


proposed system is to reduce manual effort in generating

data and to increase the accuracy of bounding-box-based

object detection for robotic setups. In particular, the two main

contributions of this work are:

• A physics-based simulation tool, which uses informa-

tion from camera calibration, object models, shelf or

table localization to setup an environment for generating

training data. The tool performs physics simulation

to place objects at realistic configurations and renders

images of scenes to generate a synthetic dataset to train

an object detector.

• A lifelong, self-learning process, which employs the

object detector trained with the above physics-based

simulation tool to perform a robust multi-view pose

estimation with a robotic manipulator, and use the

results to correctly label real images in all the different

views. The key insight behind this system is the fact

that the robot can often find a good viewing angle that

allows the detector to accurately label the object and

estimate its pose. The object’s predicted pose is then

used to label images of the same scene taken from more

difficult views, as shown in Fig. 1. The transformations

between different views are known because they are

obtained by moving the robotic manipulator.

The software and data of the proposed system, in addition

to all the experiments, are publicly available at http://

www.physimpose.com

II. RELATED WORK

The novelty of the proposed system lies on the training

process for generating synthetic data as well as augmenting

the synthetic data with real ones that are generated from

an automated, self-learning process. This involves several

modules, which have been studied in the related literature

over the years.

Object Segmentation: The tasks of object detection

and semantic segmentation of images have been studied

extensively and evaluated on large scale image datasets.

Recently, the RCNN approach combined region proposals

with convolutional neural networks [11]. This opened the

path to high accuracy object detection, which was followed

up by deep network architectures [12], [13] and end-to-

end training frameworks [14], [10]. There has also been

a significant success in semantic labeling of images with

the advent of Fully Convolutional networks (FCN) [15] and

its extensions [16], [17], [18]. This work utilizes FCN and

Faster-RCNN and proposes an automated way to collect

data and incrementally train the structures for improved

performance.

Pose Estimation: One way to approach this challenge is

through matching local features, such as SIFT [19], or by

extracting templates using color gradient and surface normals

from 3D object models [20]. Synthesis-based approaches

have also been gaining popularity [21], [22]. Nevertheless,

in application domains, such as those studied by the Amazon

Picking Challenge [2], which involve varying light conditions

and cluttered scenes, it has been shown [5] that CNN-based

segmentation [10], [15] followed by point cloud registration

with 3D models [23], [24], [25] is an effective approach. This

paper builds on top of these techniques for pose estimation

and proposes a method to self-feed the output of such

processes to improve accuracy.

Synthetic Datasets: Synthetic datasets generated from 3D

models have been used for object detection [6], [26] and

pose estimation [27], [7] with mixed success as indicated

by an evaluation of the performance of detectors trained on

synthetic images to those trained with natural images [9].

This work proposes the incorporation of a physics-based

simulator to generate realistic images of scenes, which helps

object detection success rate.

Self-supervised Learning: The idea of incrementally

learning with minimal supervision has been exploited previ-

ously in many different ways. Curriculum learning [28] and

self-paced learning [29] have been adapted to improve the

performance of object detectors [30], [31]. The self-learning

technique proposed here involves the robot acquiring real

images of scenes from multiple views. Then the robot uses

the knowledge acquired from confidently detected views and

3D model registration to improve object detection in a life-

long manner.

III. PHYSICS-AWARE SYNTHETIC DATA GENERATION

The proposed system starts by physically simulating a

scene as well as simulating the parameters of a known cam-

era. The accompanying tool generates a synthetic dataset for

training an object detector, given 3D CAD models of objects.

This module has been implemented using the Blender API

[32], which internally uses the Bullet physics engine [33].

The pipeline for this process is depicted in Fig. 2, while the

corresponding pseudocode is provided in Alg. 1. The method

receives as input:

• a set of predefined camera poses Pcam,

• the pose of the resting surface Ps,

• the intrinsic parameters of the camera Cint,

• the set of 3D object models M and

• the number of simulated training images N to generate.

Algorithm 1: PHYSIM CNN(Pcam,Ps,Cint,M, N)

1 dataset ← ∅;
2 while (|dataset| < N) do

3 O ← a random subset of objects from M;

4 PO
init ← INITIAL RANDOM POSES( O );

5 PO
final ← PHYS SIM( PO

init, Ps, O);

6 Light ← PICK LIGHTING CONDITIONS();

7 foreach (view ∈ Pcam) do

8 image ← RENDER( PO
final, view, Cint, Light);

9 { labels, bboxs } ← PROJECT(PO
final, view);

10 dataset ← dataset ∪ (image, labels, bboxs);

11 SIM DETECT(·) ← FASTER-RCNN( dataset );

12 return SIM DETECT(·) AND dataset;

In a sensing system for robotic manipulation, a 6 degree-

of-freedom (DoF) pose of the camera mounted on a robotic

arm (view ∈ Pcam), can be exactly computed using forward











2D-Segmentation Method 3D-registration Method Mean-error Rotation (deg) Mean-error Translation (m) Success(%)

Ground-Truth Bounding-Box PCA + ICP 7.65 0.02 84.8

FCN (trained with [5]) PCA + ICP 17.3 0.06 54.6

FCN (trained with [5]) Super4PCS + ICP 16.8 0.06 54.2

FCN (trained with [5]) fast-global-registration 18.9 0.07 43.7

RCNN (Proposed training) PCA + ICP 8.50 0.03 79.4

RCNN (Proposed training) Super4PCS + ICP 8.89 0.02 75.0

RCNN (Proposed training) fast-global-registration 14.4 0.03 58.9

TABLE III

COMPARING THE PERFORMANCE OF THE PROPOSED SYSTEM TO STATE-OF-THE-ART TECHNIQUES FOR POSE ESTIMATION.
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