


product of individual object pose candidates, and find the

optimal hypothesis with respect to a score defined in terms

of similarity with the input scene and geometric constraints.

It has been argued, however, that existing HV methods

suffer from critical limitations for pose estimation [9], [10].

The argument is that the optimization in the HV process, may

not work because the true poses of the objects may not be

included in the set of generated candidates, due to errors

in the process for generating these hypotheses. Errors may

arise from the fact that the training for detection typically

takes place for individual objects and is not able to handle

occlusions in the case of cluttered scenes.

This motivated the development of a search method [9],

[10] for the best explanation of the observed scene by per-

forming an exhaustive but informed search through rendering

all possible scene configurations given a discretization over

3-DOFs, namely (x, y, yaw). The search was formulated

as a tree, where nodes corresponded to a subset of objects

placed at certain configurations and edges corresponded to

adding one more object in the scene. The edge cost was

computed based on the similarity of the input image and

the rendered scene for the the additional object. An order of

object placements over the tree depth was implicitly defined

by constraining the child state to never occlude any object in

the parent state. This ensured an additive cost as the search

progressed, which allows the use of heuristic search.

The current work adapts this idea of tree search to achieve

better scalability and increased accuracy, while performing a

comprehensive hypothesis verification process by addressing

the limitations of such HV techniques. In particular, instead

of imposing a discretization, which is difficult to scale to

6-DOF problems, the proposed search is performed over

scene hypotheses. In order to address the issue of potentially

conflicting candidate object poses, the scene hypotheses

are dynamically constructed by introducing a constrained

local optimization step over candidate object poses returned

by Super4PCS, a fast global model matching method [4].

To limit detection errors that arise in cluttered scene, the

proposed method builds on top of a previous contribution

[11], which performs clutter-specific autonomous training

to get object segments. This paper provides experimental

indications that the set of candidate object poses returned by

Super4PCS given the clutter-aware training contains object

poses that are close enough to the ground truth, however,

these might not be the ones that receive the best matching

score according to Super4PCS. This is why it becomes neces-

sary to search over the set of candidate poses. Searching over

all possible hypotheses returned by Super4PCS, however, is

impractical. Thus, this work introduces a clustering approach

that identifies a small set of candidate pose representatives

that is also diverse enough to express the spread of guesses

in the matching process.

The search operates by picking candidate object poses

from the set of cluster representatives given a specific order

of object placement. This order is defined by considering

the dependencies among objects, such as, when an object is

stacked on top of another or is occluded by another object.

At every expansion of a new node, the method uses the previ-

ously placed objects to re-segment the object point cloud. It

then performs local point cloud registration as well as physics

simulation to place the object in physically consistent poses

with respect to the already placed objects and the resting

surface. As the ordering considers the physical dependency

between objects, the rendering cost is no longer additive and

cannot be defined for intermediate nodes of the search tree.

For this reason, a Monte Carlo Tree Search (MCTS) [12]

approach is used to heuristically guide the search based on

evaluation of the rendering cost for the complete assignment

of object poses. Specifically, the UCT search method is

used with the Upper Confidence Bound (UCB) to trade-off

exploration and exploitation in the search tree.

The experimental evaluation of the proposed framework

indicates that searching over the space of scene hypotheses

in this manner can quickly identify physically realistic poses

that are close to ground truth and can significantly improve

the quality of the output of global model matching methods.

II. RELATED WORK

This section covers the different approaches that have been

applied to object recognition and pose estimation using range

data and their relationship to the current work.

A. Feature Matching

A traditional way of approaching this problem has been

computing local shape based descriptors in the observed

scene and on the 3D CAD object models [13]. Given feature

correspondence between the real scene and the model, rigid

body transformations can be computed for the models that

maximize the correspondences between these descriptors.

Some examples of such local descriptors correspond to the

SHOT [14], and PFH [15]. There has also been significant use

of viewpoint-specific global shape features like CVFH [16].

In this case, features are computed offline for object models

viewed from several sampled viewpoints and are matched to

the feature corresponding to the object segment retrieved in

the observed data to directly get the pose estimate. These

methods have gained popularity because of their speed of

execution and minimal training requirement. However, the

local descriptors are prone to failure in case of occlusion

when the keypoints are not visible and the global descriptors

are highly dependent on clean object segmentation, which is

often difficult to obtain.

B. Progress in Deep Learning

There has been recent success in using deep learning

techniques for learning local geometric descriptors [17] and

local RGB-D patches [18] for object recognition and pose

estimation. Even though this is promising as data driven

approaches could help close the gap between 3d geometric

models and noisy observed data, it needs access to a large

model aligned 3d training dataset [19], which may be difficult

to collect. Another technique often used is to perform object

segmentation using CNNs trained specifically for the setup

[11], [2], [20] and perform point cloud registration methods





The algorithm first employs an object detector on the RGB

image based on Faster-RCNN [6]. This detector, which

uses a VGG16 network architecture [25], was trained with

an autonomous training process proposed in prior work [11].

The training involves a large number of realistic synthetic

data used to bootstrap a self-learning process to get a high

performing detector. For each object O, the corresponding

bounding-box (bboxO) returned by the object detector is

used to get a segment PO of the 3D point cloud. Segment

PO is a subset of the point cloud of the scene and contains

points from the visible part of object O. Segment PO fre-

quently contains some points from nearby objects because

the bounding box does not perfectly match the shape of the

object.

The received point set PO is then matched to the object

model MO by using the Super4PCS algorithm [4]. Typically,

the Super4PCS algorithm is used to find sets of congruent

4-points in the two point clouds related by a rigid transforma-

tion and returns the transformation which results in the best

alignment according to the LCP (Largest Common Pointset)

measure. Nevertheless, this returned transformation is not

necessarily the optimal pose of the object as the point cloud

segment extracted via the detection process could include

parts of other objects or due to lack of visible surface might

not be informative enough to compute the correct solution.

This motivates the consideration of other possible trans-

formations for the objects, which can be evaluated in terms

of scene-level consistency. This is the focus of the following

section. Thus, the subroutine SUPER4PCS in Algorithm 1

is used to generate a set of possible transformations TO

computed using congruent 4-point sets within a time budget

to. It is interesting to consider the quality of the hypotheses

set returned by the above process by measuring the error

between the returned pose hypotheses and the ground truth.

For this purpose, a dataset containing 90 object poses was

used. Specifically, in each hypotheses set, the pose hypothesis

that has the minimum error in terms of rotation is selected

as well as the one with the minimum translation error.

The mean errors for these candidates over the dataset are

shown in Table. I. The results positively indicate the presence

of hypotheses close to the true solution. Specifically, the

candidate with the minimum rotation error seems almost

perfect in rotation and not very far even with respect to

translation. Nevertheless, this hypotheses set contained ap-

proximately 20,000 elements. It is intractable to evaluate

scene level dependencies for that many hypotheses per object

as the combined hypotheses set over multiple objects grows

exponentially in size.

B. Clustering of Hypotheses

To reduce the cardinality of the hypotheses sets returned

by the subroutine SUPER4PCS in Algorithm 1, this work

proposes to cluster the 6D poses in each set TO, given a

distance metric. Computing distances between object poses,

which are defined in SE(3), in a computationally efficient

manner is not trivial [26]. This challenge is further compli-

cated if one would like to consider the symmetry of the

geometric models, so that two different poses that result

in the same occupied volume given the object’s symmetry

would get a distance of zero.

To address this issue, a two-level hierarchical clustering

approach is followed. The first level involves computing clus-

ters of the pose set in the space of translations (i.e., the clus-

tering occurs in R
3 by using the Euclidean distance and ig-

noring the object orientations) using a K-Means process [27]

to get a smaller set of cluster representatives clustertr.

In the second level, the poses that are assigned to the same

clusters are further clustered based on a distance computed

in the SO(3) space that is specific to the object model, i.e., by

considering only the orientation of the corresponding pose.

The second clustering step uses a kernel K-Means approach

[28], where the cluster representative is found by minimizing

the sum of kernel distances to every other point in the

cluster. This process can be computationally expensive but

returns cluster centers that nicely represent the accuracy of

the hypotheses set. By using this clustering method, the size

of the hypotheses set can be reduced down from 20,000 rigid

transforms in TO to 25 object pose hypotheses in hO for each

object in the scene. The two bottom rows of Table I evaluate

the quality of the cluster representatives in the hypotheses set.

This evaluation indicates that the clustering process returns

hypotheses as cluster representatives that are still close to

the true solution. In this way, it provides an effective way

of reducing the size of the hypotheses set without sacrificing

its diversity.

C. Search

Once the hypotheses set is built for each object in the

scene, the task reduces to finding the object poses which

lie in the physically consistent neighborhood of the pose

candidates that best explain the overall observed scene. In

particular, given:

• the observed depth image,

• the number of objects in the scene N,

• a set of 3D mesh models for these objects M1:N ,

• and the sets of 6D transformation hypotheses for the

objects h1:N (output of Algorithm 1),

the problem is to search in the hypotheses sets for an N-

tuple of poses T1:N | Ti ∈ f (hi), i.e. one pose per object.

The set T1:N should maximize a global score computed by

comparing the observed depth image with the rendered

image R(T1:N ) of object models placed at the corresponding

poses T1:N . Here, f is the constrained local optimization of

the object pose hi based on physical consistency with respect

to the other objects in the scene and also the fact that same

points in the scene point cloud cannot be explained by mul-

tiple objects simultaneously. Then, the global optimization

score is defined as:

C(depth, T1:N ) =
∑

p∈P

S(R(T1:N )[p], depth[p])

where p is a pixel (i, j) of a depth image, R(T1:N )[p] is

the depth of pixel p in the rendered depth image R(T1:N ),



Metric for selection Mean Rotation error Mean Translation error

[All hypotheses] max. LCP score 11.16◦ 1.5cm

[All hypotheses] min. rotation error from ground truth 2.11◦ 2.2cm

[All hypotheses] min. translation error from ground truth 16.33◦ 0.4cm

[Clustered hypotheses] min. rotation error from ground truth 5.67◦ 2.5cm

[Clustered hypotheses] min. translation error from ground truth 20.95◦ 1.7cm

TABLE I

EVALUATING THE QUALITY OF THE HYPOTHESES SET RETURNED BY SUPER4CPS [4] WITH RESPECT TO DIFFERENT METRICS.

depth[p] is the depth of pixel p in the observed depth image

depth, P = {p | R(T1:N )[p] 6= 0 or D[p] 6= 0)} and

S(R(T1:N )[p], D[p]) =

{

1, if | R(T )[p]−D[p] |< ε

0, otherwise

for a predefined precision threshold ε. Therefore, score C

counts the number of non-zero pixels p that have a similar

depth in the observed image D and in the rendered image R

within an ε threshold. So, overall the objective is to find:

T ∗

1:N = arg max
T1:N∈f (h1:N )

C(D,R(T1:N )).

At this point a combinatorial optimization problem arises

so as to identify T ∗

1:N , which is approached with a tree search

process. A state in the search-tree corresponds to a subset of

objects in the scene and their corresponding poses. The root

state s0 is a null assignment of poses. A state sd at depth d

is a placement of d objects at specific poses selected from

the hypotheses sets, i.e., sd = {(Mi, Ti), i = 1 : d} where

Ti is the pose chosen for object Mi, which is assigned to

depth i. The goal of the tree search is to find a state at depth

N, which contains a pose assignment for all objects in the

scene and maximizes the above mentioned rendering score.

Alg. 2 describes the expansion of a state in the tree search

process towards this objective.

Algorithm 2: EXPAND(sd, Td+1, Pd+1)

1 if d = N then

2 return NULL;

3 foreach object O ∈ sd do

4 Pd+1 ← Pd+1 - points explained(Pd+1,MO, TO);

5 Td+1 ← TrICP(Td+1, Pd+1);
6 Td+1 ← PHYSIM(Td+1, T1:d);
7 sd+1 ← sd ∪ Td+1;

8 return sd+1;

The EXPAND routine takes as input, the state sd at depth

d in the tree, the point cloud segment corresponding to the

next object to be placed Pd+1 and the pose hypothesis for

the next object Td+1. Lines 3-4 of the algorithm iterate over

all the objects already placed in state sd and remove points

already explained by these object placements from the point

cloud segment of the next object to be placed. This step helps

in achieving much better segmentation, which is utilized by

the local optimization step of Trimmed ICP [29] in line 5.

The poses of objects in state sd physically constrain the

pose of the new object to be placed. For this reason, a rigid

body physics simulation is performed in line 6. The physics

simulation is initialized by inserting the new object into the

scene at pose Td+1, while the previously inserted objects

in the current search branch are placed in the poses T1:d.

A physics engine is used to ensure that the newly placed

object attains a physically realistic configuration (stable and

no penetration) with respect to other objects and the table

under the effect of gravity. After a fixed number of simulation

steps, the new pose Td+1 of the object is appended to the

previous state to get the successor state sd+1.

The above primitive is used to search over the tree

of possible object poses. The objective is to exploit the

contextual ordering of object placements given information

from physics and occlusion. This does not allow to define

an additive rendering score over the search depth as in pre-

vious work [9], which demands the object placement to not

occlude any part of the already placed objects. Instead, this

work proposes to use a heuristic search approach based on

Monte Carlo Tree Search utilizing Upper Confidence Bound

formulation [12] to trade off exploration and exploitation

in the expansion process. The pseudocode for the search is

presented in Alg. 3.

To effectively utilize the constrained expansion of states,

an order of object placements needs to be considered. This

information is encoded in a dependency graph, which is a

directed acyclic graph that provides a partial ordering of

object placements but also encodes the interdependency of

objects. The vertices of the dependency graph correspond

to the objects in the observed scene. Simple rules are

established to compute this graph based on the detected

segments P1:N for objects O1:N .

• A directed edge connects object Oi to object Oj if the

the x-y projection of Pi in the world frame intersects

with the x-y projection of Pj and the z-coordinate

(negative gravity direction) of the centroid for Pj is

greater than that of Pi.

• A directed edge connects object Oi to object Oj if the

detected bounding-box of Oi intersects with that of Oj

and the z-coordinate of the centroid of Pj in camera

frame (normal to the camera) is greater than that of Pi.

The information regarding independency of objects helps

to significantly speed up the search as the independent ob-

jects are then evaluated in different search trees and prevents

exponential growth of the tree. This results in K ordered

list of objects, L1:K from the step GET DEPENDENCY each

of which are used to run independent tree searches for

pose computation. The MCTS proceeds by selecting the first

unexpanded node starting from the root state.



Algorithm 3: SEARCH

1 Function MCTS (M1:N , P1:N , h1:N )

2 T ← ∅;
3 L1:K ← GET DEPENDENCY(P1:N );
4 foreach L ∈ L1:K do

5 s0 ← ∅;
6 best render score← 0;

7 best state← s0;

8 while search time < tth do

9 si ← SELECT(s0, P1:N );
10 {sR, R} ← RANDOM POLICY(si, P1:N );
11 if R > best render score then

12 best render score← R;

13 best state← sR;

14 BACKUP REWARD(si, R);

15 T ← T ∪ best state;

16 return T;

17 Function SELECT (s, P1:N )

18 while depth(s) < N do

19 if s has unexpanded child then

20 level ← depth(s) + 1;

21 Tlevel ← NEXT POSE HYPOTHESIS(hlevel);

22 return EXPAND(s, Tlevel, depth(s), Plevel);

23 else

24 s ← GET BEST CHILD(s)

25 return s;

26 Function GET BEST CHILD (s)

27 return argmaxs′∈succ(s)
h(s′)
n(s′) + α

√

2log(n(s))
n(s′) ;

28 Function RANDOM POLICY (s, P1:N )

29 while depth(s) < N do

30 level← depth(s) + 1;

31 Tlevel ← GET RANDOM HYPOTHESIS(Hlevel);

32 s← EXPAND(s, Tlevel, depth(s), Plevel);

33 return {s, render(s)};

34 Function BACKUP REWARD (s,R)

35 while s 6= NULL do

36 n(s) ← n(s) + 1;

37 h(s) ← h(s) + R;

38 s ← parent(s);

The selection takes place based on a reward associated

with each state. The reward is the mean of the rendering score

received at any leaf node in its subtree along with a penalty

based on the number of times this subtree has been expanded

relative to its parent. This is indicated in the subroutine

GET BEST CHILD, where h(s) is the maintained score and

n(s) stores the number of times the subtree corresponding

to the state s has been expanded. The selected state is then

expanded by using a RANDOM POLICY, which in this case

is picking a random object pose hypothesis for each of the

succeeding objects while performing the constrained local

optimization at each step. The output of this policy is the

final rendering score of the generated scene hypotheses. This

reward is then backpropogated in the step BACKUP REWARD

to the preceeding nodes. Thus, the search is guided to the

part of the tree, which gets a good rendering score but

also explores other portions, which have not been expanded

enough (controlled by the parameter α).

IV. EVALUATION

This section discusses the dataset and metrics used for

evaluating the approach, and an analysis of intermediate

results explaining the choice of the system’s components.

A. Dataset and Evaluation Metric

A dataset of RGB-D images was collected and ground

truth 6-DOF poses were labeled for each object in the

image. The dataset contains table-top scenes with 11 objects

from the 2016 Amazon Picking Challenge [30] with the

objects representing different object geometries. Each scene

contains multiple objects and the object placement is a

mix of independent object placements, objects with physical

dependencies such as one stacked on/or supporting the other

object and occlusions. The dataset was collected using an

Intel RealSense sensor mounted over a Motoman robotic

manipulator. The manual labeling was achieved by aligning

3D CAD models to the point cloud extracted from the

sensor. The captured scene expresses three different levels

of interaction between objects, namely, independent object

placement where an object is physically independent of the

rest of objects, two-object dependencies where an object

depends on another, and three object dependencies where

an object depends on two other objects.

The evaluation is performed by computing the error in

translation, which is the Euclidean distance of an object’s

center compared to its ground truth center (in centimeters).

The error in rotation is computed by first transforming the

computed rotation to the frame attached to the object at

ground truth (in degrees). The rotation error is the average

of the roll, yaw and pitch angles of the transformation

between the returned rotation and the ground truth one, while

taking into account the object’s symmetries, which may allow

multiple ground truth rotations. The results provide the mean

of the errors of all the objects in the dataset.

B. Pose Estimation without Search

Evaluation was first performed over methods that do

not perform any scene level or global reasoning. These

approaches trust the segments returned by the object seg-

mentation module and perform model matching followed

by local refinement to compute object poses. The results of

performing pose estimation over the collected dataset with

some of these techniques are presented in Table II. The

APC-Vision-Toolbox [2] is the system developed by

Team MIT-Princeton for Amazon Picking Challenge 2016.

The system uses a Fully Convolutional Network (FCN) [31]

to get pixel level segmentation of objects in the scene, then

uses Principal Component Analysis (PCA) for pose initial-

ization, followed by ICP [5] to get the final object pose.

This system was designed for shelf and tote environments





dencies, takes approximately 30 seconds. Nevertheless, both

of these processes are highly parallelizable. Future work

can perform the hypotheses generation and the search with

parallel computing. Even though the use of bounding boxes

to compute 3D point segments gives a high recall in terms

of obtaining the object point segment, and the proposed

system also addresses any imprecision which might occur in

these segments by performing a constrained segmentation,

sometimes an error which occurs in the initial part of object

placement could lead to failures that need to be addressed.

V. DISCUSSION

This work provides a novel way of performing pose esti-

mation for objects placed in clutter by efficiently searching

for the best scene explanation over the space of physically

consistent scene configurations. It also provides a method

to construct these sets of scene configurations by using

state-of-the-art object detection and model registration tech-

niques which by themselves are not sufficient to give a

desirable pose estimate for objects. The evaluations indicate

significant performance improvement in the estimated pose

using the proposed search, when compared to systems which

do not reason globally. Moreover, the use of Monte Carlo

Tree search with the scene rendering cost evaluated over

physically simulated scenes makes the search tractable for

handling multi-object dependencies.
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