


This is rather dangerous in robotics, as a poor performance

during testing could lead to irreversible damages.

Model-based approaches explicitly learn the dynamics of

the system and search for an optimal policy using standard

simulation, planning, and actuation control loops for the

learned parameters. There are many examples of model-

based approaches for robotic manipulation [21]–[25], some

of which have used physics-based simulation to predict the

effects of pushing flat objects on a smooth surface [21].

A non-parametric approach was employed for learning

the outcome of pushing large objects (furniture) [23]. A

Markov Decision Process (MDP) has been applied to model

interactions between objects; however, only simulation results

on pushing were reported [24]. For general-purpose model-

based reinforcement learning, the PILCO algorithm has been

proven efficient in utilizing a small amount of data to learn

dynamical models and optimal policies [26].

Bayesian Optimization (BO) is a popular framework for

data-efficient black-box optimization [27]. In robotics, some

recent applications include learning controllers for bipedal

locomotion [28], gait optimization [29] and transfer policies

from simulation to real world [30].

Traditional system identification builds a dynamics model

by minimizing prediction error (e.g., using least squares) [31],

[32]. There have been attempts to combine parametric rigid

body dynamics models with nonparametric model learning

for approximating the inverse dynamics [33]. In contrast

to such methods, this work uses a physics engine, and

concentrates on identifying mechanical properties instead of

learning the models from scratch. Recent work also proposed

model identification for predicting low dimensional physical

parameters, such as either mass or friction [34], before

searching for an optimal policy.

The present work is a model-based approach that utilizes

a physics engine and concentrates on identifying only the

mechanical properties of the objects instead of recreating

the dynamics from scratch. Furthermore, it utilizes BO and

identifies a dimensionality reduction process for dealing with

high-dimensional model identification challenges efficiently.

III. MODEL IDENTIFICATION

This work proposes an online approach for robots to learn

the physical parameters of their dynamics through minimal

physical interaction. Because of the high dimensionality of

the parameter space of the tensegrity robot, even efficient

methods such as Bayesian optimization (BO) struggle to

identify all parameters with sufficient accuracy.

This section introduces the overall framework of the model

identification process. Dimensionality reduction methods,

which decrease the search space of BO in order to achieve

efficient optimization, are then covered in the next section.

For the tensegrity robot, the physical properties of interest

correspond to the density, length, radius, stiffness, damping

factor, pre-tension, motor radius, motor friction, and motor

inertia of the various rigid and tensile elements and actuators

which are modeled in the NASA’s Tensegrity Robotics Toolkit

(NTRT) [9]. In total, 15 different parameters are considered.

These physical properties are represented as a D-

dimensional vector θ ∈Θ, where Θ is the space of all possible

values of the physical properties. Θ is discretized with a

regular grid resolution. The proposed approach returns a

distribution P on discretized Θ instead of a single point θ ∈Θ.

This is appropriate due to the fact that model identification

is generally an ill-posed problem, where multiple models

can explain an observed trajectory with equal accuracy. The

objective is to preserve all possible explanations for the

purposes of robust planning.

The online model identification algorithm (given in Al-

gorithm 1) takes as input a prior distribution Pt , for time-

step t ≥ 0, on the discretized space of physical properties

Θ. Pt is calculated based on the initial distribution P0 and

a sequence of observations (x0,µ0,x1,µ1, . . . ,xt−1,µt−1,xt).
For the Tensegrity robot, xt is a state vector concatenating

the 3D centers of all rigid elements, i.e., the rods in the

corresponding Figure 1, and µt is a vector of motor torques.

Input: State-action-state data {(xi,µi,xi+1)}, i = 0, . . . , t;

Θ, a discretized space of physical properties;

Output: Probability distribution P over Θ ;

Sample θ0 ∼ Uniform(Θ); L← /0; k← 0;

repeat

lk← 0;

for i = 0 to t do
Simulate {(xi,µi)} using a physics engine with

physical parameters θk and get the predicted next

state x̂i+1 = f (xi,µi,θk) ;

lk← lk +‖x̂i+1− xi+1‖2;

end

L← L∪{(θk, lk)};
Calculate GP(m,K) on error function E, where

E(θ) = l, using data (θ , l) ∈ L;

θk+1 = argmaxθ∈Θ EI(θ) ;

k← k+1;

until Timeout;

Algorithm 1: Model Identification with Bayesian Optimization

The process consists of simulating the effects of the controls

µi on the robot in states xi under various values of parameters

θ and observing the resulting states x̂i+1, for i = 0, . . . , t.

The goal is to identify the model parameters that make the

outcomes x̂i+1 of the simulation as close as possible to the

real observed outcome xi+1. In other terms, the following

black-box optimization problem is solved:

θ ∗ = argmin
θ∈Θ

E(θ)
de f
=

t

∑
i=0

‖xi+1− f (xi,µi,θ)‖2, (1)

wherein xi and xi+1 are the observed states of the robot at

times i and i+ 1, µi is the control that applied at time t,

and f (xi,µi,θ) = x̂i+1, the predicted state at time t +1 after

simulating control µi at state xi using physical parameters θ .

The proposed approach consists of learning the error

function E from a sequence of simulations with different

parameters θk ∈Θ. To choose these parameters efficiently in









TABLE I: Identified Prameter Error (%)

Random Search in 15-D BO in 15-D REMBO in 5-D BO with VAE in 5-D BO with AE and Dynamics Net

density 5.01±2.86 4.10±2.66 1.85±1.88 1.96±0.46 1.30±0.05

radius 2.49±1.94 2.08±1.73 1.86± 1.84 1.43±0.28 0.30±0.03

density mp 5.40±2.96 5.19±2.66 1.89± 1.86 2.38±0.39 1.00±0.18

radius mp 4.78±2.78 5.36±2.97 1.94± 1.94 2.00±0.55 0.69±0.43

stiffnessActive 4.49±2.68 4.44±2.79 1.84± 1.90 1.68±0.46 1.71±0.03

damping 4.62±2.75 4.33±2.78 1.81± 1.89 2.02±0.44 2.26±0.15

rod length 5.05±2.75 4.72±2.69 1.90± 1.88 2.04±0.31 6.25±0.59

rod space 4.96 ±2.81 4.87±2.74 1.88± 1.84 1.68±0.36 5.20±0.38

rod length mp 4.89 ± 2.81 5.22±2.87 1.88± 1.96 1.70±0.58 4.06±0.23

pretension 5.10 ± 2.83 5.10±3.01 1.93± 1.89 1.58±0.50 1.38±0.34

maxTens 4.99 ± 2.87 4.66±2.80 1.86± 1.83 1.85±0.42 5.48±0.12

targetVelocity 4.85 ± 2.62 5.31±3.01 1.84± 1.90 2.06±0.62 0.49±0.31

motor radius 5.11 ± 2.90 4.38±2.81 1.90± 1.91 1.79±0.66 4.9±0.23

motor friction 5.10 ± 2.71 5.32±3.17 1.89± 1.82 2.19±0.27 0.65±0.03

motor inertia 4.78 ± 2.80 4.87±3.01 1.83± 1.88 2.00±0.45 1.86±0.06
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