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Abstract

Classical distribution testing assumes access to i.i.d. samples from the distribution that is
being tested. We initiate the study of Markov chain testing, assuming access to a single trajectory
of a Markov Chain. In particular, we observe a single trajectory Xy, ..., Xt,... of an unknown,
symmetric, and finite state Markov Chain M. We do not control the starting state X, and we
cannot restart the chain. Given our single trajectory, the goal is to test whether M is identical
to a model Markov Chain M’, or far from it under an appropriate notion of difference.

We propose a measure of difference between two Markov chains, motivated by the early work
of Kazakos [Kaz78|, which captures the scaling behavior of the total variation distance between
trajectories sampled from the Markov chains as the length of these trajectories grows. We
provide efficient testers and information-theoretic lower bounds for testing identity of symmetric
Markov chains under our proposed measure of difference, which are tight up to logarithmic
factors if the hitting times of the model chain M’ is O(n) in the size of the state space n.
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1 Introduction

We formulate theories about the laws that govern physical phenomena by making observations
and testing them against our hypotheses. A common scenario is when our observations can be
reasonably modeled as i.i.d. samples from a distribution that we are trying to understand. This is
the setting tackled by most classical work in Statistics. Of course, having access to i.i.d. samples
from a distribution is rare and quite commonly an approximation of reality. We typically only
have access to approximate samples from a stationary distribution, sampled by a Markov chain
whose transition matrix/kernel is unknown to us and which can only be observed for some finite
time horizon. In fact, to the best of our knowledge, the underlying Markov chain may not even
be rapidly mixing, so there is no guarantee that we will ever see samples that are approximately
distributed according to the stationary distribution.

These issues are exacerbated in high-dimensional settings, e.g. when observing the configurations
of a deck of cards where the state space consists of 52! permutations, or a weather system, where it
may also be completely impractical to work with the high-dimensional stationary distribution itself.
Moreover, several different processes may generate the same stationary distribution. For all these
considerations, it may be both more interesting and more practical to understand the “mechanics”
of the process that generates our observations, namely the transition matrix/kernel of the Markov
chain whose evolution we get to observe.

Motivated by these considerations, in this paper we initiate the study of testing identity of
Markov chains, and as a first step we focus on the case of finite and symmetric! Markov Chains. In
our setting, we are given access to a single trajectory Xg, X1, ..., X4, ... of some unknown symmetric
Markov chain M over some finite state space [n], and we want to test the identity of M to some
given symmetric Markov chain M’ over the same state space. Importantly, we do not get to control
the distribution of the starting state Xy, and we can only observe a single trajectory of M, i.e. we
cannot restart the Markov chain. What could we hope to achieve?

If there is any difference in the transition matrices of M and M’, one would think that we
would ultimately be able to identify it by observing a sufficiently long trajectory. This is certainly
true if the transition matrices of the two chains differ at a state that belongs to the essential
communicating class (see Definition 2) of M where X lies. However, it is, in general, not always
necessary that one be able to observe such a difference. For instance, consider the following example.

The Two Communicating Classes Example: Suppose that M is a chain on states {1,2,...,7}
whose transition matrix is the random walk matrix on a graph that is the disjoint union of a square
on nodes {1,...,4} and a triangle on nodes {5, 6,7}, while M”’s transition matrix is the random
walk matrix on a graph that is the disjoint union of a clique on nodes {1,...,4} and a triangle on
nodes {5,6,7}. If our observed trajectory of M lies in the strong connected component defined by
states {1,...,4} (which forms an essential communicating class), we will easily identify its differ-
ence to M’. On the other hand, if our observed trajectory of M lies in the essential communicating
class defined by states {5, 6, 7}, we will not be able to identify that we are not observing a trajectory
of M’, no matter how long the trajectory is.

For some notion of difference, Dist (M, M’), between Markov chains, we would like to quantify
how long a trajectory Xy, ..., Xy from an unknown chain, M, we need to observe to be able to

1 'We also get a few observations for general asymmetric case that may be used as a foundation for future studies.



distinguish, with probability at least 1 — §:
M =M versus Dist (M,M') > ¢, (1)

for some given parameters 0 € (0,1) and € > 0. Let us call this problem single-sample goodness-of-
fit (or identity) testing for Markov chains. We will study it taking § = 1/3, with the understanding
that this probability can be boosted to any small constant at the cost of a O(log(1/9))-multiplicative
factor in the length ¢ of the observed trajectory.

What notion of difference between Markov chains is the right one to use to study the afore-
described goodness-of-fit testing problem? Here are some desiderata for such a notion of difference:

1. First, as our simple example above illustrates, under a worst-case starting state Xy, we may
not be able to identify that M # M’ from a single trajectory. So, we would like to identify
a notion of difference that takes a value Dist (M, M’) = 0, whenever chains M and M’ are
indistinguishable from a single trajectory starting at a worst-case starting state.? Obviously,
if the chains are irreducible, this constraint is immaterial.

2. Whenever M and M’ are distinguishable from a single trajectory, whose starting state we
do not get to control, i.e. from any starting state, we would like that our difference measure
quantifies how different the chains are. Clearly, our notion of difference could not just be
a combinatorial property of the connectivity of the state space of M and M’, since the
combinatorial structure won’t reflect the magnitude of the differences in the chains.

One of our main contributions is to identify a meaningful measure of difference between Markov
Chains capturing the above properties.

A Difference Measure Between Markov Chains. Total Variation (TV) distance is a standard
notion of distance between distributions used in the property/distribution testing literature. One
reason for this is that it captures precisely our ability to distinguish two distributions p and g by
observing a single sample from one of them.? Similarly, given two product measures p®¢ and ¢®¢,
outputting a vector of £ i.i.d. samples drawn from p and g respectively, our ability to distinguish
between them from one sample is captured by d., (p®£,q®£). Unfortunately, it is analytically
difficult to relate d., (p®*,¢%%) to dy (p, ) to study how our distinguishing ability improves with
¢. For this reason, Hellinger distance d,, (p®£,q®f) is often the preferred notion of distance in
this case.?. Generalizing from product measures to Markov Chains, a natural notion of difference

between two chains M and M’ is the total variation distance, d (WﬁA,WfA ,>, between {-step

trajectories (a.k.a. words) Wf/l def XoX1--- Xy and Wﬁ/l, def YoYi -+ Y, sampled from the two

chains starting at some state Xo = sg = Yy. But due to the analytical difficulties presented by
the TV distance for high-dimensional distributions we look towards the Hellinger distance as noted

2The worst-case starting state assumption is a choice also made when defining mixing time. It is also worth noting
that in this scenario, since the chains are reducible they will not converge to the stationary distribution and hence
the mixing time is infinite.

3Formally, consider a guessing game where p or ¢ is chosen uniformly at random (or by an adversary), then one
sample is generated from the chosen distribution, and we must guess which one it is. The optimal error for this
guessing game is precisely 0.5 - (1 — d (p, q)).

“Indeed, it enjoys the precise recurrence relation 1 — dI2-Icl (pw, q®e) = [1 - dicl (p, q)}z. Moreover, there is a tight
relationship between TV and Hellinger distances, see (4), so one can derive upper and a lower bound on d ., (p®e, q®* )

based on d,; (p®é, q®z). See Section 2.



above. The usage of Hellinger square distance for high-dimensional distributions, for instance as
was proposed in the early work of Kazakos [Kaz78] and the more recent work of Daskalakis and

Pan [DP17], is well known. Hence, we study the Hellinger distance d,,, (WﬁA,WfA,) between two

trajectories, which satisfies a precise recurrence formula stated as Lemma 3.1 in Section 3. The
relation between Hellinger and TV distances allows us to provide upper and lower bounds on the
latter in terms of the former.

A Scale-Free Measure of Difference Between Markov Chains. Both the distance measures
dpy (WﬁA,WfA,) and d, (WfA,WfA,) depend on (1): the length ¢ of the trajectory and (2): the
starting state so. We would like, instead, a parameter-free and scale-free notion of difference between
Markov Chains satisfying the above desiderata. A popular way of tackling such a parameter
dependency in Markov Chain literature is to study the inverse dependency of the length ¢ of a
trajectory required to achieve a certain threshold value for some quantity, e.g. mixing time is
defined as the minimum number of steps ¢ needed so that the distribution of the ¢-th state of
a trajectory starting at any state sp is no more than 1/4 away from the stationary distribution.
Similarly, in our case, we propose to analyze the minimum number of steps ¢ required so that

dyy (Wf/l,Wg ) is at least some constant (we choose 0.5):5
e M/
. , TN _v.o_
min (0 Vsoefn] (WL WL, | Xo = Yo =50) 2 6. 2)

The above definition assumes a worst-case starting state sy which reflects our desiderata stated
above that we do not get to control the starting state and we cannot restart the chain. Moreover,
it is the choice made in the definition of mixing time. In Section 3 we show a tight relationship
between the above definition and an appropriate “average-case” version.

Clearly, the answer to (2) depends on the scaling behavior, as £ — oo, of the following quantity:
def . ¢ Y
8(0) % mind,, (Wi W, | Xo=Yo=s0). 3)
Interestingly, as we discuss in Section 2, this scaling behavior is tightly captured by the following

matrix: ot
[P,Q], = [\/ Pij - Qij ]

where P and () are the transition matrices of the two chains, i.e. P;; and ();; denote the probabilities
of transitioning from state ¢ to state j in the two chains. In Lemma 3.1, we state a recursive

. )
ij€[nxn]

decomposition that allows us to exactly express the square Hellinger similarity, 1 —dflel (V\/ﬁ/1 , Wﬁ/{ ,>

of -length words sampled from the two chains in terms of the /-th power of the above matrix, and
the distribution of the starting states Xy and Y in the two words.

To identify a word-length independent measure of difference between the two chains based on (2),
we employ a spectral approach. We show that the scaling behavior (w.r.t. £) of the Hellinger square
distance between Wﬁ/l and Wﬁ/{ , is captured by the largest eigenvalue A\ = p([P,Q],) of matrix
[P,Q];. We show that always Ay < 1 (Claim 1), and that A\; = 1 if and only if the two chains
have an identical essential communicating class (Claim 1), in which case we would be unable to
identify the difference between the two chains from a single trajectory which starts at a state in

®Note that a trajectory of this length also satisfies d.p. (Wﬁ/l , Wi/v) > 0.25.
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the essential communicating class which is identical in the two chains (see the two communicating
classes example above). These statements hold even for asymmetric chains. For symmetric Markov
chains, ¢ in (2) is almost proportional to % =0 (%) up to a logn factor, see Claim 2) where
e =1-p([P,Q],).°. The latter estimation on ¢ also holds for the case when initial state in P and
Q is chosen uniformly at random.

Given these properties, we propose the use of

Dist (M, M') =1—p([P,Q],)

as a scale-free and meaningful measure of difference between Markov chains. Figure 1 illustrates
how Dist (M, M) behaves for different pairs of Markov chains M and M.

Our Results. Using our proposed measure of difference between Markov chains we provide al-
gorithms for goodness-of-fit testing of Markov chains, namely Problem (1), where Dist (M, M') =
1 — p([P,Q];), where P and @ are the transition matrices of chains M and M'’. We study this
problem when M and M’ are both symmetric, and provide upper and lower bounds for the mini-
mum length ¢ of a trajectory from the unknown chain M that is needed to determine the correct
answer with probability at least 2/3. In particular, Theorems 4.1 and 5.1 combined show that the
length of the required trajectory from M to answer Problem (1) is n/e, where n is the size of the
state space, up to logarithmic factors and an additive term that does not depend on € or M. Our
upper bound is established via an information-efficient reduction from single-sample identity testing
for Markov chains with n states to the classical problem of identity testing of distributions over
O(n?) elements, from i.i.d. samples. A naive attempt to obtain such a reduction is to look at every
MixT r-th step of the trajectory of M, where MixT p is the mixing time of chain M’, pretending
that these transitions are i.i.d. samples from the distribution { %Bj}ije[rﬂ]' This both incurs an
unnecessary blow-up of a factor of MixT y4 in the required length of the observed trajectory, and
is not clear how to analyze rigorously due to the dependencies between samples and the fact that
the mixing time of M is unknown. We show how to avoid these issues via a more subtle approach,
which also exchanges the mutliplicative dependence on the mixing time of M’ with an additive
term that is quasi-linear in the hitting time of M’.

Related Work. Testing goodness-of-fit for distributions has a long history in Statistics; for some
old and more recent references see, e.g., [Pea00, Fis35, RS81, Agrl2]. In this literature the emphasis
has been on the asymptotic analysis of tests, pinning down their error exponents as the number
of samples tends to infinity [Agrl2, TAW10]. In the last two decades or so, distribution testing
has also piqued the interest of theoretical computer scientists [BFFT01, Pan08, LRR13, VV14,
CDVV14, ADK15, CDGR16, DK16, DDS*13, CRS14, Rub12, Gol11, Canl15], where the emphasis,
in contrast, has been on minimizing the number of samples required to test hypotheses with a strong
control for both type I and type II errors. A few recent works have identified tight upper and lower
bounds on the sample complexities of various testing problems [Pan08, VV14, ADK15, DK16]. All

5 For non symmetric Markov chains, one can show that the slowest (with respect to the choice of the starting
state) that the square Hellinger similarity (defined as 1 — dicl) of the two chains can drop as a function of the length
£ is Xf, up to factors that do not depend on ¢; this follows from (5) and (7). That is, the slowest that the square
Hellinger distance of the two chains can increase is 1 — O()\Y). However, the dependency on the starting state is
more significant than in the symmetric case, and the dependency in the worst-case may be not as smooth as for the
symmetric M and M’. (See Figure 1 for examples of irregular behavior of certain non-symmetric MC.)



of the papers in this vast body of literature assume access to i.i.d. samples from the underlying
distribution.

Some work in Statistics has considered the problem of testing with dependent samples. For
instance, [Bar51, MT82, GM 83, MMPV02] and the references therein study goodness-of-fit testing
under Markov dependences. These works study how the classical tests used to perform goodness-of-
fit testing with independent samples, perform when there are Markovian dependencies among the
samples. [TA83] and more recently [BPR16] study the problem of testing the stationary distribution
of Markov chains. [Kaz78] studies the problem of asymptotically perfect detection (APD) between
two Markov chains. All these works focus on the asymptotic regime where the length of the
observed trajectories tends to infinity, and study the conditions under which hypothesis testing can
be performed successfully or focus on pinning down the error exponents. In the computer science
literature, [BFR™13] considered the problem of testing whether a Markov chain is fast mixing or
not. They defined a notion of closeness between two random walks starting at different states
of the same chain, which is different in spirit to the distance notion we define in this work. In
particular, their distance is based on the L; norm of the state distributions attained by starting
at two different states v and v and running the chain for ¢ steps. This ignores any differences in
trajectory seen along the way and it is apt for their setting as they focus on mixing time which is
a trajectory independent property of the chain.

There is a large body of statistical literature on estimating properties and parameters of Markov
chains. Mixing time is one such important and well studied parameter (see, e.g., [HKS15] and the
references therein), as it is useful in designing MCMC algorithms. The question of mixing time
estimation is related to but different than the goodness-of-fit kernel testing that we perform here.

Organization We start in Section 2 with a description of the notational conventions we use and
provide all necessary formal details for our difference measure in Section 3. In Section 4, we study
the problem of testing identity of symmetric Markov chains and present our tester. We give a
sample complexity lower bound for this problem in Section 5.

2 Preliminaries

We list the general notational conventions used in this paper. We denote vectors by small letters
such as ¥ and matrices by capital letters such as A,B,P,Q. The it" entry of vector ¥ is denoted
by v; or v[i] and the (ij) entry of matrix A (i'* row, j column) is denoted by A;; or A[ijl;
&; denotes the standard basis vector with 1 in its " coordinate and 0 elsewhere; 1 denotes the
vector of all ones. The “entrywise” L, and Ly norms of a matrix A are respectfully denoted as

[All, = 225 [Ai| and [[Ally = /32, ; AZs p(A) denotes the spectral radius of matrix A, i.e., the
maximum absolute eigenvalue of A. The eigenvalues of A are denoted by Ay,...,\;,..., A, and the

respective right eigenvectors by o1, ..., %, ..., 0, (left eigenvectors by iy, ..., ,)"; for symmetric
matrix A we assume that Ay > --- > \; > - > \,.

Two popular notions of distance between distributions will be used heavily in this paper. We state
their formal definitions below and also specify the relation between them.

“If matrix A is not symmetric, we allow \; € C and v;,u; € C". Then, we will only use A\; € R and v, 41 € R".



Definition 1. The total variation and Hellinger distances between distributions p,q over [n] are

def def
defined as : dq (p,q) = 3 Z pi — qil; 42 (p.q) = % Z (Voi — V@)’ =1- Z TR

26 n| 7,6 n| i€[n]
The following relation between these notions of distance is well known (see, e.g., [GS02]):

V2 dyq (p,q) > dy ( p,q) > diel (p,q) - (4)

2.1 Markov Chains

A discrete-time Markov chain is a stochastic process {Xt}te{071,_..} over a state space S which
satisfies the Markov property: the probability of being in state s at time ¢t + 1 depends only on
the state at previous time ¢. In this paper, we only consider Markov chains with the finite state
space [n]. Such Markov chains can be completely specified by a n X n transition matrix (kernel)
that contains probabilities of transitioning from state i to state j in the i*" row and j** column,
and a description of the distribution of their starting state. The transition matrix has non-negative
entries and is a stochastic matrix. We use capital letters P, @, M to represent Markov chains as
well as their respective transition matrices. The stationary distribution 7 of a Markov chain P is a
distribution over the state space S such that it satisfies 7' - P = 7. Another important parameter
is the distribution of the starting state sy which we denote by p (for the Markov chain P). It may
or not may not be the stationary distribution.

The state space of a Markov chain can be partitioned into communicating classes which are groups
of states reachable from each other with positive probability. The formal definition of essential
communicating classes is as follows.

Definition 2 (Essential Communicating Classes). Given a Markov chain M over the state space
[n], we define x — y if there exists an integer r > 0 such that M"(z,y) > 0. Similarly, we define
equivalence relation z < y iff + — y and y — x. The equivalence classes under relation < are
called communicating classes. Any communicating class C' with the property that y must be in C
for any € C and x — y is said to be an essential communicating class®.

2.1.1 Hitting Times and Mixing Times

Two commonly studied random variables associated with Markov chains which are relevant to this
paper are their mixing times and hitting times.

Definition 3 (Hitting Time HitTp of a Markov chain P). Given a Markov chain P over a state
space [n], let s; denote the state at time ¢. The hitting time of HitTp is

HitTp = max {E [min{t > 0: s; = r given so = s}]}

r,s€[n]

Definition 4 (Mixing Time MixTp of a Markov chain P). Given a Markov chain P with a sta-
tionary distribution 7 and a starting state distribution p),

MixTp = max min{t > 0: ||[P'p— x|, < 1/4}
P

8 An essential communicating class can be intuitively thought of as a strong connected component of the underlying
directed graph with no outgoing edges.



3 Distance between Markov Chains

Given two Markov chains P and ), we want to come up with a distance notion which captures
how easy it is to distinguish which Markov chain P or ) a word w = sy — s1--- — Sy of certain
length ¢ was generated from (while being agnostic to the distribution of sy). This distinguishability
is precisely captured by the TV distance d, (Wﬁ, Wé) between word distributions Wf,, Wé for
words of length ¢ generated by Markov chains P and @) respectively. It is more convenient in our
setting to use, instead of total variation distance, the square of the Hellinger distance diel <Wf;, Wé)
or the closely related Bhattacharya coefficient?, which is useful for studying divergence of non-

stationary and continuous Markov chains as was observed in [Kaz78]. [Kaz78] establishes nice
recurrence relations for the Bhattacharya coefficient of two word distributions, which is captured

by the matrix [P, Q] def [m ]”e [nxn]"

Lemma 3.1 ([Kaz78]). Suppose P and Q are Markov Chains over states [n|, p and § are probability
distributions of the initial state. Let Wﬁ, Wé be the distributions denoting a length ¢ trajectory of
Markov Chains P (resp. Q) starting at a random node sy sampled from p (resp. ). Moreover,

define the vector [p, q) , def [‘ /Ds - qs]se[n] and the matriz [P, Q] , def [w/Pij - Qij ]i,je[an]' Then:

e
1= dzlel (W}{’Wé> = [ﬁ?cj]j/— ’ ([Pa Q]/) ']17 (5)
Proof of Lemma 3.1:
T
1—d2, (W) = 3 \/Pri PrivlPriv]| -1
e o
= Z\/Pr[r%s]Pr[r—hs’ \/7 A
€[n] P @ W=50.. Se 1
Se-1= s€(n]
- \/7 s VP Qe - g
w= SO Sl 1 .
e r€[n] : r,s€[nxn]
-
= Z Pr [w] Pr [w] [P, Q] .ﬁ:[ﬁ(ﬂT.<[pQ] )e
Wi s P Q el ) 11 y W/
e reln]

O]

There are two important parameters which affect the expression given by [Kaz78|. The first
is the distributions of the starting states of the Markov chains (p,¢) and the second is the length

9Hellinger distance is tightly related to the Bhattacharya coefficient between two distributions which is defined as
BC(p,q) = Zie[k] /Di - ¢i- It captures similarity of two distributions and lies in [0, 1].



of the word (I). We want a notion of distance which is a scale-free non-negative real number. To
achieve this, we study next how to eliminate the dependencies on the starting state distributions
(P, @) and the word length (I).

Assumption on the starting state. We study two scenarios for the choice of the starting state:
(i) a worst-case scenario where both P and ) begin from the same state ¢ chosen in adversarial
manner to make P and ) look as much alike as possible; (ii) an average-case scenario, where the
initial distributions p'= ¢ for P and @) either are given to us, or are related to P and @ in some
natural way'®. Given the assumption on the starting state we want to answer the question of what
¢ to pick, so that ij and Wé are far apart in squared Hellinger distance (say > 0.5). Formally,
we have the following respectively for the worst-case and average-case scenarios listed above:

l
. . , 2 ¢ vl _ ST -
min I Vi € [n] 0.5>1-d <WP,WQ> =€ -([P,Qh) 1. (6)
l
. . 2 4 N 17 AT
min (: 05>1-d2, <WP,WQ>—[p,cﬂ/ ([P,Qh)

Due to the relation between Hellinger and total variation distances, an inequality similar to (6)
holds for 1 —d, (Wf), Wé) as well but with a different constant on the left.

We call the minimal ¢ that satisfies d.,, <W£,Wé) > % for all starting states i € [n] (or for

fixed starting distributions g = §¢) the minimal distinguishing length. We note that (6) gives us an
estimate on £ up to a constant factor.
Next we argue that when /¢ is large, the behavior of the RHS of (6) is governed by the largest

eigenvalue \y = p ([P, Q] /> of [P,Q],. In particular, by Perron-Frobenius theorem, we have that
—»I .
=q

the largest eigenvalue of [P, Q] is non-negative and the corresponding left eigenvector iy :

[P,Q]; = A1+ has non-negative coordinates. In particular, if we choose initial distributions
proportional to 7, then

7 (1PQl) T =X (5.0) = (7)

Claim 1. [t is always true that Ay = p ([P, Q]/> < 1. Moreover, A\1 = 1 iff P and Q have an

identical essential communicating class.

Proof of Claim 1: Note that PLQQ is a stochastic matrix that entry—wise dominates matrix [P, Q]
. . . — P+ —*T - I
with non-negative entries. Therefore, Ay - (i, 1) = @] - [P, Ql, [ QQ} 1=a] 1= (a,1),

where T is vector with all 1 entries. We get A; < 1, since (i, T > > 0.

For the case of equality, if P and ) have the same essential communicating class C', then matrix
[P,Q], has the same transition probabilities as Markov chains P and @ restricted to the vertices
of C'. We note that C is a stochastic matrix and, therefore, its largest positive eigenvalue is one.

Hence, p ([P, Qh) >p(C)=1.

OFor example p and ¢ could be respective stationary distributions of P and Q. However, we still assume identical
initial distributions for P and @, i.e. p = ¢, as otherwise there might be a simpler trivial strategy to distinguish
P and @Q by observing only one initial sample from p. Example 1d illustrates how two Markov chains can produce
very similar distributions of words WZ WZ starting from any state for some large ¢, and yet have vastly different
stationary distributions.



If p ( [P, Q)] f> = 1, we apply Perron-Frobinius theorem to [P, Q] to get that the largest eigen-
value \; = p ([P, Q] /) = 1 has corresponding (left) eigenvector #; with non-negative entries. We
+
2

observe that i/ - (P—Q — [P, Q] 1/) -1 =0, and all entries of the matrix in this expression are non-

negative. This implies that P;; = @;; for every strictly positive coordinates ¢ of the eigenvector i
and any j € [n]. Since @] - [P, Q)] ;= i} , we also have P;; = Q;; = 0 for any positive coordinate
1 and zero coordinate j of eigenvector @;. Therefore, the set of vertices corresponding to positive
coordinates of i) form a component (which might have more than one connected component of P
and @) such that P = @ on these vertices. O

We use the quantity e defy 0 ([P, Q] /> as a proxy for the closeness of Markov chains P and

Q. In particular in (6) if p = ¢ is proportional to iy, then £-In(l —¢) < In0.5 = ¢ > %
This shows that in the worst-case we need to observe a trajectory of length at least €(1/¢) before
we can satisfactorily distinguish the two chains. Note however that, in general, ¢ might need to
be larger than Q(%) as is illustrated in Example 1lc. However, we will see that in the case of
symmetric Markov chains we observe a more regular behavior. In the remainder of this section and
the following sections we only consider symmetric Markov chains that avoid such irregular behavior
and dependency on the starting state.

Word distance between Symmetric Markov Chains. The stationary distribution for any
symmetric Markov chain is the uniform distribution over all states. In this case the most natural
starting distributions for the average-case part of equation (6) are p= ¢ = %]_f In this setting of
symmetric Markov chains, we can provide sharp bounds on the minimal distinguishing length ¢.

Claim 2. The necessary and sufficient distinguishing length £, which allows to distinguish P vs. Q
with high probability, is © (é) (up to alogn factor), wheree =1—p ([P, Q] 1/> under both worst-case
and average-case (we assume p= q = %]T) scenarios for the starting state.

Proof of Claim 2: We first consider the average-case model for the starting state. Note that [P, Q] is

a symmetric matrix. Let 1, ..., 7, be normalized orthogonal eigenvectors of [P, Q] ;, corresponding
to real A\; > --- > )\, eigenvalues. Then for RHS of (6) we have

n ¢ n
1- e 1. L . 1,
AT (1PQl) =TT (ZAT> A=Y N @)= () (®)

=1

Now we can write an upper and lower bound on (x) in terms of A\{ (assuming that ¢ is even):

MM

n

1 n 1 n n

S 12 ¢ S 12 ¢ ~ 12 0122 ¢ ‘

[71]l3 < At - EHlel < (%) < Z)‘i ) EH”¢”1 < ZAi Tl = Z/\i < n- A,
i=1 i=1 i=1

where in the second inequality we used Perron-Frobenius theorem stating that all coordinates of
1 are non negative. Consequently, these bounds imply that £ = © (%) up to a logn factor, if

p([P,Qh) =M =1-c Te, (=06(1)



For the worst-case assumption on the starting state, it is sufficient to show an upper bound
=0 (@) In this case (8) becomes

¢ n ., n n
e (IPQly) - T=3 X (@) (15 < 3 N 18- Il < 0 Il Vi< et 0,
=1 =1 =1

since [[Gil; < v/nlvilly = v/n, and [|T]] o, <[5l = 1. =

We note that, if one could pick the starting state instead of working with average-case or worst-
case assumptions of Claim 2, then ¢ can be much smaller (see Example 1b). Claim 2 gives a strong
evidence that Dist (P, Q) defy p ([P, Q] /) is a meaningful and important parameter that captures
closeness between P and (). In the following section we will use it as analytical proxy for the

distance between Markov Chains'!.

"1n general this notion of distance should be used with care. One thing about parameter Dist (P,Q) = 1 —
p ([P, Q]/), is that it is not a metric. In particular, Dist (P, Q) violates the triangle inequality (Dist (Mi, M2) =
Dist (M2, M3) = 0, but Dist (M1, M3) > 0 for some My, Ma, M3) as is illustrated by Example 1la. We note that this
problem can only appear for reducible chains, as is shown in Claim 1. Also it is not always possible to extend the

sharp bounds on ¢ of Claim 2 from symmetric Markov chains to non-symmetric Markov chains, even if both MC have
the uniform distribution as their stationary distribution (see Example le)
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(a) Dist (M, Mz) =1 —p ([Mla M2]¢> is mot & (b)) After one step from state 4, we would know
metric. Dist (M7, Ma) = Dist (Ma, M3) =0, but if w ~ P, or w ~ Q. If w starts from any other

Dist (M1, M3) > 0. state sg # 4, it would take many steps.
[t 1 1 (3) 1 15— 13— 1 /1’ \'?V“‘\l\\ /1’ ()
(3 —(— (i~ (5 = T
I TN TN T 5 & | @
® @ ® @ ® @ O @) : 2 A
. \ \ . \ \ b ./
b1 f 1 b . by R} | . A
! i N { —~ ~ ) (1 1)
. W W % YR W < A < AT
S / N o o N T {n) T {(n)
;T R ON O |
) )
- - P Q
r @ P (e) Dist (P,@) = 1. Uniform is

(c) To distinguish P vs. @ walk- (d) Dist (P,Q) = o(1), station- stationary for both P and Q). On
ing from a random state we need ary distributions ¢y, po are differ- average Q(n) steps to tell P #
Q(n) steps, but Dist (P,Q) =1. ent: d, (Go,P0) =1 — o(1). Q.

Description
Example 1a | Two disjoint connected components.
Example 1b | @ — clique K,; P — clique K, 1 and disjoint vertex. Eigenvalue of [P, Q]

)\1:\/”7?:1—0(1),)\2:\/g,)\g,:---:An:()

Example 1c | P — oriented cycle, @ — cycle with one link substituted by a loop.
Example 1d | P — oriented cycle with edge e = (vjvy) substituted by a loop at vy; @ is

almost like P, but e has weight in, loop at v, has weight 1 — ﬁ Stationary
T
distributions: 7o = (1,0,---,0)" and @ = (n+‘\/ﬁ%_1, n—i—\}ﬁ—l""’n—l—\}ﬁ—l)

(1P.0) - 1= %

. def def
Example 1le | Two oriented cycles P = 5] — 89— - — Sp — s1 and Q = 5 — Sz —
Sq+* —> Sp —> S2 — S1.

Figure 1: Examples.

4 Identity Testing of Symmetric Markov Chains

After understanding the problem of distinguishing between two given distributions, a next fun-
damental question is the identity testing problem where the goal is to test whether an unknown
distribution p from which we see a stream of samples, coincides with a given hypothesis distribution

11



q. In this section, we study identity testing of symmetric Markov chains and provide an efficient
algorithm (Theorem 4.1). We begin by giving below a formal statement of the problem:

Input: ¢ > 0; explicit description of a symmetric Markov chain @; a trajectory si - - - sy, of
length m from a symmetric Markov Chain P.

Output: P = Q, orP#Qifl—p([P,Q]/) > €.

Our approach. Identity testing problem with i.i.d. samples, is a well studied problem in the
distribution testing literature. The problem is quite non trivial'? and to achieve tight sample com-
plexity one needs to do careful estimations of collisions in observed samples. Markov chain identity
testing appears to be at least as hard as the i.i.d. identity testing problem with the added compli-
cation of dependent samples. To avoid involved analysis of collisions among dependent samples we
will instead try to find a black-box reduction of the MC testing problem to identity testing with
i.i.d. samples. A naive attempt at such a reduction proceeds by waiting for a period of mixing
time MixTg of the known Markov Chain ) to get one (potential) i.i.d. sample from the stationary
distribution of P (in case P has mixed). If the empirical distribution for the number of visits is far
from the uniform distribution, we can immediately reject P (since if P = @, then P is a symmetric
chain and will have the uniform distribution as the stationary) and if it is not, then we would have
attained multiple transitions from a sizeable set of nodes and one could hope they contain sufficient
signal to distinguish P from @Q. It is non-trivial to extract this signal as the mere fact that we
have seen multiple samples from a single node introduces dependencies in our samples. That is,
two samples from the same node are not independent samples from the transition distribution of
that node, if it took only a little time to return to this node. Moreover, this attempt, if it works,
will incur a multiplicative loss of MixTq in the sample complexity.

We take a more subtle and involved approach to achieve a successful reduction to the classical
setting with i.i.d. samples. Moreover, our reduction yields an algorithm that suffers only an ad-
ditive loss of O (HitTgq - log (HitTq)) in sample complexity. We reduce the Markov chain problem
to the classical identity testing problem with respect to squared Hellinger distance of distributions
supported on a domain of size n2. Our result is always as good as the naive approach. Indeed,
the hitting time cannot be larger than Mixing time times n, but usually it is much smaller (in fact
hitting time can be even smaller than mixing time). We note that many broad classes of graphs
and Markov chains have close to linear hitting times, e.g., expanders, d-dimensional grids (which
are not expanders). Below we describe how we map samples from a Markov chain to i.i.d. samples
from the appropriate distribution.

A Mapping From Infinite Words. Consider a mapping Kj from words of infinite length

w € W of an irreducible Markov chain M to [[,[n]*, where k= (ki -, kn) is a vector of n
non negative integers, as follows. For each infinite word w = sysa--- and each state i € [n] we
look at the first k; visits to state i (i.e., at times ¢ = ¢1,...,tx, with s; = ¢) and write down the

corresponding transitions in w, i.e., s¢+1. We note that every state is visited almost surely in w,
since M is an irreducible finite-state Markov chain. Therefore, mapping K;; defines a probability

121t is studied by a number of works. For instance, see [BFFT01, Pan08, VV14, ADK15, DK16] (This is not an
exhaustive list).
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distribution on [}, [n]*. Now, crucially, this distribution is independent across all different states
and/or independent for a particular state ¢ because of the Markov property of Markov chains.
Furthermore, a specific transition from a copy of the state i is distributed according to the i-th row
of the transition matrix M.
In Lemma 4.1, we show that even for a finite length trajectory with length m = 9] (HitTq log (HitTg)

+ 2) 13 and k; = O(E[# visits to i]) = O(*2) the mapping K is well defined for all but a small
fraction (in probability) of the words from the distribution W!". This effectively allows us, with
high probability, to generate a large number of independent samples from the following distri-
bution supported over [n] x [n]: pick uniformly at random a state i € [n] and then observe a

transition from 7 according to transition probabilities of row FP;. Indeed, to this end, we first

simulate m’ = © (W) ii.d. samples from [n]. These samples describe how many visits an

independent sampler would make to state i € [n]. Let k be the histogram of these m’ samples (note
that max; k; < O(m'logn/n) with high probability). We apply K; mapping to our stream of m
consecutive samples of Markov chain P, which is well defined with high probability. Apart from
some small probability events (max; k; is too large, or Ky is not defined for our choice of m) we
obtain the desired m’ i.i.d. samples.

Lemma 4.1. Given an irreducible Markov chain M and the mapping from infinite words W
described above, form = O (log (HitTq) HitTq), then Pr[3 statei s.t. [{t : i = s; € w}| < g2%-] < %

8e:n

where the probability is over the sampling of k and word w.

Proof of Lemma 4.1: To simplify notations we denote by A def 2HitT¢g. By union bound over all
states 7 it is enough to show that Pr[|{t:i=s; € w}| < %] < 2—22 for each fixed state i. We can

8en

make sure that in the first % steps state ¢ is visited at least once with probability at least 1 — 2—23

Once we visited state 7, instead of hitting time for state ¢ we can analyze the return time Return; for
i. Note that for symmetric Markov chains %I_f (uniform distribution) is a stationary distribution.
Therefore, every state appears at average once in every n steps in an infinite word from Wgo. In
other terms, the expectation of Return; for each state ¢ is exactly n. By definition of hitting time
we have that in % steps the probability of reaching a particular state ¢ from any other state j is
greater than 1 — 1/e (or any other given constant). It implies that Pr[Return; > % -C) < e ¢ for
any C' € N. Indeed, one can show this by induction on parameter C'. Notice that if the random
walk did not return to i after C' — 1 steps it has stopped at some state j # i. Then for any choice
of j by definition of the hitting time the random walk will return to ¢ with probability at least
1/e in the next % steps. It is not hard to get a similar bound Pr[Return; > A - C] < e ¢ for
any C > 1,C € R. To simplify notations we use X to denote the random variable Return; and
X1,..., Xy to denote £ i.i.d. samples of X. We have

X>0 and VO €Rs,Pr(X>A-C]<e @ and E[X]=n. (9)
We only need to show that Pr{X; +--- + X, > m/2] < Z—i for £ = g*-. To this end, we use a

standard technique for large deviations and apply Markov’s inequality to the moment generating
function of X + --- + Xy,

E[ee'(X1+"'+X’f)] E[GQX]Z

Pr(Xi+ -+ X; > m/2] = Pr [ef(Xit+X0) 5 0m/2] < 72 =~z (10)

13in this paper, O always hides poly log(n/c) factors, but not HitTq.
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We note that given restrictions (9) on X maximum of E[e?X] for any fixed § > 0 is attained at

0 with remaining probability 1 — e~¢0,

X% {A -z x € [Cy,00) with probability density function e™*
where constant Cy > 1 is such that E[X*] = n. Indeed, distribution X* maximizes (10) due to
simple variational inequality: €-e?® + ¢ - ef? < ¢ e (@) 4 ¢. (09 for any b > a > ¢ > 0,
and probability mass € > 0. This inequality allows us to increase E[e?X] and not change E[X] by
tweaking density function f(z) of X f'(a —c) = f(a—c¢)+e¢, f'(a) = f(a) — ¢, f/(b) = f(b) — e,
fllo+c¢)=f'(b+c)+e (f'(x) = f(x) for all other ), for some ¢ < a. The only time we cannot
apply this incremental change is when X = X*.

We have
E[X*] = A(Cy+ 1)e % =n. (11)
We set § 38105 10 (10). Now we are ready to estimate E[e?X]. To simplify notations we denote
def 3
= FTogA-

o (e.)
E [€9~X} =1—¢ +/ AT ey =1 — 0 +/ e (1=7mg) 4y

Co OO
—Co(1—7) Covy
e G E T 4o (e—1>. (12)
1—7 1—7
We notice that vCp < 1, since from (11) we can conclude that 421 = % :> Co < 2log A =1/.
The last implication can be obtained as follows: for Cp > 2.52, we have Cy— =2 < Cp—1In(1+Cp) =

111( ). Now we can estimate ¢7¢0 < 14 e-~yCp in (12). Furthermore, smce v < 1/2 we have the

term &= (12) to be at most 2ey(Cy + 1). With this estimate we continue (12)
E["X] <1+ e %2ey(Co+ 1) =14+ 13
" < 1+e"2ey(Co + 1) T AlogA (13)

We apply estimate (13) and formula § = m to (10) to obtain

14
(1 + AlogA) em/8Alog A m g2
— e8AlogA .
em/4Alog A — cm/4Alog A =estied <

Pr(X, + -+ X, >m/2] < S

Alog A
en

where in the second inequality we used the fact (1 +x log A) < e, and to get the last inequality

we used m = (Alog A) (where in Q the hidden dependency is only on log e and logn). O

In the following we present our algorithm for Markov Chain identity testing and provide an
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upper bound on its sampling complexity.

" _ m
1 k < Histogram (© <710g2(n/€))
2 fort+1tom—1do

3 ‘ if |Samples[s,]| < k[s;] then Add (s; — s;41) to Samples[s];

ii.d. Uniform [n] samples) ;

4 end

5 if Ji, s.t., |Samples[i]| < k[i] then
6 ‘ return REJECT;

7 else

8 Samples «— Samples[1] U - - - U Samples[n];
9 return IdentityTestIID (e, {¢;; = % - Qij}ijen), Samples);
10 end

Algorithm 1: Independent Edges Sampler.
Algorithm 1 uses as a black-box the tester of Algorithm 1 of [DKW17]. The following Lemma
follows from Theorem 1 of [DKW17].

Lemma 4.2. Given a discrete distribution q supported on [n] and access to i.i.d. samples from a
discrete distribution p on the same support, there is a tester which can distinguish whether p = q

or dy,, (p,q) > € with probability > 2/3 using O (g) samples.

€ using m = O (E) i.i.d samples from 1P which can be viewed as a distribution on a support of
size n?. Lemma 4.3 shows that the requlred distance condition for the i.i.d. sampler is implied by
our input guarantee.

As a corollary of Lemma 4.2, we get a test that can distinguish whether P = @), or d2 ( P, nQ) >

Lemma 4.3. Consider two symmetric Markov chains P and Q on a finite state space [n]. Denote
by %P the distribution over n® elements obtained by scaling down every entry of the transition
matriz P by a factor 1/n. We have,

Ly <\/T \/7> H( P,iQ)Zs. (14)

i,5€[n]

Proof of Lemma 4.3: We note that, as P and @ are symmetric matrices, so is [P, Q];. Thus we
have

1—€:p([P,Q]J>: max UT-[P,Q][-E’. (15)

l19ll,=1

If we use a particular T in (15), then we get the following inequality.

1-e>—iT-[P.Ql =T = zm ( @)

which implies d2 ( p, 1

nton

)>8 OJ

Finally, the following Theorem 4.1 gives an upper bound on sampling complexity of Algorithm 1.
We note that O (HitTg) samples are necessary for a reduction approach to work. Indeed, if we
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are to simulate nlogn i.i.d. samples (v — u, where v ~ Uniform|[n| and u ~ P,), then we shall
see all states v € [n] at least once with high probability. Le., the random walk must visit all the
states, which would require at the very least HitT steps in the random walk. On the other hand,
our bound of O (HitTg - log (HitTq) + 2) is always better than a naive bound of MixTg - 2, since
HitTg < n-MixTg and, in fact, for most of the reasonable MC HitTg is much less than that.

Theorem 4.1. Given the description of a symmetric Markov chain Q) and access to a single tra-
jectory of length m from another symmetric Markov chain P, Algorithm 1 distinguishes between the

cases P = () versus 1—p , > € with probability at least , orm = O (Hit - log (Hit + ).
P=Q 1 P,Q], h probabil l 2/3, f O (HitTg - log (HitTg -

Proof. In the case P = (), the probability that Algorithm 1 proceeds to IID tester, i.e., it does
not reject P, because of small number of visits to a state, is at least Pr[Vi € [n] [{t : i = s; €

wh > o] - PriVi: g0t > k| > (1 - %) . (1 - %) >1- % In the previous estimate, we used

e-n
Lemma 4.1 to bound Pr[Vi € [n] [{t : s; € w,s; = i}| > gZ-], the fact that Pr[g < k] < Z—Z
(follows from a Chernoff bound), and a union bound. IID tester then correctly accepts P = @ with

probability at least 4/5. Hence, the error probability is at most 1/5 + % < 1/3.
For the case P # (), Lemma 4.3 says that if 1—p ([P, Q] /) > g, then distributions passed down to

the IID tester {p : p;; = %Pij} and {q : ¢;j = %Qij} are at least ¢ far in Hellinger-squared distance.
A black-box application of Lemma 4.2 implies a O (g) sampling complexity for the IID tester in our

i.i.d. uniform samples from [n]) produces m’ i.i.d. samples from p. Hence, if Algorithm 1 has
sufficient samples from P to define the mapping K, it would be able to distinguish p and ¢ with
probability at least 2/3. On the other hand, if Algorithm 1 gets finite number of samples which
are not sufficient to define the mapping K, then it correctly rejects P before even running the ITD
tester.

Thus in both cases the probability of error is at most 1/3. 0

case. Furthermore, random mapping K : W2° — p (where kis a histogram of m’ = © (

5 A Lower Bound for Identity Testing of Symmetric Markov Chains

In this section we provide an information theoretic lower bound to the identity testing problem on
Markov chains defined in Section 4.

Theorem 5.1. There exists a constant ¢ > 0 and an instance of the identity testing problem for
symmetric Markov chains (1) such that any tester on this instance requires a word of length at least
cz as input to produce the correct output with probability > 0.99.

Proof of Theorem 5.1: We use Le Cam’s two point method and construct a symmetric Markov
chain @ and a class of symmetric Markov chains P s.t. (i) every P € P is at least € far from Q.

That is 1 — p ([P, Q]/) > ¢ for any P € P; (ii) there is a constant ¢ > 0, s.t. it is impossible to

distinguish a word of length m generated by a randomly chosen Markov chain P ~ P, from a word
of length m produced by @ with probability equal to or greater than % for m < <*. To prove (ii)
we show that the total variation distance between the m-word distributions obtained from the two

processes, Q and P, is small when m < <t for some constant c. We denote distribution of length
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m words obtained from @Q by Wg‘, and from MC P ~ P by W]'. We represent symmetric MC
as undirected weighted graphs G = (V| E). We allow graph to have multi-edges (this is helpful to
provide an intuitive understanding of the lower bound construction and is not essential). We can
ultimately remove all multi-edges and give a construction with only simple edges by doubling the
number of states.

Markov Chain (): complete double graph on n vertices with uniform weights, i.e.,

1
voigs @z e B Q= Qe = 50—y

Family P: for any pair of vertices i # j there are two bidirectional edges (i7)1, (ij)2 with weights
randomly (and independently for each pair of (7, j)) chosen to be either

1++/8¢ 1¥+8
P P =55, —1y 0 oo P = 55,1y

To make this instance a simple graph with at most one bidirectional edge between any pair of
vertices we apply a standard graph theoretic transformation: we make a copy ¢ for each vertex
i; for each pair of double edges e; = (ij)1,e2 = (ij)2 construct 4 edges (ij), (ij'), (¢'5), (¢'j") with
weights w(ij) = w(i'j") = w(e1) and w(ij’) = w(i'j) = w(es).

As all Markov chains ) and P € P are symmetric with respect to the starting state, we can
assume without loss of generality that word w starts from the state ¢ = 1. First, we observe that
for the simple graph 2n-state representation

Lemma 5.1. Fvery Markov chain P € P is at least e-far from Q.

Proof. For any P € P, it can be seen that

[P,Q]/-]T:<\/1+\/8?J2”/1_\/§>

.

By Perron-Frobenius theorem 1 is the unique eigenvector corresponding to the largest absolute

([P, Q]J) — m;m

value eigenvalue. Hence, p which by Taylor series expansion implies

1—p([P,Q]J)25+%52+0(52)25f0rany5<%. O

We say that a given word w = 7 . .. sy, from a Markov chain P represented as a multi-edge graph
on n states has a (ij) collision, if any state transition between states ¢ and j (in any direction along
any of the edges (ij)1, (ij)2) occurs more than once in w. We now state and prove the following
claims about the Markov chain family P.

Lemma 5.2. Consider a word w of length m drawn from Q. The expected number of collisions in

w 18 at most O (%2) =0 (E%)

Proof of Lemma 5.2: Let I,,(t1, 12, (ij)) indicate the event that in the multi-edge interpretation of
the Markov chain P, the transition along (ij) edge occurs at times t; < t3 in w. First, we observe
that Pr[s;, = s|s,—1 = 2] < L5 and Pr[sy, = s|s,_1 = 2] < —1; for all z and both s =i or s = j.
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Thus for any t2 > t; + 2 by a union bound for all four possible cases of sy, St;+1, Sty, Sto+1 € {4,7}
we have

4
E [ Iy(t1,t2,(2))] < 7——7-
[Luw(t1, 2, (i5))] n—1)
Similarly, for the case to = t; + 1 we can obtain
E [I,(t1, ta, (ij))] < ———.
[Lw (1, t2, (i7))] 1)

Let X denote the random variable which is equal to the total number of collisions in the word w.
Then,

m—1
EX]= Y D E[L(t,bs, @)+ Y Y EL(t,t+1,())
toa>t14+2 i#] t1=1 i#j
4 ‘m72.n(n—1) 2 m‘n(n—l): m?
(n—1)% 2 X < >

n2

IN

> T 2
O

We also consider 3-way collisions which are collisions where there was at least 3 different tran-
sition between a pair of states ¢ and j in the word w.

Lemma 5.3. Consider a word w of length m drawn from Q). The probability of w having a 3-way
3
collision is at most O(™r) = o(1).

Proof of Lemma 5.3: Similar to the proof of Lemma 5.2 we can give a sharp upper bound on

the expected number of 3-way collisions with the most significant term being % : "("2_1), ie.,

the expected number of 3-way collisions is O (Z‘—f) By Markov inequality we obtain the required
bound on the probability of a 3-way collision. O

Now consider a typical word w generated by Q. As we know from Lemma 5.3 it has no 3-
way collisions and by Markov inequality and Lemma 5.2 has at most O(E%) collisions with high
probability. As we show next a typical word w has similar probabilities under @ or P ~ P models.
Lemma 5.4. For m = O(%) at least % fraction of words w = s1 -+ - sy, generated by Q) satisfy

1
3 Prg [w] < Prp_p [w] < 2-Prg [w]

Proof of Lemma 5.4: For each feasible word w in @), i.e., w such that Prg[w] > 0

1\ SlGewd]  sl)ecw)]
%r [w] = (2(71—1)) Pr [w] = H Z P “Plij)s

P~P -
>1 5 __1£+8
J P(ij)1_2(n716)

First, if w has only one transition along edge (ij), then the corresponding term in Prp_p[w]

Z plinew)  pH(zew) _ L [1+ V8¢ N 1— 8¢ 1
(@)1 (if)2 2\2m—1)  2(n—1) 2(n — 1).

Plijy,
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From Lemma 5.3, we know that probability of a 3-way collision in w is o(1) under @ model. We
observe that for a 2-way collision (ij) (a collision which is not a 3-way collision), the corresponding
term in Prp_p[w] for the case of transition along two different edges (ij); and (ij)2 is

S plinent pitien _ 1+ VBe 1-+8e  (1-8¢)
(@) (i) 20n—1) 2(n—1)  4(n—1)2

Plijy,

We call this type of collision type I collision. For the other case (type II collisions) of transition
(1+8¢)

4(n—1)2"
the total number of collisions is O(E%) with probability % We can also make sure that out of these
collisions number of type I and type II collisions is roughly the same. More precisely, the difference

between numbers of type I and type II collisions is at most O(%) with probability of at least
% Indeed, the choice of edge collision type in w is uniform between type I and type II, and is
independent across all collision edges. Now, for small enough m we can make sure that at least
% fraction of words w has number of collisions at most & and the difference between number of
type I and II collisions is at most <, for some small constants ¢, c2 > 0. Thus the corresponding

density functions can be related as follows.

along the same edges the respective probability is By Lemma 5.2 and by Markov inequality

2  Prp_plw] 9y 2L c2
2> (1+48)% > —=L~PLA 5 (1 -64e2)22 . (1 —8) = >1/2
Pro[w] ( )

O]

Lemma 5.4 shows that d, (ng, W;f) < %, which implies that no algorithm can successfully

distinguish @ from the family P with probability greater than 2 for some m = Q2). O

6 Open Questions

In this paper, we proposed a new framework for studying property testing questions on Markov
chains. There seem to be multiple avenues for future research and abundant number of open
problems arising from this framework. We first list some questions which may be of interest here.

1. What is the optimal sample complexity for identity testing on symmetric Markov chains? In
this paper, we show an upper bound of O (HitTQ -log (HitTq) + %) samples (Theorem 4.1).
We conjecture that © (g) (same as our lower bound) is the right sample complexity for this
problem and an explicit dependence on the hitting time of chain ) may not be necessary. It

is implicitly captured to an extent by the guarantee we get from the parameter &.

2. As there is a natural operation of taking a convex combination of Markov chains, it is natural
to ask how our spectral definition of distance 1 — p <[P, Q] 1/) between two symmetric chains

changes if we substitute either P or () with a convex combination of P and ). How does the
distance now relate to the original value?

3. How is the difference parameter e = 1 — p ([P, Q] J> between two Markov chains P and @

related to the difference between Markov chains P* and Q¥ i.e., states in Markov chains P
and () being observed only at intervals of size k7
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4. Given €9 > €1, and access to words from each of two chains, can we distinguish whether
the two chains are < e1-close or > eo-far? This problem, known as two-sample testing in
literature, is another interesting direction using our framework.
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