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Abstract Effective robotic systems must be able to produce desired motion in a suf-

ficiently broad variety of robot states and environmental contexts. Classic control

and planning methods achieve such coverage through the synthesis of model-based

components. New applications and platforms, such as soft robots, present novel

challenges, ranging from richer dynamical behaviors to increasingly unstructured

environments. In these setups, derived models frequently fail to express important

real-world subtleties. An increasingly popular approach to deal with this issue is the

use of end-to-end machine learning architectures, which adapt to such complexities

through a data-driven process. Unfortunately, however, data are not always avail-

able for all regions of the operational space, which complicates the extensibility of

these solutions. In light of these issues, this paper proposes a reconciliation of clas-

sic motion synthesis with modern data-driven tools towards the objective of “deep

coverage”. This notion utilizes the concept of composability, a feature of traditional

control and planning methods, over data-derived “motion elements”, towards gen-

eralizable and scalable solutions that adapt to real-world experience.

1 Modern Robotic Capabilities and Challenges

Robots have thrived in highly structured, accurately known, and safely enclosed in-

dustrial settings, such as those shown in Fig. 1 (left). Typically, these platforms con-

sist of rigid elements connected by a few degrees of freedom (DoF) that can be con-

trolled directly. This allows strict enforcement of motion for high speed, accuracy,

and consistency of repeated tasks. In contrast, modern robotics aspires to more gen-

eral and ambitious operational goals involving highly unstructured environments,

arbitrary terrains, unknown objects, or the company of humans. This means that

traditional objectives are superseded by a fundamental need for adaptability.

These altered priorities motivate the use of robots with versatile physical traits,

such as deformation and heightened articulation, which can be achieved by using

soft components or a high number of compliant DoF, as in Fig. 1 (center/right).

These features allow for adaptive contact geometry and storage or dissipation of

energy for purposes such as efficient mobility on rough terrain and manipulation

of arbitrary objects. Examples include soft [7] and adaptive hands [8], bio-inspired

modular robots [18], underactuated legged systems [27], as well as tensegrity rovers,

dynamic truss structures that incorporate length-actuated members [22].
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Fig. 1 Left: Rigid industrial robots for manufacturing [KUKA]. Center: a soft robotic hand con-

forming to a grasped object [7]. Right: NASA’s terrain-compliant tensegrity rover, SUPERball [22].

While such platforms provide increased safety and adaptability, they pose many

complications to the prediction and regulation of motion. Due to higher system di-

mensionality and imperfect sensing of environmental variation, natural dynamical

influences such as momentum and contact forces become both more significant and

more complex to describe. Nevertheless, a pivotal requirement is to achieve motion

coverage with such robots. This expresses the need to effectively command motion

for a wide range of operational bounds. This work aims to outline a pathway toward

this goal in light of ongoing progress in motion synthesis and data-driven design.

2 Computing Motion for Operational Coverage

Discussion of the concept of motion coverage will start from nominal coverage,

which identifies useful paths within a region, but quickly proceed to focus on robust

coverage, which ensures intended motion under a range of circumstances.

Model-Based Motion Coverage: Given geometric and kinematic models, nomi-

nal coverage can be provided via tools for validating configurations (e.g., collision

checkers [17]) and for charting connectivity, such as sampling-based roadmaps [13].

These principles can also account for dynamics [16], uncertainty [3], changing en-

vironments [26] and robustness, if given stabilizing controllers [25].

Existing motion coverage tools depend on a tractable system model.

Many systems, however, cannot easily return to a nominal path after significant devi-

ation. Control synthesis, the composition of multiple control laws established prior

to execution, can provide robust coverage. One composition method is to design

controllers so that each region of attraction (RoA) is “funneled” into another [5],

as in Fig. 2 (left). LQR-trees integrate this idea with sampling to provide nonlinear

robust coverage via linear quadratic regulators (LQR) [24]. Alternatively, Explicit

Model Predictive Control tiles the operational space with light-weight localized

equivalents of an expensive predictive controller [2] (center of Fig. 2). Composi-

tion can also address discontinuities, as in Sliding Mode Control [10].

Combining multiple controllers boosts robustness with minimal online effort.
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Fig. 2 Examples of controller composition: sequential (left), tiling (center), and merging (right).

Data-Driven Control: The above methods are not easily applied to systems with

many compliant DoF and strong natural dynamics. Even with a descriptive model,

it may be challenging to determine if a configuration of a deformable robot is valid.

Contact forces, energy, and momentum hinder the identification of good dynamical

paths and the derivation of stabilizing controllers. Such complications have spurred

data-driven approaches for interpreting sensor data, predicting state evolution, or

imposing actuation [11, 23]. They have also led into modeling all three as a single

“end-to-end” process [15]. These methods fit generic parametrized models, such as

polynomial functions, Gaussian processes, or artificial neural networks (ANN), to

match experimental data that represent the intended operational regime.

Learned models can adequately represent complex behaviors,

but typically require significant training effort for each application scenario.

The risks and demands of obtaining necessary data have motivated many in-

novations with relevance to controller synthesis. To improve sample efficiency via

optimal control principles, Guided Policy Search merges an evolving set of LQR

controllers into one ANN feedback policy [15]. Although this approach has been

applied end-to-end, it can also be viewed as a controller composition scheme (see

right of Fig. 2). Meanwhile, other data-driven techniques have been developed for

determining nonlinear controller RoAs in the context of partially modeled dynamics

and safety-constrained sampling [1, 4]. A model-free variant of LQR-Trees similarly

establishes RoAs via sampling to validate the synthesized control set [20].

Recent work has begun to reveal how data-driven control can be made more

efficient and verifiable, potentially for use in composition schemes.

3 Data-Driven Synthesis for Deep Coverage

An emerging possibility for motion computation on modern robotic platforms is to

a) establish modular “motion elements” through an offline data-driven process and

b) employ them online in an architecture that exploits their suitability for compo-

sition and synthesis. This framework, summarized in Fig. 3, will be referred to as

“deep coverage” to emphasize the goal of effectiveness under highly variable cir-

cumstances (hence coverage) through hierarchical, modular processes that enforce

robust behavior at all scopes of the problem (hence depth). Motion elements at var-

ious levels of the proposed hierarchy - which are no longer clearly delineated by an

explicit, analytical model but are instead data-driven - can also be seen as equivalent

to different layers in deep learning architectures for perception challenges.
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This process could amount to an informed search of the space of element com-

positions, as in traditional planning, with reasoning based upon RoAs and other

motion element characterizations. Alternatively, decisions could be governed by a

data-driven process, aimed to handle subtle interactions. Composability of human

motions, for example, can be established through segmentation of reference solu-

tions [14]. This use of a data-driven approach for composition can lead to hier-

archical schemes, in which intermediate-level elements can be responsible for the

composition of low-level ones, without rigid and restrictive rules.

The motion element composition process should account for the elements’

applicability and compatibility, whether determined via models or data.

Continued Learning Online: Real-world deployment of robots in natural and

human-occupied workspaces inevitably leads into unforeseen setups, where a valid

solution must be improvised quickly. This entails identifying a gap in coverage,

safely exploring the corresponding region of the system’s dynamics, and incorpo-

rating the results into a new motion element (far right of Fig. 3). These steps should

benefit from offline training and effectively utilize the existing library of motion

elements so that the online adaptation can be light-weight.

A benefit of data-driven approaches is that they can incorporate additional,

highly-relevant data gathered in the field during deployment. Again, the challenge

lies in the amount of data that need to be collected. Model-based reinforcement

learning brings the hope of adaptation to new domains in a sample-efficient manner

as long as the model of the robot’s dynamics are appropriately adapted on the fly [9].

This type of adaptation would be most effective with a highly modular library, where

elements represent the system dynamics in a principled manner.

The call-out in Fig. 6 demonstrates these principles for the tensegrity example.

Traversal of the rock field would provide real-world data on the performance of

some of the precise motion elements. When facing an unforeseen obstacle, such as

the narrow gap between two large boulders, this information could be leveraged to

guide discovery of a new motion element to fill the gap in operational coverage.

New elements should be generated on the fly to deal with unforeseen setups.

4 Discussion

Many modern robots experience complex influences from the environment and their

natural dynamics, which are difficult to adequately model. This motivates end-to-

end control architectures that solve motion problems at sufficient depth, but depend

on a lot of data for generalization. Meanwhile, controller synthesis and composi-

tion enable greater breadth of motion coverage, but depend on accurate models. A

successful reconciliation of these two paradigms can enable deep coverage: the effi-

cient use of data-derived motion elements for generating robust solutions in general

problem spaces in the context of exciting, frontier applications of robotics.
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