Efficient Model Identification for Tensegrity Locomotion

Shaojun Zhu, David Surovik, Kostas Bekris and Abdeslam Boularias

Abstract— This paper aims to identify in a practical manner
unknown physical parameters, such as mechanical models of
actuated robot links, which are critical in dynamical robotic
tasks. Key features include the use of an off-the-shelf physics
engine and the Bayesian optimization framework. The task
being considered is locomotion with a high-dimensional, com-
pliant Tensegrity robot. A key insight, in this case, is the
need to project the space of models into an appropriate
lower dimensional space for time efficiency. Comparisons with
alternatives indicate that the proposed method can identify
the parameters more accurately within the given time budget,
which also results in more precise locomotion control.

I. INTRODUCTION

This paper presents an approach for model identification
by exploiting the availability of off-the-shelf physics engines
used for simulating dynamics of robots and objects they
interact with. There are many examples of popular physics
engines that are becoming increasingly efficient [1]-[6]. These
physics engines receive as input mechanical and mesh models
of the robots in a particular scene, in addition to controls
(force, torque, velocity, etc.) applied to them, and return a
prediction of the robot’s dynamical response.

The accuracy of the prediction depends on several factors.
The first one is the limitation of the mathematical model
used by the engine (e.g., the Coulomb approximation). The
second factor is the accuracy of the numerical algorithm used
for solving the equations of motion. Finally, the prediction
depends heavily on the accuracy of the physical parameters
of the robots, such as mass and friction. In this work, we
focus on the last factor and propose a method to fine-tune
the physical parameters used in the physics engine.

In the context of compliant locomotion systems, the Tenseg-
rity robot in Fig. 1 is a structurally compliant platform that
can distribute forces into linear elements as pure compression
or tension [7]. This robot’s tensile elements can be actuated,
enabling it to effectively adapt to complex contact dynamics
in unstructured terrains. A policy for a rolling locomotive
gait of the platform has been learned from simulation [8].

Tensegrity robots are inherently high-dimensional, highly-
dynamic systems, and providing a predictive model requires a
physics-based simulator [9]. The accuracy of such a solution
critically depends upon physical parameters of the robot, such
as the density of its rigid elements and the elasticity of the
tensile elements. While a manual process can be followed to

This work was sponsored by NSF IIS-1734492, IIS-1723869, a
NASA ECF award to Dr. Bekris and U.S. Army Research Lab
Collaborative Agreement W911NF-10-2-0016. The authors are with the
Department of Computer Science, Rutgers University, New Jersey, USA
{shaojun .zhu, david.surovik, kostas.bekris,
abdeslam.boularias}@cs.rutgers.edu

Fig. 1: Tensegrity robots: a) NASA SUPERDball: a robotic icosahe-
dron with 6 rods and 24 cables [13]. b) A duct climbing robot: 2
tetrahedral frames with 8 actuated cables [14].

tune a simulation to match the behavior of a real prototype
[10], it is highly desirable to conduct this calibration using
as few observed trajectories as possible.

In this work, trajectories generated by a simulation, that is
manually tuned to a prototypical robotic platform, are used
to identify the parameters of a physics engine for tensegrity
modeling. Given the high-dimensionality of the parameter
space, this is a challenging problem. This work proposes
mapping the model parameters to a lower dimensional space
of parameters. Methods used for dimensionality reduction
include Random Embedding (REMBO) [11] as well as
Variational Auto Encoder (VAE) [12].

Furthermore, this work proposes to tie the dimensionality
reduction process with the task performance by first learning
a simplified dynamics model, then utilizing it to train an
auto-encoder in the parameter space. Bayesian optimization
is then conducted in the encoded space, avoiding much of
the burden of high dimensionality. The proposed method
is able to efficiently identify the parameters that produce a
simulation that most closely matches the observed ground-
truth trajectories of this locomotive platform.

II. FOUNDATIONS AND CONTRIBUTIONS

Two high-level approaches exist for learning robotic tasks
with unknown dynamical models: model-free and model-
based ones. Model-free methods search for a policy that
best solves the task without explicitly learning the system
dynamics [15]-[18]. A relative entropy policy search has
been used [19] to successfully train a robot to play table
tennis. The POWER algorithm [20] is another model-free
policy search approach widely used in robotics.

Model-free methods, however, do not easily generalize to
unseen regions of the state-action space. To learn an effective
policy, features of state-actions in learning and testing should
be sampled from distributions that share the same support.

This is rather dangerous in robotics, as a poor performance
during testing could lead to irreversible damages.

Model-based approaches explicitly learn the dynamics of
the system and search for an optimal policy using standard
simulation, planning, and actuation control loops for the
learned parameters. There are many examples of model-
based approaches for robotic manipulation [21]-[25], some
of which have used physics-based simulation to predict the
effects of pushing flat objects on a smooth surface [21].
A non-parametric approach was employed for learning
the outcome of pushing large objects (furniture) [23]. A
Markov Decision Process (MDP) has been applied to model
interactions between objects; however, only simulation results
on pushing were reported [24]. For general-purpose model-
based reinforcement learning, the PILCO algorithm has been
proven efficient in utilizing a small amount of data to learn
dynamical models and optimal policies [26].

Bayesian Optimization (BO) is a popular framework for
data-efficient black-box optimization [27]. In robotics, some
recent applications include learning controllers for bipedal
locomotion [28], gait optimization [29] and transfer policies
from simulation to real world [30].

Traditional system identification builds a dynamics model
by minimizing prediction error (e.g., using least squares) [31],
[32]. There have been attempts to combine parametric rigid
body dynamics models with nonparametric model learning
for approximating the inverse dynamics [33]. In contrast
to such methods, this work uses a physics engine, and
concentrates on identifying mechanical properties instead of
learning the models from scratch. Recent work also proposed
model identification for predicting low dimensional physical
parameters, such as either mass or friction [34], before
searching for an optimal policy.

The present work is a model-based approach that utilizes
a physics engine and concentrates on identifying only the
mechanical properties of the objects instead of recreating
the dynamics from scratch. Furthermore, it utilizes BO and
identifies a dimensionality reduction process for dealing with
high-dimensional model identification challenges efficiently.

III. MODEL IDENTIFICATION

This work proposes an online approach for robots to learn
the physical parameters of their dynamics through minimal
physical interaction. Because of the high dimensionality of
the parameter space of the tensegrity robot, even efficient
methods such as Bayesian optimization (BO) struggle to
identify all parameters with sufficient accuracy.

This section introduces the overall framework of the model
identification process. Dimensionality reduction methods,
which decrease the search space of BO in order to achieve
efficient optimization, are then covered in the next section.

For the tensegrity robot, the physical properties of interest
correspond to the density, length, radius, stiffness, damping
factor, pre-tension, motor radius, motor friction, and motor
inertia of the various rigid and tensile elements and actuators
which are modeled in the NASA’s Tensegrity Robotics Toolkit
(NTRT) [9]. In total, 15 different parameters are considered.

These physical properties are represented as a D-
dimensional vector 0 € ®, where O is the space of all possible
values of the physical properties. ® is discretized with a
regular grid resolution. The proposed approach returns a
distribution P on discretized ® instead of a single point 6 € ©®.
This is appropriate due to the fact that model identification
is generally an ill-posed problem, where multiple models
can explain an observed trajectory with equal accuracy. The
objective is to preserve all possible explanations for the
purposes of robust planning.

The online model identification algorithm (given in Al-
gorithm 1) takes as input a prior distribution F;, for time-
step t > 0, on the discretized space of physical properties
®. P is calculated based on the initial distribution Py and
a sequence of observations (Xo, o, X1, iy« -sXr—1, Hi—1,X¢)-
For the Tensegrity robot, x; is a state vector concatenating
the 3D centers of all rigid elements, i.e., the rods in the
corresponding Figure 1, and L, is a vector of motor torques.

Input: State-action-state data {(x;, W, xi+1)},i =0,...,1;
0, a discretized space of physical properties;
Output: Probability distribution P over O ;
Sample 6y ~ Uniform(®); L + 0; k + 0;
repeat
I, < 0;
for i=0to r do
Simulate {(x;,1;)} using a physics engine with
physical parameters 6; and get the predicted next
state &1 = f (o, i, O)
I < e+ | &1 — X1 |23
end
L LU{(6k,)}
Calculate GP(m,K) on error function E, where
E(0) =1, using data (6,1) € L;
Or+1 = argmaxgee EI(0) ;
k< k+1;
until Timeout;

Algorithm 1: Model Identification with Bayesian Optimization

The process consists of simulating the effects of the controls
U; on the robot in states x; under various values of parameters
0 and observing the resulting states %y, for i =0,...,z.
The goal is to identify the model parameters that make the
outcomes X; 1 of the simulation as close as possible to the
real observed outcome x;;1. In other terms, the following
black-box optimization problem is solved:

" . de !
0" = argminE(0) 2] Z l|xip1 — f(xi, i, 0)]]2, (1)
0O =

wherein x; and x;;; are the observed states of the robot at
times i and i+ 1, Y; is the control that applied at time ¢,
and f(x;, i, 0) = Ri11, the predicted state at time 7+ 1 after
simulating control y; at state x; using physical parameters 6.

The proposed approach consists of learning the error
function E from a sequence of simulations with different
parameters 6, € ®. To choose these parameters efficiently in

a way that quickly leads to accurate parameter estimation,
a belief about the actual error function is maintained. This
belief is a probability measure over the space of all functions
E :RP — R, and is represented by a Gaussian Process
(GP) [35] with mean vector m and covariance matrix K. The
mean m and covariance K of the GP are learned from data
points {(60,E(60)), ..., (6, E(6))}, where 6 is a vector of
physical properties of the object, and E(6}) is the accumulated
distance between actual observed states and states that are
obtained from simulation using 6. High-fidelity simulations
are computationally expensive. It is therefore important to
minimize the number of simulations, i.e., evaluations of
function E while searching for the optimal parameters that
solve Eq. 1. BO decides the location for next sample by
optimizing the acquisition function. In our experiments, the
expected improvement (EI) acquisition function [36] is used.

IV. DIMENSIONALITY REDUCTION
A. Random Embedding for Model Identification

For problems where space ® of physical properties has a
high dimension D, the method presented in Algorithm 1 is
not practical because the number of elements in discretized ®
is exponential in dimension D. This is a common problem in
global search methods [11]. In fact, it has been shown that BO
techniques do not perform better than a random search when
the dimension of the search space is too large (10 dimensions
in the experiment in [37]). Therefore, Algorithm 1 cannot be
directly used for robotic platforms with a large number of
joints and parameters, such as the Tensegrity robot.

Dimensionality reduction is a popular solution to the prob-
lem of searching in high-dimensional spaces. This solution is
particularly appealing in the context of this work because we
are more interested in the accuracy of the predicted trajectory
than in identifying the true underlying physical parameters.
Mechanical models of motion tie together several parameters
of an object. For example, in Coulomb’s model, the mass
and the friction of an object are used in a linear function to
predict its planar sliding motion. Therefore, one can linearly
map these two parameters to a single parameter and still
make accurate predictions. Similarly, random embedding
(REMBO) [11] is an effective dimensionality reduction
technique in the context of BO.

B. Variational Auto Encoder for Model Identification

An autoencoder is a neural network that learns to re-
construct the input by going through a latent space that
has a lower dimension than the original input space [38].
Autoencoders have been shown to be useful in unsupervised
learning of low dimensional representations. A variational
autoencoder (VAE) adds an additional constraint that the
latent space follows a prior distribution, usually assumed to
be Gaussian [12]. This constraint makes the model more
useful as a generative model, as it also learns to generate
output from the prior distribution in addition to reconstruction.

We adapt the VAE and combine it with the BO process,
as shown in Fig. 2. First, the VAE is trained with randomly
sampled physical parameters 6 to learn a low dimension

Auto-

0 — .
Encoding _

Model
Identification

/
d

loss

Bayesian

Optimization Simulator

Fig. 2: The auto-encoder is trained first to learn the latent
low-dimensional embedding. Then BO is performed in this low-
dimensional space to identify the optimal model parameter. The
decoder is used to reconstruct the original 15 dimensional parameter
in order to perform physical simulation.

embedding ¢. The decoder is used to project the low dimen-
sional & back to a value 6’ in the original physical parameter
space. Thus, the BO process as detailed in Algorithm 1 can
be performed efficiently in the low-dimensional space.

C. Auto-Encoder with Learned Dynamics

The use of VAE for reconstructing parameters from a low
dimensional space has some limitations. Specifically, we are
more interested in the accuracy of the predicted trajectory
than in identifying the true underlying physical parameters.
Mechanical models of motion can tie together several parame-
ters of a model. Thus, connecting the dimensionality reduction
process directly with the task performance may further
improve the performance when using the identified model
on the task. This idea is similar to learning a locally linear
dynamics model while aiming to maximize the performance

of the controller [39].
7
\ x
>
Sy

/
6 .l Encoder |£4 Decoder I_H. /
Dynamics xr

Network |——»
T, u

a.) Train
dynamics 0 —
network T —

v v

W/

U —

b.) Fit auto-encoder

« o'

c.) Optimize
model parameters

Bayesian

Optimization Simulator

Fig. 3: The three-step process for model identification under reduced
parameter dimensionality. For each step, the element being updated
is highlighted in blue.

To provide intuition, we begin with an illustrative toy
example of pushing a point-mass along a single dimension.
We then show how the same approach can be applied to a
much more complex system such as the Tensegrity robot.

1) Toy example:
Pushing: Consider a Ft ;'J--. s
. —
cube of mass m resting | ' 5 i

on a surface, as in
Fig. 4, which can be
represented by a point
that can only move along one axis. Assuming uniform and

Fig. 4: 1-D point pushing example.

constant coefficient of kinetic friction u between the cube
and its resting surface, an impulse Ft is applied to the cube
to cause displacement across some distance S. Applying
Newton’s Laws and Kinematic Equations, we have the
following equations:

Ft = umt; = mvg 2)
S =votq /2 3)

where vy is the initial velocity of the cube after the impulse
and #; is the duration of the cube’s movement. Solving the
above equations, we have:

S(m,u) = (Ft)*/(2m*p) (4)

We use this equation solely to generate training and testing
data, in the same manner as a black-box simulator. This
parallels our later use of a physics simulator for the Tensegrity
robot without direct exposure of the differential equations
of motion. Our goal is to identify m and u, given only the
initial impulse Ft and the displacement S, without explicitly
solving the system’s dynamics equations.

This problem, however, is ill-posed due to the fact that
different values of m and p can result in the same S for a
given value of Ft. For example, assuming Ft = 1, both m =
1,1 =0.32 and m =0.8,4 = 0.5 will result in § = 1.5625.
In other words, as long as the value of m?u is uniquely
identified, so is the displacement S. Thus, if the task is to
predict S, it is not necessary to individually identify m and
u; the scalar value m?u can still uniquely determine the
system. The goal then is to identify this one-dimensional
representation automatically.

First, we train a dynamics network to predict the displace-
ment S given inputs m, U, and Ft, as shown in Fig. 3a. In
this case 6 = [m, 1] and u = Ft. The input state x is omitted
as we assume the point is always at the origin before being
pushed. Then, we use the resulting dynamics network to train
the auto-encoder to reconstruct m and u, as shown in Fig. 3b.
During this step, the weights in the dynamics network are
fixed. The encoder module is designed to receive input m, [
and output one-dimensional «, which is influenced by the
previous observation. A unique aspect of this auto-encoder
is that, instead of using reconstruction error of m and U
as the loss function, it passes the reconstructed parameters
to the dynamics network and back-propagates the gradient
of the displacement error. The goal of the auto-encoder is
to reconstruct parameters resulting in similar dynamics, as
predicting dynamics is the primary concern.

2) Tensegrity Robot: This procedure is next applied to
the much more complex Tensegrity robot system. Here, we
assume the existence of a low-dimensional representation of
both the physical parameter space and the state-action space
that, once identified, can sufficiently determine the system
dynamics, similar to the role of m?u in Sec. IV-C.1.

One challenge in adapting this procedure is that the
Tensegrity robot is inherently a high-dimensional, highly-
dynamic system which makes learning a dynamics model
extremely difficult. Instead, a simplified state-action model

can be learned where instead of using the full state which is
126-dimensional, only the height of the center of mass of the
robot is used as the state.! In our experiments, we found that
using the full state as input state and the height of the center
of mass as output results in better accuracy than using only
the height of the center of mass as both input and output.

Thus, the simplified dynamics model takes as input model
parameters 0, full state x, and action u and predicts the height
of the center of mass x’ at the next time-step, as shown in
Fig. 3a. In this case, 0 is the 15-dimensional parameter, x is
the 126-dimensional full state, u is the 24-dimensional action
and x' is the 1-dimensional height of the center of mass of
the robot. Using the simplified dynamics model, we train
an auto-encoder on top of it to learn the low-dimensional
representation o of the original parameters 6.

Similar to the 1D pushing example, the auto-encoder in
Fig. 3b is trained using loss function of the error between
the new state simulated using original parameter 8 and
the new state predicted by the dynamics model using the
reconstructed parameter 8’. Afterward, BO is performed on
the low-dimensional parameters ¢, while using the decoder
to project back to the original space for simulations with the
physics engine, as shown in Fig. 3c.

V. EXPERIMENTAL RESULTS

A. Toy example: 1-D Point Pushing

In this toy exam-
ple, we use equa-
tion 4 as the “sim-
ulator” to generate
data. 20,000 training
data points are gen-
erated by randomly
sampling m, u, F ;
and r. 2,000 addi-
tional data points are
generated for testing.
As a proof of con-
cept, we only com-
pare model identification using BO in the original 2D
parameter space and in the 1D latent space in the auto-
encoder.

The dynamics network has three hidden layers with 64,
128, and 64 hidden units and ReLLU activation functions. The
encoder network has two layers with 32, 1 units, and decoder
has two layers with 1, 32 units. Both the encoder and the
decoder only have ReLU on the first hidden layer.

The result is shown in Fig. 5. After training, the decoder
is able to reconstruct m and p which results in close to
zero error in the final displacement. Comparing to optimizing
in the original 2D parameter space, using the decoder to
optimize in 1D space is both more efficient and achieves
lower error.

BO in the original 2D space
BO in 1D space using the decoder

Final Displacement Error (m)
° -

°

10 15
Number of evaluations

Fig. 5: 1-D point pushing result: Search-
ing in the 1D space is more efficient than
in the original 2D space.

IThe selection of the state representation is not a focus of the paper. The
search for optimal state representation is left for future work.

B. Tensegrity Robot

Setup: This experiment aims to identify the 15 parameters
of the model of the Tensegrity SuperBall robot in NASA’s
Tensegrity Robotics Toolkit [9]. The complex dynamics and
high dimensionality of the robot make this problem very hard.

The applied control law conducts an optimization procedure
on the system’s geometric configuration alone, without
accounting for dynamics [40]. Under the assumption that
the base triangle remains in full contact with the ground, this
law commands a change in cable lengths that correspond to
a desired shift in the system’s center-of-mass. By displacing
this value relative to the supporting base triangle, the system
can be made dynamically unstable, causing a forward flop.

By using the controller above in simulation, 1200 trajec-
tories are generated as training data by sampling the 15
parameters within the £10% range of the ground truth. The
assumption is that such error can appear during the robot
modeling process and the proposed approach should be able
to minimize such error. Examples of the trajectories can be
found on https://goo.gl/3LCY92a.

The proposed approach using BO with an auto-encoder
and a dynamics network is compared with: Random Search
in 15-D, BO in 15-D, REMBO [11] in 5-D, and BO with
VAE in 5-D.

The encoder and decoder of the VAE used in the experiment
are both two-layer neural networks. The input dimension
of the encoder and the output dimension of the decoder
is 15, which is the dimension of the parameter space. The
latent space is 5 dimensional. Between them is one layer
of 400 dimensions. This dimension is chosen through cross-
validation by balancing accuracy and network complexity. The
prior distribution of the latent space in the VAE is assumed
to be N(0,1). Based on the three-sigma rule, when sampling
between [—3,3], this interval should cover 99.7% of the
latent space when the VAE is optimized. For REMBO, each
time a random projection matrix is generated to project the
parameters into [0, 1].

The dynamics network is a four-layer neural network with

dimensions 128, 64, 32, and 1. The encoder and decoder with
the dynamics network are also two-layer neural networks but
with only 10 and 5 dimensions for each layer.
Results: Fig. 6 shows the average error between the trajec-
tories using the model parameters identified by different
methods and the trajectories generated from the ground-
truth simulator. When optimizing in the original 15-dim.
space, as a data-efficient global optimization method, BO
outperformed random search. Further improvements are
achieved by dimensionality reduction, making the search more
efficient. BO with the autoencoder with the learned dynamics
network in the 5D-space achieves the lowest trajectory error,
outperforming the method using REMBO or VAE. This shows
that a learned better latent embedding enables more efficient
parameter search in the BO process.

Table I provides the errors for each of the final identified
parameter. Interestingly, although achieved lowest trajectory
error, BO with AE and Dynamics Net did not identify
all parameters with lowest error. Specifically, it turns out

@

BO with AE and Dynamics Net
BO in 15-D

REMBO in 5-D

BO with VAE in 5-D

Random Search in 15-D

o N

w

Trajectory Error (m)
w -~

N}

-

0

0 10 20 30 40 50 60
Time (s)

Fig. 6: Test trajectory errors of different methods for the Tensegrity
robot as a function of time budget for the parameter optimization
process. BO with the autoencoder with the learned dynamics network
in the 5-dimensional space achieves the lowest trajectory error,
outperforming random search and BO in the original 15 dimensional
space, as well as REMBO or VAE in the 5-dimensional space.

that parameters like rod_length, rod_space, rod_length_mp,
motor_radius, motor_friction, and motor_inertia are not actu-
ally used in the current model of the SuperBall simulation.
Thus even methods like VAE may be able to get lower
reconstructing error on the parameters themselves, BO with
AE and Dynamics Net is able to achieve lower trajectory error
as it ties the model identification process with the dynamics.
Additionally, some parameters may have a stronger influence
on the robot dynamics. An intelligent way to identify these
parameters would be helpful to reduce the dimensionality
of the parameter space and could be more informative than
random embeddings. This will be a direction for future work.

VI. CONCLUSION

This work proposes an information and data efficient
framework for identifying physical parameters critical for
robotic tasks, such as compliant robot locomotion. The
framework aims to minimize the error between trajectories
observed in experiments and those generated by a physics
engine. To solve high-dimensional challenges, this work
integrates BO with a projection to a lower-dimensional space
through random embedding or learning a latent embedding
utilizing auto encoder. The evaluation of the proposed method
against alternatives is favorable both in terms of identifying
parameters more efficiently, as well as resulting in more
accurate locomotion trajectories.

An interesting extension of this work would involve the
identification of controls during the learning process that
help in quickly minimizing the error. This can be a robust
control process, which takes advantage of BO’s output in
terms of a belief distribution for the identified parameters,
so as to minimize entropy and maximize the safety of the
experimentation process. Furthermore, it is interesting to
compare the generality of the learned models and resulting
control schemes that utilize them against completely model-
free and end-to-end approaches for reinforcement learning.

REFERENCES

[1] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of bullet, havok, mujoco, ODE and physx,” in

[2]
[3]
[4]
[5]

[6
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19

[20]
[21]
[22]

[23]

[24]

TABLE I: Identified Prameter Error (%)

Random Search in 15-D | BO in 15-D | REMBO in 5-D | BO with VAE in 5-D | BO with AE and Dynamics Net

density 5.01+2.86 4.10+2.66 1.85+1.88 1.9640.46 1.3040.05
radius 2.49+1.94 2.08£1.73 1.86+ 1.84 1.43+0.28 0.30-£0.03
density_mp 5.40+2.96 5.19£2.66 1.89+ 1.86 2.38+0.39 1.00+0.18
radius_mp 4.78+2.78 5.36+£2.97 1.94+ 1.94 2.00+0.55 0.69-+0.43
stiffnessActive | 4.49+2.68 4.444+2.79 1.84+ 1.90 1.68+0.46 1.71£0.03
damping 4.62+2.75 4.33+2.78 1.81+ 1.89 2.02+0.44 2.26+0.15
rod_length 5.05+2.75 4.72+2.69 | 1.90+ 1.88 2.04+0.31 6.2540.59
rod_space 4.96 +2.81 4.87+2.74 1.88+ 1.84 1.68+0.36 5.20+0.38
rod_length.mp | 4.89 £ 2.81 5.224+2.87 1.88+ 1.96 1.70+0.58 4.06+0.23
pretension 5.10 + 2.83 5.10+3.01 1.93+ 1.89 1.58+0.50 1.384+0.34
maxTens 499 + 2.87 4.66+2.80 1.86+ 1.83 1.854+0.42 5.48+0.12
targetVelocity | 4.85 4 2.62 5.31+3.01 1.844+ 1.90 2.06+0.62 0.49+0.31
motor_radius 5.11 +2.90 4.38+2.81 1.90+ 1.91 1.7940.66 4.9+0.23

motor_friction | 5.10 £ 2.71 5.324+3.17 1.89+ 1.82 2.19+0.27 0.65+0.03
motor_inertia 478 + 2.80 4.87+3.01 1.83+ 1.88 2.00+0.45 1.86+0.06

IEEE International Conference on Robotics and Automation, ICRA,
2015, pp. 4397-4404.

“Bullet physics engine,” [Online]. Available: www.bulletphysics.org.
“MuJoCo physics engine,” [Online]. Available: www.mujoco.org.
“DART physics egnine,” [Online]. Available: http://dartsim.github.io.
“PhysX physics engine,” [Online]. Available: www.geforce.com/
hardware/technology/physx.

“Havok physics engine,” [Online]. Available: www.havok.com.

K. Caluwaerts, J. Despraz, A. Iscen, A. Sabelhaus, J. Bruce,
B. Schrauwen, and V. SunSpiral, “Design and control of compliant
tensegrity robots through simulation and hardware validation,” Journal
of The Royal Society Interface, vol. 11, no. 98, 2014.

X. Geng, M. Zhang, J. Bruce, K. Caluwaerts, M. Vespignani, V. Sun-
Spiral, P. Abbeel, and S. Levine, “Deep reinforcement learning for
tensegrity robot locomotion,” CoRR, vol. abs/1609.09049, 2016.
NTRT, “NASA tensegrity robotics toolkit (NTRT),” https://ti.arc.nasa.
gov/tech/asr/intelligent-robotics/tensegrity/NTRT/.

B. T. Mirletz, I.-W. Park, R. D. Quinn, and V. SunSpiral, “Towards
bridging the reality gap between tensegrity simulation and robotic
hardware,” in IEEE/RSJ IROS, Hamburg, Germany, 2015.

Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas, “Bayesian
optimization in a billion dimensions via random embeddings,” Journal
of Artificial Intelligence Research, vol. 55, pp. 361-387, 2016.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
ICLR, 2014.

A. P. Sabelhaus, J. Bruce, K. Caluwaerts, P. Manovi, R. F. Firoozi,
S. Dobi, A. M. Agogino, and V. SunSpiral, “System design and
locomotion of superball, an untethered tensegrity robot,” in ICRA.
IEEE, 2015, pp. 2867-2873.

J. Friesen, A. Pogue, T. Bewley, M. de Oliveira, R. Skelton, and
V. Sunspiral, “Ductt: A tensegrity robot for exploring duct systems,
in ICRA. IEEE, 2014, pp. 4222-4228.

R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
Ist ed. Cambridge, MA, USA: MIT Press, 1998.

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming,
1st ed. Athena Scientific, 1996.

J. Kober, J. A. D. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” IJRR, July 2013.

S. Levine and P. Abbeel, “Learning neural network policies with guided
policy search under unknown dynamics,” in NIPS, 2014.

J. Peters, K. Miilling, and Y. Altiin, “Relative entropy policy search,”
in Proceedings of the Twenty-Fourth AAAI, 2010, pp. 1607-1612.

J. Kober and J. R. Peters, “Policy search for motor primitives in
robotics,” in NIPS, 2009, pp. 849-856.

M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, ‘“Physics-Based
Grasp Planning Through Clutter,” in R:SS VIII, July 2012.

K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, control-
lability, and planning,” IJRR, vol. 18, 1996.

T. Merili, M. Veloso, and H. Akin, “Push-manipulation of Complex
Passive Mobile Objects Using Experimentally Acquired Motion
Models,” Autonomous Robots, pp. 1-13, 2014.

J. Scholz, M. Levihn, C. L. Isbell, and D. Wingate, “A Physics-Based
Model Prior for Object-Oriented MDPs,” in ICML, 2014.

5

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

(371

[38

[39]

[40]

J. Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason, “A convex
polynomial force-motion model for planar sliding: Identification and
application,” in ICRA, 2016, pp. 372-377.

M. Deisenroth, C. Rasmussen, and D. Fox, “Learning to Control a
Low-Cost Manipulator using Data-Efficient Reinforcement Learning,”
in Robotics: Science and Systems (RSS), 2011.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, 2016.

R. Antonova, A. Rai, and C. G. Atkeson, “Sample efficient optimization
for learning controllers for bipedal locomotion,” in Humanoid Robots
(Humanoids), 2016 IEEE-RAS 16th International Conference on. 1EEE,
2016, pp. 22-28.

R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Annals of Mathe-
matics and Artificial Intelligence (AMAI), vol. 76, no. 1, pp. 5-23,
2016.

A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause,
S. Schaal, and S. Trimpe, “Virtual vs. real: Trading off simulations
and physical experiments in reinforcement learning with bayesian
optimization,” in 2017 IEEE International Conference on Robotics and
Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017,
2017, pp. 1557-1563.

J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and H. Van Brus-
sel, “Optimal robot excitation and identification,” IEEE transactions
on robotics and automation, vol. 13, no. 5, pp. 730-740, 1997.

L. Ljung, Ed., System Identification (2Nd Ed.): Theory for the User.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999.

D. Nguyen-Tuong and J. Peters, “Using model knowledge for learning
inverse dynamics,” in ICRA. IEEE, 2010, pp. 2677-2682.

W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown:
Learning a universal policy with online system identification,” in R:
SS, July 2017.

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2005.

J. Mockus, “On bayesian methods for seeking the extremum,” in
Optimization Techniques IFIP Technical Conference. Springer, 1975,
pp. 400-404.

M. Ahmed, B. Shahriari, and M. Schmidt, “Do we need “harmless”
bayesian optimization and “first-order” bayesian optimization?” in
NIPS BayesOPT Workshop, 2016.

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371-3408, 2010.

S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomlin, “Goal-
driven dynamics learning via bayesian optimization,” in JEEE CDC,
2017.

Z. Littlefield, D. Surovik, W. Wang, and K. E. Bekris, “From quasi-
static to kinodynamic planning for spherical tensegrity locomotion,” in
International Symosium on Robotics Research (ISRR), Puerto Varas,
Chile, 12/2017 2017.

