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Abstract

We propose methods for distributed graph-based multi-task learning that are based on
weighted averaging of messages from other machines. Uniform averaging or diminishing stepsize
in these methods would yield consensus (single task) learning. We show how simply skewing the
averaging weights or controlling the stepsize allows learning different, but related, tasks on the
different machines.
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1 Introduction

We consider a distributed learning problem in a multi-task setting: each machine i has access to
samples from a different data distribution D;, with potentially a different optimal predictor, and thus
a different learning task, but where we still assume some similarity between different tasks. The goal
of each machine is to find a good predictor for its own task, based on its own local data, as well as
communicating with the other machines so as to leverage the similarity to other related tasks.

Distributed multi-task learning lies between a homogeneous distributed learning setting (e.g.
Shamir and Srebro, 2014), where all machines have data from the same source distribution, and
inhomogeneous consensus problems (e.g. Ram et al., 2010; Boyd et al., 2011; Balcan et al., 2012),
where each machine sees data from a different source, but the goal is to reach a single consensus
predictor. In many distributed learning problems, different machines do indeed see different
distributions. For example, machines might serve different geographical regions. In a more extreme
“federated learning” (Konecny et al,, 2015) scenario, each machine is a single user device, and its data
distribution might reflect e.g. the user’s speech, language biases, usage patterns, etc. Such
heterogeneity requires departing from a homogeneous model. But if the data distribution on each
machine is different, we might as well learn a personalized predictor for each machine, while still
leveraging commonalities as in multi-task learning, instead of insisting on consensus. Unlike when
seeking consensus, we could learn a predictor entirely locally, ignoring data on other machines. But
the premise of multi-task learning is that by communicating with other machines we can improve our
predictions, reduce the sample complexity, and hopefully also reduce the computational cost on each
machine by distributing the computation.

Central to multi-task learning is the notion of relatedness between tasks. In a high-dimensional
setting, with large number of variables, we might expect a small common set of predictive variables,
where the form of the dependence on variables in this common set varies between tasks (Turlach et



al,, 2005; Obozinski etal.,, 2011; Lounici etal., 2011; Wang et al., 2015). Another approach is to assume
that the predictors lie in a shared lower dimensional subspace (Ando and Zhang, 2005; Yuan et al,,
2007; Wang et al,, 2016) or all have low-norm under some shared linear representation (Amit et al.,
2007; Argyriou et al., 2008). Both the shared sparsity and shared subspaces models have recently
been considered in a distributed learning setting (Wang et al.,, 2015, 2016), and nuclear-norm
regularized multi-task learning has been studied from a distributed optimization perspective (Baytas
etal, 2016).

In this paper, we consider graph-based multi-task learning, where relatedness between tasks is
specified through a weighted graph over the tasks. Neighboring tasks in the graph are expected to be
similar, with a penalty for dis-similarity specified by the weight between them (see precise
formulation in Section 2) (Maurer, 2006; Evgeniou et al., 2005). This also generalized a simpler “fully
connected” multi-task model where all predictors are close to each other (Evgeniou and Pontil, 2004).
A predictor-homogeneous assumption can also be viewed as an extreme case where all weights go to
infinity, forcing all predictors to be identical. In distributed multi-task learning, graph-based
relatedness is especially appealing if the relatedness graph also matches the graph of network links
between machines, as might be the case, e.g. in a geographical setting or with physical sensors. We
therefor emphasize and prefer methods with communication only between neighboring tasks on the
graph.

In designing methods for graph-based multi-task learning, we are interested in methods that (1)
are natural and simple—all our algorithms have a similar and natural structure, involving weighted
averaging of messages from neighboring machines and a local gradient or prox calculation; (2) have
low communication costs, are sample efficient, and preferably also have low computational cost; and
(3) are backed by rigorous guarantees on the amount of communication, samples and computation
required.

Graph-based multi-task learning has been recently studied by Vanhaesebrouck et al. (2017) and
Liu et al. (2017), both considering the problem as distributed optimization of the multitask
regularized empirical objective, similar to our approach in Section 3.2). Vanhaesebrouck et al.
suggested an asynchronous gossip-type algorithms and an ADMM procedure, while Liu et al.
proposed using SDCA, and also considered learning the relatedness graph itself. Neither provides any
statistical analysis, nor analysis of the iteration complexity and communication cost based on the
methods. We conduct detailed comparison of convergence properties with these methods in
Appendix H, providing upper bounds of their iteration complexities when possible; our methods have
faster convergence than the guarantees we could obtain for them. Also, neither directly considers the
underlying learning problem (minimizing the actual expected errors), and so neither studies
stochastic methods (in the flavor of our Section 4).

Here, we show how methods that arise naturally by skewing averaging weights or controlling
stepsize of consensus learning methods do yield good guarantees. We also propose stochastic
methods which allow reducing the computational cost, and we compare the empirical performance
of both our batch and stochastic methods to those of Vanhaesebrouck et al. (2017) and Ma et al.
(2015).

Notations In this paper, boldface lower-case letters denote column vectors, boldface capital letters
denote matrices, vec(U) is the vectorial form of a matrix U which concatenates columns of U, and



UQ®YV is the Kronecker product between two matrices U and V. Furthermore, hu, vi = u-v denotes the

inner product of two vectors u and v, while hU, Vi = tr U- denotes inner product

pof two matrices U and V of the same dimensions. We use kuk = phu, ui to denote the length ofp

a vector u, kUkr = kvec(U)k the Frobenius norm of a matrix U, and kUkm =

tr(UMU>) =

hUM, Ui the norm of U with respect to some positive definite matrix M. A function f(x) is Lipschitz
if |(x) - Aly)l £ Lkx - yk, Vxy. A convex function f;(X) is f-smooth and u-strongly convex if

yk, ¥x,y. This definition extends to functions
of matrices, by replacing the vector norm with the Frobenius norm in the above inequality.

2  Graph-based multi-task learning

Consider a distributed setting with m machines, where each machine i has access to a data
distribution Diand would like to learn a predictor w; € R?for each machines with small expected loss
Fi(wi) = Ez~Di[ (W;Z;)]. A known weighted graph, with known non-negative weights {ax}, specifies the
relatedness between tasks. Specially, we would like to consider predictor matrices

W = [W1,W,..,Wn| € Rixmfrom the set

i.e., we would like the norm of each individual predictor to be bounded (so that it has low complexity
and generalizes well), and the weighted dis-similarities between related predictors to also be small.
Taking an agnostic PAC-learning approach, our goal is to minimize the overall population ob-

I 0
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and be competitive with respect to predictors in the set Q). Denoting W+ = argminwea F(W) the optimal
predictor from Q, and we would like to learn a predictor W with F(W) < F(Wx) + €.

In our analysis, we take the instantaneous loss (w,z) to be L-Lipschitz continuous, and sometimes
also assume it is smooth. In the latter case, we assume machine i’s loss ‘(w;z;) is fiEven ignoring the

constraint on the similarity between predictors, the sample complexity for eachb smooth in w;, and

so the global loss _-smooth in W with fr= max1,.,m i

individual task (i.e. the number of samples from Direquired to ensure Fi(w;) < F;(w;) + €) is

_. That is, with a total of- samples, we can learn W with the desired

guarantee F(W) < F(Wx)+& without any communication between the machines, by, e.g., solving an
independent “;-regularized ERM problem on each machine. This local approach is the baseline on

which any method involving communication between the machines should improve.

Graph Laplacian The term _ can be written equivalently using the graph

Laplacian. Let A = [ax] € Rmxmbe the adjacency matrix, and L = diag(A1) — A be the corresponding

graph Laplacian (Lx = Pie=; ay if i = k and Lix = -ax otherwise), so that

_ WLW->. The eigenvalues of L will play an impor-

tant role and we denote them by 0 = A1 < - <A

Regularized ERM One way for learning the predictors is to solve the

regularized empirical risk minimization _ (ERM) problem. Let) be the

local empirical loss of machine i, and let Z = {z;: i = 1,..,m, j = 1,..,n} be the sample set. The regularized
ERM

objective is



= argmin — i Ibi(wl‘)
{z }
Pw)
+ 2 Zl kwik®+ —tr g
A (220 }
R(W)

wheren,7 2 0 areregularizationparameters.Let W = argminy Ib(W)+ R (W) bethesolution

WLW (2)

to (2).
To understand the statistical property of multi-task learning and facilitate further discussion, we

same learning guarantee for the solution of ac constrained ERM problem (i.e., argminweq Fb(W)), first
analyze the generalization error of W. Inspired by Maurer (2006), who showed essentially the ized
ERM rather than constrained ERM is that it is easier to solve unconstrained problem usingc we
provide guarantee for the regularized ERM solution W. Our motivation for studying regular-

(proximal) gradient methods, and we avoid computing projection onto the constraint set (), which is
difficult in a distributed setting.!

While the analysis of Maurer (2006) was based on the Rademacher complexity of Q (and required
the solution to lie in (1), our proof uses the stability based argument for generalization with strongly
convex regularizers (Shalev-Shwartz et al., 2009). Our analysis also reveals a fundamental connection
between single- and multi-task learning: to obtain generalization of a single task in the distributed
setting, we only need concentration for the sampling process of that task. In our case, we consider

strong convexity w.r.t. the kWkmM-norm where M
Lemma 1. Assume that the instantaneous loss ‘(w,z) is L-Lipschitz with respect to w. Then for the ERM

solution defined in (2), we have

1 Although for convex optimization, the constrained form and the regularized form are equivalent due to the Lagrange
duality, solving the constrained form may still require repeatedly solving the regularized form and searching for the
Lagrange multiplier.



Corollary 2. Set_ and _ in (2), where

Then

The quantity p(B,S) measures task relatedness and thus the benefit of multi-task learning. It
depends on the parameters (B,S) and the graph, but not the data. The value of p(B,S) ranges from 0

(when 1 (when_), corresponding to two extreme cases.
e When S is small and the graph is connected with high weights, the predictors are encouraged
to be similar to each other (we have a consensus problem if S = 0 and the graph is connected),

and p(B,S) is close to 0. The generalization error is then , corresponding to that of
single task learning using mn samples.

e When Sis large or the graph is disconnected, tasks are not very related and p(B,S) is close to 1.

In this case, the generalization error behaves like-, and we are essentially performing
local learning with n samples for each task.

For a fixed number of machines m and graph Laplacian L, to achieve ¢ excess population error by

the above approach, the number of samples used by each machines is
0((1/m+ p(B,S)) - n.). Therefore, when the tasks are related and p(B,S) is small, the sample complexity

of multi-task learning is significantly smaller than n, needed by the local approach.

To implement the regularized ERM approach in the distributed setting, we could have each
machines send ncsamples to a central machine, and then minimize the regularized empirical loss on
that machine. We refer to this baseline as the centralized approach—it is sample efficient, but
expensive in terms of communication and computation. We are interested in distributed multi-task
learning algorithms that are also sample efficient, i.e. use only O(n¢) samples on each machine (or at
least, not much more then this), but have low computation and communication costs. This can be
done either by low-communication distributed optimization of the regularized empirical error (2).

3 Distributed algorithms for ERM

In this section, we propose efficient distributed algorithms for minimizing the regularized empirical
such updates take the form: b

objective (2). The simplest approach is perhaps to perform gradient descent on F(WW). Interestingly,
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where at*1> 0 is the stepsize at iteration t+1, and the weights for combining neighboring predictors
are

utki+1 = (1 — at*lat(+1n +tatikPko aike) :: otherwise.if i = k, (4) With an
appropriate step-size schedule (or even a fixed stepsize if the loss is smooth), this method graph,
since the update for each machines involves only predictors from neighboring machinesc converges
to W. Furthermore, the updates require only communication along the relatedness

(with nonzero affinities). This is already a very natural and intuitive method for distributed multitask
learning, and we will return to it later. When the loss is smooth, the method can be accelerated using
Nesterov’s techniques (Nesterov, 2004, as detailed in Appendix C) without any increase in
communication costs nor substantial increase in computation. But first, we suggest two more
powerful alternatives.

Taking steps based on the gradients amounts to considering, in each iteration, a linearization of
the objective, that is of both the empirical loss Fb(W) and the regularizer R(W). However, in order to
obtain a distributable update, it is sufficient to linearize only one of these components while treating
the other more explicitly, since each one of them separately can be efficiently optimized optimized in
a distributed way, while R(Wb ) is data independent and could be optimized implicitly in a distributed
way: the empirical loss F(W) decomposes over machines, and so can be directly
based on the common knowledge of the relatedness graph. In the following, we consider two
distributed schemes, each based on directly handling one of the components, and each preferable in
a different regime depending on the relatedness graph and the structure and cost of communication.

3.1  Directly solving the regularizer

We first consider methods which directly handle the regularization term R(W). To do so, we consider
the change of variable vl e M -L, we can rewrite the ERM objective as

| ®

We propose to optimize this objective using gradient descent with respect to U, which reduces to the
updates in the W-space: for t = 0,...,

I (6)

where at*1 > 0 is the stepsize at iteration t+1. In each iteration, machine 7 performs the following
update with peki+1 = at+1(M-1)ki:
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(7)

=1

This update can be implemented in the distributed setting with a broadcast channel: it requires that
each machine has access to gradients of all machines, which can be achieved using one round of
global, all-to-all communication (not respecting the graph). We could compute M-! offline ahead of
time, and need not re-calculated at each iteration.

When the loss is smooth, we can accelerate (7) using Nesterov’s techniques without additional

communication costs. Setting a constant stepsize , which is the smoothness parameter
of the objective (5) in Uz, to achieve -suboptimality in (2), the iteration complexity of the accelerated

algorithm is . To achieve & excess error in the population loss, we set the

optimization error-) and plug in the choice of n from Corollary 2,
yiewins [ A

the iteration complexity.

3.2 Directly optimizing the loss
The above algorithm requires dense, broadcast communication for solving the proximal step defined
by the graph. In a decentralized setting, it is desired to develop algorithms which use only local,

V2 o PUM " 2)=( M 2 QDY %, w PW) - (M 2 QI
N vec (U) ( N )( ) vec (W) ( ) (
(M~ 2[[-||V \Z/ec(W]Ib(w)H'”M_Z”S %,,L

peer-to-peer communication. This can be achieved by the updates below, where we linearize the
graph regularizer but fully optimize over the loss:

Wt = argmin hVR(W¢), W - W4

w
I ®

where at*lis the stepsize at iteration t+1. As (8) decouples over machines, machine i independently
computes a proximal operation using local data:

w.= argming

By the optimality condition of this update, we have

.| ©)

2 2This is because ), and _



where the weights for combining neighboring predictors are the same as those in (4). Comparing (9)
with the similar update (3) where we linearized both the regularizer and the loss, we observe that
(9) is also a form of gradient method, with the gradient of loss evaluated at the “future” point.

The advantage of (9) is that the gradient VR(W) is data-independent and is obtained using only
one round of local communication from each machine to its neighbors. Furthermore, the computation
decouples over machines, and each machine optimizes the nonlinearized loss without
communication. In fact, we need not solve the proximal steps exactly since the (accelerated) proximal
gradient method is tolerant to errors in the steps (Schmidt et al.,, 2011), and sufficiently accurate
solutions can often be obtained in time nearly linear in the number of examples processed using
variance-reduced finite-sum methods such as SVRG (Johnson and Zhang, 2013). Overall, this is a
communication-efficient approach in which each machine tries to spend significant amount of time
performing local computations on its own data, and to communicate only infrequently. Note that
similar proximal type operations also appear in the ADMM algorithm of Vanhaesebrouck etal. (2017),
but the decoupling of tasks is different, because in the local problems of ADMM, each machine
optimizes over also a copy of neighboring predictors.

We can again accelerate (9) using Nesterov’s techniques, and se_, which is
the smoothness parameter of R(W) in W. Then, to achieve € excess
error in the population objective, the number of iterations needed _
by the accelerated algorithm is, using the choice of  and 1 from
Corollary 2. We also show that this algorithm is tolerant to delay and analyze its convergence under
bounded delay in Appendix G.

4  Stochastic algorithms

In ERM, we collect training samples on each machine ahead of time, and solve a fixed optimization
problem defined by them. But in real-world scenarios, we might have access to virtually unlimited
data, or a constantly available stream of examples. In this case, it might be statistically wasteful to
reuse examples over iterations. Or, even if we do have a finite amount of data, as we shall see, Table
1: Algorithms for distributed stochastic multi-task learning with graph regularization. Here ¢ is the

excess error in the population objective; E|
denotes the number of edges in the graph. For simplicity, schematic updates ignores acceleration, but
the rates are given for the accelerated algorithms. Each cell shall be interpreted as Oe(:) which hides

c o Vectors (€R9) Sample Total Samples
Algorithms ommun;catlon communicated complexity processed per
rounds per machine per machine machine
poly-logarithmic dependencies.
local 0 o N i
centralized nc - m- nc




ERM:

directly N N NEEEE
.

1. Wkt

solving
regularizer nc
1.
where(M
2. Wit+1 = Wit —8it
nc
1.
where
2.Witl= Wi i (i+1)
nc nc
ns, probably €
Stochastic: directly optimizing loss ns

(nenw)

we can get the same communication and statistical guarantee while processing only a minibatch at a
time, thus significantly reducing computational cost. We consider stochastic variants of the
approaches in Section 3 to directly optimize the population loss F(W), using fresh samples in each

update.
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4.1 Directly solving the regularizer

Analogous to (7), we could perform minibatch SGD with b samples per machine to approximate the
gradient of the population loss: for t = 0,..,,

S (10
where _), and_ samples drawn by machine k

atiteration ¢t + 1.

We can accelerate (10) using the accelerated stochastic approximation (AC-SA) algorithm of Lan
(2012). We provide the detailed accelerated algorithm in both the U-space and W-space in Algorithm
2 (Appendix D). We have the following guarantee after running it for T iterations.

Theorem 3. Set the initialization Wo= 0 and stepsize_
inaigorichm 2. mrer R

Sample complexity Let n = bT be the number of samples used in Algorithm 2. According to Theorem

3, as long as the minibatch size_, the first term in the error bound is dominant
and we achieve the generalization error_ as in ERM, so we are

still sample efficient in the stochastic setting.

Time complexity Algorithm 2 processes the drawn samples only once. While maintaining the sample
efficiency, we can set the minibatch size to the largest value b = b+, and this leads to the total number

of iterations (and local communication rounds)_, also matching that of ERM.

However, since each stochastic gradient uses only b = 0(n) samples, the local computation VFbt1(W¢)
is significantly reduced.

4.2  Directly optimizing the loss
Analogous to (8), we can use the stochastic algorithm where at iteration t+1, machine i computes

w. = argmin

(11)

For b = n, it has the same per iteration computation cost as the ERM counterpart (both process n
samples in each iteration). But, intuitively, it would outperform the ERM algorithm for the same
number of iterations/communications because it uses more fresh samples. We can prove the
convergence of this algorithm, but do not have a satisfactory analysis showing it is sample efficient.
We conjecture that its sample complexity per machine, denoted by ns, is in the range (ngng). We

11



implemented the accelerated version of this simple algorithm and this conjecture seems to be
supported by our experiments. In Appendix E, we provide a more complicated algorithm based on
the minibatch-prox algorithm of Wang et al. (2017), that is sample efficient and trade off
communication and memory costs.

Comparison of the different approaches Table 1 summarizes the communication and computation
complexities of the proposed algorithms. Some of our methods require solving local regularized-ERM
type problems on each machine. We do not analyze the precise complexity and required accuracy of
such local computation, but keep track of the number of samples processed on each machine, i.e. sum
of the sizes of the subproblems over the iterations, as the proxy for computational complexity. We
emphasize that, despite the simplicity of our ERM methods, their have faster convergence than what
we could obtain for previous methods; see detailed discussions in Appendix H. Our stochastic
algorithms mirror the ERM algorithms in terms of updates, but can be computationally much more
efficient.

5 Connection to consensus learning

The iterations we consider all involve taking a weighted average of messages (iterates or gradients)
from other machines and a local gradient or prox computation. These same type of iterates have also
been suggested and studied as methods for solving the consensus problem—that is, finding a single

consensus predictor w that is good for all machines and minimizes

But the consensus problem is fundamentally different from our “pluralistic” multi-task problem, with
a different optimum. In this section we will understand what makes the same form of updates, namely
updates of the form (3), (7), (9) or their stochastic variants, converge to either the consensus solution
or to the pluralistic multi-task solution. In particular, we show how consensus methods are obtained
as special cases of these updates, or as limits of the multi-task approach.

Averaging gradients Let us begin with the update of the form (7) or its stochastic variant (10), where
we take a weighted average of gradients from other machines. When the averaging weights are
uniform, i.e. ut; = at/m for all i,k, and as long as all machines start from the same initialization (e.g. w
|- 0), the iterates will continue to be identical across machines throughout optimization (i.e. we will
have wit = wit for all ijt), thus maintaining consensus. Furthermore, the update (7) then boils down
to precisely gradient descent on the empirical consensus objective

, while the stochastic variant (7) is precisely a mini-batch stochastic gradient
descent update on the consensus objective, with a mini-batch consisting of the union of the samples
used across machines. Indeed, mini-batch SGD is a common approach for solving the distributed
consensus problem, or for distributed learning in a homogeneous setting (where we assume the same
distribution across machines, or at least the same good predictor). What we saw in Section 3, is that
by changing to non-uniform weights, given by u < M-1, we can allow pluralism and converge to the
multi-task solution.

We can furthermore observe how uniform weights (and therefor gradient descent/mini-batch
SGD on the consensus problem) are obtained as a limit of the multi-task weights yu &« M-1. If the graph
is connected, A1 = 0 is the only zero eigenvalue of the Laplacian L with an associated eigenvector of u

12



= [1,..,1] (if the graph is not connected, we cannot expect consensus, as each connected component

will behave independently). Therefor M_ has aleading eigenvalue of 1 of multiplicity
one, associated with the eigenvector u. As S = 0 and so T — o, that is we are demanding increasing
similarity between machines, the leading eigenvalue of M-1remains 1 while all other eigenvalues go

to zero, implying that M_ and so p4i= atM-! > at/m. That is, as we demand increasing
similarity between machines, and thus converge to a consensus situation, the updates converge to
standard consensus gradient descent or mini-batch SGD updates.

Averaging iterates Let us now turn to updates of the form (3), the related prox updates (9), and their
stochastic variants. Nedi'c and Ozdaglar (2009) proposed updates precisely of the form (3) as a
decentralized procedure for the consensus problem. They showed that when the averaging
weightsPut; are doubly stochastic and do not vary between iterations (i.e.———pt—= i, Vk Pi i = 1

and V;k i = 1), and the stepsize on the gradient goes to zero, i.e. att~w 0, the updates (3)

local
—central

Figure 1: Results for regularized ERM (left panel) and our stochastic methods with different b (right
panel).

converge to the consensus solution. In our case, the averaging weights, as defined in (4), deviate from
double-stochasticity, since Pk ut;= 1-atn. Furthermore, and possibly more significantly, to obtain our

convergence guarantees for smooth loss, we do not take atto zero. Even if we were to use diminishing

13



stepsizes in our derivations, we would have at— 0, but in that case the averaging weights would not
be fixed over iterations (as is the case in consensus optimization) and we would have ut— L.

To see how consensus updates are obtained as a limiting case of our multi-task setting, we again
consider a connected graph and study what happens as S = 0 and so T = o, while B and therefor 5
remain fixed. This corresponds to a fixed amount of local regularization, and increasing expectation
that neighboring nodes are similar. Under this scaling, we would indeed have a = 1/(n+tAn) = 0,
where A, > 0 since the graph is connected. Furthermore, we have that an — 0 while at - 1/A,,> 0.

Plugging this scaling into the multi-task averaging weights (4), we obtain the doubly stochastic

: otherwise.

weights:

(12) 21— » aik

To summarize, a significant differentiation between consensus and multi-task learning is therefor in
whether atdiminishes relative to (ut— I). When our relatedness constraints approach consensus, at
can diminish while utis non-trivial and doubly stochastic. In fact, in studying consensus optimization,
Yuan et al. (2016) recently noted that when atdoes not diminish, the methods does not converge to
the consensus solution but only to a neighborhood of it. In light of our analysis, we now understand
that this “neighborhood” corresponds to the multi-task learning solution, which indeed becomes
increasingly similar to the consensus solution as S — 0.

Connection to the decentralized algorithm of Scaman et al. (2017) When the graph is

connected, the consensus constraint wi = -+ = w,, can be equivalently written as WL = 0, since the
null space of L contains only vectors of constants. Then the multi-task formulation (2) is a relaxation
of

. .. 2m Xtk

k (13)
with the quadratic term ke wow- penalizing the constraint violation. The quadratic penalty—

oo ltr wLW> may lead to a large condition number for our algorithm (8) as t

14



Recently, Scaman et al. (2017) proposed an algorithm with optimal iteration/communication
complexities for decentralized consensus learning, which performs accelerated gradient descent on
the dual problem of (13), with updates (before acceleration):

wet = argma R

Ver1=Vi- aWeiL, (14)

where V0= 0 and a > 0 is the stepsize. It can be seen that their algorithm consists of the same type of
basic operations (weighted local average of predictors, and solutions of local subproblems involving
non-linearized loss) as ours. As noted by the authors, this is a form of distributed augmented
Lagrangian method without the quadratic penalty.

6 Experiments

We examine different graph-based multi-task learning methods on the task of least squares
regression using synthetic data. More details of the experiments (including data generation and more
results) are given in Appendix . The tasks are grouped into C clusters and the true predictors within
the same cluster are generated from the same Gaussian distribution, thus smaller C implies higher
task relatedness. We have input dimension d = 100, number of tasks m = 100, training set size n =
500, and vary number of task clusters C over {1,5,10,50}. We also generate a dev set of 10000 samples
per task for tuning hyper-parameters, and test set of 10000 samples per task for approximately
evaluating the population loss. The affinity graph A € R100x100 is 3 (connected) 10-nearest neighbor
graph with binary weights built on the true predictors.

The methods compared here are: Local, which solves a local ERM problem (with *-regularization)
with n samples for each task; Centralized, which solves the regularized ERM problem (2) with n samples
for each task; ADMM, which is the synchronized version of the algorithm of Vanhaesebrouck et al.
(2017); SDCA, which is the algorithm used by Liu et al. (2017) for fixed graph; our algorithms are
denoted as B/S (batch/stochastic) + SR/OL (solve regularizer/optimize loss).

Empirical risk minimization We fist compare the iterative methods on the regularized ERM
problem (2), to which the analysis for ADMM and SDCA applies. We tune the *; regularization
parameter for Local and (7,7) for Centralized, and then fix the optimal (7,7) for other methods. We also
tune the quadratic penalty parameter for ADMM, the task separability and stepsize parameters for
SDCA, and stepsize parameter for BSR/BOL (although the default value based on the smoothness
parameter already works well for them). For SSR/SOL, we draw random samples from the fixed
training set (with size n), and simply fix the minibatch size to be n/10.

Figure 1 (left panel) shows for each method the estimated F(W) over iterations (or rounds of
communication) in the top row, and over the amount of computation (measured by the number of
passes over the training set) in the bottom row. Observe that all iterative algorithms converge to the
same ERM solution, our algorithms tend to consistently outperform ADMM and SDCA.

15



Stochastic optimization We next demonstrate the efficiency of true stochastic algorithms (using
fresh samples for each update) at € = 10. We allow the algorithms to process a total of 10000 fresh
samples on each machine, and vary the minibatch size b over {40,80,100,200,500}. The parameters
(n,7) are fixed to those used in the ERM experiments.

Figure 1 (right panel) shows for each method the estimated F(W) over iterations (or rounds of
communication) in the left plot, and over the amount of fresh samples processed (or total
computation cost) in the right plot. As a reference, the error of Local and Centralized (using n = 500
samples per machine) are also given in the plots. We observe that with fresh samples, stochastic
algorithms are competitive to ERM algorithms in terms of sample complexity, while being
computationally more efficient.

A  ProofofLemma 1
Recall that the ERM problem is defined as

w

where 1, T 2 0 are regularization parameters, Z = {z;: i = 1,..,m, j = 1,..,n} is the sample set. And recall
that A; i = 1,..,m are the eigenvalues of L.

Assume that the instantaneous loss (w,z) is L-Lipschitz in w. We would like to show that

Proof. In the following, we define M -L which is positive definite. Furthermore, perform the
following change of variables

v-wvillll A

where e;is the i-th standard basis in R™.
We can then rewrite the losses using the new variables:

_, for i=1,.,m,

and the empirical objective as

n
" _» n

U

B &

(15)
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We can view (15) as performing ERM in the space of U, using the instantaneous loss h1(U,z1) with

.....

Recall that the ERM solution to an objective with Lipschitz loss and strongly convex regularizer is

stable. Obviously, the regularization term in (15) is --strongly convex in U. We now bound the
Lipschitz constant of h1(U,z1) in U. Observe that

_,

and as a result the Lipschitz constant is bounded by

where we have used the L-Lipschitz continuity of ‘(w1,z1) which implies kVw:(w1,z1)k < L.

According to Shalev-Shwartz et al. (2009)[Theorem 6], for any fixed-, it holds for

the ERM solution Ub = argmingy that

Translating this in terms of the original variables, we have

where _

By the convexity of

and the Jensen’s inequality, this implies

This result shows that, to obtain generalization for a single task, we only need concentration for the
sampling process of that task. By the same argument, we obtain similar inequalities regarding
stability for losses on each machine.

Finally, we have by the triangle inequality that
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which is what we set out to prove. O

B Proof of Lemma 2

Based on Lemma 1, we now show that by properly setting the regularization parameters in the

regularized ERM problem (2), i. e , we have that

where

Proof. Observe that

where we have used Lemma 1 in the first inequality, and that W is the empiric risk minimizer in Since
W+ € (), we can bound the excess error as

the third inequality. C
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(16)
JE . B o some that will be specified later. Continuing from (16) yields

Now, se

Minimizing the RHS over gives

I .

C The accelerated proximal gradient algorithm

We provide the accelerated proximal gradient algorithms in Algorithm 1, which are used to accelerate
our ERM algorithms in the main text. The proximal operator is defined as proxf,(x) = argminy

) where 8 > 0 and h(x) is convex and possibly non-smooth.

Algorithm 1 ProxGrad(g,h,f,u): Accelerated proximal gradient descent.

Input: Objective has the form f{w) = g(w) + h(w), where g(w) is f-smooth and pu-strongly convex, and

h(w) is convex. Initialize wo, yl < wofor t = 1,..,T do

end for
Output: w7is the approximate solution.
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D Analysis of stochastic optimization by directly solving the regularizer

In each iteration of this algorithm, we draw b samples per machine to approximate the gradient of
the population loss and perform minibatch SGD, which amounts to linearizing the loss on a minibatch.
The key to being sample efficient is to respect the geometry imposed by the graph Laplacian.

As in Section 3.1, define the change of variable v hce M L. Our

population objective is_), and the predictor VI :isfics the constraint

tha

. We can perform minibatch SGD in the Uspace:

voreargn [ B . .

U

where_samples drawn by machine i

atiteration t+1, and at*1 > 0 is a stepsize parameter. In the W-space, the above update reduces to

W1 = We - at+1VFbe+1(We) - M-1,

Clearly, this update requires inverting the graph Laplacian.

We can further accelerate this method using the accelerated stochastic approximation (ACSA)
algorithm of Lan (2012). We give the detailed stochastic algorithm by directly solving the regularizer
(with linearized loss) in Algorithm 2.

Algorithm 2 Accelerated minibatch SGD. This algorithm maintains three iterate sequences: -
is the sequence of prox centers, - is the “middle” sequence with which we evaluate the

stochastic gradient and build models (approximations) of the objective, and- is the “aggregated”
sequence with which we evaluate the objective values.

Input: The stepsize sequences _
mitialize Woe 0, Woewo NN o : - 0,..T- 1 do

Wer1 < We— ae+1VFber1(Wmae ) - M-1

end for
Output: W7 (or equivalently U7,) is the approximate solution.
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The key quantity for analyzing the convergence property of minibatch SGD is the variance of
stochastic gradients in the U-space, which we now derive. We can view & = (zy,...,Zn) as the combined

sample, ) as the averaged instantaneous loss, so that

_) approximates E¢ [ ‘muii (W,€)] with b combined samples. The

lemma below bounds the variance of stochastic gradient estimated with one combined sample.

Lemma 4. The variance of stochastic gradient in the U-space is bounded:

where
Proof. By direct calculation, we have

. I

where we have used the independence between z;and zx for i =6 k so that the cross terms vanishes in

(17), and the triangle inequality and that kVw;’(w;z;)k < L in the inequality. ]

Averaging the b independent stochastic gradients on a minibatch reduces the gradient variance
to 0%2/b (see, e.g., Dekel etal,, 2012, eqn 7). Note that. is the smoothness parameter of-
w.r.t. U, and the distance generating function - is 1-strongly convex w.r.t. the kUkr -norm.
Plugging these problem parameters into (Lan, 2012)(Corollary 1) yields Theorem 3.

E A sample-efficient stochastic algorithm by directly optimizing the loss

The key to sample efficiency in the stochastic setting is to couple the individual learning tasks with
the graph, and respect the geometry of the U-space (e.g., in deriving the generalization performance
in Lemma 1, we rely on strong convexity in the norm kUkr ). This motivates us to derive a sample-
efficient stochastic algorithm based on the minibatch-prox method (Wang et al., 2017). The
minibatch-prox method solves a subproblem involving nonlinearized loss on a minibatch in each
iteration, and was shown to have the optimal sample complexity for stochastic convex optimization
regardless of the minibatch size (recall from Section 4.1 that mnibatch SGD achieves the optimal
sample complexity only for small enough minibatch size), and it was the basis for developing
communication- and memory-efficient algorithm for distributed stochastic consensus learning in
Wang et al. (2017).
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We detail the minibatch-prox based algorithm in Algorithm 3, which consists of two nested loops.
In the outer loop, we perform minibatch-prox in the space of U; in each iteration of the outer loop we
use b samples per machines to approximate the nonlinearized loss, and approximately solves a
subproblem involving the full Laplacian in the W-space. The solutions to the subproblems (which is
then a small ERM problem with fixed samples) are computed approximately by the inner loops, where
we perform acclerated gradient descent in the space of W.

Algorithm 3 Distributed minibatch prox.

Initialize WO« O for ¢t =
0,..T-1do

Approximately solve

wt+1 ~ wct+1 = argminw- (w - Wt)M(W - _

to {x1-suboptimality using the accelerated proximal gradient algorithm

ProxGrad end
for p
Output: W = 1 7 W istheapproximatesolution.

The minibatch-prox algorithm for minimizing F (UM ~ %) works as follows:

Utttz Ub = argminy _ fort=0,.., (18)
_) Note that we allow inexact solutions to the objective in (18).b The where

in each iteration we draw b fresh samples per machine to approximate F(W) by Ft+1(W) =
corresponding update of (18) in the W-space is Wtt1 = Wctl = argminw fbt+1(W) where

| (15

We provide the learning guarantee of the minibatch-prox algorithm in the following theorem.

Theorem 5. Suppose that we initialize Algorithm 3 with W = 0 and se_.

Assume that for all t = 0, the error in minimizing (19) satisfies
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Proof. Le_ where tr M_). By an analysis similar to that of

Lemma 1 (and essentially due to fbt*1(W)’s y-strong convexity w.r.t. the norm k-km), we obtain the

Stabily of the exact minimizer o 19), 1.

y-strong convexity of fbt*1(W) w.r.t. the Euclidean norm, we haveb b Furthermore, if the suboptimality
ﬁ+1(wt+1) _ﬁ+1(th+1) < {t+11 by the

of Wi+l satisfies
_ ! for i - 1’".’m’

and consequently by the Lipschitz continuity of the loss, we have

This reconstructs the essential lemma required by the minibatch-prox analysis (Wang et al,, 2017,
Lemma 2). We can then invoke the learning guarantee of minibatch-prox (Wang et al,, 2017,

Theorem 7), by using our Ly in place of their L, and our -tr(M_) in place of their 5. In

the end, we have

For fixed n = bT, minibatch-prox attains the generalization error for any
minibatch size b. Though the error in solving each subproblem (19) seems stringent as it decreases
over iterations, we can apply the linearly convergent accelerated proximal gradient method in the
inner loops to the subproblems. For any minibatch size b, the number of outer iterations is T =2;, and
the number of inner iterations for each outer iteration (the initial error for the

subproblems are bounded with a warm-start, see Appendix F) is, so - the total
number of communication rounds is the multiplication

This algorithm allows us to trade off communication and memory: We could use small number of
samples b in each outer iteration (limited by the local memory), but the total number communication

O]

rounds increase with I The most communication-efficient setting is b = n, in which case we are
essentially solving one ERM problem with mn samples (by linearzing the regularizer). Finally, we note
that each update of the simple algorithm (11) (without the outer+inner loop structure) and a single
inner iteration of the minibatch-prox subproblem (19) have the same communication/computation
costs.
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F Warm start when directly optimizing the loss

Lemma 6. Consider the objective of the proximal operator
I
where h(y) is L-Lipschitz, and let X+ = argminy f(y). Then we have
kx*-xk < L/p,
and the suboptimality of X is bounded
fX) - flx+) < L2/,
Proof. By the first-order optimality of x+, we have

0 =f(x*-x) + Vh(xx)

where Vh(xx) is a subgradient of h at x+. By the assumption that h(y) is L-Lipschitz, we have kVh(x+)k
< L and consequently kx* - xk = kVh(x«)k/B < L/p.

For the suboptimality of x, it follows again from the Lipschitz continuity of h that

O]

This lemma indicates that for solving the local objectives when directly optimizing the loss, e.g.,

(8), we can initialize from Wt - gLVR(W!) which mixes the local predictor with those of the neighbors,

and the initial suboptimality of this warm start is bounded by-.

A similar result holds when the distance term is defined by other non-Euclidean norms. For
example, in Section 4.1, we need to solve subproblems of the form (19), where the distance in the W-
space is defined by the kWkm-norm. By an analysis similar to that of Lemma 6 and noting that

1, we obtain the distance between witand the optimal solution- is at most L/Y.
As a result, the suboptimality of solving (19) when initialized from W¢is at most L2/y.
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G Directly optimizing the loss with bounded delays

When directly optimizing the loss (while linearizing the regularizer), consider the case where the
synchronization step is not perfect. Instead of waiting for neighboring machines to finish their local
proximal step and sending in their new weight parameters, each machine can use the stale
parameters for neighboring machines. Can we still solve the original ERM problem in this case?
Consider the iteration ¢t + 1 on machine i (with delays, t is now considered a local iteration

counter). Let the set of neighboring machines be Ni. Due to delay in communication, we have a noisy

gradient _e

Here di(t) € [0,I'] is the delay of machine k relative to machine i (at iteration ¢t + 1): Machine i is using

the weight of machine k from di(t) steps ago. In this section, we allow the delay to vary over time, as

long as it is upper bounded by T

Based on this noisy gradient, machine i computes
the following proximal _ gradient step
w(20)

with some stepsize f > 0. We need to analyze the convergence of the proximal gradient method with
errors in the gradient, as done by Schmidt et al. (2011). The difference from their work is that the
error in our gradients comes from delay (stale weight parameters). Comparing with the case without
delay, we have the “error” in the local gradient:

_e.

From iteration t — di(t) to iteration t, the k-th machine has performed du(t) gradient proximal
operations. The intuition is that, by the non-expansiveness of the proximal operator, the error in
gradient would not cause too much error in the iterates, and then by the smoothness of the objective,
this would in turn only results in small error in gradient of the next step. It is important to note that,
all machines are influenced by each other and the local errors are propagated to the entire graph.

Based on the non-expansive property of the proximal operator and the additional assumption of
the adjacency matrix being doubly-stochastic, it is straightforward to show the following convergence
guarantee for the (non-accelerated) proximal gradient algorithm. The algorithm converges at a
slower linear rate than without delays.



Theorem 7. Assume that the affinity matrix A is doubly-stochastic, i.e., PkeNiayx = 1 for all i, and the delay

in the update rule (20) has delay bounded by T. Set the inverse stepsize-

Then after t =z 1 iterations of the algorithm, we have

Proof. Since Wc is the optimal solution to the ERM problem, we have that

Then, by the non-expansiveness of the proximal operator, we obtain where

we have used the triangle inequality in the second inequality.

Assume that the affinity matrix A is doubly-stochastic, so that Pken:ai= 1 for all i. De-



notc I ... 1) impiics . NN .

maxTsts<t V (t0) holds for all i, and as a result

As long as-, we have _1]. Then according to Feyzmahdavian et al. (2014,

Lemma 3), we have

Setting S to be the smallest possible Value- yields the desired result. O

H Comparisons with previous distributed multi-task learning
algorithms

We now provide upper bounds of the iteration complexities for the distributed multi-task learning
algorithms of Vanhaesebrouck et al. (2017) and Liu et al. (2017) in the ERM setting. We convert their
notations into ours to be consistent.

H.1 Iteration complexity of the algorithm of Liu et al. (2017)

The full algorithm of Liu et al. (2017) performs alternating optimization over the task relationship
and the local predictors on each machine. In order to to compare their algorithm with ours on the

efficiency of learning predictors, we consider a fixed task correlation matrix M -L in their
objective (corresponding to £ in eqn (1) of their paper).

With fixed M, their algorithm performs distributed SDCA (Ma et al., 2015) for optimizing over the
predictors. In each round of distributed SDCA, one constructs an upper bound of the objective that is
separable over the machines (predictors), so that each machine solves a subproblem defined by its
local data, and then one around of communication is used to aggregate local updates.

When the instantaneous losses are Sr-smooth and each local subproblem is solved exactly (i.e.,
we set © = 0 in their analysis), the number of global (communication) rounds needed for obtaining an
approximate solution is, according to Liu et al. (2017, Lemma 7 and Theorem 8), of the order (ignoring
the logarithmic factor on final optimization error)

Here, the first term measures the “task separability” with value in [1,m] (see the definitions of K and
apin their Theorem 1, and the discussion of separability in Section 6.3). On the other hand, we have

ma_ 1. As aresult, the iteration complexity of distributed

SDCA s

(task separability in [1,m]).
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- This - iteration complexity is similar to that of our ERM

algorithm by directly solving the regularizer ( q ), but has worse dependence on the condition number

and an unclear multiplicative constant on the tasks separability.

H.2 Comparison with the collaborative algorithm of Vanhaesebrouck et al. (2017)

We now compare with the collaborative learning algorithm of Vanhaesebrouck et al. (2017) in the
synchronous and decentralized setting. In their algorithm, each machine augments its local
optimization parameters to include a copy of predictor from each neighboring machine. Let 0;be the
set of |Ni| + 1 variables wi for k € Ni U {i}, and Ok; is the copy of wion machine i. We can reformulate
the global objective (2) as
m
argminH;(©;)
where
X{G)i}mi:l i=1

subject to 0

- . (22)

Vanhaesebrouck et al. (2017) then introduce variables associated with each edge (4 set of
variables per edge) and apply ADMM to the resulting problem. An advantage of ADMM is that it allows
decoupling of the local problems when updating primal variables, where the local problem involves
the nonlinearized loss function.

Although Vanhaesebrouck et al. (2017) suggest that the convergence results of synchronous

decentralized ADMM (Wei and Ozdaglar, 2013; Shi et al., 2014) apply to this formulation (see their

Appendix D), we note however that (22) is not in the standard form covered by these results. In

particular, the classical decentralized concensus problem has the form x€ N
- ) s.t. x;=X; forall (ij) wherej .

Here, neighboring machines share the same set of optimization parameters and they would like to
reach complete consensus, whereas in (22) neighboring machines can have different set of variables
and they only try to achieve consensus on the shared parameters. As a result, it is nontrivial to derive
the iteration complexity of the collaborative learning algorithm of Vanhaesebrouck et al.

(2017) based on the same quantities used in the analysis of our algorithms.

I Experiments

In this section we examine the empirical performance of the proposed algorithms. We consider the
problem of linear regression on synthetic data. For the i-th task, we generate data from
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where is noise drawn from the Normal distribution N(0,3), x € R4is drawn from a multivariate

Normal distribution with mean zero and covariance matrix £ where X; = 2-|i-}/3, and w-is a
coefficient vector for the i-th task generated from the following clustered multi-task structure. Each
wix is drawn from a mixture of C clusters; there is a reference model r;for each cluster j = 1,..,C, and
the task specific model w;x is a small perturbation of the corresponding cluster reference model: w;+

=1;+ &, if wixis drawn from cluster j.

The cluster reference model rjis generated by sampling each entry i.i.d. from Unif[-0.5,0.5], while the
perturbation vector & is generated by sampling each entry ii.d. from Unif[-0.05,0.05]. This
construction gives us task specific models which are similar to each other when they belong to the
same cluster. The corresponding similarity graph is a 10-nearest neighbor graph (so the graph is
connected) with binary weights built on {w;}i-1,.,m, i.e., each task is connected to 10 other tasks whose
models are most similar.

We tested a few graph-based multi-task learning methods.

e Local: solves a local ERM problem (with only “; regularization) with n samples for each task.

Centralized: solves the graph-regularized ERM problem (2) with n samples for each task.

ADMM: the synchronized version of the ADMM algorithm of Vanhaesebrouck et al. (2017).

SDCA: the distributed SDCA algorithm of Liu et al. (2017) for fixed graph.

Our algorithms: denoted as B/S (batch/stochastic) + SR/OL (solve regularizer/optimize loss).

Figure 2: Performance of different methods for regularized empirical risk minimization.
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In the experiments below, we have problem dimension d = 100, number of tasks m = 100, training
set size n = 500, and vary number of task clusters C over {1,5,10,50} (smaller C implies overall
stronger task similarity). We also generate a dev set of 10000 samples per task for tuning hyper-
parameters, and test set of 10000 samples per task for approximately evaluating the population loss.

Empirical risk minimization We fist compare the iterative methods on the regularized ERM
problem (2), to which the analysis for ADMM and SDCA applies. We tune the *; regularization
parameter for Local and (,7) for Centralized, and then fix the optimal (,7) for other methods. We also
tune the quadratic penalty parameter for ADMM, the task separability and stepsize parameters for
SDCA, and stepsize parameter for BSR/BOL (although the default value based on the smoothness
parameter already works well for them). For SSR/SOL, we draw random samples from the fixed
training set (with size n), and simply fix the minibatch size to be n/10.

Figure 2 shows for each method the estimated F(W) over iterations (or rounds of communication)
in the top row, and over the amount of computation (measured by the number of passes over the
training set) in the bottom row. Observe that all iterative algorithms converge to the same ERM
solution, our algorithms tend to consistently outperform ADMM and SDCA.

Stochastic optimization We next demonstrate the efficiency of true stochastic algorithms (using
fresh samples for each update) at C = 10. We allow the algorithms to process a total of 10000 fresh
samples on each machine, and vary the minibatch size b over {40,80,100,200,500}. The parameters
(n,7) are fixed to those used in the ERM experiments.

Figure 3 shows for each method the estimated F(W) over iterations (or rounds of communication)
in the left plot, and over the amount of fresh samples processed (or total computation cost) in the
right plot. As a reference, the error of Local and Centralized (using n = 500 samples per machine) are
also given in the plots. We observe that with fresh samples, stochastic algorithms are

local
—central
=—SSR-80
>~ SSR-100
+ 8SSR-200
+—SSR-500

——S0L-40
=—S0L-80
>—-S0L-100

——S0L-200

—o-S0L-500

Figure 3: Performance of stochastic algorithms with various minibatch sizes. Here C = 10.

competitive to ERM algorithms in terms of sample complexity, while being computationally more
efficient.
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