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Abstract—Connected and autonomous vehicles (CAVs) can
play an important role in improving on-road safety and providing
convenience in our daily lives. To perform autonomous path
tracking and navigation, CAVs can exploit vehicle-to-everything
(V2X) communications to determine their vehicle dynamics
parameters, such as location, heading angle, and curvature, which
can be then used as inputs to their control system. However, the
interference and uncertainty of the wireless channels can increase
the transmission delay on the vehicle dynamics and, thus, impair
the CAV’s ability to track its target path. In this paper, the
problem of joint communication network and control system
design is studied to solve the path tracking problem for CAVs.
In particular, a novel approach is proposed to maximize the
number of reliable V2X transmitter-receiver pairs while jointly
considering the stability of the controller and the state of the
wireless network. Based on the proposed joint communication
and control design, the maximum transmission delay which can
prevent instability in the controller is determined. Then, the
reliable V2X links maximization problem is decomposed into two
equivalent sub-problems. The first sub-problem is the control
mechanism design in which a dual update method is used to
determine the headway distance parameter that is used by the
control system. The second sub-problem uses the outcome of
the first sub-problem to optimize the power allocation for the
communication system. To solve this power allocation problem,
a novel risk-based approach that uses the so-called conditional
value at risk (CVaR) from financial engineering is proposed to
find an approximated solution. Simulation results validate the
theoretical results and show that the proposed joint design can
improve the number of reliable V2X pairs by as much as 50%
compared to a baseline that optimizes the communication and
control systems independently.

I. INTRODUCTION

Connected and autonomous vehicles (CAVs) will be a
pillar of tomorrow’s intelligent transportation systems (ITSs)
[1]. To operate effectively, CAVs must sense and track their
environment so as to determine their navigation path. In
order to perform such autonomous navigation, CAVs must
leverage wireless connectivity, by using vehicle-to-everything
(V2X) communications, to obtain accurate environmental in-
formation. However, integrating CAVs into 5G-enabled V2X
networks requires overcoming several challenges such as joint
communication and control [2], resource management [1], and
network modeling [3].

In particular, to perform autonomous navigation, the CAVs
must follow a predesigned path by constantly adjusting their
control system whose inputs are the CAV dynamics, such as
location, heading angle and curvature. The CAV’s controller
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can use the difference between the current parameters of the
vehicle dynamics and the target ones as a feedback signal
to make appropriate adjustments to the steering direction and
velocity. Such vehicle dynamics are typically measured by
sensors [3] or estimated by algorithms, such as map matching
[4]. However, the data collected from sensors is not always
accurate to capture the dynamics of CAVs. For example, in an
urban scenario, the global positioning system (GPS) signal can
be easily blocked by surrounding buildings and the location
error estimated by GPS sensor can be as high as ten meters
[5]. Also, due to the complexity of the estimation algorithms,
inferring a CAV’s dynamics can be time-consuming, leading
to a potential safety risk to the real-time vehicular system
operation. In practice, sensor data can be complemented by
measurements received from V2X communications [1].

Indeed, the works in [5]–[8] have demonstrated that, if prop-
erly deployed, V2X communications can yield very accurate
vehicle dynamics information. For example, in [5] and [6], the
authors propose to use both GPS data and information received
from vehicle-to-vehicle (V2V) communications to improve
the accuracy of location. Moreover, the authors in [7] utilize
vehicle-to-infrastructure (V2I) communications to inform ve-
hicles of their geographic locations and lane numbers in an
intersection scenario. In addition, the work in [8] leverages
multihop V2X communications to aid vehicles blocked by
buildings to estimate their locations. Indeed, using information
collected from V2X communications can help improve the
accuracy of CAVs’ dynamics. However, in a real-world 5G
network, the information transmitted via V2X communications
will be inevitably coupled with the transmission delay. For
CAVs, such delayed information can lead to instability of the
controller thus preventing proper navigation by the CAVs [9].
To better leverage V2X links for autonomous navigation and
path tracking, there is a need to determine how the delayed
information impacts the stability of the controller. To do so,
one must jointly design the communication and control system
of a CAV. In this regard, none of the prior works [5]–[9]
studied this joint communication and control design problem
in 5G cellular V2X systems, as they often assumed the control
or communication system to be a blackbox.

The main contribution of this paper is a novel joint control
system and V2X wireless communication design framework
that enables CAVs to leverage V2X connectivity for au-
tonomous navigation (i.e., path tracking). In particular, we
first analyze two typical road scenarios for path tracking, and,
then, we analytically determine the maximum time delay to



guarantee the stability of the controller in these two scenarios.

Using this analysis, we optimize the mechanism design for the

control system and the power allocation for the communication

network so as to maximize the number of vehicular commu-

nication links that meet the delay requirements. To the best of
our knowledge, this is the first work that considers the impact
of the transmission delay in 5G networks on the stability of
the path tracking controller while jointly designing the control
and communication system for wireless-enabled autonomous
vehicle navigation. Simulation results validate the theoretical

results and show that the proposed joint design can improve the

number of reliable V2X pairs by as much as 50% compared

to a baseline that optimizes the communication and control

systems independently.

II. SYSTEM MODEL

Consider a V2X system that follows the Manhattan mobility

model [10] and encompasses CAVs driving on the road, pedes-

trians walking on the sidewalks, and base stations (BSs)/road

side units (RSUs) along the roads. In this system, each CAV

will receive information from nearby BSs/RSUs, pedestrians,

or CAVs/wireless enabled normal vehicles via V2X links to

estimate parameters affecting its path tracking dynamics such

as location, heading angle, or driving curvature. By using

this information as input, the control system of each CAV

can properly adjust the direction and velocity so as to follow

the designed path and autonomously navigate to the target

destination.

A. Communication Model
Consider a set I of I V2X links, consisting of all V2V

pairs, vehicle-to-pedestrian (V2P) pairs, and V2X pairs in the

network, where the receiver in each link is a CAV and the

transmitter can be a BS/RSU, pedestrian, or CAV. Also, we

assume that the transmitter-receiver configuration of each V2X

pair is fixed during the entire communication period, and the

distance between the transmitter and receiver of each V2I pair

is bounded within a safety range. Without loss of generality,

vehicles travel along the horizontal axes in specific traffic

lanes. We also consider a Cartesian coordinate system centered

on the center of an arbitrarily selected point, and the locations

of the transmitter and receiving CAV in V2X link i at time t
are denoted by, respectively, (xi(t), yi(t)) and (x′

i(t), y
′
i(t)),

i ∈ I. In addition, due to the large number of CAVs and

limited bandwidth, we assume that all V2X links share the

same frequency resource, and, thus, each V2X link will suffer

from the interference generated by other links.

To model the wide range of fading environment for vehic-

ular networks, we consider the V2X channels as independent

Nakagami channels [11]. Thus, the channel gain between

the receiving CAV i and the transmitter j at slot t will be

gi,j(t) = hi,j(t)li,j(t), where hi,j(t) captures the Nakagami

fading channel gain, and li,j(t) is the path loss. Moreover,

the assigned transmission power pi(t) for V2X link i ∈ I at

time slot t should satisfy pi(t) ≤ pmax
i , where pmax

i denotes

the maximum transmission power of the transmitter in V2X

link i and the values of pmax
i for vehicles, pedestrians, and
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Fig. 1. Steering control for CAVs.

BSs/RSUs are different. Hence, the throughput of V2X pair i
will be:

Ri(t)= ωlog2

(
1+

pi(t)gi,i(t)

ωN0 +
∑

j∈I\i pj(t)gi,j(t)

)
, (1)

where ω is the bandwidth of the shared wireless channel,

and N0 is the power spectral density of the additive white

Gaussian noise. Using (1), we can obtain the V2X link

transmission delay as τi(t) = S/Ri(t), where S is the size

of the transmitted packet in bits.

B. Controller Model
As shown in Fig. 1, consider the receiving CAV in V2X

link i as an example, and the parameters capturing vehicle

dynamics include location (xi(t), yi(t)), heading direction

θi(t), and vehicle curvature zi(t). Note that θi(t) is taken

counterclockwise from the y-axis. To track the predetermined

navigation path, a CAV will typically adopt the pure pursuit

method, one of the most common approaches to solve the

path tracking problem for mobile robots [12]. In this method,

the steering controller in the CAV will constantly calculate

the curvature of the circular arc that connects the current

location to the target point on the reference trajectory ahead

of the vehicle by the headway distance L, as shown in Fig.

1. Moreover, as path tracking has been usually studied for

constant velocities [9] and [12], the goal of the longitudinal

controller is to maintain a constant speed v. Here, we assume

the target point is located at (xr, yr), and the associated

heading orientation angle and the curvature are, respectively,

θr and zr. Thus, as shown in Fig. 1, we obtain the lateral

position error xl(t) and the errors of the heading angle and

vehicle’s curvature can be expressed as

θe(t) = θi(t)− θr, ze(t) = zi(t)− zr. (2)

Also, we capture the state representation of CAV i by using

the following differential equations [9]:

ẋi(t) = −v sin(θi(t)), (3)

ẏi(t) = v cos(θi(t)), (4)

θ̇i(t) = vzi(t), (5)

żi(t) = (z(t− τi(t))− zi(t))/T, (6)

where T is the time duration for each time slot, and z(t−τi(t))
is the output of the steering controller with τi(t) being

the transmission delay in V2X communications. In addition,

similar to [9] and [12], we assume that the steering controller

output is determined by the lateral position error xl(t), heading



angle error θe(t), and curvature error ze(t). As the vehicle dy-
namics information is obtained through V2X communications,
the errors xl(t), θe(t), and ze(t) will be impacted by the V2X
transmission delay.
C. Problem Formulation

Using V2X communications can help improve the accu-
racy of vehicle dynamics information. However, because of
transmission latency at V2X links, the steering controller
in the CAV may use delayed information as the inputs, as
shown in (6). Such delayed information can lead to control
system instability, meaning that the CAV’s control system
will not converge to the predetermined path [9]. Accordingly,
we can define a reliability metric as the probability of the
wireless network meeting the maximum delay requirement
τmax
i , i ∈ I, to maintain the stability of the steering controller.

The reliability of each V2X link can be thereby defined as
Pr(τi ≤ τmax

i ), i ∈ I. There are two approaches to ensure that
the delay experienced by a V2X link is smaller than τmax

i . For
instance, from the perspective of the wireless network, we can
optimize the power allocation for V2X links to increase the
system throughput and reduce the transmission delay τi. Also,
from the perspective of the control system design, we can relax
the maximum delay requirement τmax

i by choosing a proper
value for the control system, such as the headway distance Li
in the steering controller.

Different from the prior work in [2] which solely optimizes
the design of the control system for a single wireless vehicular
platoon system, we propose to maximize the number of
reliable V2X links for a set of independent CAVs by jointly
designing the wireless network resources and guiding the
CAVs’ control system. The joint design can be posed as an
optimization problem in which transmission power is allocated
to each V2X link and the headway distance Li is selected such
that the number of reliable V2X pairs is maximized. To this
end, we can formulate the problem as

max
{Li},p

∑
i∈I

1 (Pr(τi(t) ≤ τmax
i ) ≥ γ) (7)

s.t. 0 ≤ pi(t) ≤ pmax
i , i ∈ I, (8)

Lmin ≤ Li ≤ Lmax, (9)

where p = (pi(t), i ∈ I) is the transmission power vector for
the V2X links in the network and γ ∈ (0, 1) is the minimum
reliability requirement for reliable V2X communication links.
In particular, 1 (Pr(τi(t) ≤ τmax

i ) ≥ γ) = 1 when Pr(τi(t) ≤
τmax
i ) ≥ γ; otherwise, 1 (Pr(τi(t) ≤ τmax

i ) ≥ γ) = 0. Con-
straint (8) ensures that the allocated power will not exceed the
maximum transmission power of the transmitter at V2X link i.
Moreover, constraint (9) guarantees that the headway distance
Li, i ∈ I, is selected within a reasonable range.

To solve the joint control and communication optimiza-
tion problem in (7)–(9), we will first use the Lyapunov-
Razumikhin theorem to derive the mathematical expression
of the maximum V2X communication delay τmax

i , which can
guarantee the stability for the controller when the vehicle
tracks two different path types. As the delay requirement τmax

i

is only dependent on Li, i ∈ I, and Pr(τi(t) ≤ τmax
i ) is

an increasing function of τmax
i , we can rewrite the objective

function (7) as maxp

∑
i∈I 1

(
Pr(τi(t)≤max{Li} τ

max
i )≥γ

)
.

In this case, we can decompose the optimization problem into
two sub-problems where the optimal solution to these sub-
problems is equivalent to the one for the original problem.
The first sub-problem seeks to find an appropriate value for
the headway distance Li to relax the delay requirement τmax

i ,
i ∈ I. Then, under an optimized τmax

i , we leverage the
notion of conditional value at risk (CVaR) [13] from financial
engineering to determine the power allocation strategy in the
wireless system in order to maximize the number of reliable
V2X links in the second sub-problem.

III. STABILITY ANALYSIS OF THE CONTROL SYSTEM

As shown in [14], any path can be represented as a combi-
nation of straight lines and circular curves. Here, we conduct
the stability analysis for the steering controller in which CAVs
use information received from V2X links to track straight lines
and circular curves. Based on the analysis, we also derive the
maximum allowable communication delay in each scenario
which can guarantee a stable operation for each CAV.
A. Tracking Straight Lines

As shown in Fig. 1, consider that the CAV follows a
straight line and the y-axis of the reference coordinate system
is parallel to the straight line. In this case, we can obtain
the heading error, the steering error, and the lateral position
error, respectively, as θe(t) = θi(t), ze(t) = zi(t), and
xl(t) = −[xe(t) cos θi(t) −

√
L2
i − xe(t)2 sin θi(t)]. As the

lateral position error is a function of xe(t) and does not depend
on ye(t), then (3) (5), and (6) are sufficient to capture the
state representation of the CAV. Moreover, when the vehicle
is tracking a straight line, the output of the steering controller
can be shown as [9]:

z(t) =
2

L2
i

(
xi(t) cos θi(t)−

√
L2
i − x2i (t) sin θi(t)

)
. (10)

As observed in the state representations in (3), (5), and (6),
e1(t) = (xi(t), θi(t), zi(t)) is equal to (0, 0, 0) when the
vehicle reaches its destination. Thus, the state representation
of the CAV can be linearized around (0, 0, 0) as follows:

ė1(t) = Āe1(t) + B̄e1(t− τ), (11)

where the Jacobian matrices Ā =

0 −v 0
0 0 v
0 0 − 1

T

 and

B̄ = 1
T

 0 0 0
0 0 0
φxi φθi φzi

 with φxi = ∂z
∂xi
|(0,0,0) = 2

L2
i

,

φθi = ∂z
∂θi
|(0,0,0) = −2

Li
, and φzi = ∂z

∂zi
|(0,0,0) = 0.

B. Tracking Circular Curves
As shown in Fig. 2, consider that the CAV follows a curve

with a constant curvature. By using polar coordinates, the state
representation of the CAV can be captured by the following
differential equations [9]:

ṙi(t) = −v sin(θi(t)),

θ̇i(t) = v

(
zi(t) + zr −

zr cos θi(t)

1 + r(t)zr

)
,
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Fig. 2. Path tracking for a circular curve.

żi(t) = −zi(t) + zr
T

+
z(t− τ)

T
,

where ri(t) is the radial distance from the path to the CAV, and

zr = 1/d with the radius d of the circular curve. According

to [9], we can obtain the output of the steering controller as

z(t)= 2
L2

i

[
ẑ(t) cos θi(t)−

√
L2
i−ẑ(t)2 sin θi(t)

]
with ẑ(t) =

zr(ri(t)
2+L2

i )+2ri(t)
2(1+zrri(t))

. When e2(t) = (xi(t), θi(t), zi(t)) =

(0, 0, 0), we can verify that the CAV reaches the destination.

Thus, the state representation of the CAV can be linearized

around (0, 0, 0) as follows

ė2(t) = Âe2(t) + B̂e2(t− τ), (12)

where the Jacobian matrices Â =

⎡
⎣ 0 −v 0
vz2r 0 v
0 0 − 1

T

⎤
⎦ and

B̂= 1
T

⎡
⎣ 0 0 0
0 0 0
ϕr ϕθi ϕzi

⎤
⎦ with ϕr=

∂z
∂r |(0,0,0)= 2

L2
i

(
1− z2

rL
2
i

2

)
,

ϕθi=
∂z
∂θi

|(0,0,0) = − 2
Li

√
1− z2

rL
2
i

4 , and ϕzi =
∂z
∂zi

|(0,0,0) = 0.

C. Maximum Allowable Communication Delay
Based on motion analysis, we can obtain the state repre-

sentations (11) and (12) for CAVs tracking a straight line

and a circular curve. Next, we derive the maximum allowable

communication delay which can guarantee the stability of the

steering controller.

Theorem 1. The stability of the steering controller at CAV i
can be guaranteed if the maximum delay of any V2X link i in
the vehicular network satisfies:

τi(t) ≤ �τ =
1

λmax(Di)
, (13)

where Di = CiBiAiA
T
i B

T
i C

T
i +CiBiBiB

T
i B

T
i C

T
i +2cI

with c > 1 and a positive definitive matrix Ci meeting Ci(Ai+
Bi) + (Ai+Bi)

TCi =−I3×3, and λmax(·) represents the
maximum eigenvalues of the corresponding matrix.
Proof: As Ai + Bi can be verified as Hurwitz stable when

the CAV follows a straight line or circular curve, and from

Lyapunov theory [15], there always exists a positive definitive

matrix Ci ∈ R
3×3 so that Ci(Ai + Bi)+(Ai + Bi)

TCi =
−I3×3. Also, similar to the consensus problem considered

in [15], we use the following candidate Lyapunov function:

V (e) = eTCie. We also assume that there is a continuous

nondecreasing function ψ(x) that guarantees ψ(x) ≥ x, x > 0.

Then, the time derivative for V (e) will be:

V̇ (e) = eT
(
Ci(Ai +Bi) + (Ai +Bi)

TCi

)
e−2eT× (14)

∫ 0

−τmax

CiBiAie(t+x)dx−2eT
∫ 0

−τmax

CiBiBiΔe(t+x)dx.

Note that for a positive definite matrix φ, we have 2vT
1 v2 ≤

vT
1 φv1 + vT

2 φ
−1v2. Thus, let v1 = −2eTCiBiAi, φ =

I3×3, and v2 = e(t+ x). Then, the inequality for the second

term on the right-hand side in (14) will be:

−2eT
∫ 0

−τmax

CiBiAie(t+x)dx ≤
∫ 0

−τmax

e(t+x)Te(t+x)dx

+ τmaxe
TCiBiAiA

T
i B

T
i C

T
i e. (15)

When V (e(t + x)) ≤ ψ(V (e(t))) = cV (e(t))
with c > 1, x ∈ (−τmax, 0), (15) can be further

simplified as: −2eT
∫ 0

−τmax
CiBiAie(t + x)dx ≤

τmaxe
T (CiBiAiA

T
i B

T
i C

T
i + cI3×3)e. Similarly, we

can follow the same steps for the third term on the

right-hand side in (14). Finally, we can obtain V̇ (e) ≤
eT
[
Ci(Ai+Bi)+(Ai +Bi)

TCi+τmaxCiBiAiA
T
i B

T
i C

T
i +

τmaxCiBiBiB
T
i B

T
i C

T
i + 2τmaxcI

]
e. Based on the

Lyapunov-Razumikhin theorem introduced in [16], if

V̇ (e) ≤ 0, i.e., τmax ≤ λmin(−Ci(Ai + Bi) − (Ai +
Bi)

TCi)/λmax(CiBiAiA
T
i B

T
i C

T
i +CiBiBiB

T
i B

T
i C

T
i +

2cI), the system is asymptotically stable and the state

representation vector will converge to a zero vector. Also,

since Ci(Ai+Bi)+(Ai+Bi)
TCi = −I3×3, we can further

simplify the stability delay requirement as shown in (13). �
By substituting Ai and Bi respectively with Ā and B̄, or Â

and B̂ in Theorem 1, we can obtain the delay requirements to

guarantee the stability of the steering controller when tracking

a straight line or a circular curve. Note that, as both Ā, B̄, Â,

and B̂ are functions of Li, the maximum delay value found

in (13) is dependent on the value of Li. In addition, when a

CAV is tracking a road composed of M segments where each

segment can be either a straight line or circular curve, the

maximum delay requirement to guarantee the stability of the

steering controller is τmax
i = min(�τ1,�τ2, ...,�τM ), i ∈ I.

Based on the delay requirement found in Theorem 1, we can

determine the reliability of a V2X communication network

for each CAV that is performing V2X-assisted autonomous

navigation. Also, Theorem 1 sheds light on how to design

the control system, e.g., choosing a proper value of Li, so

as to relax the delay requirement and improve the reliability

performance of V2X communications. By using this guideline,

we propose a joint control and communication system design

to solve the problem in (7)–(9) in the next section.

IV. JOINT CONTROL SYSTEM AND COMMUNICATION

SYSTEM DESIGN

In order to solve the optimization problem in (7)–(9),

we decompose the original problem into two sub-problems:

control system design and power allocation for the V2X

communication network. In particular, in the first sub-problem,

we formulate an optimization problem of the headway distance

Li to maximize the value of τmax
i (to improve the tolerance

of the control system to delay), and the sub-problem is solved

by using a dual update method. Moreover, after choosing the



optimized value of Li from the first sub-problem, we leverage
risk tools [17] from financial engineering to determine the
power allocation strategy for the communication system.
A. Control System Design

For the control system design, we can relax the delay
requirement and improve the control system’s delay tolerance
by formulating the following optimization problem:

max
{Li}

τmax
i (16)

s.t. Lmin ≤ Li ≤ Lmax, (17)

λ
(m)
i τmax

i − 1≤0, 1 ≤ m ≤M, (18)

where λ(m)
i corresponds to the value of the denominator on

the right-hand side in (13) for the m-th path segment.
Since the optimization problem in (16)–(18) is not convex,

we use the dual update method, introduced in [18], to obtain
an efficient sub-optimal solution. In particular, we iteratively
update the Lagrange multipliers, and, then, calculate the
optimization variables based on Karush-Kuhn-Tucker (KKT)
conditions. First, we obtain the Lagrange function as:

L(Li, τ
max
i , ν1, ..., νM+2) = τmax

i +
M∑
m=1

νi(1− λ(m)
i τmax

i )

+νM+1(Li − Lmin) + νM+2(Lmax − Li),

where ν1, ..., νM+2 ≥ 0 are the Lagrange multipliers.
The Lagrange dual function can be thereby expressed as
maxLi,τmax

i
L(Li, τ

max
i , ν1, ..., νM+2). Next, we obtain a sub-

gradient of L(Li, τ
max
i , ν1, ..., νM+2) as follows:

∆νm = 1− Λ(i)
maxτ

∗
i , 1 ≤ m ≤M,

∆νM+1 = L∗i − Lmin,∆νM+2 = Lmax − L∗i ,

where L∗i and τ∗i are the optimizing variables in Lagrange
dual function, and the Λ

(m)
i is the value of λ(m)

i when Li=
L∗i . The proof of subgradient is similar to the one provided
in [18] and is omitted here. We can choose the subgradient
method or ellipsoid method to find the optimal dual variables
for ν1, ..., νM+2. Then, the sub-optimal values of parameters
Li and τmax

i , i∈I, can be determined by using KKT conditions
(omitted here due to space constraints). Thus, after solving the
optimization problem in (16)–(18), BS can send the headway
distance L∗i to the receiving CAV in each pair. Then, the CAV
can use the L∗i sent by the BS/RSU in the pure pursuit method
so as to relax the delay requirement and improve the control
system’s delay tolerance.
B. Financial Risk Based Power Allocation

After obtaining the optimal control parameter L∗i that max-
imizes τmax

i , i∈I, we must perform the power allocation to
maximize the number of reliable V2X links in the vehicular
network. To solve the optimization problem in (7)–(9) when
Li is fixed, we introduce a binary variable βi to capture the
indicator function in (7) and formulate an equivalent problem
as follows:

max
p,{βi}

∑
i∈I

βi (19)

s.t. γ ≤ Pr(τi ≤ τmax
i ) + (1− βi), i ∈ I, (20)

βi ∈ {0, 1}, i ∈ I, (21)
0 ≤ pi(t) ≤ pmax

i , i ∈ I. (22)

Here, if γ ≥ Pr(τi ≤ τmax), i ∈ I, βi will be set 0 to meet
the constraints (20) and (21); otherwise, βi will be chosen as
1 to maximize the objective function in (19).

Since Nakagami fading channels are considered for V2X
communications, directly deriving the exact expression of
Pr(τi≤τmax

i ) is challenging. Alternatively, we consider a risk
measurement tool from financial engineering to model the
value of Pr(τi≤τmax

i ). This is due to the similarity between
our optimization problem and risk management problems
considered in risk theory. In particular, in risk theory, the
objective is to quantify the potential risk and make a decision
to minimize the risk of loss, as done in portfolio optimization
problems in [19]. Similar to the problems considered in risk
analysis, our optimization problem seeks to perform power
allocation for the wireless system so as to minimize the
number of V2X pairs in which the stability of the control
system cannot be guaranteed.

To conduct risk analysis, there are two risk measurement
tools commonly used in financial engineering. The first mea-
sure is value at risk (VaR), also know as quantile, where
the maximal loss is measured with a given probability [17].
Mathematically, δ-VaR of a loss function η is defined as
VaRδ(η) = inf{a ∈ R : Pr(η ≤ a) ≥ δ}, where δ ∈ (0, 1) is
the confidence level. To capture the risk distribution beyond
the quantile notion of VaR, the CVaR is proposed to capture
the mean tail loss and mathematically defined as [20]:

CVaRδ(η) = inf
b∈R

{
1

1− δ
E[[η + b]+]− b

}
=

1

1− δ

∫ 1

δ

VaRδ(η)dδ.

where [η+ b]+ =max{η+ b, 0}. Moreover, according to [19],
the range of b can be further constrained in a bound closed in-
terval close interval b∈ [0, bupper], where bupper =VaRδ(−U(η))
with an upper bound U(η) of the risk function η.

Here, we employ the CVaR to model the value of Pr(τi ≤
τmax
i ) and solve the optimization problem in (19)–(22). In

particular, by comparing the V2X link transmission delay, i.e.,
τi(t) = S/Ri(t), with the delay requirement found in Theorem
1, we can define the risk function of V2X link i when the
power allocation strategy is set as p as follows

ηi(p)=
(
2

S
ωτmax
i −1

)ωN0+
∑
j∈I\i

pj(t)gi,j(t)

−pi(t)gi,i(t).
(23)

Hence, by comparing the value of ηi(p) with 0, we can
determine whether a V2X communication link i, i ∈ I,
is at risk or not to guarantee the stability of the steering
controller. By using the risk function in (23), we can replace
the constraint (20) with a (γ− 1 +βi)-CVaR based constraint
expressed as



TABLE I
SIMULATION PARAMETERS.

Parameter Value
Simulation area 210× 210 m2

Transmission power pmax (V2V, V2P, V2I pairs) 27, 24, 28 dBm

Building breadth, street width 100 m, 10 m [10]

Bandwidth ω, noise spectral density N0 20 MHz [2], −174 dBm/Hz [10]

Speed range (5, 20) m/s

Distance range for V2V, V2P, and V2I pairs (10, 20), (2, 10), (10, 40) m

Curvature range (0, 1/2) [9]

Nakagami parameter, path loss exponent 3, 4 [11]

Target reliability γ 0.90, 0.95, 0.99
Packet size S (500, 5000) bits

Minimum & maximum headway Lmin & Lmax 4, 10 m

Time slot duration T 10 ms [10]

Number of samples K 100

inf
bi∈R

{
1

2− γ − βi
E[[ηi(p) + bi]

+]− bi

}
≤ 0. (24)

Moreover, based on the sample average method (SAA) [21],

we assume that there are K independent and identically dis-

tributed (i.i.d.) samples of ηi(p), i ∈ I, and an approximation

for E[[ηi(p) + t]+] can be shown as follows:

E[[ηi(p) + bi]
+] ≈ 1

K

K∑
k=1

E[[ηi,k(p) + bi]
+], (25)

where ηi,k(p) denotes the value of ηi(p) for k-th sample.

Thus, the optimization problem in (19)–(22) with the CVaR

condition can be reformulated as follows:

max
p,{nk

i },{bi},{βi}

∑
i∈I

βi (26)

s.t. ηi,k(p) + bi ≤ nk
i , i ∈ I, 1 ≤ k ≤ K, (27)

K∑
k=1

nk
i − (2− γ)Kbi +Kβibi ≤ 0, i ∈ I, (28)

nk
i ≥ 0, i ∈ I, 1 ≤ k ≤ K, (29)

βi ∈ {0, 1}, 0 ≤ pi(t) ≤ pmax
i , i ∈ I. (30)

To solve the approximated problem, we consider β̂i = βibi.
Hence, based on the Big M method introduced in [22], the

constraint in (28) can be converted to
K∑

k=1

nk
i − (2− γ)Kti +Kβ̂i ≤ 0, i ∈ I, (31)

β̂i ≤ bupperβi, β̂i ≤ bi, β̂i ≥ bi − (1− βi)bupper, β̂i ≥ 0. (32)

We can observe that the optimization problem with the updated

constraints is a mixed integer linear programming (MILP)

problem. To solve such problem and find the power allocation

strategy for the communication network, we can leverage the

well-known branch and bound algorithm [23] whose details

are omitted here due to the space limitation.

By decomposing the original optimization problem in (7)–

(9) into two sub-problems, we use dual update method and

the notion of CVaR from financial engineering to obtain a

suboptimal solution. The solution provides insights how to

jointly design the control system and communication network

to realize a stable navigation for CAVs.

Fig. 3. Validation of the maximum tolerable delay found in Theorem 1. The
top figure is for the straight line and the bottom one is for the circular curve.

Fig. 4. Reliability performance versus packet size for different system design
strategies.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we use a Manhattan mobility model

in which V2X pairs are uniformly distributed over the space

outside buildings. Also, each CAV will follow a sequence of

straight lines and circular curves and its speed is assumed in

a bounded range, shown in Table I. Also, other simulation

parameters are summarized in Table I.

We first corroborate our analytical results on delay require-

ments to guarantee the stability of the steering controller. In

particular, when L=5 m and zr=0.2, we can find that the delay

requirements for vehicles driving on the straight line and the

circular curve are 16.1 ms and 18.2 ms. Thus, we model the

uncertainty of the V2X links as a time-varying delay in the

range (0, 16.1 ms) and (0, 18.2 ms), respectively, when the

CAV is tracking a straight line and a circular curve. Initially,

the CAV is driving with randomly selected heading angle and

curvature. As shown in Fig. 3, both curvature and heading

angle errors for vehicles tracking straight lines and circular

curves will converge to 0 (a similar result is observed for the

lateral distance error and is omitted due to space limitation).

In particular, the CAV’s controller can reach the target point in

a short period of time, i.e., 5 ms, guaranteeing the stability of

the steering controller. Clearly, the delay requirements, found

by Theorem 1, can guarantee the stability of the controller to

track both straight and circular paths.

Fig. 4 shows how the percentage of reliable V2X pairs

changes as the packet size S increases in a network with a

total of I = 24 V2X pairs. We also compare the performance

of our proposed joint design with three baseline systems.

In particular, the first baseline is the system with optimized

headway distance Li, i ∈ I, for the control system, and the



Fig. 5. Reliability performance for different total number of V2X pairs.

transmission power for each pair is randomly selected in the

range shown in Table I. For the second baseline, the system

is with optimized power allocation for V2X communications,

while the headway distance for each pair is randomly selected

in the range shown in Table I. For the third baseline system,

both headway distance and transmission power are randomly

selected in the bounded ranges of Table I. As shown in Fig.

4, we can observe that, as the packet size S increases, the

percentage for reliable V2X pairs decreases. This is due to

the fact that a large-sized packet will increase the V2X trans-

mission delay, leading to a lower reliability for the vehicular

communication. Moreover, Fig. 4 validates that our proposed

joint design strategy outperforms other three baseline systems

with no joint design. In particular, when S=5000 bits, the

percentage of the reliable V2X links for the system with

the optimized control system design and the system with

optimized power allocation is 60% and 65%, respectively.

However, the performance for the joint design strategy can be

as much as 90% which is approximately a 50% improvement

compared with the baselines optimizing the communication

and control system independently.

Fig. 5 shows the percentage of reliable V2X pairs for

traffic scenarios with different number of V2X links. Also, we

compare the reliability performance for systems with different

target reliability thresholds. As observed in Fig. 5, when

the total number of V2X links increases, the percentage of

reliable V2X pairs will decrease. This is because, if the traffic

density increases, the receiving CAV will encounter more

interference generated by other links. As a result, the SINR

and the system throughput will decrease, leading to a lower

reliability for the V2X network. In addition, Fig. 5 shows that

a system with higher target reliability threshold will have a

lower percentage of reliable V2X pairs in the network. This

is because, with higher target reliability, fewer V2X pairs can

meet such requirement, leading to a lower percentage.

VI. CONCLUSIONS

In this paper, we have proposed a novel joint control sys-

tem and V2X wireless communication design framework that

enables CAVs to leverage V2X connectivity for autonomous

navigation (i.e., path tracking). Based on the proposed joint de-

sign strategy, we have determined the maximum transmission

delay which can prevent the instability of the CAV’s control

system. We have also decomposed the joint design problem

into two sub-problems: control system design and power

allocation for communication network. To find an efficient

solution to these two sub-problems, we have utilized the dual

update method and the risk notion of CVaR from financial

engineering. Simulation results validate our theoretical results

and show that the proposed joint design can improve the

number of reliable V2X pairs by as much as 50% compared

to a baseline that optimizes the communication and control

systems independently.
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