp(−ηak). 

Let us denote the latter by ψ(a) := aexp(−ηak), and derive for it the desired upper bound. 

Taking the derivative of ψ and setting to zero, gives 

(1 − aηk)exp(−ηak) = 0. 

Therefore, the only stationary point of ψ is a∗ = ηk
1 . Since ψ′ is positive for a < a∗ and negative for a > a∗, it 

follows that a∗ is a global maximum, at which the value of ψ is eηk1 , concluding the first part of the proof. 

Now, let λ > 0. Since, the only maximizer of , or equivalently , 
then max{a : λ<a<1/η} a(1 − ηa)2(i+1) ≤ λ(1 − ηλ)2(i+1). Therefore, 

 k ⌊2ηλ1 −1⌋ 

max a(1 − ηa)2(i+1) ≤ X max a(1 − ηa)2(i+1) i=1 {a : λ<a<1/η} i=1 {a : 

λ<a<1/η} 

k 

 + max a(1 ηa)2(i+1) 

 X {a : λ<a<1/η} − 

i=⌈2ηλ1 −1⌉ 

≤ ⌊2
ηλ1 −1⌋ 1 + k λ(1 − 

ηλ)2(i+1) eηk X2ηλ1 

 i=1 i=⌈ −1⌉ 

1 1 1 ≤ (1 + ln( 

)) + 

 eη 2ηλ η 

1 + e + ln(ηλ1 ) 

 ≤ eη 

 

We now turn to prove Thm. 4 itself. By Ineq. 18 we have 

X 

X 



23 

  . (27) 

We will bound each of the terms above separately. Assuming  we have by Ineq. 14 and 

Ineq. 13, 

(28) 

, 

Thus, for the first term, assuming k ≥ (τ + 1)ln(2(τ + 1)), we have 

 
k√A[zk]Dk2 ≤ 9maxai(1 − ηai)2(k+1) ≤ 9µmax(1 − ηai)2(k+1) 

 i∈[d] i∈[d] (29) 

≤ 9µexp(−2ηλ(k + 1)). 

Bounding the second term in Ineq. 27 is somewhat more involved and requires separating into the two 

regimes stated in Ineq. 28: 

  (30) 

We proceed by considering the strongly convex case and the convex case separately. For the strongly 

convex case we have by Lemma 7 

 

Together with Ineq. 27 and Ineq. 29, this implies that for k ≥ (τ + 1)ln(2(τ + 1)), 

 , 



24 

resulting in the first bound stated in the theorem. To get the second bound, we show how to optimally 

tune the step size η (up to log factors). Ignoring the log factors, the bound above is 

 . 

Moreover, since we assume that η ≤ O(1/µτ), we get that µτ is dominated (up to constants) by 1/η, so 

we can simplify the above to 

  . (31) 

We now consider three cases: 

, we can pick , and get that Eq. (31) is 

 

• If , it follows that . In that case, we pick η = 0, and get that Eq. (31) is 

 . 

• If , we pick , and get that Eq. (31) is 

 . 

Collecting the three cases above, we get a bound of 

 

as required. 

For the convex case, we have by Ineq. 27, Ineq. 28 and Lemma 7, that for k ≥ (τ + 1)ln(2(τ + 1)) 

 , 

resulting in the third bound in the theorem. To get the fourth bound, we now show how to optimally tune 

the step size η (up to log factors). Ignoring the log factors, the bound above is 

 . 

As in the strongly convex case, since we assume η ≤ O(1/(µτ), we can simplify the above to 



25 

 . 

We now consider two cases: 

, we choose , and get 

 . 

, we choose , and get 

 . 

Collecting the two cases above, we get a bound of 

 

as required. 


