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Abstract Effective robotic systems must be able to produce desired motion in a suf-
ficiently broad variety of robot states and environmental contexts. Classic control
and planning methods achieve such coverage through the synthesis of model-based
components. New applications and platforms, such as soft robots, present novel
challenges, ranging from richer dynamical behaviors to increasingly unstructured
environments. In these setups, derived models frequently fail to express important
real-world subtleties. An increasingly popular approach to deal with this issue is the
use of end-to-end machine learning architectures, which adapt to such complexities
through a data-driven process. Unfortunately, however, data are not always avail-
able for all regions of the operational space, which complicates the extensibility of
these solutions. In light of these issues, this paper proposes a reconciliation of clas-
sic motion synthesis with modern data-driven tools towards the objective of “deep
coverage”. This notion utilizes the concept of composability, a feature of traditional
control and planning methods, over data-derived “motion elements”, towards gen-
eralizable and scalable solutions that adapt to real-world experience.

1 Modern Robotic Capabilities and Challenges

Robots have thrived in highly structured, accurately known, and safely enclosed in-
dustrial settings, such as those shown in Fig. 1 (left). Typically, these platforms con-
sist of rigid elements connected by a few degrees of freedom (DoF') that can be con-
trolled directly. This allows strict enforcement of motion for high speed, accuracy,
and consistency of repeated tasks. In contrast, modern robotics aspires to more gen-
eral and ambitious operational goals involving highly unstructured environments,
arbitrary terrains, unknown objects, or the company of humans. This means that
traditional objectives are superseded by a fundamental need for adaptability.

These altered priorities motivate the use of robots with versatile physical traits,
such as deformation and heightened articulation, which can be achieved by using
soft components or a high number of compliant DoF, as in Fig. 1 (center/right).
These features allow for adaptive contact geometry and storage or dissipation of
energy for purposes such as efficient mobility on rough terrain and manipulation
of arbitrary objects. Examples include soft [7] and adaptive hands [8], bio-inspired
modular robots [18], underactuated legged systems [27], as well as tensegrity rovers,
dynamic truss structures that incorporate length-actuated members [22].
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Fig. 1 Left: Rigid industrial robots for manufacturing [KUKA]. Center: a soft robotic hand con-
forming to a grasped object [7]. Right: NASA’s terrain-compliant tensegrity rover, SUPERball [22].

While such platforms provide increased safety and adaptability, they pose many
complications to the prediction and regulation of motion. Due to higher system di-
mensionality and imperfect sensing of environmental variation, natural dynamical
influences such as momentum and contact forces become both more significant and
more complex to describe. Nevertheless, a pivotal requirement is to achieve motion
coverage with such robots. This expresses the need to effectively command motion
for a wide range of operational bounds. This work aims to outline a pathway toward
this goal in light of ongoing progress in motion synthesis and data-driven design.

2 Computing Motion for Operational Coverage

Discussion of the concept of motion coverage will start from nominal coverage,
which identifies useful paths within a region, but quickly proceed to focus on robust
coverage, which ensures intended motion under a range of circumstances.
Model-Based Motion Coverage: Given geometric and kinematic models, nomi-
nal coverage can be provided via tools for validating configurations (e.g., collision
checkers [17]) and for charting connectivity, such as sampling-based roadmaps [13].
These principles can also account for dynamics [16], uncertainty [3], changing en-
vironments [26] and robustness, if given stabilizing controllers [25].

Existing motion coverage tools depend on a tractable system model.

Many systems, however, cannot easily return to a nominal path after significant devi-
ation. Control synthesis, the composition of multiple control laws established prior
to execution, can provide robust coverage. One composition method is to design
controllers so that each region of attraction (RoA) is “funneled” into another [5],
as in Fig. 2 (left). LQR-trees integrate this idea with sampling to provide nonlinear
robust coverage via linear quadratic regulators (LQR) [24]. Alternatively, Explicit
Model Predictive Control tiles the operational space with light-weight localized
equivalents of an expensive predictive controller [2] (center of Fig. 2). Composi-
tion can also address discontinuities, as in Sliding Mode Control [10].

Combining multiple controllers boosts robustness with minimal online effort.
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Fig. 2 Examples of controlle:composition: sequential (left), tiTing (center), and merging (righT).

Data-Driven Control: The above methods are not easily applied to systems with
many compliant DoF and strong natural dynamics. Even with a descriptive model,
it may be challenging to determine if a configuration of a deformable robot is valid.
Contact forces, energy, and momentum hinder the identification of good dynamical
paths and the derivation of stabilizing controllers. Such complications have spurred
data-driven approaches for interpreting sensor data, predicting state evolution, or
imposing actuation [11, 23]. They have also led into modeling all three as a single
“end-to-end” process [15]. These methods fit generic parametrized models, such as
polynomial functions, Gaussian processes, or artificial neural networks (ANN), to
match experimental data that represent the intended operational regime.

Learned models can adequately represent complex behaviors,
but typically require significant training effort for each application scenario.

The risks and demands of obtaining necessary data have motivated many in-
novations with relevance to controller synthesis. To improve sample efficiency via
optimal control principles, Guided Policy Search merges an evolving set of LOR
controllers into one ANN feedback policy [15]. Although this approach has been
applied end-to-end, it can also be viewed as a controller composition scheme (see
right of Fig. 2). Meanwhile, other data-driven techniques have been developed for
determining nonlinear controller RoAs in the context of partially modeled dynamics
and safety-constrained sampling [1, 4]. A model-free variant of LOR-Trees similarly
establishes RoAs via sampling to validate the synthesized control set [20].

Recent work has begun to reveal how data-driven control can be made more
efficient and verifiable, potentially for use in composition schemes.

3 Data-Driven Synthesis for Deep Coverage

An emerging possibility for motion computation on modern robotic platforms is to
a) establish modular “motion elements” through an offline data-driven process and
b) employ them online in an architecture that exploits their suitability for compo-
sition and synthesis. This framework, summarized in Fig. 3, will be referred to as
“deep coverage” to emphasize the goal of effectiveness under highly variable cir-
cumstances (hence coverage) through hierarchical, modular processes that enforce
robust behavior at all scopes of the problem (hence depth). Motion elements at var-
ious levels of the proposed hierarchy - which are no longer clearly delineated by an
explicit, analytical model but are instead data-driven - can also be seen as equivalent
to different layers in deep learning architectures for perception challenges.
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Fig. 3 Three different paradigms for computing robust motion for nonlinear, nonconvex systems.
Given computational resources, motion elements are produced to provide motion coverage. Left
column: model-based synthesis, center: end-to-end, right: deep coverage.

Successful employment of “deep coverage” will require careful consideration of
numerous trade-offs and design principles that follow from the combined use of
data-driven design and motion composition. The following discussion of some of
these key aspects will frequently refer to an example scenario of deploying NASA’s
tensegrity rover over an unstructured landscape, as shown in Fig. 4.

Fig.4 A mock-up of NASA’s tensegrity rover on a rugged Martian landscape [NASA/JPL Caltech]

Robust Motion Elements: The motion elements for deep coverage must meet needs
at varying physical and temporal scope. For instance, they should be able to gov-
ern the pressure response of a finger or leg, reach for or in-hand manipulate an
object, or achieve locomotion of an entire platform. One way to provide this is to in-
crease the applicability of individual elements so as to cover broader circumstances,
represented as increased funnel width in Fig. 3 (center). The recent methods for
verifying and expanding RoAs may help fulfill this desire through increased use of
data. Training controllers to match commanded values for steering, dampening, etc.,
would further boost their individual usefulness.

Nonetheless, the approach of broadening the RoA through increased data use
will eventually suffer diminishing returns and weakened verifiability if taken to its
extreme. A contrasting desire is for each element to be modular, with a fundamen-
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tal, distinct and well interpretable purpose. This eases the matching of elements to
specific roles in different problem instances, improving adaptability [6]. If complete
solutions are available as reference, modularity might be achieved by decomposing
them into elements of the desired scope [12].

In the context of the tensegrity rover example, these two possibilities can be
illustrated in terms of different terrain types to be defined, such as sandy or rubble-
filled areas with different slopes. As depicted by the region-expanding arrows in
Fig. 5, a motion element for one terrain class could potentially be broadened to
cover related domains. Yet, natural limits to this practice are to be anticipated; it
may be infeasible or unreasonable to formulate a single element for use, e.g., on
both rubble and sand, due to fundamental differences in contact mechanics. Similar
considerations could arise for a compliant end-effector, with individual elements
being effective for wide varieties of grasped object shapes but naturally delineated
in terms of other factors, such as object fragility or deformability. Limitations such
as this would need to be recognized within reference data that span multiple types
of scenarios, to give rise to appropriate boundaries of specialization.

Each motion element should be broad enough to quickly cover the space,
but focused enough so that it is verifiable, modular and reusable.
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Fig. 5 Classifications of different terrains that may require different motion elements. Arrows
indicate expansion of an individual element’s coverage.

Comprehensive Libraries: Equally important to the effectiveness of individual el-
ements is that they collectively cover the underlying operational space and enable
good solutions to be discovered efficiently. Covering the problem space, illustrated
via tiling in the bottom of Fig. 3, requires that each class of environmental feature
(e.g., terrain type in locomotion or object type in manipulation) can be handled by
at least one element. Allowing overlapping applicability among elements can be
beneficial for safety and performance, since the failure of one controller may be
recoverable by a neighboring one. Such redundancy can also bode well for adapt-
ability to new domains. At the same time, an over-abundance of options should be
avoided in order to moderate the size of the search and decision-making process.
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Approaches for designing a good library can borrow ideas from the principle of
cooperative coevolution [19], where each individual element’s fitness is measured in
the context of group performance. The data-efficiency of library design might also
be improved by selectively sharing information between the training processes for
different elements, possibly based on a learned classification [21].

In terms of the tensegrity rover example, this aspect suggests a requirement for
both rubble-traversing and sand-traversing gaits. Less obviously, it also motivates
the previously discussed broadening of individual elements — if each of these gaits
can feasibly handle an intermediate terrain type containing a mixture of rubble and
sand, then it may or may not be warranted to further inflate the motion element
library by including an element specifically tailored to such a scenario. This is il-
lustrated by the arrows in the “sandy rubble” region of Fig. 5, implying mutual
coverage by the sand gait and the rubble gait.

An element library should be minimal but comprehensive so as to cover the
operational space, while achieving efficient and robust solutions.

Composition of Elements: When efficiently piecing together a complete solution,
the various interactions between motion elements, objectives, and environmental
features must be considered. The traversal scenario of Fig. 6, for example, involves
both different types of terrain and different demands for movement precision. For
the relatively open expanse of rubble, it should quickly be recognized by the motion
planner that a general-purpose low-precision gait is sufficient for progressing. Only
once the cluster of sharp rocks has been reached will it become worthwhile to con-
sider the use of more precise and specialized maneuvers, which are necessary for
handling more formidable obstacles but are slower and more difficult to sequence.
Other types of systems, conversely, may involve independent motion elements, such
as an arm movement primitive and an end-effector grasping action. Given the holis-
tic nature of the dynamics for compliant and deformable systems, integration of
behaviors used in parallel must also be handled with care.
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Fig. 6 A terrain navigation plan using motion elements with different scopes and properties. Call-
out: Synthesis of a new motion element to address an unforeseen terrain feature.
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This process could amount to an informed search of the space of element com-
positions, as in traditional planning, with reasoning based upon RoAs and other
motion element characterizations. Alternatively, decisions could be governed by a
data-driven process, aimed to handle subtle interactions. Composability of human
motions, for example, can be established through segmentation of reference solu-
tions [14]. This use of a data-driven approach for composition can lead to hier-
archical schemes, in which intermediate-level elements can be responsible for the
composition of low-level ones, without rigid and restrictive rules.

The motion element composition process should account for the elements’
applicability and compatibility, whether determined via models or data.

Continued Learning Online: Real-world deployment of robots in natural and
human-occupied workspaces inevitably leads into unforeseen setups, where a valid
solution must be improvised quickly. This entails identifying a gap in coverage,
safely exploring the corresponding region of the system’s dynamics, and incorpo-
rating the results into a new motion element (far right of Fig. 3). These steps should
benefit from offline training and effectively utilize the existing library of motion
elements so that the online adaptation can be light-weight.

A benefit of data-driven approaches is that they can incorporate additional,
highly-relevant data gathered in the field during deployment. Again, the challenge
lies in the amount of data that need to be collected. Model-based reinforcement
learning brings the hope of adaptation to new domains in a sample-efficient manner
as long as the model of the robot’s dynamics are appropriately adapted on the fly [9].
This type of adaptation would be most effective with a highly modular library, where
elements represent the system dynamics in a principled manner.

The call-out in Fig. 6 demonstrates these principles for the tensegrity example.
Traversal of the rock field would provide real-world data on the performance of
some of the precise motion elements. When facing an unforeseen obstacle, such as
the narrow gap between two large boulders, this information could be leveraged to
guide discovery of a new motion element to fill the gap in operational coverage.

New elements should be generated on the fly to deal with unforeseen setups.

4 Discussion

Many modern robots experience complex influences from the environment and their
natural dynamics, which are difficult to adequately model. This motivates end-to-
end control architectures that solve motion problems at sufficient depth, but depend
on a lot of data for generalization. Meanwhile, controller synthesis and composi-
tion enable greater breadth of motion coverage, but depend on accurate models. A
successful reconciliation of these two paradigms can enable deep coverage: the effi-
cient use of data-derived motion elements for generating robust solutions in general
problem spaces in the context of exciting, frontier applications of robotics.
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