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Abstract 
We propose methods for distributed graph-based multi-task learning that are based on 

weighted averaging of messages from other machines. Uniform averaging or diminishing stepsize 
in these methods would yield consensus (single task) learning. We show how simply skewing the 
averaging weights or controlling the stepsize allows learning different, but related, tasks on the 
different machines. 

1 Introduction 

We consider a distributed learning problem in a multi-task setting: each machine i has access to 

samples from a different data distribution Di, with potentially a different optimal predictor, and thus 

a different learning task, but where we still assume some similarity between different tasks. The goal 

of each machine is to find a good predictor for its own task, based on its own local data, as well as 

communicating with the other machines so as to leverage the similarity to other related tasks. 

Distributed multi-task learning lies between a homogeneous distributed learning setting (e.g. 

Shamir and Srebro, 2014), where all machines have data from the same source distribution, and 

inhomogeneous consensus problems (e.g. Ram et al., 2010; Boyd et al., 2011; Balcan et al., 2012), 

where each machine sees data from a different source, but the goal is to reach a single consensus 

predictor. In many distributed learning problems, different machines do indeed see different 

distributions. For example, machines might serve different geographical regions. In a more extreme 

“federated learning” (Konecny et al., 2015) scenario, each machine is a single user device, and its data 

distribution might reflect e.g. the user’s speech, language biases, usage patterns, etc. Such 

heterogeneity requires departing from a homogeneous model. But if the data distribution on each 

machine is different, we might as well learn a personalized predictor for each machine, while still 

leveraging commonalities as in multi-task learning, instead of insisting on consensus. Unlike when 

seeking consensus, we could learn a predictor entirely locally, ignoring data on other machines. But 

the premise of multi-task learning is that by communicating with other machines we can improve our 

predictions, reduce the sample complexity, and hopefully also reduce the computational cost on each 

machine by distributing the computation. 

Central to multi-task learning is the notion of relatedness between tasks. In a high-dimensional 

setting, with large number of variables, we might expect a small common set of predictive variables, 

where the form of the dependence on variables in this common set varies between tasks (Turlach et 
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al., 2005; Obozinski et al., 2011; Lounici et al., 2011; Wang et al., 2015). Another approach is to assume 

that the predictors lie in a shared lower dimensional subspace (Ando and Zhang, 2005; Yuan et al., 

2007; Wang et al., 2016) or all have low-norm under some shared linear representation (Amit et al., 

2007; Argyriou et al., 2008). Both the shared sparsity and shared subspaces models have recently 

been considered in a distributed learning setting (Wang et al., 2015, 2016), and nuclear-norm 

regularized multi-task learning has been studied from a distributed optimization perspective (Baytas 

et al., 2016). 

In this paper, we consider graph-based multi-task learning, where relatedness between tasks is 

specified through a weighted graph over the tasks. Neighboring tasks in the graph are expected to be 

similar, with a penalty for dis-similarity specified by the weight between them (see precise 

formulation in Section 2) (Maurer, 2006; Evgeniou et al., 2005). This also generalized a simpler “fully 

connected” multi-task model where all predictors are close to each other (Evgeniou and Pontil, 2004). 

A predictor-homogeneous assumption can also be viewed as an extreme case where all weights go to 

infinity, forcing all predictors to be identical. In distributed multi-task learning, graph-based 

relatedness is especially appealing if the relatedness graph also matches the graph of network links 

between machines, as might be the case, e.g. in a geographical setting or with physical sensors. We 

therefor emphasize and prefer methods with communication only between neighboring tasks on the 

graph. 

In designing methods for graph-based multi-task learning, we are interested in methods that (1) 

are natural and simple—all our algorithms have a similar and natural structure, involving weighted 

averaging of messages from neighboring machines and a local gradient or prox calculation; (2) have 

low communication costs, are sample efficient, and preferably also have low computational cost; and 

(3) are backed by rigorous guarantees on the amount of communication, samples and computation 

required. 

Graph-based multi-task learning has been recently studied by Vanhaesebrouck et al. (2017) and 

Liu et al. (2017), both considering the problem as distributed optimization of the multitask 

regularized empirical objective, similar to our approach in Section 3.2). Vanhaesebrouck et al. 

suggested an asynchronous gossip-type algorithms and an ADMM procedure, while Liu et al. 

proposed using SDCA, and also considered learning the relatedness graph itself. Neither provides any 

statistical analysis, nor analysis of the iteration complexity and communication cost based on the 

methods. We conduct detailed comparison of convergence properties with these methods in 

Appendix H, providing upper bounds of their iteration complexities when possible; our methods have 

faster convergence than the guarantees we could obtain for them. Also, neither directly considers the 

underlying learning problem (minimizing the actual expected errors), and so neither studies 

stochastic methods (in the flavor of our Section 4). 

Here, we show how methods that arise naturally by skewing averaging weights or controlling 

stepsize of consensus learning methods do yield good guarantees. We also propose stochastic 

methods which allow reducing the computational cost, and we compare the empirical performance 

of both our batch and stochastic methods to those of Vanhaesebrouck et al. (2017) and Ma et al. 

(2015). 

Notations In this paper, boldface lower-case letters denote column vectors, boldface capital letters 

denote matrices, vec(U) is the vectorial form of a matrix U which concatenates columns of U, and 
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U⊗V is the Kronecker product between two matrices U and V. Furthermore, hu, vi = u>v denotes the 

inner product of two vectors u and v, while hU, Vi = tr U  denotes inner product 

 
pof two matrices U and V of the same dimensions. We use kuk = phu, ui to denote the length ofp 

a vector u, kUkF = kvec(U)k the Frobenius norm of a matrix U, and kUkM =

 tr(UMU>) = 

hUM, Ui the norm of U with respect to some positive definite matrix M. A function f(x) is Lipschitz 

if |f(x) − f(y)| ≤ Lkx − yk, ∀x,y. A convex function f2(x) is β-smooth and µ-strongly convex if

y  yk , ∀x,y. This definition extends to functions 

of matrices, by replacing the vector norm with the Frobenius norm in the above inequality. 

2 Graph-based multi-task learning 

Consider a distributed setting with m machines, where each machine i has access to a data 

distribution Di and would like to learn a predictor wi ∈ Rd for each machines with small expected loss 

Fi(wi) = Ezi∼Di [`(wi,zi)]. A known weighted graph, with known non-negative weights {aik}, specifies the 

relatedness between tasks. Specially, we would like to consider predictor matrices 

W = [w1,w2,...,wm] ∈ Rd×m from the set 

 

i.e., we would like the norm of each individual predictor to be bounded (so that it has low complexity 

and generalizes well), and the weighted dis-similarities between related predictors to also be small. 

Taking an agnostic PAC-learning approach, our goal is to minimize the overall population ob- 

jective 

 , (1) 
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and be competitive with respect to predictors in the set Ω. Denoting W∗ = argminW∈Ω F(W) the optimal 

predictor from Ω, and we would like to learn a predictor W with F(W) ≤ F(W∗) + ε. 

In our analysis, we take the instantaneous loss `(w,z) to be L-Lipschitz continuous, and sometimes 

also assume it is smooth. In the latter case, we assume machine i’s loss `(wi,zi) is βiEven ignoring the 

constraint on the similarity between predictors, the sample complexity for eachb smooth in wi, and 

so the global loss -smooth in W with βF = maxi=1,...,m βi. 

individual task (i.e. the number of samples from Di required to ensure Fi(wi) ≤ Fi(wi∗) + ε) is 

. That is, with a total of  samples, we can learn W with the desired 

guarantee F(W) ≤ F(W∗)+ε without any communication between the machines, by, e.g., solving an 

independent `2-regularized ERM problem on each machine. This local approach is the baseline on 

which any method involving communication between the machines should improve. 

Graph Laplacian The term  can be written equivalently using the graph 

Laplacian. Let A = [aik] ∈ Rm×m be the adjacency matrix, and L = diag(A1) − A be the corresponding 

graph Laplacian (Lik = Pl6=i ail if i = k, and Lik = −aik otherwise), so that 

 WLW>. The eigenvalues of L will play an impor- 

tant role and we denote them by 0 = λ1 ≤ ··· ≤ λm. 

Regularized ERM One way for learning the predictors is to solve the 

regularized empirical risk minimization (ERM) problem. Let) be the 

local empirical loss of machine i, and let Z = {zij : i = 1,...,m, j = 1,...,n} be the sample set. The regularized 

ERM 

objective is 
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W 

 WLW , (2) 

to (2). 

To understand the statistical property of multi-task learning and facilitate further discussion, we 

same learning guarantee for the solution of ac constrained ERM problem (i.e., argminW∈Ω Fb(W)), first 

analyze the generalization error of W. Inspired by Maurer (2006), who showed essentially the ized 

ERM rather than constrained ERM is that it is easier to solve unconstrained problem usingc we 

provide guarantee for the regularized ERM solution W. Our motivation for studying regular- 

(proximal) gradient methods, and we avoid computing projection onto the constraint set Ω, which is 
difficult in a distributed setting.1 

While the analysis of Maurer (2006) was based on the Rademacher complexity of Ω (and required 

the solution to lie in Ω), our proof uses the stability based argument for generalization with strongly 

convex regularizers (Shalev-Shwartz et al., 2009). Our analysis also reveals a fundamental connection 

between single- and multi-task learning: to obtain generalization of a single task in the distributed 

setting, we only need concentration for the sampling process of that task. In our case, we consider 

strong convexity w.r.t. the kWkM-norm where M . 

Lemma 1. Assume that the instantaneous loss `(w,z) is L-Lipschitz with respect to w. Then for the ERM 

solution defined in (2), we have . 

                                                             
1 Although for convex optimization, the constrained form and the regularized form are equivalent due to the Lagrange 

duality, solving the constrained form may still require repeatedly solving the regularized form and searching for the 

Lagrange multiplier. 

argmin = 
1 

m 

X m 

i =1 
b F i ( w i ) 

| z { } 
b F ( W ) 

+ 
η 

2 m 

X m 

i =1 
k w i k 2 

+ 
τ 

2 m 
tr 

 
> 

 

| z { } 
R ( W ) 

where η,τ ≥ 0 areregularizationparameters.Let c W = argmin W b F ( W )+ R ( W ) bethesolution 
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Corollary 2. Set  and  in (2), where 

. 

Then 

The quantity ρ(B,S) measures task relatedness and thus the benefit of multi-task learning. It 

depends on the parameters (B,S) and the graph, but not the data. The value of ρ(B,S) ranges from 0 

(when 1 (when ), corresponding to two extreme cases. 

• When S is small and the graph is connected with high weights, the predictors are encouraged 

to be similar to each other (we have a consensus problem if S = 0 and the graph is connected), 

and ρ(B,S) is close to 0. The generalization error is then , corresponding to that of 

single task learning using mn samples. 

• When S is large or the graph is disconnected, tasks are not very related and ρ(B,S) is close to 1. 

In this case, the generalization error behaves like , and we are essentially performing 

local learning with n samples for each task. 

For a fixed number of machines m and graph Laplacian L, to achieve ε excess population error by 

the above approach, the number of samples used by each machines is  

O((1/m + ρ(B,S)) · nL). Therefore, when the tasks are related and ρ(B,S) is small, the sample complexity 

of multi-task learning is significantly smaller than nL needed by the local approach. 

To implement the regularized ERM approach in the distributed setting, we could have each 

machines send nC samples to a central machine, and then minimize the regularized empirical loss on 

that machine. We refer to this baseline as the centralized approach—it is sample efficient, but 

expensive in terms of communication and computation. We are interested in distributed multi-task 

learning algorithms that are also sample efficient, i.e. use only O(nC) samples on each machine (or at 

least, not much more then this), but have low computation and communication costs. This can be 

done either by low-communication distributed optimization of the regularized empirical error (2). 

3 Distributed algorithms for ERM 

In this section, we propose efficient distributed algorithms for minimizing the regularized empirical 

such updates take the form: b 

objective (2). The simplest approach is perhaps to perform gradient descent on F(W). Interestingly, 
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 w , (3) 

where αt+1 > 0 is the stepsize at iteration t+1, and the weights for combining neighboring predictors 

are 

µtki+1 = ( 1 − αt+1αt(+1η +τaτikPk0 aik0) :: otherwise.if i = k, (4) With an 

appropriate step-size schedule (or even a fixed stepsize if the loss is smooth), this method graph, 

since the update for each machines involves only predictors from neighboring machinesc converges 

to W. Furthermore, the updates require only communication along the relatedness 

(with nonzero affinities). This is already a very natural and intuitive method for distributed multitask 

learning, and we will return to it later. When the loss is smooth, the method can be accelerated using 

Nesterov’s techniques (Nesterov, 2004, as detailed in Appendix C) without any increase in 

communication costs nor substantial increase in computation. But first, we suggest two more 

powerful alternatives. 

Taking steps based on the gradients amounts to considering, in each iteration, a linearization of 

the objective, that is of both the empirical loss Fb(W) and the regularizer R(W). However, in order to 

obtain a distributable update, it is sufficient to linearize only one of these components while treating 

the other more explicitly, since each one of them separately can be efficiently optimized optimized in 

a distributed way, while R(Wb ) is data independent and could be optimized implicitly in a distributed 

way: the empirical loss F(W) decomposes over machines, and so can be directly 

based on the common knowledge of the relatedness graph. In the following, we consider two 

distributed schemes, each based on directly handling one of the components, and each preferable in 

a different regime depending on the relatedness graph and the structure and cost of communication. 

3.1 Directly solving the regularizer 

We first consider methods which directly handle the regularization term R(W). To do so, we consider 

the change of variable U  where M L, we can rewrite the ERM objective as 

 . (5) 

We propose to optimize this objective using gradient descent with respect to U, which reduces to the 

updates in the W-space: for t = 0,..., 

 W  (6) 

where αt+1 > 0 is the stepsize at iteration t+1. In each iteration, machine i performs the following 

update with µtki+1 = αt+1(M−1)ki: 

m 
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 w.

 (7) 
=1 

This update can be implemented in the distributed setting with a broadcast channel: it requires that 

each machine has access to gradients of all machines, which can be achieved using one round of 

global, all-to-all communication (not respecting the graph). We could compute M−1 offline ahead of 

time, and need not re-calculated at each iteration. 

When the loss is smooth, we can accelerate (7) using Nesterov’s techniques without additional 

communication costs. Setting a constant stepsize , which is the smoothness parameter 

of the objective (5) in U2, to achieve -suboptimality in (2), the iteration complexity of the accelerated 

algorithm is . To achieve ε excess error in the population loss, we set the 

optimization error ) and plug in the choice of η from Corollary 2, 

yielding the iteration complexity. 

3.2 Directly optimizing the loss 

The above algorithm requires dense, broadcast communication for solving the proximal step defined 

by the graph. In a decentralized setting, it is desired to develop algorithms which use only local, 

 
peer-to-peer communication. This can be achieved by the updates below, where we linearize the 

graph regularizer but fully optimize over the loss: 

Wt+1 = argmin h∇R(Wt), W − Wti 

W 

 , (8) 

where αt+1 is the stepsize at iteration t+1. As (8) decouples over machines, machine i independently 

computes a proximal operation using local data: 

 w  = argminu 

. 

By the optimality condition of this update, we have 

 w , (9) 

                                                             

2 2This is because ), and  

. 

∇ 2 
vec ( U ) b F ( UM − 1 

2 )=( M − 1 
2 ⊗ I ) ·∇ 2 

vec ( W ) b F ( W ) · ( M − 1 
2 ⊗ I 

|| M − 1 
2 ||·||∇ 2 

vec ( W ) b F ( W ) ||·|| M − 1 
2 ||≤ β F 

m 
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where the weights for combining neighboring predictors are the same as those in (4). Comparing (9) 

with the similar update (3) where we linearized both the regularizer and the loss, we observe that 

(9) is also a form of gradient method, with the gradient of loss evaluated at the “future” point. 

The advantage of (9) is that the gradient ∇R(W) is data-independent and is obtained using only 

one round of local communication from each machine to its neighbors. Furthermore, the computation 

decouples over machines, and each machine optimizes the nonlinearized loss without 

communication. In fact, we need not solve the proximal steps exactly since the (accelerated) proximal 

gradient method is tolerant to errors in the steps (Schmidt et al., 2011), and sufficiently accurate 

solutions can often be obtained in time nearly linear in the number of examples processed using 

variance-reduced finite-sum methods such as SVRG (Johnson and Zhang, 2013). Overall, this is a 

communication-efficient approach in which each machine tries to spend significant amount of time 

performing local computations on its own data, and to communicate only infrequently. Note that 

similar proximal type operations also appear in the ADMM algorithm of Vanhaesebrouck et al. (2017), 

but the decoupling of tasks is different, because in the local problems of ADMM, each machine 

optimizes over also a copy of neighboring predictors. 

We can again accelerate (9) using Nesterov’s techniques, and set , which is 

the smoothness parameter of R(W) in W. Then, to achieve ε excess 

error in the population objective, the number of iterations needed 

by the accelerated algorithm is, using the choice of η and τ from 

Corollary 2. We also show that this algorithm is tolerant to delay and analyze its convergence under 

bounded delay in Appendix G. 

4 Stochastic algorithms 

In ERM, we collect training samples on each machine ahead of time, and solve a fixed optimization 

problem defined by them. But in real-world scenarios, we might have access to virtually unlimited 

data, or a constantly available stream of examples. In this case, it might be statistically wasteful to 

reuse examples over iterations. Or, even if we do have a finite amount of data, as we shall see, Table 

1: Algorithms for distributed stochastic multi-task learning with graph regularization. Here ε is the 

excess error in the population objective; E| 
denotes the number of edges in the graph. For simplicity, schematic updates ignores acceleration, but 

the rates are given for the accelerated algorithms. Each cell shall be interpreted as Oe(·) which hides 

poly-logarithmic dependencies. 

local 0 0  nL 

centralized 
 

nC  m · nC 

Algorithms 
Communication 

rounds 

Vectors (∈Rd) 

communicated 

per machine 

Sample 

complexity 

per machine 

Total Samples 

processed per 

machine 
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 e − ∇b 

we can get the same communication and statistical guarantee while processing only a minibatch at a 

time, thus significantly reducing computational cost. We consider stochastic variants of the 

approaches in Section 3 to directly optimize the population loss F(W), using fresh samples in each 

update. 

ERM: 

directly 

solving 

regularizer 
1. 
where(M 

2. wit+1 = wit −git 

  

nC 

 

ERM: directly optimizing loss 

1.  
where 

 2. wi+1 = wi α i ( i+1) 

  

nC 

 

 

  

nC nC 

Stochastic: directly optimizing loss 

 1. wkt 

2. 

  

nS, probably ∈ 

(nC,nL) 
nS 
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4.1 Directly solving the regularizer 

Analogous to (7), we could perform minibatch SGD with b samples per machine to approximate the 

gradient of the population loss: for t = 0,..., 

 w . (10) 

where ), and  samples drawn by machine k 

at iteration t + 1. 

We can accelerate (10) using the accelerated stochastic approximation (AC-SA) algorithm of Lan 

(2012). We provide the detailed accelerated algorithm in both the U-space and W-space in Algorithm 

2 (Appendix D). We have the following guarantee after running it for T iterations. 

Theorem 3. Set the initialization W0 = 0 and stepsizes  

in Algorithm 2. Then . 

Sample complexity Let n = bT be the number of samples used in Algorithm 2. According to Theorem 

3, as long as the minibatch size , the first term in the error bound is dominant 

and we achieve the generalization error  as in ERM, so we are 

still sample efficient in the stochastic setting. 

Time complexity Algorithm 2 processes the drawn samples only once. While maintaining the sample 

efficiency, we can set the minibatch size to the largest value b = b∗, and this leads to the total number 

of iterations (and local communication rounds) , also matching that of ERM. 

However, since each stochastic gradient uses only b = o(n) samples, the local computation ∇Fbt+1(Wt) 

is significantly reduced. 

4.2 Directly optimizing the loss 

Analogous to (8), we can use the stochastic algorithm where at iteration t+1, machine i computes 

 w  = argmin 
u 

(11) 

For b = n, it has the same per iteration computation cost as the ERM counterpart (both process n 

samples in each iteration). But, intuitively, it would outperform the ERM algorithm for the same 

number of iterations/communications because it uses more fresh samples. We can prove the 

convergence of this algorithm, but do not have a satisfactory analysis showing it is sample efficient. 

We conjecture that its sample complexity per machine, denoted by nS, is in the range (nC,nL). We 



12 

implemented the accelerated version of this simple algorithm and this conjecture seems to be 

supported by our experiments. In Appendix E, we provide a more complicated algorithm based on 

the minibatch-prox algorithm of Wang et al. (2017), that is sample efficient and trade off 

communication and memory costs. 

Comparison of the different approaches Table 1 summarizes the communication and computation 

complexities of the proposed algorithms. Some of our methods require solving local regularized-ERM 

type problems on each machine. We do not analyze the precise complexity and required accuracy of 

such local computation, but keep track of the number of samples processed on each machine, i.e. sum 

of the sizes of the subproblems over the iterations, as the proxy for computational complexity. We 

emphasize that, despite the simplicity of our ERM methods, their have faster convergence than what 
we could obtain for previous methods; see detailed discussions in Appendix H. Our stochastic 

algorithms mirror the ERM algorithms in terms of updates, but can be computationally much more 

efficient. 

5 Connection to consensus learning 

The iterations we consider all involve taking a weighted average of messages (iterates or gradients) 

from other machines and a local gradient or prox computation. These same type of iterates have also 

been suggested and studied as methods for solving the consensus problem—that is, finding a single 

consensus predictor w that is good for all machines and minimizes  

But the consensus problem is fundamentally different from our “pluralistic” multi-task problem, with 

a different optimum. In this section we will understand what makes the same form of updates, namely 

updates of the form (3), (7), (9) or their stochastic variants, converge to either the consensus solution 

or to the pluralistic multi-task solution. In particular, we show how consensus methods are obtained 

as special cases of these updates, or as limits of the multi-task approach. 

Averaging gradients Let us begin with the update of the form (7) or its stochastic variant (10), where 

we take a weighted average of gradients from other machines. When the averaging weights are 

uniform, i.e. µtki = αt/m for all i,k, and as long as all machines start from the same initialization (e.g. w

 = 0), the iterates will continue to be identical across machines throughout optimization (i.e. we will 
have wit = wjt for all i,j,t), thus maintaining consensus. Furthermore, the update (7) then boils down 

to precisely gradient descent on the empirical consensus objective 

, while the stochastic variant (7) is precisely a mini-batch stochastic gradient 

descent update on the consensus objective, with a mini-batch consisting of the union of the samples 

used across machines. Indeed, mini-batch SGD is a common approach for solving the distributed 

consensus problem, or for distributed learning in a homogeneous setting (where we assume the same 

distribution across machines, or at least the same good predictor). What we saw in Section 3, is that 

by changing to non-uniform weights, given by µ ∝ M−1, we can allow pluralism and converge to the 

multi-task solution. 

We can furthermore observe how uniform weights (and therefor gradient descent/mini-batch 

SGD on the consensus problem) are obtained as a limit of the multi-task weights µ ∝ M−1. If the graph 
is connected, λ1 = 0 is the only zero eigenvalue of the Laplacian L with an associated eigenvector of u 



13 

= [1,...,1] (if the graph is not connected, we cannot expect consensus, as each connected component 

will behave independently). Therefor M  has a leading eigenvalue of 1 of multiplicity 

one, associated with the eigenvector u. As S → 0 and so τ → ∞, that is we are demanding increasing 

similarity between machines, the leading eigenvalue of M−1 remains 1 while all other eigenvalues go 

to zero, implying that M  and so µtki = αtM−ki1 → αt/m. That is, as we demand increasing 

similarity between machines, and thus converge to a consensus situation, the updates converge to 

standard consensus gradient descent or mini-batch SGD updates. 

Averaging iterates Let us now turn to updates of the form (3), the related prox updates (9), and their 

stochastic variants. Nedi´c and Ozdaglar (2009) proposed updates precisely of the form (3) as a 

decentralized procedure for the consensus problem. They showed that when the averaging 

weightsPµtki are doubly stochastic and do not vary between iterations (i.e.−−−µtki→= µki,∀k Pi µki = 1 

and ∀j k µki = 1), and the stepsize on the gradient goes to zero, i.e. αt t→∞ 0, the updates (3) 

 

Figure 1: Results for regularized ERM (left panel) and our stochastic methods with different b (right 

panel). 

converge to the consensus solution. In our case, the averaging weights, as defined in (4), deviate from 

double-stochasticity, since Pk µtki = 1−αtη. Furthermore, and possibly more significantly, to obtain our 

convergence guarantees for smooth loss, we do not take αt to zero. Even if we were to use diminishing 
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stepsizes in our derivations, we would have αt → 0, but in that case the averaging weights would not 

be fixed over iterations (as is the case in consensus optimization) and we would have µt → I. 

To see how consensus updates are obtained as a limiting case of our multi-task setting, we again 

consider a connected graph and study what happens as S → 0 and so τ → ∞, while B and therefor η 

remain fixed. This corresponds to a fixed amount of local regularization, and increasing expectation 

that neighboring nodes are similar. Under this scaling, we would indeed have α = 1/(η+τλm) → 0, 

where λm > 0 since the graph is connected. Furthermore, we have that αη → 0 while ατ → 1/λm > 0. 

Plugging this scaling into the multi-task averaging weights (4), we obtain the doubly stochastic 

weights: 

: if i = k, 

(12) λ m aik

 : otherwise. 

To summarize, a significant differentiation between consensus and multi-task learning is therefor in 

whether αt diminishes relative to (µt − I). When our relatedness constraints approach consensus, αt 

can diminish while µt is non-trivial and doubly stochastic. In fact, in studying consensus optimization, 

Yuan et al. (2016) recently noted that when αt does not diminish, the methods does not converge to 

the consensus solution but only to a neighborhood of it. In light of our analysis, we now understand 

that this “neighborhood” corresponds to the multi-task learning solution, which indeed becomes 

increasingly similar to the consensus solution as S → 0. 

Connection to the decentralized algorithm of Scaman et al. (2017) When the graph is 

 
connected, the consensus constraint w1 = ··· = wm can be equivalently written as W√L = 0, since the 

null space of L contains only vectors of constants. Then the multi-task formulation (2) is a relaxation 

of 

 W √L=0 m Xi=1 2m Xi=1 k

 k (13) 

with the quadratic term tr WLW> penalizing the constraint violation. The quadratic penalty→ 

∞ tr WLW> may lead to a large condition number for our algorithm (8) as τ . 
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Recently, Scaman et al. (2017) proposed an algorithm with optimal iteration/communication 

complexities for decentralized consensus learning, which performs accelerated gradient descent on 

the dual problem of (13), with updates (before acceleration): 

Wt+1 = argmaxW , 

 Vt+1 = Vt − αWt+1L, (14) 

where V0 = 0 and α > 0 is the stepsize. It can be seen that their algorithm consists of the same type of 

basic operations (weighted local average of predictors, and solutions of local subproblems involving 

non-linearized loss) as ours. As noted by the authors, this is a form of distributed augmented 

Lagrangian method without the quadratic penalty. 

6 Experiments 

We examine different graph-based multi-task learning methods on the task of least squares 

regression using synthetic data. More details of the experiments (including data generation and more 

results) are given in Appendix I. The tasks are grouped into C clusters and the true predictors within 

the same cluster are generated from the same Gaussian distribution, thus smaller C implies higher 

task relatedness. We have input dimension d = 100, number of tasks m = 100, training set size n = 

500, and vary number of task clusters C over {1,5,10,50}. We also generate a dev set of 10000 samples 

per task for tuning hyper-parameters, and test set of 10000 samples per task for approximately 

evaluating the population loss. The affinity graph A ∈ R100×100 is a (connected) 10-nearest neighbor 

graph with binary weights built on the true predictors. 

The methods compared here are: Local, which solves a local ERM problem (with `2-regularization) 

with n samples for each task; Centralized, which solves the regularized ERM problem (2) with n samples 

for each task; ADMM, which is the synchronized version of the algorithm of Vanhaesebrouck et al. 

(2017); SDCA, which is the algorithm used by Liu et al. (2017) for fixed graph; our algorithms are 

denoted as B/S (batch/stochastic) + SR/OL (solve regularizer/optimize loss). 

Empirical risk minimization We fist compare the iterative methods on the regularized ERM 

problem (2), to which the analysis for ADMM and SDCA applies. We tune the `2 regularization 

parameter for Local and (η,τ) for Centralized, and then fix the optimal (η,τ) for other methods. We also 

tune the quadratic penalty parameter for ADMM, the task separability and stepsize parameters for 

SDCA, and stepsize parameter for BSR/BOL (although the default value based on the smoothness 

parameter already works well for them). For SSR/SOL, we draw random samples from the fixed 

training set (with size n), and simply fix the minibatch size to be n/10. 

Figure 1 (left panel) shows for each method the estimated F(W) over iterations (or rounds of 

communication) in the top row, and over the amount of computation (measured by the number of 

passes over the training set) in the bottom row. Observe that all iterative algorithms converge to the 

same ERM solution, our algorithms tend to consistently outperform ADMM and SDCA. 
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Stochastic optimization We next demonstrate the efficiency of true stochastic algorithms (using 

fresh samples for each update) at C = 10. We allow the algorithms to process a total of 10000 fresh 

samples on each machine, and vary the minibatch size b over {40,80,100,200,500}. The parameters 

(η,τ) are fixed to those used in the ERM experiments. 

Figure 1 (right panel) shows for each method the estimated F(W) over iterations (or rounds of 

communication) in the left plot, and over the amount of fresh samples processed (or total 

computation cost) in the right plot. As a reference, the error of Local and Centralized (using n = 500 

samples per machine) are also given in the plots. We observe that with fresh samples, stochastic 

algorithms are competitive to ERM algorithms in terms of sample complexity, while being 

computationally more efficient. 

A Proof of Lemma 1 

Recall that the ERM problem is defined as 

 = argmin  WLW>, 

W 

where η, τ ≥ 0 are regularization parameters, Z = {zij : i = 1,...,m, j = 1,...,n} is the sample set. And recall 

that λi, i = 1,...,m are the eigenvalues of L. 

Assume that the instantaneous loss `(w,z) is L-Lipschitz in w. We would like to show that 

. 

Proof. In the following, we define M L which is positive definite. Furthermore, perform the 

following change of variables 

 U = WM  w  

where ei is the i-th standard basis in Rm. 

We can then rewrite the losses using the new variables: 

 , for i = 1,...,m, 

and the empirical objective as 

 n  

 n  m

 . (15) 
U 
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We can view (15) as performing ERM in the space of U, using the instantaneous loss h1(U,z1) with 

n independent samples {z1j}j=1,...,n, and using the term in bracket as the z1-independent regularizer. 

Recall that the ERM solution to an objective with Lipschitz loss and strongly convex regularizer is 

stable. Obviously, the regularization term in (15) is -strongly convex in U. We now bound the 

Lipschitz constant of h1(U,z1) in U. Observe that 

, 

and as a result the Lipschitz constant is bounded by 

 

where we have used the L-Lipschitz continuity of `(w1,z1) which implies k∇w1`(w1,z1)k ≤ L. 

According to Shalev-Shwartz et al. (2009)[Theorem 6], for any fixed , it holds for 

the ERM solution Ub = argminU  that 

. 

Translating this in terms of the original variables, we have 

where  

 By the convexity of

and the Jensen’s inequality, this implies 

This result shows that, to obtain generalization for a single task, we only need concentration for the 

sampling process of that task. By the same argument, we obtain similar inequalities regarding 

stability for losses on each machine. 

Finally, we have by the triangle inequality that 
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which is what we set out to prove.  

B Proof of Lemma 2 

Based on Lemma 1, we now show that by properly setting the regularization parameters in the 

regularized ERM problem (2), i.e., , we have that 

. 

where 

Proof. Observe that 

 

where we have used Lemma 1 in the first inequality, and that W is the empiric risk minimizer in Since 

W∗ ∈ Ω, we can bound the excess error as 

the third inequality. c 



19 

 . (16) 

Now, set  and  for some  that will be specified later. Continuing from (16) yields 

! 

Minimizing the RHS over  gives , and 

. 

 

C The accelerated proximal gradient algorithm 

We provide the accelerated proximal gradient algorithms in Algorithm 1, which are used to accelerate 

our ERM algorithms in the main text. The proximal operator is defined as proxβh(x) = argminy

) where β > 0 and h(x) is convex and possibly non-smooth. 

 
Algorithm 1 ProxGrad(g,h,β,µ): Accelerated proximal gradient descent. 

 

Input: Objective has the form f(w) = g(w) + h(w), where g(w) is β-smooth and µ-strongly convex, and 

h(w) is convex. Initialize w0, y1 ← w0 for t = 1,...,T do 

 w , y  

end for 
Output: wT is the approximate solution. 
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D Analysis of stochastic optimization by directly solving the regularizer 

In each iteration of this algorithm, we draw b samples per machine to approximate the gradient of 

the population loss and perform minibatch SGD, which amounts to linearizing the loss on a minibatch. 

The key to being sample efficient is to respect the geometry imposed by the graph Laplacian. 

As in Section 3.1, define the change of variable U  where M L. Our 

population objective is ), and the predictor U  satisfies the constraint 

that . We can perform minibatch SGD in the Uspace: 

U , for t = 0,..., Ut+1 = argmin
U 

where samples drawn by machine i 

at iteration t+1, and αt+1 > 0 is a stepsize parameter. In the W-space, the above update reduces to 

Wt+1 = Wt − αt+1∇Fbt+1(Wt) · M−1, 

Clearly, this update requires inverting the graph Laplacian. 

We can further accelerate this method using the accelerated stochastic approximation (ACSA) 

algorithm of Lan (2012). We give the detailed stochastic algorithm by directly solving the regularizer 

(with linearized loss) in Algorithm 2. 

 

Algorithm 2 Accelerated minibatch SGD. This algorithm maintains three iterate sequences:  

is the sequence of prox centers,  is the “middle” sequence with which we evaluate the 

stochastic gradient and build models (approximations) of the objective, and  is the “aggregated” 
sequence with which we evaluate the objective values. 

Input: The stepsize sequences . 

Initialize W0 ← 0, Wag0 ← W0 for t = 0,...,T − 1 do 

W  

 Wt+1 ← Wt − αt+1∇Fbt+1(Wmdt ) · M−1 

W

 
end for 

Output: Wag
T (or equivalently UT

ag) is the approximate solution. 
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The key quantity for analyzing the convergence property of minibatch SGD is the variance of 

stochastic gradients in the U-space, which we now derive. We can view ξ = (z1,...,zm) as the combined 

sample, ) as the averaged instantaneous loss, so that 

) approximates Eξ [`multi (W,ξ)] with b combined samples. The 

lemma below bounds the variance of stochastic gradient estimated with one combined sample. 

Lemma 4. The variance of stochastic gradient in the U-space is bounded: 

where  

Proof. By direct calculation, we have 

 

 tr M  

where we have used the independence between zi and zk for i =6 k so that the cross terms vanishes in 

(17), and the triangle inequality and that k∇wi`(wi,zi)k ≤ L in the inequality.  

Averaging the b independent stochastic gradients on a minibatch reduces the gradient variance 

to σ2/b (see, e.g., Dekel et al., 2012, eqn 7). Note that  is the smoothness parameter of  

w.r.t. U, and the distance generating function  is 1-strongly convex w.r.t. the kUkF -norm. 

Plugging these problem parameters into (Lan, 2012)(Corollary 1) yields Theorem 3. 

E A sample-efficient stochastic algorithm by directly optimizing the loss 

The key to sample efficiency in the stochastic setting is to couple the individual learning tasks with 

the graph, and respect the geometry of the U-space (e.g., in deriving the generalization performance 

in Lemma 1, we rely on strong convexity in the norm kUkF ). This motivates us to derive a sample-

efficient stochastic algorithm based on the minibatch-prox method (Wang et al., 2017). The 

minibatch-prox method solves a subproblem involving nonlinearized loss on a minibatch in each 

iteration, and was shown to have the optimal sample complexity for stochastic convex optimization 

regardless of the minibatch size (recall from Section 4.1 that mnibatch SGD achieves the optimal 

sample complexity only for small enough minibatch size), and it was the basis for developing 

communication- and memory-efficient algorithm for distributed stochastic consensus learning in 

Wang et al. (2017). 
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= 1 
T 

P T 
t =1 W t istheapproximatesolution. 

F ( UM − 1 
2 

We detail the minibatch-prox based algorithm in Algorithm 3, which consists of two nested loops. 

In the outer loop, we perform minibatch-prox in the space of U; in each iteration of the outer loop we 

use b samples per machines to approximate the nonlinearized loss, and approximately solves a 

subproblem involving the full Laplacian in the W-space. The solutions to the subproblems (which is 

then a small ERM problem with fixed samples) are computed approximately by the inner loops, where 

we perform acclerated gradient descent in the space of W. 

 
Algorithm 3 Distributed minibatch prox. 

 

Initialize W0 ← 0 for t = 

0,...,T − 1 do 

Approximately solve 

Wt+1 ≈ Wct+1 = argminW  (W − Wt)M(W − W  

to ζt+1-suboptimality using the accelerated proximal gradient algorithm 

ProxGrad end 
for 

Output: W 

 The minibatch-prox algorithm for minimizing ) works as follows: 

 Ut+1 ≈ Ub = argminU , for t = 0,..., (18) 

). Note that we allow inexact solutions to the objective in (18).b The where 

in each iteration we draw b fresh samples per machine to approximate F(W) by Ft+1(W) = 

corresponding update of (18) in the W-space is Wt+1 ≈ Wct+1 = argminW fbt+1(W) where 

 . (19) 

We provide the learning guarantee of the minibatch-prox algorithm in the following theorem. 

Theorem 5. Suppose that we initialize Algorithm 3 with W = 0 and set . 

Assume that for all t ≥ 0, the error in minimizing (19) satisfies 

. 

T 
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Then for W, we have. 

Proof. Let  where tr M ). By an analysis similar to that of 

Lemma 1 (and essentially due to fbt+1(W)’s γ-strong convexity w.r.t. the norm k·kM), we obtain the 

“stability” of the exact minimizer to (19), i.e., . 

γ-strong convexity of fbt+1(W) w.r.t. the Euclidean norm, we haveb b Furthermore, if the suboptimality 

of Wt+1 satisfies ft+1(Wt+1) − ft+1(Wct+1) ≤ ζt+1, by the 

 , for i = 1,...,m, 

and consequently by the Lipschitz continuity of the loss, we have 

. 

This reconstructs the essential lemma required by the minibatch-prox analysis (Wang et al., 2017, 

Lemma 2). We can then invoke the learning guarantee of minibatch-prox (Wang et al., 2017, 

Theorem 7), by using our LU in place of their L, and our tr(M− ) in place of their ηt. In 

the end, we have 

 . 

 

For fixed n = bT, minibatch-prox attains the generalization error  for any 

minibatch size b. Though the error in solving each subproblem (19) seems stringent as it decreases 

over iterations, we can apply the linearly convergent accelerated proximal gradient method in the 

inner loops to the subproblems. For any minibatch size b, the number of outer iterations is T = nb , and 

the number of inner iterations for each outer iteration (the initial error for the 

subproblems are bounded with a warm-start, see Appendix F) is, so the total 

number of communication rounds is the multiplication

. 

This algorithm allows us to trade off communication and memory: We could use small number of 

samples b in each outer iteration (limited by the local memory), but the total number communication 

rounds increase with . The most communication-efficient setting is b = n, in which case we are 

essentially solving one ERM problem with mn samples (by linearzing the regularizer). Finally, we note 

that each update of the simple algorithm (11) (without the outer+inner loop structure) and a single 

inner iteration of the minibatch-prox subproblem (19) have the same communication/computation 

costs. 
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F Warm start when directly optimizing the loss 

Lemma 6. Consider the objective of the proximal operator 

. 

where h(y) is L-Lipschitz, and let x∗ = argminy f(y). Then we have 

kx∗ − xk ≤ L/β, 

and the suboptimality of x is bounded 

f(x) − f(x∗) ≤ L2/β. 

Proof. By the first-order optimality of x∗, we have 

0 = β(x∗ − x) + ∇h(x∗) 

where ∇h(x∗) is a subgradient of h at x∗. By the assumption that h(y) is L-Lipschitz, we have k∇h(x∗)k 

≤ L and consequently kx∗ − xk = k∇h(x∗)k/β ≤ L/β. 

For the suboptimality of x, it follows again from the Lipschitz continuity of h that 

 

 

This lemma indicates that for solving the local objectives when directly optimizing the loss, e.g., 

(8), we can initialize from Wt − β1 ∇R(Wt) which mixes the local predictor with those of the neighbors, 

and the initial suboptimality of this warm start is bounded by . 

A similar result holds when the distance term is defined by other non-Euclidean norms. For 

example, in Section 4.1, we need to solve subproblems of the form (19), where the distance in the W-

space is defined by the kWkM-norm. By an analysis similar to that of Lemma 6 and noting that 

1, we obtain the distance between wit and the optimal solution  is at most L/γ. 

As a result, the suboptimality of solving (19) when initialized from Wt is at most L2/γ. 
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G Directly optimizing the loss with bounded delays 

When directly optimizing the loss (while linearizing the regularizer), consider the case where the 

synchronization step is not perfect. Instead of waiting for neighboring machines to finish their local 

proximal step and sending in their new weight parameters, each machine can use the stale 

parameters for neighboring machines. Can we still solve the original ERM problem in this case? 

Consider the iteration t + 1 on machine i (with delays, t is now considered a local iteration 

counter). Let the set of neighboring machines be Ni. Due to delay in communication, we have a noisy 

gradient e 

Here dik(t) ∈ [0,Γ] is the delay of machine k relative to machine i (at iteration t + 1): Machine i is using 

the weight of machine k from dik(t) steps ago. In this section, we allow the delay to vary over time, as 

long as it is upper bounded by Γ. 

Based on this noisy gradient, machine i computes 

the following proximal gradient step 

w(20) 

with some stepsize β > 0. We need to analyze the convergence of the proximal gradient method with 

errors in the gradient, as done by Schmidt et al. (2011). The difference from their work is that the 

error in our gradients comes from delay (stale weight parameters). Comparing with the case without 

delay, we have the “error” in the local gradient: 

 e. 

From iteration t − dik(t) to iteration t, the k-th machine has performed dik(t) gradient proximal 

operations. The intuition is that, by the non-expansiveness of the proximal operator, the error in 

gradient would not cause too much error in the iterates, and then by the smoothness of the objective, 

this would in turn only results in small error in gradient of the next step. It is important to note that, 

all machines are influenced by each other and the local errors are propagated to the entire graph. 

Based on the non-expansive property of the proximal operator and the additional assumption of 

the adjacency matrix being doubly-stochastic, it is straightforward to show the following convergence 

guarantee for the (non-accelerated) proximal gradient algorithm. The algorithm converges at a 

slower linear rate than without delays. 
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Theorem 7. Assume that the affinity matrix A is doubly-stochastic, i.e., Pk∈Ni aik = 1 for all i, and the delay 

in the update rule (20) has delay bounded by Γ. Set the inverse stepsize . 

Then after t ≥ 1 iterations of the algorithm, we have 

. 

Proof. Since Wc is the optimal solution to the ERM problem, we have that 

 

Then, by the non-expansiveness of the proximal operator, we obtain where 

we have used the triangle inequality in the second inequality. 

Assume that the affinity matrix A is doubly-stochastic, so that Pk∈Ni aik = 1 for all i. De- 
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note . Then (21) implies that βmτ 

maxt−Γ≤t0≤t V (t0) holds for all i, and as a result 

. 

As long as , we have 1]. Then according to Feyzmahdavian et al. (2014, 

Lemma 3), we have 

. 

Setting β to be the smallest possible value  yields the desired result.  

H Comparisons with previous distributed multi-task learning 

algorithms 

We now provide upper bounds of the iteration complexities for the distributed multi-task learning 

algorithms of Vanhaesebrouck et al. (2017) and Liu et al. (2017) in the ERM setting. We convert their 

notations into ours to be consistent. 

H.1 Iteration complexity of the algorithm of Liu et al. (2017) 

The full algorithm of Liu et al. (2017) performs alternating optimization over the task relationship 

and the local predictors on each machine. In order to to compare their algorithm with ours on the 

efficiency of learning predictors, we consider a fixed task correlation matrix M L in their 

objective (corresponding to Ω in eqn (1) of their paper). 

With fixed M, their algorithm performs distributed SDCA (Ma et al., 2015) for optimizing over the 

predictors. In each round of distributed SDCA, one constructs an upper bound of the objective that is 

separable over the machines (predictors), so that each machine solves a subproblem defined by its 

local data, and then one around of communication is used to aggregate local updates. 

When the instantaneous losses are βF -smooth and each local subproblem is solved exactly (i.e., 

we set Θ = 0 in their analysis), the number of global (communication) rounds needed for obtaining an 

approximate solution is, according to Liu et al. (2017, Lemma 7 and Theorem 8), of the order (ignoring 

the logarithmic factor on final optimization error) 

. 

Here, the first term measures the “task separability” with value in [1,m] (see the definitions of K and 

α[i] in their Theorem 1, and the discussion of separability in Section 6.3). On the other hand, we have 

max  1. As a result, the iteration complexity of distributed 

SDCA is 

(task separability in [1,m]). 
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This iteration complexity is similar to that of our ERM 

algorithm by directly solving the regularizer ( q ), but has worse dependence on the condition number 

and an unclear multiplicative constant on the tasks separability. 

H.2 Comparison with the collaborative algorithm of Vanhaesebrouck et al. (2017) 

We now compare with the collaborative learning algorithm of Vanhaesebrouck et al. (2017) in the 

synchronous and decentralized setting. In their algorithm, each machine augments its local 

optimization parameters to include a copy of predictor from each neighboring machine. Let Θi be the 

set of |Ni| + 1 variables wk for k ∈ Ni ∪ {i}, and Θki is the copy of wk on machine i. We can reformulate 

the global objective (2) as 

m 

 argminHi(Θi)

 where 
{Θi}mi=1 i=1 

 subject to  Θ

 . (22) 

Vanhaesebrouck et al. (2017) then introduce variables associated with each edge (4 set of 

variables per edge) and apply ADMM to the resulting problem. An advantage of ADMM is that it allows 

decoupling of the local problems when updating primal variables, where the local problem involves 

the nonlinearized loss function. 

Although Vanhaesebrouck et al. (2017) suggest that the convergence results of synchronous 

decentralized ADMM (Wei and Ozdaglar, 2013; Shi et al., 2014) apply to this formulation (see their 

Appendix D), we note however that (22) is not in the standard form covered by these results. In 

particular, the classical decentralized concensus problem has the form x∈ N 

 ) s.t. xi = xj for all (i,j) where j i. 

Here, neighboring machines share the same set of optimization parameters and they would like to 

reach complete consensus, whereas in (22) neighboring machines can have different set of variables 

and they only try to achieve consensus on the shared parameters. As a result, it is nontrivial to derive 

the iteration complexity of the collaborative learning algorithm of Vanhaesebrouck et al. 

(2017) based on the same quantities used in the analysis of our algorithms. 

I Experiments 

In this section we examine the empirical performance of the proposed algorithms. We consider the 

problem of linear regression on synthetic data. For the i-th task, we generate data from 

 

X 
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where  is noise drawn from the Normal distribution N(0,3), x ∈ Rd is drawn from a multivariate 

Normal distribution with mean zero and covariance matrix Σ where Σij = 2−|i−j|/3, and w is a 

coefficient vector for the i-th task generated from the following clustered multi-task structure. Each 

wi∗ is drawn from a mixture of C clusters; there is a reference model rj for each cluster j = 1,...,C, and 

the task specific model wi∗ is a small perturbation of the corresponding cluster reference model: wi∗ 

= rj + ξi, if wi∗ is drawn from cluster j. 

The cluster reference model rj is generated by sampling each entry i.i.d. from Unif[−0.5,0.5], while the 

perturbation vector ξi is generated by sampling each entry i.i.d. from Unif[−0.05,0.05]. This 

construction gives us task specific models which are similar to each other when they belong to the 

same cluster. The corresponding similarity graph is a 10-nearest neighbor graph (so the graph is 

connected) with binary weights built on {wi}i=1,...,m, i.e., each task is connected to 10 other tasks whose 

models are most similar. 

We tested a few graph-based multi-task learning methods. 

• Local: solves a local ERM problem (with only `2 regularization) with n samples for each task. 

• Centralized: solves the graph-regularized ERM problem (2) with n samples for each task. 

• ADMM: the synchronized version of the ADMM algorithm of Vanhaesebrouck et al. (2017). 

• SDCA: the distributed SDCA algorithm of Liu et al. (2017) for fixed graph. 

• Our algorithms: denoted as B/S (batch/stochastic) + SR/OL (solve regularizer/optimize loss). 

 

Figure 2: Performance of different methods for regularized empirical risk minimization. 
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In the experiments below, we have problem dimension d = 100, number of tasks m = 100, training 

set size n = 500, and vary number of task clusters C over {1,5,10,50} (smaller C implies overall 

stronger task similarity). We also generate a dev set of 10000 samples per task for tuning hyper-

parameters, and test set of 10000 samples per task for approximately evaluating the population loss. 

Empirical risk minimization We fist compare the iterative methods on the regularized ERM 

problem (2), to which the analysis for ADMM and SDCA applies. We tune the `2 regularization 

parameter for Local and (η,τ) for Centralized, and then fix the optimal (η,τ) for other methods. We also 

tune the quadratic penalty parameter for ADMM, the task separability and stepsize parameters for 

SDCA, and stepsize parameter for BSR/BOL (although the default value based on the smoothness 

parameter already works well for them). For SSR/SOL, we draw random samples from the fixed 

training set (with size n), and simply fix the minibatch size to be n/10. 

Figure 2 shows for each method the estimated F(W) over iterations (or rounds of communication) 

in the top row, and over the amount of computation (measured by the number of passes over the 

training set) in the bottom row. Observe that all iterative algorithms converge to the same ERM 

solution, our algorithms tend to consistently outperform ADMM and SDCA. 

Stochastic optimization We next demonstrate the efficiency of true stochastic algorithms (using 

fresh samples for each update) at C = 10. We allow the algorithms to process a total of 10000 fresh 

samples on each machine, and vary the minibatch size b over {40,80,100,200,500}. The parameters 

(η,τ) are fixed to those used in the ERM experiments. 

Figure 3 shows for each method the estimated F(W) over iterations (or rounds of communication) 

in the left plot, and over the amount of fresh samples processed (or total computation cost) in the 

right plot. As a reference, the error of Local and Centralized (using n = 500 samples per machine) are 

also given in the plots. We observe that with fresh samples, stochastic algorithms are 

 

Figure 3: Performance of stochastic algorithms with various minibatch sizes. Here C = 10. 

competitive to ERM algorithms in terms of sample complexity, while being computationally more 

efficient. 
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