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Abstract

We consider testing and learning problems on causal Bayesian networks as defined by Pearl [Pea09].

Given a causal Bayesian network M on a graph with n discrete variables and bounded in-degree

and bounded “confounded components”, we show that O(log n) interventions on an unknown causal

Bayesian network X on the same graph, and Õ(n/ε2) samples per intervention, suffice to efficiently

distinguish whether X = M or whether there exists some intervention under which X and M are far-

ther than ε in total variation distance. We also obtain sample/time/intervention efficient algorithms for:

(i) testing the identity of two unknown causal Bayesian networks on the same graph; and (ii) learning

a causal Bayesian network on a given graph. Although our algorithms are non-adaptive, we show that

adaptivity does not help in general: Ω(logn) interventions are necessary for testing the identity of two

unknown causal Bayesian networks on the same graph, even adaptively. Our algorithms are enabled by a

new subadditivity inequality for the squared Hellinger distance between two causal Bayesian networks.

1 Introduction

A central task in statistical inference is learning properties of a high-dimensional distribution over some

variables of interest given observational data. However, probability distributions only capture the association

between variables of interest and may not suffice to predict what the consequences would be of setting some

of the variables to particular values. A standard example illustrating the point is this: From observational

data, we may learn that atmospheric air pressure and the readout of a barometer are correlated. But can

we predict whether the atmospheric pressure would stay the same or go up if the barometer readout was

forcefully increased by moving its needle?

Such issues are at the heart of causal inference, where the goal is to learn a causal model over some

variables of interest, which can predict the result of external interventions on the variables. For example, a
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causal model on two variables of interest X and Y need not only determine conditional probabilities of the

form Pr[Y | X = x], but also interventional probabilities Pr[Y | do(X = x)] where, following Pearl’s

notation [Pea09], do(X = x) means that X has been forced to take the value x by an external action. In our

previous example, Pr[Pressure | do(Barometer = b)] = Pr[Pressure] but Pr[Barometer | do(Pressure =
p)] 6= Pr[Barometer], reflecting that the atmospheric pressure causes the barometer readout, not the other

way around.

Causality has been the focus of extensive study, with a wide range of analytical frameworks proposed to

capture causal relationships and perform causal inference. A prevalent class of causal models are graphical

causal models, going back to Wright [Wri21] who introduced such models for path analysis, and Haavelmo

[Haa43] who used them to define structural equation models. Today, graphical causal models are widely

used to represent causal relationships in a variety of ways [SDLC93, GC99, Pea09, SGS00, Nea04, KF09].

In our work, we focus on the central model of causal Bayesian networks (CBNs) [Pea09, SGS00,

Nea04]. Recall that a (standard) Bayesian network is a distribution over several random variables that is

associated with a directed acyclic graph. The vertices of the graph are the random variables over which

the distribution is defined, and the graph describes conditional independence properties of the distribution.

In particular, every variable is independent of its non-descendants, conditioned on the values of its parents

in the graph. A CBN is also associated with a directed acyclic graph (DAG) whose vertices are the ran-

dom variables on which the distribution is defined. However, a CBN is not a single distribution over these

variables but the collection of all possible interventional distributions, defined by setting any subset of the

variables to any set of values. In particular, every vertex is both a variable V and a mechanism to generate

the value of V given the values of the parent vertices, and the interventional distributions are defined in

terms of these mechanisms.

We allow CBNs to contain both observable and unobservable (hidden) random variables. Importantly,

we allow unobservable confounding variables. These are variables that are not observable, yet they are

ancestors of at least two observable variables. These are especially tricky in statistical inference, as they

may lead to spurious associations.

1.1 Our Contributions

Consider the following situations:

1. An engineer designs a large circuit using a circuit simulation program and then builds it in hardware.

The simulator predicts relationships between the voltages and currents at different nodes of the circuit.

Now, the engineer would like to verify whether the simulator’s predictions hold for the real circuit by

doing a limited number of experiments (e.g., holding some voltages at set levels, cutting some wires,

etc.). If not, then she would want to learn a model for the system that has sufficiently good accuracy.

2. A biologist is studying the role of a set of genes in migraine. He would like to know whether the

mechanisms relating the products of these genes are approximately the same for patients with and

without migraine. He has access to tools (e.g., CRISPR-based gene editing technologies [DPL+16])

that generate data for gene activation and knockout experiments.

Motivated by such scenarios, we study the problems of hypothesis testing and learning CBNs when both

observational and interventional data are available. The main highlight of our work is that we prove bounds

on the number of samples, interventions, and time steps required by our algorithms.

To define our problems precisely, we need to specify what we consider to be a good approximation

of a causal model. Given ε ∈ (0, 1), we say that two causal models M and N on a set of variables
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V ∪ U (observable and unobservable resp.) are ε-close (denoted ∆(M,N ) 6 ε) if for every subset S of

V and assignment s to S, performing the same intervention do(S = s) to both M and N leads to the two

interventional distributions being ε-close to each other in total variation distance. Otherwise, the two models

are said to be ε-far and ∆(M,N ) > ε.

Thus, two models M and N are close according to the above definition if there is no intervention which

can make the resulting distributions differ significantly. This definition is motivated by the philosophy artic-

ulated by Pearl (pp. 414, [Pea09]) that “causation is a summary of behavior under intervention”. Intuitively,

if there is some intervention that makes M and N behave differently, then M and N do not describe the

same causal process. Without having any prior information about the set of relevant interventions, we adopt

a worst-case view and simply require that causal models M and N behave similarly for every intervention

to be declared close to each other.1

The goodness-of-fit testing problem can now be described as follows. Suppose that a collection V ∪U

(observable and unobservable resp.) of n random variables are causally related to each other. Let M be a

hypothesized causal model for V∪U that we are given explicitly. Suppose that the true model to describe the

causal relationships is an unknown X . Then, the goodness-of-fit testing problem is to distinguish between:

(i) X = M, versus (ii) ∆(X ,M) > ε, by sampling from and experimenting on V, i.e. forcing some

variables in V to certain values and sampling from the thus intervened upon distribution.

We study goodness-of-fit testing assuming X and M are causal Bayesian networks over a known DAG

G. Given a DAG G, CBN M and ε > 0, we denote the corresponding goodness-of-fit testing problem

CGFT(G,M, ε). For example, the engineer above, who wants to determine whether the circuit behaves as

the simulation software predicts, is interested in the problem CGFT(G,M, ε) where M is the simulator’s

prediction, G is determined by the circuit layout, and ε is a user-specified accuracy parameter. Here is our

theorem for goodness-of-fit testing.

Theorem 1.1 (Goodness-of-fit Testing – Informal). Let G be a DAG on n vertices with bounded in-degree

and bounded “confounded components.” Let M be a given CBN over G. Then, there exists an algorithm

solving CGFT(G,M, ε) that makes O(log n) interventions, takes Õ(n/ε2) samples per intervention and

runs in time Õ(n2/ε2). Namely, the algorithm gets access to a CBN X over G, accepts with probability

> 2/3 if X = M and rejects with probability > 2/3 if ∆(X ,M) > ε.

By “confounded component” in the above statement, we mean a c-component in G, as defined in Defi-

nition 2.10. Roughly, a c-component is a maximal set of observable vertices that are pairwise connected by

paths of the form V ← U → V ← U → V ← · · · → V where V and U correspond to observable and

unobservable variables respectively. The decomposition of CBNs into c-components has been important in

earlier work [TP02] and continues to be an important structural property here.

We can use our techniques to extend Theorem 1.1 in several ways:

(1) In the two-sample testing problem for causal models, the tester gets access to two unknown causal

models X and Y on the same set of variables V∪U (observable and unobservable resp.). For a given

ε > 0, the goal is to distinguish between (i) X = Y and (ii) ∆(X ,Y) > ε by sampling from and

intervening on V in both X and Y .

We solve the two-sample testing problem when the inputs are two CBNs over the same DAG G in

n variables; for a given ε > 0 and DAG G, call the problem C2ST(G, ε). Specifically, we show an

algorithm to solve C2ST(G, ε) that makes O(log n) interventions on the input models X and Y , uses

1To quote Pearl again, “It is the nature of any causal explanation that its utility be proven not over standard situations but rather

over novel settings that require innovative manipulations of the standards.” (pp. 219, [Pea09]).
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Õ(n/ε2) samples per intervention and runs in time Õ(n2/ε2), when G has bounded in-degree and

c-component size.2

(2) For the C2ST(G, ε) problem, the requirement that G be fully known is rather strict. Instead, suppose

the common graph G is unknown and only bounds on its in-degree and maximum c-component size

are given. For example, the biologist above who wants to test whether certain causal mechanisms

are identical for patients with and without migraine can reasonably assume that the underlying causal

graph is the same (even though he doesn’t know what it is exactly) and that only the strengths of the

relationships may differ between subjects with and without migraine. For this problem, we obtain an

efficient algorithm with nearly the same number of samples and interventions as above.

(3) The problem of learning a causal model can be posed as follows: the learning algorithm gets access

to an unknown causal model X over a set of variables V ∪ U (observable and unobservable resp.),

and its objective is to output a causal model N such that ∆(X ,N ) 6 ε.

We consider the problem CL(G, ε) of learning a CBN over a known DAG G on the observable and

unobservable variables. For example, this is the problem facing the engineer above who wants to learn

a good model for his circuit by conducting some experiments; the DAG G in this case is known from

the circuit layout. Given a DAG G with bounded in-degree and c-component size and a parameter

ε > 0, we design an algorithm that on getting access to a CBN X defined over G, makes O(log n)
interventions, uses Õ(n2/ε4) samples per intervention, runs in time Õ(n3/ε4), and returns an oracle

N that can efficiently compute PX [V \ T | do(T = t)] for any T ⊆ V and t ∈ Σ|T| with error at

most ε in TV distance.

The sample complexity of our testing algorithms matches the state-of-the-art for testing identity of

(standard) Bayes nets [DP17, CDKS17]. Designing a goodness-of-fit tester using o(n) samples is a very

interesting challenge and seems to require fundamentally new techniques.

We also show that the number of interventions for C2ST(G, ε) and CL(G, ε) is nearly optimal, even

in its dependence on the in-degree and c-component size, and even when the algorithms are allowed to be

adaptive. By ‘adaptive’ we mean the algorithms are allowed to choose the future interventions based on the

samples observed from the past interventions. Specifically,

Theorem 1.2. There exists a causal graph G on n vertices, with maximum in-degree at most d and largest

c-component size at most ℓ, such that Ω(|Σ|ℓd−2 log n) interventions are necessary for any algorithm (even

adaptive) that solves C2ST(G, ε) or CL(G, ε).

1.2 Related Work

1.2.1 Causality

As mentioned before, there is a huge and old literature on causality, for both testing causal relationships and

inferring causal graphs that is impossible to detail here. Below, we point out some representative directions

of research that are relevant to our work. This discussion is far from exhaustive, and the reader is encouraged

to pursue the references cited in the mentioned works.

Most work on statistical tests for causal models has been in the parametric setting. Structural equation

models have traditionally been tested for goodness-of-fit by comparing observed and predicted covariance

matrices [BL92]. Another class of tests that has been proposed assumes that the causal factors and the noise

factors are conditionally independent. In the additive noise model [HJM+09, PJS11, ZPJS12, SSS+17], each

2Of course, it is allowed for the two networks to be different subgraphs of G. So, X could be defined by the graph G1 and Y by

G2. Our result holds when G1 ∪G2 is a DAG with bounded in-degree and c-component size.
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variable is the sum of a (non-linear) function of its parent variables and independent noise, often assumed

to be Gaussian. This point of view has been refined into an information-geometric criterion in [JMZ+12].

In the non-parametric setting, which is the concern of this paper, Tian and Pearl [TP02] show how to derive

functional constraints from causal Bayesian graphs that give equality and inequality constraints among the

(distributions of) observed variables, not just conditional independence relations. Kang and Tian [KT06]

derive such functional constraints on interventional distributions. Although these results yield non-trivial

constraints, they are valid for any model that respects a particular graph and it is not clear how to use them

for testing goodness-of-fit with statistical guarantees.

Learning in the context of causal inference has been extensively studied. To the best of our knowledge,

though, most previous work is on learning only the causal graph, whereas our objective is to learn the entire

causal model (i.e., the set of all interventional distributions). Pearl and Verma [PV95, VP92] investigated

the problem of finding a causal graph with hidden variables that is consistent with a given list of condi-

tional independence relations in observational data. In fact, there may be a large number of causal graphs

that are consistent with a given set of conditional independence relations. [SGS00, ARSZ05], and Zhang

[Zha08] (building on the FCI algorithm [SMR99]) has given a complete and sound algorithm for recovering

a representative of the equivalence class consistent with a set of conditional independence relations.

Subsequent work considered the setting when both observational and interventional data are available.

This setting has been a recent focus of study [HB12a, WSYU17, YKU18], motivated by advances in ge-

nomics that allow high-resolution observational and interventional data for gene expression using flow cy-

tometry and CRISPR technologies [SPP+05, MBS+15, DPL+16]. When there are no confounding vari-

ables, Hauser and Bühlmann [HB12b], following up on work by Eberhardt and others [EGS05, Ebe07], find

the information-theoretically minimum number of interventions that are sufficient to identify3 the under-

lying causal graph and provide a polynomial time algorithm to find such a set of interventions. A recent

paper [KDV17] extends the work of [HB12b] to minimize the total cost of interventions where each ver-

tex is assigned a cost. Another work by Shanmugam et al. [SKDV15] investigates the problem of learning

causal graphs without confounding variables using interventions on sets of small size. In the presence of

confounding variables, there are several works which aim to learn the causal graph from interventional data

(e.g., [MMLM06, HEH13]). In particular, a recent work of Kacaoglu et al. [KSB17] gives an efficient

randomized algorithm to learn a causal graph with confounding variables while minimizing the number of

interventions from which conditional independence relations are obtained.

All the works mentioned above assume access to an oracle that gives conditional independence relations

between variables in the observed and interventional distributions. This is clearly a problematic assumption

because it implicitly requires unbounded training data. For example, Scheines and Spirtes [SS08] have

pointed out that measurement error, quantization and aggregation can easily alter conditional independence

relations. The problem of developing finite sample bounds for testing and learning causal models has been

repeatedly posed in the literature. The excellent survey by Guyon, Janzing and Schölkopf [GJS10] on

causality from a machine learning perspective underlines the issue as one of the “ten open problems” in the

area. To the best of our knowledge, our work is the first to show finite sample complexity and running time

bounds for inference problems on causal Bayesian networks.

An application of our learning algorithm is to the problem of transportability, studied in [BP13, SP08,

LH13, PB11, BP12], which refers to the notion of transferring causal knowledge from a set of source do-

mains to a target domain to identify causal effects in the target domain, when there are certain commonalities

between the source and target domains. Most work in this area assume the existence of an algorithm that

3More precisely, the goal is to discover the causal graph given the conditional independence relations satisfied by the interven-

tional distributions.
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learns the set of all interventions, that is the complete specification of the the source domain model. Our

learning algorithm can be used for this purpose; it is efficient in terms of time, interventions, and sample

complexity, and it learns each intervention distribution to error at most ε.

1.2.2 Distribution Testing and Learning

There is a vast literature on testing and learning high dimensional distributions in the statistics, and informa-

tion theory literature, and more recently in computer science with a focus on the computational efficiency

of solving such problems. We will not be able to cover and do justice to all of these works in this section.

However, we will provide pointers to some of the resources, and also discuss some of the recent progress

that is the most closely related to the work we present here.

In the distribution learning and testing framework, the closest to our work is learning and testing graph-

ical models. The seminal work of Chow-Liu [CL68] considered the problem of learning tree-structured

graphical models. Motivated by applications across many fields, the problem of learning graphical models

from samples has gathered recent interest. Of particular interest is the apparent gap between the sample

complexity and computational complexity of learning graphical models. [AKN06, BMS08] provided algo-

rithms for learning bounded degree graphical models with polynomial sample and time complexity. A lower

bound on the sample complexity that grows exponentially with the degree, and only logarithmically with the

number of dimensions was provided by [SW12], and recent works [Bre15, VMLC16, KM17] have proposed

algorithms with near optimal sample complexity, and polynomial running time for learning Ising models.

Sample and computational complexity of testing graphical models has been studied recently, in [CDKS17]

for testing Bayesian Networks, and in [DDK18] for testing Ising models. Given sample access to an un-

known Bayesian Network, or Ising model, they study the sample complexity, and computation complexity

of deciding whether the unknown model is equal to a known fixed model (hypothesis testing).

The problem of testing and learning distribution properties has itself received wide attention in statistics

with a history of over a century [Fis25, LR06, CT06]. In these fields, the emphasis is on asymptotic analysis

characterizing the convergence rates, and error exponents, as the number of samples tends to infinity. A

recent line of work originating from [GR00, BFR+00] focuses on sublinear algorithms where the goal is to

design algorithms with the number of samples that is smaller than the domain size (e.g., [Can15, Gol17],

and references therein).

While most of these results are for learning and testing low dimensional (usually one dimensional)

distributions, there are some notable exceptions. Testing for properties such as independence, and mono-

tonicity in high dimensions have been considered recently [BFRV11, ADK15, DK16]. These results show

that the optimal sample complexity for testing these properties grows exponentially with the number of di-

mensions. A line of recent work [DP17, CDKS17, DDK17, DDK18] overcomes this barrier by utilizing

additional structure in the high-dimensional distribution induced by Bayesian network or Markov Random

Field assumptions.

1.3 Overview of our Techniques

In this section, we give an overview of the proof of Theorem 1.1 and the lower bound construction. We start

by making a well-known observation [TP02, VP90] that CBNs can be assumed to be over a particular class

of DAGs known as semi-Markovian causal graphs. A semi-Markovian causal graph is a DAG where every

vertex corresponding to an unobservable variable is a root and has exactly two children, both observable.

More details of the correspondence are given in Appendix B.
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In a semi-Markovian causal graph, two observable vertices V1 and V2 are said to be connected by a

bi-directed edge if there is a common unobservable parent of V1 and V2. Each connected component of

the graph restricted to bi-directed edges is called a c-component. The decomposition into c-components

gives very useful structural information about the causal model. In particular, a fact that is key to our whole

analysis is that if N is a semi-Markovian Bayesian network on observable and unobservable variables V∪U
with c-components C1, . . . ,Cp, then for any v ∈ Σ|V|:

PN [v] =

p
∏

i=1

PN [ci | do(V \Ci = v \ ci)] (1)

where Σ is the alphabet set, ci is the restriction of v to Ci and v \ ci is the restriction of v to V \ Ci.

Moreover, one can write a similar formula (Lemma 2.12) for an interventional distribution on N instead of

the observable distribution PN [v].
The most direct approach to test whether two causal Bayes networks X and Y are identical is to test

whether each interventional distribution is identical in the two models. This strategy would require (|Σ|+1)n

many interventions, each on a variable set of size O(n), where n is the total number of observable vertices.

To reduce the number of interventions as well as the sample complexity, a natural approach, given (1) and

its extension to interventional distributions, is to test for identity between each pair of “local” distributions

PX [S | do(v \ s)] and PY [S | do(v \ s)]

for every subset S of a c-component C and assignment v \ s to V \ S. We assume that each c-component

is bounded, so each local distribution has bounded support. Moreover, using the conditional independence

properties of Bayesian networks, note that in each local distribution, we only need to intervene on observable

parents of S that are outside S, not on all of V \ S.

Through a probabilistic argument, we efficiently find a small set I of covering interventions, which are

defined as a set of interventions with the following property: For every subset S of a c-component and for

every assignment pa(S) to the observable parents of S, there is an intervention I ∈ I that does not intervene

on S and sets the parents of S to exactly pa(S). Our test performs all the interventions in I on both X and

Y and hence can observe each of the local distributions PX [S | do(pa(S))] and PY [S | do(pa(S))]. What

remains is to bound ∆(X ,Y) in terms of the distances between each pair of local distributions.

To that end, we develop a subadditivity theorem about CBNs, and this is the main technical contribution

of our upper bound results. We show that if each pair of local distributions is within distance γ in squared

Hellinger distance, then for any intervention I , applying I to X and Y results in distributions that are within

O(nγ) distance in squared Hellinger distance, assuming bounded in-degree and c-component size of the

underlying graph. A bound on the total variation distance between the interventional distributions and hence

∆(X ,Y) follows. The subadditivity theorem is inspired from [DP17], where they showed that for Bayes

networks, “closeness of local marginals implies closeness of the joint distribution”. Our result is in a very

different set-up, where we prove “closeness of local interventions implies closeness of any joint interven-

tional distribution”, and requires a new proof technique. We relax the squared Hellinger distance between

the interventional distributions as the objective of a minimization program in which the constraints are that

each pair of local distributions is γ-close in squared Hellinger distance. By a sequence of transformations

of the program, we lower bound its objective in terms of γ, thus proving our result. In the absence of

unobservable variables, the analysis becomes much simpler and is sketched in Appendix A.

Regarding the lower bound, we prove that the number of interventions required by our algorithms are

indeed necessary for any algorithm that solves C2ST(G, ε) or CL(G, ε), even if the algorithms are provided
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with infinite samples/time. For any algorithm that fails to perform some local intervention I , we provide a

construction of two models which do not agree on I and agree on all other interventions. Our construction

is designed in such a way that it allows adaptive algorithms. The idea is to show an adversary that, for

each intervention, reveals a distribution to the algorithm. Towards the end, when the algorithm fails to

perform some local intervention I , we can show a construction of two models such that: i) both the models

do not agree on I , and the total variation distance between the interventional distributions is equal to one;

ii) and for all other interventions, the interventional distributions revealed by the adversary match with the

corresponding distributions on both the models. This, together with a probabilitic argument, shows the

existence of a causal graph that requires sufficiently large number of interventions to solve C2ST(G, ε) and

CL(G, ε).

1.4 Future Directions

We hope that this work paves the way for future research on designing efficient algorithms with bounded

sample complexity for learning and testing causal models. For the sake of concreteness, we list a few open

problems.

– Interventional experiments are often expensive or infeasible, so one would like to deduce causal mod-

els from observational data alone. In general, this is impossible. However, in identifiable causal

Bayesian networks (see [Tia02]), one can identify causal effects from observational data alone. Is

there an efficient algorithm to learn an identifiable interventional distribution from samples?4

– A deficiency of our work is that we assume the underlying causal graph is fully known. Can our

learning algorithm be extended to the setting where the hypothesis only consists of some lim-

ited information about the causal graph (e.g., in-degree, c-component size) instead of the whole

graph? In fact, it is open how to efficiently learn the distribution given by a Bayesian network based

on samples from it, if we don’t have access to the underlying graph [DP17, CDKS17].

– Our goodness-of-fit algorithm might reject even when the input X is very close to the hypothesis

M. Is there a tolerant goodness-of-fit tester that accepts when ∆(X ,M) 6 ε1 and rejects when

∆(X ,M) > ε2 for 0 < ε1 < ε2 < 1? Our current analysis does not extend to a tolerant tester. The

same question holds for two-sample testing.

– In many applications, causal models are described in terms of structural equation models, in which

each variable is a deterministic function of its parents as well as some stochastic error terms. Design

sample and time efficient algorithms for testing and learning structural equation models. Other

questions such as evaluating counterfactual queries or doing policy analysis (see Chapter 7 of [Pea09])

also present interesting algorithmic problems.

2 Preliminaries

Notation. We use capital (bold capital) letters to denote variables (sets of variables), e.g., A is a variable

and B is a set of variables. We use small (bold small) letters to denote values taken by the corresponding

4Schulman and Srivastava [SS16] have shown that under adversarial noise, there exist causal Bayesian networks on n nodes

where estimating an identifiable intervention to precision d requires precision d + exp(n0.49) in the estimates of the probabilities

of observed events. However, this instability is likely due to the adversarial noise and does not preclude an efficient sampling-based

algorithm, especially if we assume a balancedness condition as in [CDKS17].
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variables (sets of variables), e.g., a is the value of A and b is the value of the set of variables B. The

variables in this paper take values in a discrete set Σ. We use [n] to denote {1, 2, . . . , n}.

Probability and Statistics. The total variation (TV) distance between distributions P and Q over the same

set [D] is δTV (P,Q) := 1
2

∑

i∈[D] |P (i)−Q(i)|. The squared Hellinger distance (given in (9)) and the total

variation distance are related by the following.

Lemma 2.1 (Hellinger vs total variation). The Hellinger distance and the total variation distance between

two distributions P and Q are related by the following inequality:

H2(P,Q) 6 δTV (P,Q) 6
√

2H2(P,Q).

The problem of two-sample testing for discrete distributions in Hellinger distance, and learning with

respect to total variation distance has been studied in the literature, and the following two lemmas state two

results we use. Let P and Q denote distributions over a domain of size D.

Lemma 2.2 (Hellinger Test, [DK16]). Given Õ(min(D2/3/ε8/3,D3/4/ε2)) samples from each unknown

distributions P and Q, we can distinguish between P = Q vs H2(P,Q) > ε2 with probability at least

2/3. This probability can be boosted to 1 − δ at a cost of an additional O(log(1/δ)) factor in the sample

complexity. The running time of the algorithm is quasi-linear in the sample size.

Lemma 2.3 (Learning in TV distance, folklore (e.g. [DL12])). For all δ ∈ (0, 1), the empirical distribution

P̂ computed using Θ
(

D
ε2

+
log 1

δ

ε2

)

samples from P satisfies H2(P, P̂ ) 6 δTV (P, P̂ ) 6 ε, with probability

at least 1− δ.

Bayesian Networks. Bayesian networks are popular probabilistic graphical models for describing high-

dimensional distributions.

Definition 2.4. A Bayesian Network (BN) N is a distribution that can be specified by a tuple 〈V, G, {Pr[Vi |
pa(Vi)] : Vi ∈ V,pa(Vi) ∈ Σ|Pa(Vi)|}〉 where: (i) V is a set of variables over alphabet Σ, (ii) G is a directed

acyclic graph with nodes corresponding to the elements of V, and (iii) Pr[Vi | pa(Vi)] is the conditional

distribution of variable Vi given that its parents Pa(Vi) in G take the values pa(Vi).
The Bayesian Network N = 〈V, G, {Pr[Vi | pa(Vi)]}〉 defines a unique probability distribution PN

over Σ|V|, as follows. For all v ∈ Σ|V|,

PN [v] =
∏

Vi∈V

Pr[vi | pa(Vi)].

In this distribution, each variable Vi is independent of its non-descendants given its parents in G.

Conditional independence relations in graphical models are captured by the following definitions.

Definition 2.5. Given a DAG G, a (not necessarily directed) path p in G is said to be blocked by a set of

nodes Z, if (i) p contains a chain node B (A → B → C) or a fork node B (A ← B → C) such that B ∈ Z

(or) (ii) p contains a collider node B (A → B ← C) such that B /∈ Z and no descendant of B is in Z.

Definition 2.6 (d-separation). For a given DAG G on V, two disjoint sets of vertices X,Y ⊆ V are said to

be d-separated by Z in G, if every (not necessarily directed) path in G between X and Y is blocked by Z.

Lemma 2.7 (Graphical criterion for independence). For a given BN N = 〈V, G, {Pr[Vi | pa(Vi)]}〉 and

X,Y,Z ⊂ V, if X and Y are d-separated by Z in G, then X is independent of Y given Z in PN , denoted

by [X |= Y | Z] in PN .
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2.1 Causality

We describe Pearl’s notion of causality from [Pea95]. Central to his formalism is the notion of an interven-

tion. Given a variable set V and a subset X ⊂ V, an intervention do(x) is the process of fixing the set of

variables X to the values x. The interventional distribution Pr[V | do(x)] is the distribution on V after

setting X to x. As discussed in the introduction, an intervention is quite different from conditioning.

Another important component of Pearl’s formalism is that some variables may be unobservable. The

unobservable variables can neither be observed nor be intervened. We partition our variable set into two sets

V and U, where the variables in V are observable and the variables in U are unobservable. Given a directed

acyclic graph H on V ∪U and a subset X ⊆ (V ∪U), we use ΠH(X),PaH(X), AnH(X), and DeH(X)
to denote the set of all parents, observable parents, observable ancestors and observable descendants respec-

tively of X, excluding X, in H . When the graph H is clear, we may omit the subscript. As usual, small

letters, π(X), pa(X), an(X) and de(X) are used to denote their corresponding values. And, we use HX

and HX to denote the graph obtained from H by removing the incoming edges to X and outgoing edges

from X respectively.

Definition 2.8 (Causal Bayesian Network). A causal Bayesian network (CBN) is a collection of interven-

tional distributions that can be defined in terms of a tuple 〈V,U, G, {Pr[Vi | π(Vi)] : Vi ∈ V,π(Vi) ∈
Σ|Π(Vi)|}, {Pr[Ui | π(Ui)] : Ui ∈ U,π(Ui) ∈ Σ|Π(Ui)|}〉, where (i) V and U are the sets of observable and

unobservable variables respectively, (ii) G is a directed acyclic graph on V ∪U, and (iii) Pr[Vi | π(Vi)]
and Pr[Ui | π(Ui)] are the conditional probability distributions of Vi and Ui resp. given that its parents

Π(Vi) and Π(Ui) resp. take the values π(Vi) and π(Ui)) resp.

A CBN M = 〈V,U, G, {Pr[Vi | π(Vi)]}, {Pr[Ui | π(Ui)]}〉 defines a unique interventional distribu-

tion PM[V | do(x)] for every subset X ⊆ V (including X = ∅) and assignment x ∈ Σ|X|, as follows. For

all v ∈ Σ|V|:

PM[v | do(x)] =

{

∑

u

∏

Vi∈V\X Pr[vi | π(Vi)] ·
∏

Ui∈U
Pr[ui | π(Ui)] if vis consistent with x

0 otherwise.

We say that G is the causal graph corresponding to the CBN M.

Another equivalent way to define a CBN is by specifying the set of interventional distributions PM[V |
do(x)] for all subsets X and assignments x. To connect to the preceding definition, we require that each

PM[V | do(x)] is defined by the Bayesian network described by GX with the conditional probability

distributions obtained by setting the variables in X to the constants x.

It is standard in the causality literature to work with causal graphs of a particular structure:

Definition 2.9 (Semi-Markovian causal graph and Semi-Markovian Bayesian network). A semi-Markovian

causal graph (SMCG) G is a directed acyclic graph on V ∪U where every unobservable variable is a root

node and has exactly two children, both observable. A semi-Markovian Bayesian network (SMBN) is a

causal Bayesian network where the causal graph is semi-Markovian.

There exists a known reduction (described formally in Appendix B) from general causal Bayesian net-

works to semi-Markovian Bayesian networks that preserves all the properties we use in our analysis, so that

henceforth, we will restrict only to SMBNs.

In SMCGs, the divergent edges Vi ← Uk → Vj are usually represented by bi-directed edges Vi ↔ Vj .

A bi-directed edge between two observable variables implicitly represents the presence of an unobservable

parent.
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Definition 2.10 (c-component). For a given SMCG G, S ⊆ V is a c-component of G, if S is a maximal set

such that between any two vertices of S , there exists a path that uses only bi-directed edges.

Since a c-component forms an equivalence relation, the set of all c-components forms a partition of V,

the observable vertices of G. We use the notation C(V) = {S1,S2, . . . ,Sk} to denote the partition of V

into the c-components of G, where each Si ⊆ V is a c-component of G.

Also, for X ⊆ V, the induced subgraph G[X] is the subgraph obtained by removing the vertices V \X
and their corresponding edges from G. We use the notation C(X) = {S1,S2, . . . ,Sk} to denote the set of

all c-components of G[X], that is each Si ⊆ X is a c-component of G[X]. The next two lemmas capture

the factorizations of distributions in SMBN.

Lemma 2.11. Let M be a given SMBN with respect to the SMCG G. For any set S ⊆ V, and a subset D

such that (V \ S) ⊇ D ⊇ Pa(S), and for any assignment s,d,

PM[s | do(d)] = PM[s | do(pa(S))]

where pa(S) is consistent with the assignment d.

Proof. When the parents of S, Pa(S), are targeted for intervention, the distribution on S remains the same

irrespective of whether the other vertices in (V \ S) are intervened or not. �

Lemma 2.12 (c-component factorization, [TP02]). Given a SMBN M with respect to the causal graph G
and a subset X ⊆ V, let C(V\X) = {S1, . . . ,Sk}. For any given assignment v,

PM[v \ x | do(x)] =
∏

i

PM[si | do(v \ si)].

For a given SMCG G, the in-degree and out-degree of an observable vertex Vi ∈ V denote the number

of observable parents and observable children of Vi in G respectively. The maximum in-degree of a SMCG

G is the maximum in-degree over all the observable vertices. The maximum degree of a SMCG G is the

maximum of the sum of the in-degree and out-degree over all the observable vertices.

Definition 2.13 (Graphs with bounded in-degree and bounded c-component). Gd,ℓ denotes the class of

SMCGs with maximum in-degree at most d and the size of the largest c-component at most ℓ.

2.2 Problem Definitions

Here we define the testing and learning problems considered in the paper. Let M and N be two SMBNs.

We say that M = N , if

PM[V \T | do(t)] = PN [V \T | do(t)] ∀T ⊆ V, t ∈ Σ|T|.

And we say that ∆(M,N ) > ε, if there exists T ⊆ V and t ∈ Σ|T| such that

δTV (PM[V \T | do(t)], PN [V \T | do(t)]) > ε.

Definition 2.14 (Causal Goodness-of-fit Testing (CGFT(G,M, ε))). Given a SMCG G, a (known) SMBN

M on G, and ε > 0. Let X denote an unknown SMBN on G. The objective of CGFT(G,M, ε) is to

distinguish between X = M versus ∆(X ,M) > ε with probability at least 2/3, by performing interventions

and taking samples from the resulting interventional distributions of X .

11



Definition 2.15 (Causal Two-sample Testing (C2ST(G, ε))). Given a SMCG G, and ε > 0. Let X and

Y be two unknown SMBNs on G. The objective of C2ST(G, ε) is to distinguish between X = Y ver-

sus ∆(X ,Y) > ε with probability at least 2/3, by performing interventions and taking samples from the

resulting interventional distributions of X and Y .

Definition 2.16 (Learning SMBNs (CL(G, ε))). Given a SMCG G and ε > 0. Let X be an unknown

SMBN on G. The objective of CL(G, ε) is to perform interventions and taking samples from the resulting

interventional distributions of X , and return an oracle that for any T ⊆ V and t ∈ Σ|T| returns an

estimated interventional distribution PES [V \T | do(t)] such that

δTV ([PX [V \T | do(t)], PES [V \T | do(t)]) < ε.

We emphasize that in all three problems, the causal graph G is known explicitly in advance.

3 Testing and Learning Algorithms for SMBNs

Before we discuss our algorithms, we begin by defining covering intervention sets.

Definition 3.1. A set of interventions I is a covering intervention set if for every subset S of every c-

component, and every assignment pa(S) ∈ Σ|Pa(S)| there exists an I ∈ I such that,

– No node in S is intervened in I .

– Every node in Pa(S) is intervened.

– I restricted to Pa(S) has the assignment pa(S).

Our algorithms comprise of two key arguments.

– A procedure to compute a covering intervention set I of small size.

– A sub-additivity result for CBNs that allows us to localize the distances: where we show that two

CBNs are far implies there exist a marginal distribution of some intervention in I such that the

marginals are far.

These two results are formalized in Section 4.1, and Section 4.2 respectively.

3.1 Testing

Our main testing result is the following upper bound for testing of causal models.

Theorem 3.2 (Algorithm for C2ST(G, ε)). Let G be a SMCG ∈ Gd,ℓ with n vertices. Let the vari-

ables take values over a set Σ of size K . Then, there is an algorithm to solve C2ST(G, ε), that makes

O(Kℓd(3d)ℓ log n) interventions to each of the unknown SMBNs X and Y , taking Õ(Kℓ(d+7/4)nε−2)
samples per intervention, in time Õ(2ℓKℓ(2d+7/4)n2ε−2).

When the maximum degree (in-degree plus out-degree) of G is bounded by d, then our algorithm uses

O(Kℓd(3d)ℓℓd2 logK) interventions with the same sample complexity and running time as above.

This result gives Theorem 1.1 as a corollary, since two sample tests are harder than one sample tests.
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Proof of Theorem 3.2. Our algorithm is described in Algorithm 1.

The algorithm starts with a covering intervention set I. Lemma 4.1 gives an I with O(Kℓd(3d)ℓ(log n+
ℓd logK)) interventions. When the maximum degree is bounded by d, then Lemma 4.3 gives an I of size

O(Kℓd(3d)ℓℓd2 logK). Moreover, by the remarks following Lemmas 4.1 and 4.3, I can be found in Õ(n)
time.

Algorithm 1: Algorithm for C2ST(G, ε)

I: Covering intervention set

1. Under each intervention I ∈ I:

(a) Obtain Õ(Kℓ(d+7/4)nε−2) samples from the interventional distribution of I in both

models X and Y .

(b) For any subset S of a c-component of G, if I does not set S but sets Pa(S) to pa(S),
then using Lemma 2.2, Lemma 2.11 and the obtained samples, test (with error prob-

ability at most 1/(3Kℓd2ℓn)):

PX [S | do(pa(S))] = PY [S | do(pa(S))] versus H2

(

PX [S | do(pa(S))],
PY [S | do(pa(S))]

)

>
ε2

2Kℓ(d+1)n

Output “∆(X ,Y) > ε” if the latter.

2. Output “X = Y”.

We will now analyze the performance of our algorithm.

Number of interventions, time, and sample requirements. The number of interventions is the size of I,

bounded from Lemma 4.1 or Lemma 4.3. The number of samples per intervention is given in the algorithm.

The algorithm performs n2ℓKℓd sub-tests. And for each such sub-test, the algorithm’s running time is

quasi-linear in the sample complexity (Lemma 2.2), therefore taking a total time of Õ(2ℓKℓ(2d+7/4)n2ε−2).

Correctness. In Theorem 4.5, we show that when ∆(X ,Y) > ε, there exists a subset S of some c-

component, and an I ∈ I that does not intervene any node in S but intervenes Pa(S) with some assignment

pa(s) such that

H2(PX [S | do(pa(S))], PY [S | do(pa(S))]) > ε2/(2Kℓ(d+1)n).

This structural result is the key to our algorithm. This together with Lemma 2.1 proves that PX and PY

are far in terms of the total variation distance. To bound the error probability, note that the number of total

sub-tests we run is bounded by Kℓdn2ℓ, and the error probability for each subset is at most 1/(3Kℓd2ℓn),
by the union bound, we will have an error of at most 1/3 over the entire algorithm. �

In some cases, the underlying SMCG might not be known. We will now consider the problem of two

sample testing, where X and Y are still on the same common SMCG G, but G is unknown. We now show

an algorithm that uses the same number of interventions and samples as Theorem 3.2 for the known G case,

however requiring O(nℓ+1Kℓ(2d+7/4)ε−2) time.

Theorem 3.3 (Algorithm for C2ST(G, ε) – Unknown graph). Consider the same set-up as Theorem 3.2,

except that the SMCG G ∈ Gd,ℓ is unknown. Then, there is an algorithm to this problem, that makes
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O(Kℓd(3d)ℓ log n) interventions to X and Y , taking Õ(Kℓ(d+7/4)nε−2) samples per intervention, in time

Õ(nℓKℓ(2d+7/4)nε−2).

Proof. We first use Lemma 4.1 and obtain a set of interventions I, such that I is a covering set with error

probability at most 1/6. Note that Lemma 4.1 holds even when the underlying graph G is unknown.

Algorithm 2: Algorithm for C2ST(G, ε) – Unknown graph

I: Covering intervention set

1. Under each intervention I = Pr[V \T | do(t)] ∈ I:

(a) Obtain Õ(Kℓ(d+7/4)nε−2) samples from the interventional distribution of I in both

models X and Y .

(b) For each subset S ⊆ V \T of size 6 ℓ, using Lemma 2.2, Lemma 2.11 and the

obtained samples, test (with error probability at most 1/(6Kℓd2ℓn)):

PX [S | do(t)] = PY [S | do(t)] versus H2

(

PX [S | do(t)],
PY [S | do(t)]

)

>
ε2

2Kℓ(d+1)n

Output “∆(X ,Y) > ε” if the latter.

2. Output “X = Y”.

For each intervention, we go over all subsets S of size 6 ℓ. Therefore we perform at most
( n
6ℓ

)

= O(nℓ)
sub-tests for an intervention. For each sub-test, the algorithm’s running time is quasi-linear in the sample

complexity (Lemma 2.2), therefore taking a total time of O(nℓKℓ(2d+7/4)nε−2). The number of interven-

tions follow from Lemma 4.1 and the number of samples follow from the algorithm.

Correctness. As in the proof of Theorem 3.2, we use Theorem 4.5 to show that when ∆(X ,Y) > ε,

then there exists a subset S of some c-component and an I ∈ I that does not intervene any node in S but

intervenes Pa(S) with some assignment pa(s) such that

H2(PX [S | do(pa(S))], PY [S | do(pa(S))]) > ε2/(2Kℓ(d+1)n).

This together with Lemma 4.5 proves that PX and PY are far in terms of the total variation distance. Since

the error probability of each sub-test is bounded by at most 1/(6Kℓd2ℓn) and the error probability of I being

a covering intervention set is at most 1/6, by union bound, we will have an error of at most 1/3 over the

entire algorithm. �

3.2 Learning

Our next result is on learning SMBNs over a known causal graph. Our algorithm is improper, meaning that

it does not output a causal model in the form of an SMBN, but rather outputs an oracle which succinctly

encodes all the interventional distributions. See Definition 2.16 for a rigorous formulation of the problem.

Theorem 3.4 (Algorithm for CL(G, ε)). For any given SMCG G ∈ Gd,ℓ with n vertices and a param-

eter ε > 0, there exists an algorithm that takes as input an unknown SMBN X over G, that performs

O(Kℓd(3d)ℓ log n) interventions to X , taking Õ(Kℓ(2d+3)n2ε−4) samples per intervention, that runs in
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time Õ
(

2ℓKℓ(3d+3)n3ε−4
)

, and that with probability at least 2/3, outputs an oracle N with the following

behavior. Given as input any T ⊆ V and assignment t ∈ Σ|T|, N outputs an interventional distribution

PN [V \T|do(t)] such that:

δTV (PX [V \T | do(t)], PN [V \T | do(t)]) < ε

When the maximum degree (in-degree plus out-degree) of G is bounded by d, then our algorithm uses

O(Kℓd(3d)ℓℓd2 logK) interventions with the same sample complexity and running time as above.

Algorithm 3: Algorithm for CL(G, ε)

I: Covering intervention set

1. Under each intervention I ∈ I:

(a) Obtain Õ(n2Kℓ(2d+3)ε−4) samples from the interventional distribution of I in X .

(b) For each subset S of a c-component, if I does not set S but sets Pa(S) to pa(S), use

Lemma 2.3, Lemma 2.11 and the obtained samples to learn:

PN [S | do(pa(S))] such that H2(PN [S | do(pa(S))], PX [S | do(pa(S))]) 6
ε2

2Kℓ(d+1)n

with probability of error at most 1/(3Kℓd2ℓn).

2. Return the following oracle N that takes as input: T ⊆ V and t ∈ Σ|T|

(i) Let C(V \T) = {S1, . . . ,Sp}.

(ii) Output the distribution PN [V \T | do(t)] where for any

assignment v \ t:

PN [v \ t | do(t)] =

p
∏

i=1

PN [si | do(v \ si)]

The covering intervention set used in the algorithm above is as defined in Definition 3.1.

Number of interventions, time, and sample requirements. The number of interventions is obtained using

the bound on the size of the covering intervention set from Lemma 4.1. When the maximum degree is

bounded, we can use Lemma 4.3. The number of samples per intervention is obtained from Lemma 2.3.

Since the algorithm learns at most nKℓd2ℓ interventions (subroutines), and each subroutine takes time linear

in the sample size, the time complexity follows.

Correctness. For any given T, do(t), let C(V \T) = {S1, . . . ,Sp}. Lemma 2.12 justifies that

PN [v \ t | do(t)] =
∏

i

PN [si | do(v \ si)].

Similar to the proof of Theorem 3.2, using Theorem 4.5 and Lemma 2.1, we get:

H2(PN [V \T | do(t)], PX [V \T | do(t)]) < ε2/2

=⇒ δTV (PN [V \T | do(t)], PX [V \T | do(t)]) < ε.
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4 Main Ingredients of the Analysis

4.1 Covering Intervention Sets

Lemma 4.1 (Counting Lemma: bounded in-degree). Let G ∈ Gd,ℓ be a SMCG with n vertices and Σ be an

alphabet set of size K . Then, there is a randomized algorithm that outputs a set I of size O(Kℓd(3d)ℓ(log n+
ℓd logK + log(1/δ))). such that, with probability at least 1− δ, I is a covering intervention set.

Proof. Let t = Kℓd(3d)ℓ(log n+2ℓd logK+log(1/δ)). The interventions in I are chosen by the following

procedure: For each j ∈ [t] and for each Vi ∈ V , Vi is observed in Ij with probability 1/(d + 1) and

otherwise, Vi is intervened with the assignment chosen uniformly from Σ. Let Vi = ∗ denotes that Vi is not

intervened. Consider a fixed c-component C, a fixed subset S ⊆ C, a fixed assignment pa(S) ∈ Σ|Pa(S)|

and a fixed j ∈ [t]. Now,

Pr[Ij(S) = ∗|S| ∧ Ij(Pa(S)) = pa(S)] =

(

1

d+ 1

)|S|

·

(

d

K(d+ 1)

)|Pa(S)|

> (d+ 1)−ℓK−ℓde−ℓ [Since |Pa(S)| 6 ℓd and |S| 6 ℓ]

> (3d)−ℓK−ℓd.

This implies that

Pr[∀j ∈ [t], (Ij(S) 6= ∗|S| ∨ Ij(Pa(S)) 6= pa(S))] 6
(

1− (3d)−ℓK−ℓd
)t

6
δ

n
K−2ℓd.

Hence,

Pr[∃ C-component C,∃S ⊆ C,∃ pa(S) ∈ Σ|Pa(S)|,∀j ∈ [t], (Ij(S) 6= ∗|S| ∨ Ij(Pa(S)) 6= pa(S))]

6 n2ℓKℓd ·
δ

n
K−2ℓd 6 δ

by the union bound. �

Remark 4.2. The above proof can be made deterministic by using explicit deterministic constructions of

almost ℓd-wise independent random variables [AGHP92, EGL+92].

Lemma 4.3 (Counting Lemma: bounded total degree). Let G ∈ Gd,ℓ be an SMCG with n vertices, whose

variables take values in Σ with |Σ| = K , and whose maximum degree is bounded by d. Then, there exists

covering intervention set I of size O(Kℓd(3d)ℓℓd2 logK).

Proof. Let t = Kℓd(3d)ℓ(ℓd2+ℓd logK+2). The interventions in I are chosen by the following procedure:

For each j ∈ [t] and for each Vi ∈ V , Vi is observed in Ij with probability 1/(d + 1) and otherwise, Vi is

intervened with the assignment chosen uniformly from the set Σ. Let Vi = ∗ denotes that Vi is observed

(not intervened).

For a fixed set S that is a subset of a c-component and a fixed assignment pa(S) ∈ Σ|Pa(S)|, let AS,pa(S)

be the event: ∀j ∈ [t], (Ij(S) 6= ∗|S| ∨ Ij(Pa(S)) 6= pa(S)). Similar to the proof of Lemma 4.1, for any

fixed S and pa(S): Pr[AS,pa(S)] 6 1/(42ℓd
2
Kℓd).

Now, note that AS,pa(S) and AT,pa(T) are independent if Pa(S) and Pa(T) are disjoint. For a fixed S,

the number of subsets T such that Pa(S) ∩Pa(T) 6= ∅ is at most 2ℓd
2

(since, the number of children of the

parents of S is at most ℓd2). Therefore, for a fixed S and pa(S), AS,pa(S) is independent of all AT,pa(T)’s
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except for at most 2ℓd
2
Kℓd many of them (taking into account the number of possible assignments pa(T)).

Hence, the Lovász Local Lemma [AS04, Chapter 5] guarantees that there exists a set of t interventions such

that ¬AS,pa(S) for all S and pa(S). �

Remark 4.4 (Explicitness). Although Lemma 4.3 only asserts the existence of a covering intervention, its

proof can be turned into a linear time algorithm using the constructive proofs of the Lovász Local Lemma

[Mos09, MT10].

4.2 Subadditivity Theorem for SMBNs

The next theorem states that if two causal models are “far”, then they must be “far” under some “local”

intervention.

Theorem 4.5. Let M and N be two SMBNs defined on a known and common SMCG G ∈ Gd,ℓ. Let V

be the vertices of G. For a given intervention do(t), let V \ T partition into C = {C1,C2, . . . ,Cp}, the

c-components with respect to the induced graph G[V \T]. Suppose

H2(PM[Cj | do(pa(Cj))], PN [Cj | do(pa(Cj))]) 6 γ ∀j ∈ [p],∀ pa(Cj) ∈ Σ|Pa(Cj)|. (2)

Then

H2 (PM[V \T | do(t)], PN [V \T | do(t)]) 6 ε ∀t ∈ Σ|T| (3)

where ε = γ|Σ|ℓ(d+1)n.

Proof. Let W = V \T = {W1, . . . ,Wr}, where the indices are arranged in a topological ordering. Here

we focus only on distributions on W after the intervention do(t). That is, our focus is restricted to the graph

GT, the intervention do(t) and the vertices W = V \T. We know that

H2 (PM[W | do(t)], PN [W | do(t)]) = 1−
∑

w

√

PM[w | do(t)], PN [w | do(t)]

= 1−BC (PM[W | do(t)], PN [W | do(t)]) (4)

where BC(PM[W | do(t)], PN [W | do(t)]) is the Bhattacharya coefficient of PM[W | do(t)] and

PN [W | do(t)] (see (9)).

For each j ∈ [p], identify the vertices in Cj as {Wnj,1 , . . . ,Wnj,sj
} where sj = |Cj| and nj,1 < · · · < nj,sj .

Using Lemma 2.12, we express the distributions in terms of the product
∏p

j=1Pr[cj | do(w \ cj)] [TP02],

BC(PM[W | do(t)], PN [W | do(t)])

=
∑

w

√

PM[w | do(t)]
PN [w | do(t)]

=
∑

w

√

√

√

√

p
∏

j=1

PM[cj | do(w \ cj)]
PN [cj | do(w \ cj)]

=
∑

w

√

√

√

√

p
∏

j=1

sj
∏

i=1

PM[wnj,i
| wnj,1 , . . . , wnj,i−1 , do(w \ cj)]

PN [wnj,i
| wnj,1 , . . . , wnj,i−1 , do(w \ cj)]

=
∑

w

√

√

√

√

p
∏

j=1

sj
∏

i=1

PM[wnj,i
| wnj,1 , . . . , wnj,i−1 , do(pa(Wnj,1 , . . . , wnj,i−1))]

PN [wnj,i
| wnj,1 , . . . , wnj,i−1 , do(pa(Wnj,1 , . . . , wnj,i−1))]

(using Lemma C.1).
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For i ∈ [sj], let

dep(nj,i) := {Wnj,1 , . . . ,Wnj,i
} ∪ (Pa({Wnj,1 , . . . ,Wnj,i

}) \T).

For j ∈ [p], i ∈ [sj ], let Xnj,i
: Σ|dep(nj,i)| → [0, 1] be

Xnj,i
(wdep(nj,i)) :=

√

PM[wnj,i
| wnj,1 , . . . , wnj,i−1 , do(pa(Wnj,1 , . . . , wnj,i−1))]

PN [wnj,i
| wnj,1 , . . . , wnj,i−1 , do(pa(Wnj,1 , . . . , wnj,i−1))]

.

Recall that indices of W follow a topological ordering. Using this topological ordering and plugging in the

expression above, we obtain

BC(PM[W | do(t)], PN [W | do(t)]) =
∑

w1

X1(wdep(1))
∑

w2

X2(wdep(2)) . . .
∑

wr

Xr(wdep(r))

where r = |W|. In order to prove the theorem, it will suffice to prove that this expression is at least 1 − ε,

whenever (2) holds. To prove this, we will take the following path, which is essentially an induction on

r. For j ∈ [p], let bj = 1, dep(Cj) = Cj ∪ (Pa(Cj) \ T) and Yj(·) = 1 (a constant function). Set

b = (b1, . . . , bp), dep := (dep(1), . . . , dep(r), dep(C1), . . . , dep(Cp)), and Y = (Y1, . . . , Yp).
In Definition 6.1, we define an optimization program, Pr,p(Σ, γ, C,b,dep,Y) whose objective value is

equal to BC(PM[W | do(t)], PN [W | do(t)]). In Section 6, we provide the steps to prove a lower bound

on the objective of the program, thereby proving a lower bound on BC(PM[W | do(t)], PN [W | do(t)]).
Also, from (2) and (4), for all j ∈ [p] and for all wdep(Cj)\Cj

,

∑

wnj,1

Xnj,1(wdep(nj,1))
∑

wnj,2

Xnj,2(wdep(nj,2)) . . .
∑

wnj,sj

Xnj,sj
(wdep(nj,sj

)) > 1− γ

satisfying (6). Note that Pr,p(Σ, γ, C,b,dep,Y) is a program such that maxj |dep(Cj)| 6 ℓ(d + 1). By

Lemma 6.6,

BC (PM[W | do(t)], PN [W | do(t)]) > Opt(Pr,p) > (1− |Σ|ℓ(d+1)γ)p.

Using this in (4), we get

H2 (PM[W | do(t)], PN [W | do(t)]) 6 1− (1− |Σ|ℓ(d+1)γ)p 6 pγ|Σ|ℓ(d+1)
6 ε. �

5 Lower Bound on Interventional Complexity

Recall that in Section 3 we provided non-adaptive algorithms for C2ST(G, ε), and CL(G, ε). In this section

we provide lower bounds on the number of interventions that any algorithm must make to solve these

problems. Our lower bounds nearly match the upper bounds in Theorem 3.2, and Theorem 3.4, even when

the algorithm is allowed to be adaptive (namely future interventions are decided based upon the samples

observed from the past interventions). In other words, these lower bounds show that adaptivity cannot

reduce the interventional complexity.

Theorem 5.1. There exists a SMCG G ∈ Gd,ℓ with n nodes such that Ω(Kℓd−2 log n) interventions are

necessary for any algorithm (even adaptive) that solves C2ST(G, ε) or CL(G, ε).
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This theorem is proved via the following ingredients.

Necessary Condition. We obtain a necessary condition on the set of interventions I of any algorithm

that solves C2ST(G, ε) or CL(G, ε).

We will consider SMCGs G with a specific structure, and prove the necessary condition for these

graphs: The vertices of G are the union of two disjoint sets A, and B, such that G contains directed

edges from A to B, and bidirected edges within B. Further, all edges in G are one of these two types.

The next lemma, proved later in the section, is for graphs with this structure.

Lemma 5.2. Suppose an adaptive algorithm uses a sequence of interventions I to solve C2ST(G, ε)
or CL(G, ε). Let C ⊆ B be a c-component of G. Then, for any assignment pa(C) ∈ Σ|Pa(C)|, there

is an intervention I ∈ I such that the following conditions hold:

C1. I intervenes Pa(C) with the corresponding assignment of pa(C),5

C2. I does not intervene any node in C.

Existence. We then show that there is a graph with the structure mentioned above for which I must

be Ω(Kℓd−2 log n) in order for the condition to be satisfied. More precisely,

Lemma 5.3. There exists a G, and a constant c such that for any set of interventions I with |I| <
c ·Kℓd−2 log n, there is a C ⊆ B, which is a c-component of G, and an assignment pa(C) such that

no intervention in I

– assigns pa(C) to Pa(C), and

– observes all variables in C.

Proof of Lemma 5.3. We show existence of such a G using a probabilistic argument. We consider A =
Ar ∪Af , where Ar := {A1, . . . , An}, and Af := {An+1, . . . , An+(ℓd)−2}. We consider B := B1 ∪B2 ∪
. . .∪Bn/ℓ, where for each i ∈ [n/ℓ], Bi = {Bi,1, Bi,2, . . . , Bi,ℓ}. V = A∪B will be the set of observable

nodes in the graph. Therefore, the number of nodes is |V| = 2n+ ℓd− 2 = O(n).
The set of unobservable nodes are such that the following is satisfied:

– Bi is a c-component in G, for each Bi.

We consider random directed bipartite graphs on V generated as follows, where all the edges go from

A to B. Each c-component Bi has exactly ℓd parents, chosen as follows:

– Af ⊂ Pa(Bi), namely every vertex of Af is the parent of at least one node in Bi.

– The remaining two parents of Bi are chosen randomly from Ar with edge density p := 2/n.

Let I be a set of interventions that satisfies the conditions of Lemma 5.2. Let I′ ⊆ I be the interventions

that intervene all the nodes in A. The nodes in Af can be intervened in |Σ||Af | = Kℓd−2 ways. This

induces a partition of I′ into Kℓd−2 parts, where the interventions in each partition intervenes Af with the

same assignment. Let {I1, . . . , IKℓd−2} such that I′ = I1 ∪ . . .∪ IKℓd−2 be this partition. We will show that

for each j, |Ij | = Ω(log n), implying that

|I| > |I′| > Kℓd−2 · Ω(log n) = Ω(Kℓd−2 log n).

5In our construction, Pa(C) always take 0 in the natural distribution. Henceforth, the interventions where some vertices in

Pa(C) are not intervened are not considered here, as they are equivalent to the case when those vertices are intervened with 0.
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Consider a Ij , with |Ij | = t. Further, for simplicity we assume that K = 2 for this part, and that

Σ = {0, 1}. Since all the nodes in Ar are intervened, consider one such node. For any node in Ar consider

the t bit binary string denoting whether it is intervened with 0 or 1 in the t interventions. This divides the set

Ar into 2t cells Z1, . . . ,Z2t , where two nodes are in the same cell if they are intervened with the identical

value by each intervention in Ij . The expected number of pairs of vertices in Zh that are both parents of

some vertex in B is O(p|Zh|
2). Therefore, the expected number of pairs of vertices that are both parents

of some vertex in B and also belong to the same cell is O
(
∑

h p|Zh|
2
)

, which is at least O(pn22−t) (since
∑

h Zh = n). Now for any such pair of vertices A,A′ ∈ Ar that belong to the same cell, there exists no

intervention such that A = 0 and A′ = 1, contradicting to our requirement. Therefore, pn22−t < 1 which

implies t is at least Ω(log n). �

Combining these two lemmas, we obtain the lower bound for the adaptive versions of C2ST(G, ε) and

CL(G, ε). Now we proceed to prove Lemma 5.2.

Proof of Lemma 5.2. In our construction we consider models where A is assigned 0|A| with probability one

in the observable distribution. In other words, each Ai ∈ A takes value 0 with probability one. Consider

any intervention I that targets a A′ ⊆ A. Consider the intervention I ′ that intervenes A′ the same way as

I , but intervenes the nodes in A \A′ with 0’s. Since there are no incoming arrows to A, the distribution of

I′ will be the same as I. Therefore, we assume that each intervention I we make intervenes all the vertices

in A.

Suppose there is an algorithm that makes a series of interventions I that do not satisfy the conditions

of Lemma 5.2. In other words, there exists a c-component C ⊆ B and an assignment pa(C), such that no

intervention in I satisfies C1 and C2. Let C = {V1, V2, . . . , Vℓ} and Pa(C) = {W1,W2, . . . ,Ws}.

Let G′ be a subgraph of G on the vertices C ∪ Pa(C) whose edge set satisfies the following:

– C contains exactly ℓ− 1 bidirected edges that form a tree.

– each of the parent vertices Wi has exactly one child node in C.

In our construction, we consider models where the distribution on the rest of the vertices of G (i.e.,

V \ (C ∪ Pa(C))) will be independent of the distribution on C ∪ Pa(C). Therefore, we can restrict our

focus on G′. We will show the existence of two models M and N on G′ such that:

S.1 Let T ⊆ (C ∪ Pa(C)), t ∈ Σ|T|. Let {C1, . . . ,Cq} be the c-components of the induced graph

G′[C \T]. Suppose under the intervention do(t), the conditions C1, or C2 is not satisfied, then, the

distributions over C \T in M and N are identical under do(t), namely,

PM[C \T | do(t)] =
∏

i

PM[Ci | do(t)] =
∏

i

PN [Ci | do(t)] = PN [C \T | do(t)]

where for each i, PM[Ci | do(t)] = PN [Ci | do(t)] and is a uniform distribution over {0, 1}|Ci|,

S.2 δTV (PM[C | do(pa(C))], PN [C | do(pa(C))]) = 1.6

Recall that the sequence of interventions performed by an (adaptive) algorithm is denoted by I. The

assignment pa(C) gets fixed only after the algorithm fixes all the interventions in I. However, we know

6Recall that pa(C) is the assignment that gets fixed after the algorithm fixes the sequence I.
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that any intervention in I belongs to the category S.1. And for each such intervention in I, the correspond-

ing distributions on models M and N are equal, and is defined by a set of uniform distributions over the

c-components. Therefore, we can construct an adversary that, for each intervention in I performed by the al-

gorithm (sequentially), outputs a distribution7 based on S.1. When the algorithm terminates, the assignment

pa(C) gets fixed, and we can show the existence of two models M and N such that

– the models agree on all the interventional distributions in I, and all such distributions also match the

corresponding distributions that were revealed by the adversary.

– δTV (PM[C | do(pa(C))], PN [C | do(pa(C))]) = 1.

Moreover, we can construct such an adversary that outputs distributions in the same way, for all the

c-components C ⊆ B of G. Thus, an explicit construction of two models M and N on G′ that generates

distributions according to S.1 and S.2 would conclude our proof. The remainder of the proof is dedicated

towards this goal.

Let U be the set of all unobservable variables in G′. Let UVi ⊆ U represent the bidirected edges

incident to Vi in G′. Also, for each variable Vi we have an additional boolean random variable Ri that

provides randomness to Vi. All the randomness in the models M and N we construct are in the hidden

variables Ui’s and the Ri’s. In other words, the observable variables are a deterministic function of these.

The models M and N are defined as follows:

1. (a) For each bidirected edge Ui ∈ U, Ui is a Bern(0.5) random variable in both M, and N .

(b) In each model, Ri’s are also independent Bern(0.5) random variables.

2. For each i ∈ [s], Wi = 0 with probability one in both M, and N .

3. For each Vi ∈ C, with probability one:

(a) when Pa(Vi) is not consistent with pa(Vi), then Vi = XOR(UVi , Ri) in both both M, and N .

(b) when Pa(Vi) is consistent with pa(Vi) and i 6= 1, then Vi = XOR(UVi) in both M, and N .

(c) when Pa(Vi) is consistent with pa(Vi) and i = 1, Vi takes

– Vi = XOR(UVi) in M, and

– Vi = XNOR(UVi) in N .

Case 1: When I respects S.1. Consider an intervention I , identified by do(t), that respects S.1. That

is, either I intervenes some node in C, or I does not intervene Pa(C) with the assignment pa(C). Let

{C1, . . . ,Cq} be the c-components of the graph induced by C \T. Note that the models M , and N , differ

only on the function V1. Therefore, when V1 is intervened in I , it is easy to see that the required distributions

are equal, and is a product of uniform distributions over the c-components.8 Suppose V1 is not intervened in

I , and without loss of generality let C1 be the c-component that contains V1. Since the models differ only

on V1, it is easy to see that PM[Ci | do(t)] = PN [Ci | do(t)] for all i 6= 1, and is uniform over {0, 1}|Ci|.

Hence, it is sufficient to prove that P [C1 | do(t)]’s are equal and uniform in both models. Let S be the set of

all Ui’s and Rj’s of the following type: a) Ui’s that have one child in C1 and another child in T; b) Rj’s with

7We consider the worst case, where the algorithm is provided with infinite samples.
8Recall that our objective is to prove: PM[C \T | do(t)] =

∏
i
PM[Ci | do(t)] =

∏
i
PN [Ci | do(t)] = PN [C \T |

do(t)], where for each i, PM[Ci | do(t)] = PN [Ci | do(t)] is a uniform distribution over {0, 1}|Ci|.
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respect to Vj ∈ C1 such that pa(Vj)
9 is inconsistent with t (i.e., Vj ∈ C1 that computes XOR(UVj , Rj)).

Now, for any fixed assignment a
C

−1

1

to C1 \ {V1} and aS to S, because the bi-directed edges within C1

form a ‘tree’, the value of every unobservable variable within C1
10 can be computed. Note that V1 computes

XOR(a
C

−1

1

,aS) in M, and XNOR(a
C

−1

1

,aS) in N . However, we know that S is a non-empty set and the bit

parities of S are uniformly distributed in both the models. This implies PM[C1 | do(t)] = PN [C1 | do(t)],
and is a uniform distribution over {0, 1}|C1|.

Case 2: When I respects S.2. Consider an intervention I that respects S.2. That is, Pa(C) is intervened

with the assignment pa(C) in I , and no node of C is intervened in I . Consider the set of variables S as

defined before for the S.1 case. Note that S is empty here. This implies, for any fixed assignment aC−1 to

C\{V1}, V1 computes XOR(aC−1) in M, and V1 computes XNOR(aC−1) in N . This implies, the supports

of PM[C | do(pa(C))] and PN [C | do(pa(C))] are disjoint, and therefore the total variation distance is 1.

Hence, irrespective of the number of samples taken from the interventions of I, any adaptive algorithm

that solves C2ST(G, ε) or CL(G, ε) must consider a sequence of interventions that satisfies the conditions

C1 and C2.

�

6 Program Pr,p and Properties

In this section, we gather the technical tools used to prove the subadditivity result, Theorem 4.5. We for-

mulate our claims at a higher level of abstraction than needed for our purposes, so that the essence of the

argument becomes clearer.

We begin by defining the optimization problem, and then describe it at a high level.

Definition 6.1 (Program Pr,p(Σ, γ, C,b,dep,Y)). For integers r, p > 0, suppose the following are given:

1. an alphabet set Σ,

2. γ ∈ (0, 1),

3. a partition11 C of [r] into C1,C2, . . . ,Cp, where for each j ∈ [p], sj = |Cj| and the elements of Cj

are {nj,1, . . . , nj,sj} in increasing order,

4. a vector b = (b1, b2, . . . , bp) ∈ [0, 1]p,

5. a vector of sets dep = (dep(1), . . . , dep(r), dep(C1), . . . , dep(Cp)) such that:

[nj,i] ⊇ dep(nj,i) ⊇ {nj,i} ∪ dep(nj,i−1) ∀j ∈ [p], i ∈ [sj]

sj 6= 0 =⇒ dep(Cj) ⊇ dep(nj,sj) ∀j ∈ [p]

sj = 0 =⇒ dep(Cj) = ∅ ∀j ∈ [p]

6. a set of functions Y = (Y1, Y2, . . . , Yp), where Yj : Σ
|dep(Cj)| → [0, 1].

9We refer pa(Vj) with respect to the assignment pa(C).
10We refer to the unobservable variables Ui’s where both the children of Ui lie in C1.
11Here, we allow some members of C to be empty sets.
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The program Pr,p(Σ, γ, C,b,dep,Y) is the following optimization problem over X = (X1, . . . ,Xr) where

Xi : Σ
|dep(i)| → [0, 1]:

min
X

fr,p(X)
def
=

∑

a1∈Σ

X1(adep(1))
∑

a2∈Σ

X2(adep(2)) · · ·
∑

ar∈Σ

Xr(adep(r)) ·

p
∏

j=1

Yj(adep(Cj))

subject to
∑

ai∈Σ

Xi(adep(i)) 6 1 ∀i ∈ [r],∀adep(i)\{i} ∈ Σ|dep(i)\{i}| (5)

∑

anj,1∈Σ

Xnj,1(adep(nj,1))
∑

anj,2∈Σ

Xnj,2(adep(nj,2)) · · ·
∑

anj,sj
∈Σ

Xnj,sj
(adep(nj,sj

)) · Yj(adep(Cj))

> 1− bjγ ∀j ∈ [p],∀adep(Cj)\Cj
(6)

The variables of this program are functions that are based on the Bhattacharya coefficients between

distributions12 on certain variables, and were described in Section 4.2. (5) captures the fact that the Bhat-

tacharyya coefficient is at most one. (6) captures the closeness constraint in Theorem 4.5, i.e., (2). Proving

a lower bound on the objective value of this program will suffice to prove Theorem 4.5. The remainder of

this section is dedicated towards this goal. Let Opt(Pr,p) denote the optimal value of the program. The next

three lemmas (Lemmas 6.2, 6.3 and 6.4) all have the following flavor:

– They take as input an optimization problem (program Pr,p), and output a new program P new
r′,p .

– The optimal value of the program only goes down.

– The new program is simpler to analyze.13

We pass the original program Pr,p through the first lemma, and pass its output through the second. The

second lemma is applied multiple times until the output program satisfies a particular property. The obtained

program is then passed through the third lemma to obtain a new program Pr−1,p (with a reduced value of

r), and the steps repeat. The above procedure reduces to a program with r = 0, namely to a program of the

form P0,p. We can lower bound the objective of this program by simply using (6). Combining these will

yield a lower bound on the optimum of the original program Pr,p, thus proving Theorem 4.5.

The first lemma takes a program as input and outputs a new program with a smaller optimal value that

satisfies dep(r) = dep(Cf ) (where r ∈ Cf ).

Lemma 6.2 (Dependent Set Reduction). Suppose r ∈ Cf . Let P new
r,p be the program obtained from Pr,p by

replacing dep(r) by dep(Cf ), then

Opt(Pr,p) > Opt(P new
r,p ).

Proof. Our goal is to reduce the given program Pr,p to a different program P new
r,p such that Opt(Pr,p) >

Opt(P new
r,p ), where P new

r,p is defined from Pr,p by defining dep(r) to be dep(Cf ).

Let Xold = {Xold
1 , . . . Xold

r } be an optimal solution of Pr,p. Now we construct a feasible solution

Xnew = {Xnew
1 , . . . ,Xnew

r } for the program P new
r,p , such that f new

r,p (Xnew) = fr,p(X
old) = Opt(Pr,p). For all

12The distributions may be interventional, or conditional, or a combination of condional and interventional distributions.
13We understand that this item is very subjective.
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i 6= r, we define Xnew
i = Xold

i . For i = r, we define Xnew
r (adepnew(r)) = Xold

r (xdep(r)). In other words,

Xnew
r ignores the new variables added to depnew(r). Therefore,

f new
r,p (Xnew) =

∑

a1∈Σ

Xnew
1 (adep(1)) · · ·

∑

ar∈Σ

Xnew
r (adepnew(r)) ·

p
∏

j=1

Yj(adep(Cj))

=
∑

a1∈Σ

Xold
1 (adep(1)) · · ·

∑

ar∈Σ

Xold
r (adep(r)) ·

p
∏

j=1

Yj(adep(Cj)) (by the definition of Xnew)

= fr,p(X
old) (by the definition of fr,p).

For the program P new
r,p , when i 6= r, Xnew satisfies the constraints in (5) (since the functions Xold

i and

Xnew
i are the same). Similarly, for j 6= f , constraints in (6) of the program P new

r,p are valid. When i = r in

(5), for each adepnew(r)\{r}, we get
∑

ar

Xnew
r (adepnew(r)) =

∑

ar

Xold
r (adep(r)) 6 1.

When j = f in (6), for all adep(Cj)\Cj
, since nf,sf = r we get,

∑

anf,1
∈Σ

Xnew
nf,1

(adep(nf,1)) · · ·
∑

ar∈Σ

Xnew
r (adepnew(r)) · Yf (adep(Cf ))

=
∑

anf,1
∈Σ

Xold
nf,1

(adep(nf,1)) · · ·
∑

ar∈Σ

Xold
r (adep(r)) · Yf (adep(Cf )) (from definition of Xnew)

> 1− bfγ (using (6)).

This implies Xnew is a feasible solution for P new
r,p and hence Opt(Pr,p) > Opt(P new

r,p ). �

The next lemma takes a program Pr,p as input and outputs a new program (with a smaller optimal value)

that satisfies r /∈ dep(Ch) (for some given Ch such that r /∈ Ch).

Lemma 6.3 (Y-R Reduction). Let Pr,p(Σ, γ, C,b,dep,Y) be a given program, and there exists h ∈ [p]
such that r /∈ Ch and r ∈ dep(Ch). Then, there exists a program P new

r,p (Σ, γ, C,bnew,depnew,Ynew) such

that

Opt(Pr,p) > Opt(P new
r,p ),

where

1. bnew
h = |Σ| · bh

2. depnew(Ch) = dep(Ch) \ {r}

3. bnew
j = bj ∀j ∈ [p] \ {h}

4. depnew(Cj) = dep(Cj) ∀j ∈ [p] \ {h}

5. depnew(i) = dep(i) ∀i ∈ [r]

6. Y new
j (adep(Cj)) = Yj(adep(Cj)) ∀j ∈ [p] \ {h},∀adep(Cj ).

Proof. Let X′ be an optimal solution of Pr,p. Note that, since dep(Cnew
h ) = dep(Ch) \ {r}, our goal is to

find a function Y new
h : Σ|dep(Cnew

h
)| → [0, 1], whose domain size is smaller than the domain size of Yh (as

Y new
h is independent of the value of ar), that satisfies the required constraints.
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For a given set of functions X, a subset S ⊆ [r], and for a given assignment aS to S, let fr,p(X)|aS
represent the sum of all terms in fr,p(X) that are consistent with the assignment aS. Note that

fr,p(X
′) =

∑

adep(Ch)

fr,p(X
′)|adep(Ch)

. (7)

For each adep(Ch)\{r}, let

1. zh(adep(Ch)\{r}) = argminar Yh(adep(Ch)\{r}, ar),

2. Y new
h (adepnew(Ch)) = Y new

h (adep(Ch)\{r}) = Yh(adep(Ch)\{r}, zh(adep(Ch)\{r})).

Based on the above definition of Y new
h , we know that f new

r (X′) 6 fr,p(X
′). In the remainder of the proof,

we show that X′ is also a feasible solution for P new
r,p . The first set of constraints of P new

r,p are valid (as we

have not modified X). Similarly, the second set of constraints is valid for all j 6= h (as we have not changed

any parameters). Now we prove the constraints in (6), for j = h. For all assignments adepnew(Ch)\Ch
,

∑

anh,1

X ′
nh,1

(adep(nh,1)) · · ·
∑

anh,sh

X ′
nh,sh

(adep(nh,sh
)) · Y

new
h (adepnew(Ch))

=
∑

anh,1

X ′
nh,1

(adep(nh,1)) · · ·
∑

ahsj

X ′
nh,sh

(adep(nh,sh
)) · Yh(adep(Ch)\{r}, ar = zh(adep(Ch)\{r}))

(by definition of Y new
h )

=







∑

anh,1

X ′
nh,1

(adep(nh,1)) · · ·
∑

ahsj

X ′
nh,sh

(adep(nh,sh
)) ·

∑

ar

Yh(adep(Ch\{r}), ar)







−







∑

anh,1

X ′
nh,1

(adep(nh,1)) · · ·
∑

ahsj

X ′
nh,sh

(adep(nh,sh
)) ·

∑

ar :ar 6=zh(adep(Ch)\{r})

Yh(adep(Ch)\{r}, ar)







>





∑

ar

∑

anh,1

X ′
nh,1

(adep(nh,1)) · · ·
∑

anh,sh

X ′
nh,sh

(adep(nh,sh
)) · Yh(adep(Ch)\{r}, ar)





−







∑

anh,1

X ′
nh,1

(adep(nh,1)) · · ·
∑

ahsj

X ′
nh,sh

(adep(nh,sh
)) ·

∑

ar :ar 6=z(adep(Ch)\{r})

1






(∵ Yh(.) 6 1)

>

[

∑

ar∈Σ

(1− bhγ)

]

−






(|Σ− 1|) ·

∑

anh,1

X ′
nh,1

(adep(nh,1)) · · ·
∑

ahsj

X ′
nh,sh

(adep(nh,sh
))







(by constraint (6) of Pr,p)

> |Σ|(1− bhγ)− (|Σ| − 1)1 (by constraint (5) of Pr,p)

= 1− |Σ|bhγ

= 1− bnew
h γ.

�
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After multiple passes through the above lemma, we get a program Pr,p that satisfies r /∈ dep(Cj), for

all Cj such that r /∈ Cj. The next lemma takes in such a program, and outputs a program with a reduced

value of r.

Lemma 6.4 (R-Elimination). Let Pr,p(Σ, γ, C,b,dep,Y) be a given program such that the element r ∈
Cf . Suppose dep(r) = dep(Cf ), and for all j ∈ [p] \ {f}, r /∈ dep(Cj). Then there exists a program

P new
r−1,p(Σ, γ, C

new,b,depnew,Ynew) such that

Opt(Pr,p) > Opt(P new
r−1,p)

where Ynew differs from Y only on the function Yf , Cnew differs from C only on the partition Cf where

Cnew
f = Cf\{r}, and depnew = (dep(1), dep(2), . . . , dep(r−1), dep(C1), . . . , dep(Cf−1), dep

new(Cnew
f ),

dep(Cf+1), . . . , dep(Cp)) where depnew(Cnew
f ) = dep(r) \ {r}.

Proof. Let Xold be an optimal solution of Pr,p. For a given set of functions X, a subset S ⊆ [r], and for a

given assignment aS to S, let fr,p(X)|aS represent the sum of all terms in fr,p(X) that are consistent with

the assignment aS. Then, for all assignments adep(r)\{r}

fr,p(X
old)|adep(r)\{r}

= Ladep(r)\{r}
·
∑

ar

Xold
r (adep(r)) · Yf (adep(r)) (8)

We define Y new
f (adepnew(Cnew

f
)) = Y new

f (adep(r)\{r}) =
∑

ar
Xold

r (adep(r)) · Yf (adep(r)). Observe that

Y new
f : Σ|dep(r)\{r}| → [0, 1] because of constraint (5) and since Yf itself falls in the range [0, 1]. Now, the

new program P new
r−1,p is completely specified.

Observe that:

fr,p(X
old)|adep(r)\{r}

= Ladep(r)\{r}
· Y new

f (adep(r)\{r}) = f new
r−1,p(X

old
r−1)|adep(r)\{r}

where Xold
r−1 = {Xold

1 , . . . ,Xold
r−1}. This implies

fr,p(X
old) =

∑

adep(r)\{r}

fr,p(X
old)|adep(r)\{r}

=
∑

adep(r)\{r}

f new
r−1,p(X

old
r−1)|adep(r)\{r}

= f new
r−1,p(X

old
r−1).

We now show that the functions Xold
r−1 form a feasible solution for P new

r−1,p. The first set of constraints (5)

holds for P new
r−1,p because Xold is feasible for Pr,p. Also for all j 6= f , the second set of constraints (6) holds

for the same reason. For j = f :

∑

anf,1
∈Σ

Xold
nf,1

(adep(nf,1)) · · ·
∑

anf,sf−1
∈Σ

Xold
nf,sf−1

(adep(nf,sf−1)) · Y
new
f (adep(Cnew

f
))

=
∑

anf,1
∈Σ

Xold
nf,1

(adep(nf,1)) · · ·
∑

anf,sf−1
∈Σ

Xold
nf,sf−1

(adep(nf,sf−1))
∑

ar∈Σ

Xold
r (adep(r)) · Yf (adep(Cf ))

(by definition)

> 1− bfγ

This completes the proof that Opt(Pr,p) > Opt(P new
r−1,p). �
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Lemma 6.5. For any integers r, p > 1 and given a program Pr,p(Σ, γ, C,b,dep,Y), there exists a program

P new
r−1,p(Σ, γ, C

new, bnew, depnew, Ynew) such that

Opt(Pr,p) > Opt(P new
r−1,p)

where

bnew
j = bj , ∀j ∈ [p] : r /∈ dep(Cj),

bnew
j = |Σ| · bj , ∀j ∈ [p] : r ∈ dep(Cj).

Proof. First we apply Lemma 6.2 (Dependent Set Reduction). Then, we apply Lemma 6.3 (Y-R Reduction)

repeatedly, until there does not exist any h ∈ [p] such that r ∈ dep(Ch) but r /∈ Ch. Note that, in each step

of this reduction, the respective bh increases by a factor of |Σ|. Finally, applying Lemma 6.4 (R-Elimination)

results in a program P new
r−1,p on r − 1 inputs with the desired property. �

Lemma 6.6. For a given program Pr,p(Σ, γ, C,b = 1,dep,Y = 1), suppose we know that max
j

|dep(Cj)|

is at most L. Then

Opt(Pr,p) > (1− |Σ|Lγ)p.

Proof. We apply Lemma 6.5 recursively. Note that in each such reduction from Pr,p to Pr−1,p, the value of

bj increases by a factor of |Σ| only when r ∈ dep(Cj).
At r = 0, we have the program P0,p(Σ, γ, C

′,b′,dep′,Y′). For all j ∈ [p], we know that b′j 6 |Σ|L

(since |dep(Cj)| 6 L). Therefore,

Opt(Pr,p) > Opt(P0,p)

=

p
∏

j=1

Y ′
j (∅)

>

p
∏

j=1

(1− b′jγ) based on constraint (6) of the program P0,p

> (1− |Σ|Lγ)p.

�

7 Acknowledgments

We would like to thank Vasant Honavar who told us about the problems considered here and for several

helpful discussions that were essential for us to complete this work.

References

[ADK15] Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for prop-

erties of distributions. In Advances in Neural Information Processing Systems 28, NIPS ’15,

pages 3577–3598. Curran Associates, Inc., 2015. 6

27
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A Proof Sketch for the Fully Observable Case

In the absence of unobservable variables, the analysis becomes much simpler. Let us look at the two-sample

testing problem on input causal models X and Y defined on a DAG G. Now, each c-component is a single

vertex, so that every “local” intervention is of the form P [Vi | do(pa(Vi))] for a vertex Vi and an assignment

pa(Vi) to the parents of Vi. We define our tester to accept iff each such local intervention on X and Y yields

distributions which differ by at most ε2/2n in squared Hellinger distance. The squared Hellinger distance

is defined as follows for two distributions P and Q on [D]:

H2(P,Q) : = 1−
∑

i∈[D]

√

P (i) ·Q(i) = 1−BC(P,Q) (9)

where BC(P,Q) is the Fidelity or Bhattacharya coefficient of P and Q. Below, our subadditivity theorem

shows that if the algorithm accepts, then for every intervention, the resulting distributions for X and Y differ

by at most ε2/2 in squared Hellinger distance, implying ∆(X ,Y) 6 ε.

Theorem A.1. Let X and Y be two causal Bayesian networks defined on a known and common DAG G with

no hidden variables. Identify the vertices in V as {V1, . . . , Vn} arranged in a topological order. Suppose

we know that

H2(PX [Vj | do(pa(Vj))], PY [Vj | do(pa(Vj))]) 6 γ ∀j ∈ [n],∀ pa(Vj) ∈ Σ|Pa(Vj)|. (10)

Then, for each subset T ⊆ V and t ∈ Σ|T|,

H2 (PX [V \T | do(t)], PY [V \T | do(t)]) 6 γn. (11)

Proof. Fix T ⊆ V and an assignment t ∈ Σ|T|. Let W = V\T = {W1,W2, . . . ,Wm} whose indices are

arranged in a topological ordering. By the definition of squared Hellinger distance:

H2

(

PX [W|do(t)],
PY [W|do(t)]

)

= 1−
∑

w1,w2,...,wm

√

PX [w1, w2, . . . , wm|do(t)]
PY [w1, w2, . . . , ym|do(t)]

= 1−
∑

w1,...,wm−1

√

PX [w1, . . . , wm−1|do(t)]
PY [w1, . . . , wm−1|do(t)]

∑

wm

√

PX [wm|w1, . . . , wm−1, do(t)]
PY [wm|w1, . . . , wm−1, do(t)]

= 1−
∑

w1,...,wm−1

√

PX [w1, . . . , wm−1|do(t)]
PY [w1, . . . , wm−1|do(t)]

∑

wm

√

PX [wm|do(pa(wm))]
PY [wm|do(pa(wm))]

.

The above step can be obtained easily by using Lemma C.1 and the conditional independence constraints

obtained from G. Therefore:

H2

(

PX [W|do(t)],
PY [W|do(t)]

)

6 1−
∑

w1,...,wm−1

√

PX [w1, . . . , wm−1|do(t)]
PY [w1, . . . , wm−1|do(t)]

(1− γ) (from (10))

= H2

(

PX [W1 . . .Wm−1 | do(t)],
PY [W1 . . .Wm−1|do(t)]

)

(1− γ) + γ.
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By induction on n, we get:

H2

(

PX [W|do(t)],
PY [W|do(t)]

)

6 γ[1 + (1− γ) + (1− γ)2 + . . .+ (1− γ)m−1]

= 1− (1− γ)m 6 1− (1− γ)n 6 nγ.

�

The time and sample complexities are then determined by that required for two-sample testing on each

pair of local distributions with accuracy ε2/2n in H2 distance. We defer this calculation, as well as bounding

the total number of interventions, to later when we analyze semi-Markovian CBNs.

B Reduction from General Graphs

First we define the effective parents and the c-component relation for general causal graphs.

Definition B.1 (Effective Parents Pa+). Given a general causal graph H and a vertex Vi ∈ V, the effective

parents of Vi, denoted by Pa+(Vi), is the set of all observable vertices Vj such that either Vj is a parent of

Vi or there exists a directed path from Vj to Vi that contains only unobservable variables.

Definition B.2 (c-component). For a given general causal graph H , two vertices Vi and Vj are related by

the c-component relation if (i) there exists an unobservable variable Uk such that H contains two paths (i)

from Uk to Vi; and (ii) from Uk to Vi, where both the paths use only unobservable variables, or (ii) there

exists another vertex Vz ∈ V such that Vi and Vz (and) Vj and Vz are related by c-component relation.

We study Semi Markovian Bayesian Networks (SMBN)’s without any loss of generality owing to the

projection of a general causal graph to a SMCG [TP02, VP90]. For a given graph H they showed that there

is an equivalent SMCG G such that the c-component factorization and some other important properties

hold. Namely,

– The set of observable nodes in H and G are the same.

– The topological ordering of the observable nodes in H and G are the same.

– The c-components of H and G are identical and the c-component factorization formula (Lemma 2.12

here, (20) in Lemma 2 of [TP02]) holds even for the general causal graph (See Section 5 of [TP02]).

They show this based on a known previously known reduction from H to G [VP90]. The proof is

based on the fact that for any subset S ⊆ V of observable variables, the induced subgraphs G[S] and

H[S] require the same set of conditional independence constraints.

– The parents of nodes in G are the effective parents of nodes in H .

All the results presented in this paper depend only on the above mentioned properties. Therefore, we

can reduce the given general causal graph H to a SMCG G using the available reduction and work with G,

where the parents of vertices of G correspond to the effective parents of the respectives vertices of H . Now

we proceed to show the algorithm of [VP90] that preserves all the required properties mentioned above.
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Projection Algorithm of [TP02, VP90] For a given causal graph H , the projection algorithm reduces the

given causal graph H to a SMCG G by the following procedure:

1. For each observable variable Vi ∈ V of H , add an observable variable Vi in G.

2. For each pair of observable variables Vi, Vj ∈ V, if there exists a directed edge from Vi to Vj in H, or

if there exists a directed path from Vi to Vj that contains only unobservable variables in H , then add

a directed edge from Vi to Vj in G.

3. For each pair of observable variables Vi, Vj ∈ V, if there exists an unobservable variable Uk such that

there exist two directed paths in H from Uk to Vi and from Uk to Vj such that both the paths contain

only the unobservable variables, then add a bi-directed edge between Vi and Vj in G.

C Conditional Independence

The following lemma captures a useful fact about conditional independence between variables in a SMBN.

Lemma C.1 (Independence Lemma). Let M be a SMBN with respect to a SMCG G with the vertex set

V = {V1, . . . , Vn} (where the indices respect topological ordering). For a given intervention do(t), let

C = {Vn1 , Vn2 , . . . , Vns} be a c-component of the induced subgraph G′ = G[V \ T], where s = |C| and

n1 < n2 < · · · < ns. Then for a given vertex Vni
, for a given set D such that V \ (T ∪ {Vn1 , . . . , Vni

}) ⊇
D ⊇ PaG′({Vn1 , . . . , Vni

}), and a given set of assignments vn1 , . . . , vni
, d,

PM[vni
| vn1 , . . . , vni−1 , do(d, t)] = PM[vni

| vn1 , . . . , vni−1 , do(paG′(Vn1 , . . . , Vni
), t)]

where paG′(vn1 , . . . , vni
) is the assignment that is consistent with D.

Proof. By Bayes’ theorem

PM

[

vnj,i

∣

∣

∣

∣

vnj,1 , . . . , vnj,i−1 ,
do(paG′(Vnj,1 , . . . , Vnj,i

), t)

]

=
PM[vnj,i

, vnj,1 , . . . , vnj,i−1 | do(paG′(Vnj,1 , . . . , Vnj,i
), t)]

PM[vnj,1 , . . . , vnj,i−1 | do(paG′(Vnj,1 , . . . , Vnj,i
), t)]

.

(12)

We apply Lemma 2.11 with respect to the graph G′ = G[V \T] that is obtained after the intervention do(t)
for both the numerator and the denominator of (12) seperately. Therefore:

PM

[

vnj,i

∣

∣

∣

∣

vnj,1 , . . . , vnj,i−1 ,
do(paG′(Vnj,1 , . . . , Vnj,i

), t)

]

=
PM[vnj,i

, vnj,1 , . . . , vnj,i−1 | do(d, t)]

PM[vnj,1 , . . . , vnj,i−1 | do(d, t)]

= PM[vnj,i
| vnj,1 , . . . , vnj,i−1 , do(d, t)].

�
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