A Tight Convergence Analysis for Stochastic Gradient Descent with
Delayed Updates

Yossi Arjevani Ohad Shamir Nathan Srebro
Weizmann Institute of Science TTI Chicago
Rehovot 7610001, Israel Chicago, IL 60637
{yossi.arjevani, ohad.shamir}@weizmann.ac.il nati@ttic.edu
Abstract

We provide tight finite-time convergencebounds for gradient descent and stochastic gradient
descent on quadratic functions, when the gradients are delayed and reflect iterates from rounds ago.
First, we show that without stochastic noise, delays strongly affect the attainable optimization error: In
fact, the error can be as bad as non-delayed gradient descent ran on only 1/7 of the gradients. In sharp
contrast, we quantify how stochastic noise makes the effect of delays negligible, improving on previous
work which only showed this phenomenon asymptotically or for much smaller delays. Also, in the
context of distributed optimization, the results indicate that the performance of gradient descent with
delays is competitive with synchronous approaches such as mini-batching. Our results are based on a

hOC] 26 Juﬂe%lique for analyzing convergence of optimization algorithms using generating functions.

1 Introduction

Gradient-based optimization methods are widely used in machine learning and other large-scale
applications, due to their simplicity and scalability. However, in their standard formulation, they are also
strongly synchronous and iterative in nature: In each iteration, the update step is based on the gradient at
the current iterate, and we need to wait for this computation to finish before moving to the next iterate.
For example, to minimize some function F, plain stochastic gradient descent initializes at some point wy,
and computes iterates of the form

Wie1= Wi — N(VF(Wi) + &), (1)

where VF(wy) is the gradient of F at wy, 1 is the step size and §,§,,... are independent zero-mean noise
terms. Unfortunately, in several important applications, a direct implementation of this is too costly. For
example, consider a setting where we wish to optimize a function F using a distributed platform, consisting
of several machines with shared memory. We can certainly implement gradient descent, by letting one of
the machines compute the gradient at each iteration, but this is clearly wasteful, since just one machine is
non-idle at any given time. Thus, it is highly desirable to use methods which parallelize the computation.
One approach is to employ mini-batch gradient methods, which parallelize the computation of the
stochastic gradient, and their analysis is relatively well understood (e.g. [6, 5, 19, 24]). However, these
methods are still generally iterative and synchronous in nature, and hence can suffer from problems such
as having to wait for the slowest machine at each iteration.

A second and popular approach is to utilize asynchronous gradient methods. With these methods, each
update step is not necessarily based just on the gradient of the current iterate, but possibly on the
gradients of earlier iterates (often called stale updates). For example, when optimizing a function using
several machines, each machine might read the current iterate from a shared parameter server, compute

http://arxiv.org/abs/1806.10188v1
http://arxiv.org/abs/1806.10188v1

the gradient at that iterate, and then update the parameters, even though other machines might have
performed other updates to the parameters in the meantime. Although such asynchronous methods often
work well in practice, analyzing them is much trickier than synchronous methods.

In our work, we focus on arguably the simplest possible variant of these methods, where we perform
plain stochastic gradient descent on a convex function F on R4, with a fixed delay of T > 0 in the gradient
computation:

Wi = Wi= (VF(Wi-t) + &), (2)

where we assume that wo= w; =... = w;. Compared to Eq. (1), we see that the gradient is computed with
respect to wi-r rather than wy. Already in this simple formulation, the precise effect of the delay on the
convergence rate is not completely clear. For example, for a given number of iterations k, how large can T
be before we might expect a significant deterioration in the accuracy? And under what conditions?
Although there exist some prior results in this direction (which we survey in the related work section
below), these questions have remained largely open.

In this paper, we aim at providing a tight, finite-time convergence analysis for stochastic gradient
descent with delays, focusing on the simple case where F is a convex quadratic function. Although a
qguadratic assumption is non-trivial, it arises naturally in problems such as least squares, and is an
important case study since all smooth and convex function are locally quadratic close to their minimum
(hence, our results should still hold in a local sense). In future work, we hope to show that our results are
also applicable more generally.

First, we consider the case of deterministic delayed gradient descent (DGD, defined in Eq. (2) with &=
0). Assuming the step size 1 is chosen appropriately, we prove that

after kiterations, over the class of A-strongly convex p-smooth quadratic functions with a minimum at wx,

over the class of u-smooth convex quadratic functions with minimum at wx. In terms of iteration

and

complexity, the number of iterations k required to achieve a fixed optimization error of at most ¢ in the
strongly convex and the convex cases is therefore

I S .

respectively, where k := /A is the so-called condition number!. When 7 is a bounded constant, these
bounds match the known iteration complexity of standard gradient descent without delays [17]. However,
as T increases, both bounds deteriorate linearly with 7. Notably, in our setting of delayed gradients, this

1 Following standard convention, we use here the O-notation to hide constants, and tilde O -notation to hide constants and
factors polylogarithmic in the problem parameters.

implies that DGD is no better than a trivial algorithm, which performs a single gradient step, and then waits
for T rounds till the delayed gradient is received, before performing the next step (thus, the algorithm is
equivalent to non-delayed gradient descent with k/t gradient steps, resulting in the same linear
deterioration of the iteration complexity with).

Despite these seemingly weak guarantees, we show that they are in fact tight in terms of 7, by proving
that this linear dependence on T is unavoidable with standard gradient-based methods (including gradient
descent). The dependence on the other problem parameters in our lower bounds is a bit weaker than our
upper bounds, but can be matched by an accelerated gradient descent procedure (see Sec. 3 for more
details).

In the second part of our paper, we consider the case of stochastic delayed gradient descent (SDGD,

defined in (2)). Assuming & satisfies E[k§xk?] < 02and that the step size 17 is appropriately tuned, we prove

L R) o

for A-strongly convex, u-smooth quadratic functions with minimum at w+, and

) e e) .

for u-smooth convex quadratic functions. In terms of iteration complexity, these correspond to

in the strongly convex and convex cases respectively, where again k := y/A. As in the deterministic case,

that

when T is a bounded constant, these bounds match the known iteration complexity bounds for standard
gradient descent without delays [3, 20]. Moreover, these bounds match the bounds for the deterministic
case in Eq. (3) when 02=0 (i.e. zero noise), as they should. However, in sharp contrast to the deterministic
case, the dependence on T in Eq. (6) is quite different: The delay 7 only appears in second-order terms (as
o — 0), and its influence becomes negligible when ¢ is small enough. The same effect can be seen in Eq.
(4) and Eqg. (5): Once the number of iterations k is large enough, the first term in both bounds dominates,
and 7 no longer plays a role. More specifically:

¢ In the strongly convex case, the effect of the delay becomes negligible once the target accuracy ¢ is
sufficiently smaller than O7(0%/(ut)), or when the number of iterations k is sufficiently larger than Q(°
/7). In other words, assuming the condition number p/A is bounded, we can have the delay t nearly
as large as the total number of iterations k (up to log-factors), without significant deterioration in the
convergence rate. Note that this is a mild requirement, since if T = k, the algorithm receives no gradients

and makes no updates.

¢ In the convex case, the effect of the delay becomes negligible once the target accuracy g is sufficiently
smaller than O7(0%/(ut)), or when the number of iterations k is sufficiently larger than Q((" kwo -

3

w+kut/0)?). Compared to the strongly convex case, here the regime is the same in terms of g, but the

regime in terms of k is more restrictive: We need k to scale quadratically (rather than linearly) with t.

Thus, the maximal delay T with no performance deterioration is order of Vk.

Finally, it is interesting to compare our bounds to those of mini-batch stochastic gradient descent
(SGD), which can be seen as a synchronous gradient-based method to cope with delays, especially in
distributed optimization and learning problems [6, 5, 1]. In mini-batch SGD, each update step is performed
only after accumulating and averaging a mini-batch of b stochastic gradients, all with respect to the same

_,

Although the algorithm makes an update only every b stochastic gradient computations, the averaging

point:

reduces the stochastic noise, and helps speed up convergence. Moreover, this can be seen as a particular
type of algorithm with delayed updates (with the delay correspond to b), as we use VF(wy) to compute
iterate w.p. The important difference is that it is an inherently synchronous method, that waits for all b
stochastic gradients to be computed before performing an update step. Remarkably, the bounds we
proved above for delayed SGD are essentially identical to those known for mini-batch SGD, with the delay
T replaced by the mini-batch size b (at least in the convex case where mini-batch SGD has been more
thoroughly analyzed). This indicates that an asynchronous method like delayed SGD can potentially match
the performance of synchronous methods like mini-batch SGD, even without requiring synchronization —
an important practical advantage.

Analyzing gradient descent with delays is notoriously tricky, due to the dependence of the updates on
iterates produced many iterations ago. The technique we introduce for deriving our upper bounds is
primarily based on generating functions, and might be useful for studying other optimization algorithms.
We discuss this approach more thoroughly in Section 2. The rest of the paper is devoted mostly to
presenting the formal theorems and an explanation of how they are derived (with technical details
relegated to the supplementary material).

Related Work

There is a huge literature on asynchronous versions of gradient-based methods (see for example the
seminal book [2]), including treating the effect of delay. However, most of these do not consider the
setting we study here. For example, there has been much recent interest in asynchronous algorithms, in
a model where there is a delay in updating individual coordinates in a shared parameter vector (e.g., the
Hogwild! algorithm of [18], or more recently [14, 13]). Of course, this is a different model than ours, where
the updates use a full gradient vector. Other works (such as [21]) focus on a setting where different agents
in a network can perform local communication, which is again a different model than ours. Yet other works
focus on sharp but asymptotic results, and do not provide guarantees after a fixed number k of iterations

(e.g., [4]).

Moving closer to our setting, [15] showed convergence for delayed gradient descent, with the result
shown in an adversarial online learning setting, for general convex functions, and this bound is known to
bep implying an 7/k convergence rate for convex functions. A similar bound on average regret has been

optimal [10]. These results differ from our setting, in that they consider possibly non-smooth functions, in

which the dependence on ks no better than 1/\/k even without delays and no noise, and where the delay
T

always plays a significant role. In contrast, we focus here on smooth functions, where rates better than
1/\/k are possible, and where the effect of T is more subtle. In [7], the authors study a setting very similar
to ours in the deterministic case, and manage to prove a linear convergence rate, but for a less standard
algorithm, different than the one we study here (with iterates of the form w1 = wi-r — VF(w-1)).

Perhaps the works closest to ours are [1, 8], which study stochastic gradient descent with delayed
gradients. Moreover, they consider a setting more general than ours, where the delay at each iteration is
any integer up to T (rather than fixed t), and the functions are not necessarily quadratic. On the flip side,
their bounds are significantly weaker. For example, for smooth convex functions and an appropriate step

size, [1, Corollary 1] show a bound of

in terms of k,7,0. Note that this bound is vacuous in the deterministic or near-deterministic case (where o2
= 0), and is weaker than our bounds. With a different choice of the step size, it is possible to get a non-
vacuous bound even if 02— 0, but the dependence on T becomes even stronger. [8] improve the bound

to- and -

Oin the convex and strongly convex case respectively. Even itV o2= 0, the iteration complexity is O(72/9)
and

(72/9), and implies a quadratic dependence on 7 (whereas in our bounds the scaling is linear). When

o2is positive, the effect of delay on the bound is negligible only up to_ (in contrast to
0"(Vk) or even 07(k) in our bounds). We note that there are several other works which study a similar
setting (such as [22]), but do not result in bounds which improve on the above.

Finally, we note that [12] attempt to show that for stochastic gradient descent with delayed updates,
the dependence on the delay 7 is negligible after sufficiently many iterations. Unfortunately, as pointed
out in [1], the analysis contains a bug which make the results invalid.

2 Framework and the Generating Functions Approach

Throughout, we will assume that Fis a convex quadratic function specified by

() = gwTAw BT o

where A € Rix?is a positive semi-definite matrix whose eigenvalues aj,..,aqare in [0,u] (where p is the
smoothness parameter), b € R?and ¢ € R. To make the optimization problem meaningful, we further
assume that F is bounded from below, which implies that it has some minimizer w* € R? at which the
gradient vanishes (for completeness, we provide a proof in Lemma 3 in the supplementary material).

Letting ex= wi— Wi, it is easily verified that

() Fov) =5 [V | Ve | o

so our goal will be to analyze the dynamics of ex.

To explain our technique, consider the iterates of DGD on the function F, which can be written as wi.1
= Wi—VF(Wk-1) = Wi—1(Awi-t +b). Since VF(w+) = 0, we have wx = w*—n(Awx+b), by which it follows
that the error term ex = wy —wsx, satisfies the recursion ex.1 = ex -ndei-r, and (by definition of the
algorithm) eo = e1 = ... = er. By some simple arguments, our analysis then boils down to bounding the

elements of the scalar-valued version of this sequence, namely

R o

for some integer T = 0 and non-negative real number a = 0. To analyze this sequence, we rely on tools
from the area of generating functions, which have proven very effective in studying growth rates of
sequences in many areas of mathematics. We now turn to briefly describe these functions and our
approach (for general surveys on generating functions, see [25, 9, 23], to name a few).

Generally speaking, generating functions are formal power series associated with infinite sequences
of numbers . Concretely, given a sequence (bx) of numbers in a ring R, we define the corresponding
generating function as a formal power series in z, defined as_. The set of all formal
power series in z over R is denoted by R[[z]]. Moreover, given two power series defined by sequences
(ax) and (cx), we can define their addition as the power series corresponding to (ax + ck), and their
multiplication as the coefficients of the Cauchy product of the power series, namely (Pk axzk)(Pk ckz¥) =
Pk(PkI:O Cl]Ck_I)Zk.

In particular, over the reals, R[[z]] endowed with addition and multiplication is a commutative ring, and
the set of matrices with elements in R[[z]] (with the standard addition and multiplication operations)

forms a matrix algebra, denoted by M(R[[z]]). We will often use the fact that any matrix, whose entries

6

are power series with scalar coefficients, can also be written as a power series with matrix-valued
coefficients: More formally, M(R[[z]]) is naturally identified with the ring of formal power series with real
matrix coefficients M(R)[[z]]. To extract the coefficients of a given M(z) € M(R[[z]]), we shall use the
conventional bracket notation [zK]M(z), defined to be a matrix whose entries are the k’th coefficients of
the respective formal power series.

Returning to Eq. (9), we write (bi) as a formal power series denoted by f{z), and proceed as follows,

(10)

Denoting

M(z) =1 -z + azw!

and rearranging terms gives

6=t = ==l "

(by a well-known fact, m«(z) is invertible in R[[z]], as its constant term 1 is trivially invertible in R — see
surveys mentioned above). We now see that the problem of bounding the coefficients (bx) is reduced to
that of estimating the coefficients of the rational function 1/m.(z), written as a power series. Note that
for the analogous problem where the elements of the sequence are vectors- and the factor a is
replaced by aA for some square matrix A, the same derivation as above vyields

(likewise, I — z + Az is invertible in M(R)[[z]] as its constant term [is invertible in M(R)).

To estimate the coefficients of 1/m.(z), we form its corresponding partial fraction decomposition.
First, we note that as a polynomial of degree T +1, m«(2) has T + 1 roots (3,...,{r+1 (possibly complex-valued,
and all non-zero since ,(0) = 1 for any a € R). Assuming « is chosen so that all the roots are distinct

(equivalently,_), we have by a standard derivation
Thus,

(12)

To bound the magnitude of _, we invoke the following lemma, whose proof (in the
supplementary material) relies on some tools from complex analysis:

Lemma 1. Let « € (0,1/20(t + 1)], and assume |{1| < |{2| < +++ < |{es1], then

1. (iis a real scalar satisfying 1/(1<1 - q, andfo_.
2. _,for any 1€ [T+ 1].

With this lemma at hand, we have

last inequality is due to
Lemma 5 (provided in the
supplementary material). Moreover, one can use elementary arguments to show that |[zX]1/m.(2)| < 1,

where the

aslongasa €[0,1/7] (see

Lemma 2 in the supplementary material). Overall, for any 7 = 0, we have

(13)
(112), gives the

which, using Eq.

desired bounds on the elements_ defined in Eq. (9).

3 Deterministic Delayed Gradient Descent

We start by analyzing the convergence of DGD for A-strongly convex and p-smooth quadratic functions,
where the eigenvalues of A are assumed to lie in [A,u] for some u 221> 0.

Following the same line of the derivation as in Eq. (10), we obtain e(z) = (I - Iz + nAz=+1)-le,.

Letting [d] := {1,2,...,d}, it follows that for any k= (t + 1)In(2(t + 1)),

(14)

where (a) follows by the linearity,(that reveals that the
spectral norm of a matrix polynomial equals the absolute value

of the same polynomial in one of its eigenvalues), (c) by Ineq. 13 for nu € (0,1/(20(z + 1))], and (d) by

the fact that a;= A for all i. Moreover, by Eq. (8) and the fact that all eigenvalues of A are at most u, we

arrive at the following bound:

Theorem 1. For any delay T2 0 and k =2 (t + 1)In(2(t + 1)), running DGD with step size) €

(0,1/(20u(z + 1))] on a p-smooth, A-strongly convex quadratic function yields

F(wi) — F(w+) < 5u(1 - nA)2+1) kwo - wrkz,

In particular, setting n = Q(1/ut), we get that

Note that the assumption that k = (7 + 1)In(2(r + 1)) is very mild, since if k < T then the algorithm
trivially makes no updates after k rounds.

We now turn to analyze the case of u-smooth convex quadratic functions, where the eigenvalues of
the matrix A are assumed to lie in [0,u]. Following the same derivation as in Ineq. 14 and using Ineq. 8, we
have for any k= (t + 1)In(2(t + 1)) and n € (0,1/(20u(7 + 1))],

where e = 2.718... is Euler’s number, (a) is by the fact that the spectral norm of a matrix polynomial equals
the absolute value of the same polynomial in one of its eigenvalues, and (b) is by the fact that

_ foranyi € [d] (see Lemma 7 in the supplementary material).We have

thus arrived at the following bound for the convex case:

Theorem 2. For any delay T2 0 and k 2 (t + 1)In(2(t + 1)), running DGD with step size) €

(0,1/(20u(t + 1))] on a p-smooth convex quadratic function yields

In particular, if we set n = Q(1/ut), we get that

As discussed in the introduction, the theorems above imply that a delay of T increases the iteration

complexity by a factor of 7. We now show lower bounds which imply that this linear dependence on T is
unavoidable, for a large family of gradient-based algorithms (of which gradient descent is just a special

9

case). Specifically, we will consider any iterative algorithm producing iterates wo,wy,... which satisfies the
following:

Wo=..=W;=0and Vk = t, Wi.1 € span{VF(wo),VF(w1),..,VF(Wi-7)}. (16)

This is a standard assumption in proving optimization lower bounds (see [17]), and is satisfied by most
standard gradient-based methods, and in particular our DGD algorithm. We also note that this algorithmic
assumption can be relaxed at the cost of a more involved proof, similar to [16, 26] in the non-delayed
case.

Theorem 3. Consider any algorithm satisfying Eq. (16). Then the following holds for any k = T + 1 and
sufficiently large dimensionality d:

o There exists a p-smooth, A-strongly convex function F over R, such that

o There exists a -smooth, convex quadratic function F over RY, such that

The proof of the theorem is very similar to standard optimization lower bounds for gradient-based
methods without delays (e.g. [17, 11]), and is presented in the supplementary material. In fact, our main
contribution is to recognize that the proof technique easily extends to incorporate delays.

In terms of iteration complexity, these bounds correspond to _ in

the strongly convex case, and in the convex case, which show that the linear
dependence on T is inevitable. The dependence on the other problem parameters is somewhat better
than in our upper bounds, but this is not just an artifact of the analysis: In our delayed setting, the lower
bounds can be matched by running accelerated gradient descent (AGD) [17], where each time we perform
an accelerated gradient descent step, and then stay idle for T iterations till we get the gradient of the
current point. Overall, we perform k/t accelerated gradient steps, and can apply the standard analysis of
AGD to get an iteration complexity which is T times the iteration complexity of AGD without delays. These
match the lower bounds above up to constants. We believe it is possible to prove a similar upper bound
for AGD performing an update with a delayed gradient at every iteration (like our DGD procedure), but
the analysis is more challenging than for plain gradient descent, and we leave it to future work.

4 Stochastic Delayed Gradient Descent

In this section, we study the case of noisy (stochastic) gradient updates, and the SDGD algorithm, in which
the influence of the delay is quite different than in the noiseless case. Instantiating SDGD for quadratic
F(w) (defined in (7)) results in the following update rule

Wii1 = Wi — DVF(Wi—t+ 0k) = Wi — nN(Awi-t+ b + &), (17)

where §, k = 0 are independent zero-mean noise terms satisfying E[k§k?] < o2. As before, in terms of the
error term ex= Wi — Wx, Eq. (17) reads as ex+1 = ex— nAei-r — né. Given a realization of (§), we denote its

associated formal power series by_. By an analysis similar to before, we get that the
formal power series of the error terms (ex) satisfies

e(z) = (I - Iz + nAz=)-1(eo - ng(2)) .

We can now bound the error terms by extracting the corresponding coefficients of e(z). Letting D := (I -
Iz + nAz1)-1, we have forany k= (7 + 1)In(2(7 + 1))

(18)
where (a) follows by the linearity of the bracket operation [zf] and the assumption that E[&] = O for all k
(hence E[g(z)] = 0), (b) follows by the Cauchy product for formal power series, and (c) by the hypothesis
that xare independent and satisfy E[kEk?] < o2 for all k. We then upper bound both terms, building on
Ineq. 13 (see the supplementary material for a full derivation), resulting in the following theorem:

Theorem 4. Assuming the step n satisfies holds for SDGD:

_, and k z (t + 1)In(2(t + 1)), the following

e For A-strongly convex, u-smooth quadratic convex functions, E[F(wWx) — F(w+)] is at most

In particular, by tuning n appropriately,

o For p-smooth quadratic convex functions, E[F(wy) — F(wx)] is at most

In particular, by tuning n appropriately,

As discussed in the introduction in detail, the theorem implies that the effect of T is negligible once k
is sufficiently large.

Acknowledgements

This work was supported by NSF-BSF award 1718970.

References

[1] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Advances in Neural
Information Processing Systems, pages 873—-881, 2011.

[2] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numerical methods,
volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[3] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends r

in Machine Learning, 8(3-4):231-357, 2015.

[4] Sorathan Chaturapruek, John C Duchi, and Christopher Ré. Asynchronous stochastic convex
optimization: the noise is in the noise and sgd don’t care. In Advances in Neural Information
Processing Systems, pages 1531-1539, 2015.

[5] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. In Advances in neural information processing systems, pages 1647—
1655, 2011.

[6] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(Jan):165-202, 2012.

[7] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. A delayed proximal gradient
method with linear convergence rate. In Machine Learning for Signal Processing (MLSP), 2014 IEEE
International Workshop on, pages 1-6. IEEE, 2014.

[8] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control,
61(12):3740—- 3754, 2016.

[9] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. cambridge University press, 2009.

[10] Pooria Joulani, Andras Gyorgy, and Csaba Szepesvari. Online learning under delayed feedback. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1453—
1461, 2013.

[11] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. arXiv preprint
arXiv:1507.02000, 2015.

[12] John Langford, Alex J Smola, and Martin Zinkevich. Slow learners are fast. Advances in Neural
Information Processing Systems, 22:2331-2339, 2009.

[13] Rémi Leblond, Fabian Pederegosa, and Simon Lacoste-Julien. Improved asynchronous parallel
optimization analysis for stochastic incremental methods. arXiv preprint arXiv:1801.03749, 2018.

[14] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and
Michael | Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. arXiv preprint
arXiv:1507.06970, 2015.

[15] A Nedic, Dimitri P Bertsekas, and Vivek S Borkar. Distributed asynchronous incremental subgradient’
methods. Studies in Computational Mathematics, 8(C):381-407, 2001.

[16] AS Nemirovsky and DB Yudin. Problem complexity and method efficiency in optimization. 1983.
Willey-Interscience, New York, 1983.

[17] Yurii Nesterov. Introductory lectures on convex optimization, volume 87. Springer Science & Business
Media, 2004.

[18] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in neural information processing systems, pages
693-701, 2011.

[19] Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In

Communication,
Control, and Computing (Allerton), 2014 52nd Annual Allerton Conference on, pages 850-857. IEEE, 2014.

[20] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. In International Conference on Machine
Learning, pages 71-79, 2013.

[21] Benjamin Sirb and Xiaojing Ye. Decentralized consensus algorithm with delayed and stochastic
gradients. arXiv preprint arXiv:1604.05649, 2016.

13

(22]

(23]

[24]

[25]

(26]

Suvrit Sra, Adams Wei Yu, Mu Li, and Alexander J Smola. Adadelay: Delay adaptive distributed
stochastic convex optimization. arXiv preprint arXiv:1508.05003, 2015.

Richard P Stanley. Enumerative combinatorics. vol. i, the wadsworth & brooks/cole mathematics
series, wadsworth & brooks, 1986.

Martin Takac, Avleen Singh Bijral, Peter Richtarik, and Nati Srebro. Mini-batch primal and dual
methods for svms. In ICML (3), pages 1022-1030, 2013.

Herbert S Wilf. generatingfunctionology. AK Peters/CRC Press, 2005.

Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
In Advances in neural information processing systems, pages 3639-3647, 2016.

14

A Proofof Lemma 1

_ Recall thatz + azr+1, and its roots, denoted by (i, are ordered such that |{1] < |{2]| <

In order to bound from above the magnitude of
1/¢;, we analyze a related polynomial

p(z) = zt+1m,(1/2z) which takes the following explicit form
pP(Zz)=z*1-z7+a=(z-1)z7+

The roots of pqare precisely 1/¢;(note that, m,(0) =1 =06, hence {;=06, i € {1,..,T + 1}). Thus, bounding

from above (below) the magnitude of the roots of p.(z) gives an upper (lower) bound for |1/j|.

We first establish that for any_ has a real-valued root in _

Indeed, for any such a, we have on the one hand,

p(l-a)=-a(l-a)y+a=a(l-(1-a)) 20,

and on the other hand (using the fact that (1 - 1/2x)*>1/2 for all x 2 1),

(19)

so by continuity of p,, we get that a real-valued root exists in_.

Next, we show that T non-dominant roots of p.are of absolute value smaller than_. To
this end, we invoke Rouché’s theorem, which states that for any two holomorphic

functions f,g in some region K € C with - closed contour 0K, iffor any z € dK, then fand
f+ g have the same number of zeros (counted with multiplicity) inside . In particular, choosing f(z) = -z,

g(2) =z+aand K = {z: |z| < R}, it follows that if |z7*1 + a| < | = z7| for all zsuch that |z| = R, thenf+ g

(which equals our polynomial ps) has the same number of zeros as f= —z7inside K (namely, exactly 7).

However, since pqis a degree T +1 polynomial, it has exactly T +1 roots, so the only root of absolute value

larger - than R is the real-valued one we found earlier. It remains to verify the

condition |zw*1 +a| < |-z7| for all z such that . For that, it is sufficient to show that |z**1| + a < |z7| for all

such z, or equivalently, + .

15

By the inequality 1 - 1/(x + 1) = exp(-1/x) (see Lemma 4 below), we have

It is straightforward to verify that

implying that

where in the last inequality we used the assumption that_. As mentioned earlier, the roots
of psare exactly the reciprocals of the roots of m,, therefore we conclude

AR -

We now turn to bound |y ((,-)| from above. By definition, any root of m, satisfies_. Thus,

- (note that as mentioned in the first part of the proof, {;= 06). This, in turn, gives

(21)
In the previous parts of the proof, we showed that the distance from any root of p.to the contour {z | |z|

=1-1/(t+ 1)} is bounded from below by- (Ineq. 19 and Ineq. 20), therefore

thus concluding the proof.

B Technical Lemmas

Lemma 2. For any a € [0,1/7] and k = 0, it holds that |[zX]1/7«(2)] < 1.

Proof. Recall that by Eq. (11),_. Therefore, suffices it to prove that (bx) (defined in 9) with bo
=1and a € [0,1/7], satisfies |bx| < 1 forany k = 0.

For the sake of simplicity, we slightly extend (bx) to the negative indices by defining b_. - b—m ==

b-1=1. We proceed by full induction. The base case holds trivially by the definition of the initial conditions

of bi. For the induction step, suppose that |bo|,...,|bx| < 1. We have bi+1 = bx— abi-r, and

Using the recurrence relation again, this equals

By the induction hypothesis, this equals (1 — a)br+ ary, where |rx| < at < 1. Thus, b.1is a weighted average

therefore

of brand rywhich are both in [-1,+1] by the induction hypothesis and the above, implying that we must

have bi+1 € [-1,+1] as well. Thus, proving the induction step.

O

Lemma 3. Le_be a convex quadratic function defined over

Rd. If F is bounded from below, then F has a minimizer at which the gradient vanishes.

Proof- Since F is convex and twice differentiable, A is positive semidefinite. In particular, we have Ri=
ker(4) @ im(A) (namely, the direct sum of the null space and the image space of A4). Thus, b can be
expressed as a sum of two orthogonal vectors b = b1+ b”, where bt € ker(4) and b™ € im(A). Forany a €

R, we have

17

F(abyi) = _1((bL)TAbJ_)a’2 + abtb1 = akbLk2
2

By the hypothesis, F is bounded from below, hence b must vanish (otherwise we can take &« - —o and
make F as negative as we wish). In particular, b =b™ € im(A). Let y € R?be such that Ay = b, then VF(-y)

=A(-y) + b = 0. Lastly, Fis convex, therefore -y must be a (global) minimizer, thus concluding the proof.

O
Lemma 4. For any x > 0, it holds that 1 - 1/(x + 1) = exp(-1/x).

Proof. Since (In(1 +x))'=1/(1 + x) >0 for any x > -1, it follows by the mean-value theorem that for any

for some € € (0,x), hence In(1 + x) < x for any x > 0. In particular, for any x > 0 we have

x>0

Taking the exponent of both sides yields the desired lower bound. O
Lemma5. Let 2 0. If a € (0,1/(20(t + 1)] then

In particular, for k= (t+ 1)In(2(t + 1)) - 1, we have

_. (22)
Proof.

where the latter inequality follows from that fact that_

18

Lastly, to derive Ineq. 22, we have

_,

where the last inequality by the assumption k= (7 + 1)In(2(7 + 1)) - 1.

C Proofof Thm. 3

The proof technique is based on a construction, first presented in [17, Section 2.1.2], which has been
proven effective in various settings of optimization since then.
First, we address the strongly convex case. Given i > A > 0, we consider the following function (devised

by [11]):
=t (o) i o

where k = /A as before, 91 denotes the first unit vector, and A is a d x d matrix defined as follows

. (24)
It can be easily verified that Fis u-smooth and A-strongly convex function. Moreover, by [11, Lemma 8], it

follows that the minimizer of fis wx = (q,q2...,q9) where q = (Vi - 1)/(Vi + 1). In particular, if w € Rdis a

vector whose all non-zero entries are located in the first m coordinates, where m is such that

dzm/2 +1og(1/2)/log(q?), then

d j -m-
kw k? (>251?k,Wm+1 q21 _ 2(m+1) LQM S 1 2m+1) S 1 XD — 4 _+1
*kZ_ P{fqui =4 1—q2d _Zq _Zep k-1
1

where the last two inequalities follow from [11, Lemma 9.b] and Lemma 4, respectively. Therefore, by
bookkeeping which entries of the iterates are non-zero, we can bound from below the distance to the
minimizer.

To this end, we will need the following lemma which, based on the tridiagonal structure of the Hessian of
F, determines the non-zero entries:

Lemma 6. Let F: Ri— R be a convex quadratic function specified as ﬁ)llows_w,
where A is a tridiagonal matrix and c,d are real scalars. Assuming that the iterates produced by a given

optimization algorithm satisfy Wo=++=w;= 0 and

Vk 2 T, Wis1 € span{VF(wo),VF(W1),..., VF(W-1)},

then Wi € span{Qo,Q1,.,Qlk/(x+1)1} for all k 2 0 (where Qo denotes the vector of all zeros, and Q;denote the i’th
standard unit vector).
Proof. First, note that, given a vector w € R4, such that w € span{9o,91,..,Qm} for some m = 0, we have

VE(W) = cAw + do:.

Since the entries of w are all zero start from the m + 1 coordinate, cAw is a linear combination of the first
m columns of A. Being a A tridiagonal matrix, it follows that all the entries of cAw are zero, except for its

first m + 1 coordinates, that is, cAw € span{Qq,Q1..,Qm+1}. Together, VF(w) = cAw + dg1 € span{Q1...,Qm+1}

We proceed by full induction. For k = 0,...,7, the claim holds trivially. Now, assume the claim holds for
alli < k, where k = 7, we show that the claim holds for k + 1. By the induction hypothesis,

W; € span{Qo,Q1,--,Qli/+1)} for all i < k. Therefore, by the first part of the proof, we have, VF(w;) €
span{91,92..,0li/(+1)]+1} for all i < k, by which we conclude that span{VF(wo),VF(w1),.,VF(Wi-t)} <

span{Q1,02..,Ql(x-1)/r+1)]+1}. Thus, by the linear span assumption, it follows that

Wk+1 € span{Q1,Q2,...,0|(k-1)/(t+1)]+1}. (26)
Observing that,
[(k-0)/(r+ D] +1=|(k-7)/(r+ 1)+ 1] =|(k+1)/(r+1)],
concludes the proof. O

Overall, by Lemma 6, the k’th iterate wy, has all its entries zero, expect for (possibly) the first |k/(t+1)]

first coordinates. By Ineq. 25, for an_, we then have
k_

For the convex case, we use a construction (devised by [17]) similar to that of the strongly convex case.
Let u > 0 be fixed and consider the following function

_,

where Axis a d x d matrix defined as follows

A-21 -1 0 O 0 0 0

2 -1 0 0 0 0
0 0 O -1 2 -1
A= o o 0 - o -1 2 Okdk
EEEBBBE 00 Od-kk ABEEEEg,

0d-kd-k

where 0,,,is an mxn zero matrix. Given an iteration number k such tha_, we
take our function_. Using Lemma 6, the only (possibly) non-zero entries of the k’th

iterate wyare the first | k/(t + 1)| coordinates. Thus, following the same lines of proof as in [17, Theorem

D Proof of Thm. 4

We will first state and prove the following auxiliary lemma:

2.1.6] yields

Lemma 7. The following holds for any n > 0:

where e = 2.718... is Euler’s number. In _ particular, na)2i+) <

_, where Hydenotes the

e [f, in addition, we assume that a > A for some constant A > 0, then

Proof. By the well-known inequality 1 + x < exp(x), x € R, and since for the domain over which we optimize

o Forany k=1,

it holds that 1 — na > 0, we have forany k=1

a(1 - na)k< aexp(-nak).

Let us denote the latter by (a) := aexp(-nak), and derive for it the desired upper bound.
Taking the derivative of 1 and setting to zero, gives

(1 - ank)exp(-nak) = 0.

Therefore, the only stationary point of i is a= = ;L. Since i’ is positive for a < a=and negative for a > ax, it

follows that axis a global maximum, at which the value of i is ¢k, concluding the first part of the proof.

Now, let A > 0. Since, the only maximizer o_, or equivalently-,

then max{a:1<a<1/n} a(1 - na)2(i+1) < A(1 - nA)2(i+1). Therefore,
k [2m21-1]

max a(1 - na)z@+1) < X max a(1 — na)2(i+1) i=1 {a : A<a<1/n} i=1 {a:

A<a<1/n}

+ max a(l na)zi+1)
X {a: A<a<1/n} -

i=[2m1-1]
<pm-1]—— 1 + k A1 -

nA)2(i+1) enk Xanpt

=1 [-1]

1 11<_(1+In(
)+
ern 2nA n

1+e+In(ul)

I\

en

We now turn to prove Thm. 4 itself. By Ineq. 18 we have

22

We will bound each of the terms above separately. Assuming_ we have by Ineq. 14 and
Ineq. 13,

||)

Thus, for the first term, assuming k 2 (7 + 1)In(2(t + 1)), we have

i\/A [zx] Dkz < 9maxai(1 - nai)2(k+1) £ 9umax(1 - nai)2(k+1)
ie[d] ie[d] (29)
< 9uexp(-2nA(k + 1)).
Bounding the second term in Ineq. 27 is somewhat more involved and requires separating into the two
regimes stated in Ineq. 28:

_ (30)

We proceed by considering the strongly convex case and the convex case separately. For the strongly
convex case we have by Lemma 7

Together with Ineq. 27 and Ineq. 29, this implies that for k= (t + 1)In(2(t + 1)),

_,

23

resulting in the first bound stated in the theorem. To get the second bound, we show how to optimally
tune the step size 17 (up to log factors). Ignoring the log factors, the bound above is

Moreover, since we assume that n < O(1/ut), we get that ut is dominated (up to constants) by 1/n, so

we can simplify the above to

E (F(wi) — F(w') < O (dlegl” exp(_2uAk) + 10”8 (31)

We now consider three cases:

_ we can p|c , and get that Eq. (31) is

_ it follows that . In that case, we pick n =0, and get that Eq. (31) is

W

Collecting the three cases above, we get a bound of

as required.

For the convex case, we have by Ineq. 27, Ineq. 28 and Lemma 7, that for k= (7 + 1)In(2(7 + 1))

_,

resulting in the third bound in the theorem. To get the fourth bound, we now show how to optimally tune
the step size 1 (up to log factors). Ignoring the log factors, the bound above is

As in the strongly convex case, since we assume 1 < O(1/(ut), we can simplify the above to

We now consider two cases:

we choose-, and get

112 <]
_, we choose-, and get

Collecting the two cases above, we get a bound of

as required.

25

