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Abstract

Fairness in machine learning has predominantly been studied in static classification settings
without concern for how decisions change the underlying population over time. Conventional
wisdom suggests that fairness criteria promote the long-term well-being of those groups they
aim to protect.

We study how static fairness criteria interact with temporal indicators of well-being, such
as long-term improvement, stagnation, and decline in a variable of interest. We demonstrate
that even in a one-step feedback model, common fairness criteria in general do not promote
improvement over time, and may in fact cause harm in cases where an unconstrained objective
would not. We completely characterize the delayed impact of three standard criteria, contrasting
the regimes in which these exhibit qualitatively different behavior. In addition, we find that
a natural form of measurement error broadens the regime in which fairness criteria perform
favorably.

Our results highlight the importance of measurement and temporal modeling in the evalua-
tion of fairness criteria, suggesting a range of new challenges and trade-offs.

1 Introduction

Machine learning commonly considers static objectives defined on a snapshot of the population
at one instant in time; consequential decisions, in contrast, reshape the population over time.
Lending practices, for example, can shift the distribution of debt and wealth in the population.
Job advertisements allocate opportunity. School admissions shape the level of education in a
community.

Existing scholarship on fairness in automated decision-making criticizes unconstrained machine
learning for its potential to harm historically underrepresented or disadvantaged groups in the
population [Executive Office of the President, 2016, Barocas and Selbst, 2016]. Consequently, a
variety of fairness criteria have been proposed as constraints on standard learning objectives. Even
though, in each case, these constraints are clearly intended to protect the disadvantaged group by
an appeal to intuition, a rigorous argument to that effect is often lacking.

In this work, we formally examine under what circumstances fairness criteria do indeed promote
the long-term well-being of disadvantaged groups measured in terms of a temporal variable of
interest. Going beyond the standard classification setting, we introduce a one-step feedback model
of decision-making that exposes how decisions change the underlying population over time.
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Our running example is a hypothetical lending scenario. There are two groups in the population
with features described by a summary statistic, such as a credit score, whose distribution differs
between the two groups. The bank can choose thresholds for each group at which loans are offered.
While group-dependent thresholds may face legal challenges [Ross and Yinger, 2006], they are
generally inevitable for some of the criteria we examine. The impact of a lending decision has
multiple facets. A default event not only diminishes profit for the bank, it also worsens the financial
situation of the borrower as reflected in a subsequent decline in credit score. A successful lending
outcome leads to profit for the bank and also to an increase in credit score for the borrower.

When thinking of one of the two groups as disadvantaged, it makes sense to ask what lending
policies (choices of thresholds) lead to an expected improvement in the score distribution within
that group. An unconstrained bank would maximize profit, choosing thresholds that meet a break-
even point above which it is profitable to give out loans. One frequently proposed fairness criterion,
sometimes called demographic parity, requires the bank to lend to both groups at an equal rate.
Subject to this requirement the bank would continue to maximize profit to the extent possible.
Another criterion, originally called equality of opportunity, equalizes the true positive rates between
the two groups, thus requiring the bank to lend in both groups at an equal rate among individuals
who repay their loan. Other criteria are natural, but for clarity we restrict our attention to these
three.

Do these fairness criteria benefit the disadvantaged group? When do they show a clear advantage
over unconstrained classification? Under what circumstances does profit maximization work in the
interest of the individual? These are important questions that we begin to address in this work.

1.1 Contributions

We introduce a one-step feedback model that allows us to quantify the long-term impact of classi-
fication on different groups in the population. We represent each of the two groups A and B by a
score distribution πA and πB, respectively. The support of these distributions is a finite set X cor-
responding to the possible values that the score can assume. We think of the score as highlighting
one variable of interest in a specific domain such that higher score values correspond to a higher
probability of a positive outcome. An institution chooses selection policies τA, τB : X → [0, 1] that
assign to each value in X a number representing the rate of selection for that value. In our example,
these policies specify the lending rate at a given credit score within a given group. The institution
will always maximize their utility (defined formally later) subject to either (a) no constraint, or (b)
equality of selection rates, or (c) equality of true positive rates.

We assume the availability of a function ∆ : X → R such that ∆(x) provides the expected
change in score for a selected individual at score x. The central quantity we study is the expected
difference in the mean score in group j ∈ {A,B} that results from an institutions policy, ∆µj

defined formally in Equation (2). When modeling the problem, the expected mean difference can
also absorb external factors such as “reversion to the mean” so long as they are mean-preserving.
Qualitatively, we distinguish between long-term improvement (∆µj > 0), stagnation (∆µj = 0),
and decline (∆µj < 0). Our findings can be summarized as follows:

1. Both fairness criteria (equal selection rates, equal true positive rates) can lead to all possible
outcomes (improvement, stagnation, and decline) in natural parameter regimes. We provide
a complete characterization of when each criterion leads to each outcome in Section 3.
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• There are a class of settings where equal selection rates cause decline, whereas equal
true positive rates do not (Corollary 3.5),

• Under a mild assumption, the institution’s optimal unconstrained selection policy can
never lead to decline (Proposition 3.1).

2. We introduce the notion of an outcome curve (Figure 1) which succinctly describes the dif-
ferent regimes in which one criterion is preferable over the others.

3. We perform experiments on FICO credit score data from 2003 and show that under various
models of bank utility and score change, the outcomes of applying fairness criteria are in line
with our theoretical predictions.

4. We discuss how certain types of measurement error (e.g., the bank underestimating the repay-
ment ability of the disadvantaged group) affect our comparison. We find that measurement
error narrows the regime in which fairness criteria cause decline, suggesting that measurement
should be a factor when motivating these criteria.

5. We consider alternatives to hard fairness constraints.

• We evaluate the optimization problem where fairness criterion is a regularization term
in the objective. Qualitatively, this leads to the same findings.

• We discuss the possibility of optimizing for group score improvement ∆µj directly subject
to institution utility constraints. The resulting solution provides an interesting possible
alternative to existing fairness criteria.

We focus on the impact of a selection policy over a single epoch. The motivation is that the
designer of a system usually has an understanding of the time horizon after which the system
is evaluated and possibly redesigned. Formally, nothing prevents us from repeatedly applying our
model and tracing changes over multiple epochs. In reality, however, it is plausible that over greater
time periods, economic background variables might dominate the effect of selection.

Reflecting on our findings, we argue that careful temporal modeling is necessary in order to
accurately evaluate the impact of different fairness criteria on the population. Moreover, an under-
standing of measurement error is important in assessing the advantages of fairness criteria relative
to unconstrained selection. Finally, the nuances of our characterization underline how intuition
may be a poor guide in judging the long-term impact of fairness constraints.

1.2 Related work

Recent work by Hu and Chen [2018] considers a model for long-term outcomes and fairness in
the labor market. They propose imposing the demographic parity constraint in a temporary labor
market in order to provably achieve an equitable long-term equilibrium in the permanent labor
market, reminiscent of economic arguments for affirmative action [Foster and Vohra, 1992]. The
equilibrium analysis of the labor market dynamics model allows for specific conclusions relating
fairness criteria to long term outcomes. Our general framework is complementary to this type of
domain specific approach.

Fuster et al. [2017] consider the problem of fairness in credit markets from a different perspective.
Their goal is to study the effect of machine learning on interest rates in different groups at an
equilibrium, under a static model without feedback.
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Ensign et al. [2017] consider feedback loops in predictive policing, where the police more heavily
monitor high crime neighborhoods, thus further increasing the measured number of crimes in those
neighborhoods. While the work addresses an important temporal phenomenon using the theory of
urns, it is rather different from our one-step feedback model both conceptually and technically.

Demographic parity and its related formulations have been considered in numerous papers [e.g.
Calders et al., 2009, Zafar et al., 2017]. Hardt et al. [2016] introduced the equality of opportunity
constraint that we consider and demonstrated limitations of a broad class of criteria. Kleinberg
et al. [2017] and Chouldechova [2016] point out the tension between “calibration by group” and
equal true/false positive rates. These trade-offs carry over to some extent to the case where we
only equalize true positive rates [Pleiss et al., 2017].

A growing literature on fairness in the “bandits” setting of learning [see Joseph et al., 2016,
et sequelae] deals with online decision making that ought not to be confused with our one-step
feedback setting. Finally, there has been much work in the social sciences on analyzing the effect
of affirmative action [see e.g., Keith et al., 1985, Kalev et al., 2006].

1.3 Discussion

In this paper, we advocate for a view toward long-term outcomes in the discussion of “fair” machine
learning. We argue that without a careful model of delayed outcomes, we cannot foresee the impact
a fairness criterion would have if enforced as a constraint on a classification system. However, if
such an accurate outcome model is available, we show that there are more direct ways to optimize
for positive outcomes than via existing fairness criteria. We outline such an outcome-based solution
in Section 4.3. Specifically, in the credit setting, the outcome-based solution corresponds to giving
out more loans to the protected group in a way that reduces profit for the bank compared to
unconstrained profit maximization, but avoids loaning to those who are unlikely to benefit, resulting
in a maximally improved group average credit score. The extent to which such a solution could
form the basis of successful regulation depends on the accuracy of the available outcome model.

This raises the question if our model of outcomes is rich enough to faithfully capture realistic
phenomena. By focusing on the impact that selection has on individuals at a given score, we model
the effects for those not selected as zero-mean. For example, not getting a loan in our model
has no negative effect on the credit score of an individual.1 This does not mean that wrongful
rejection (i.e., a false negative) has no visible manifestation in our model. If a classifier has a
higher false negative rate in one group than in another, we expect the classifier to increase the
disparity between the two groups (under natural assumptions). In other words, in our outcome-
based model, the harm of denied opportunity manifests as growing disparity between the groups.
The cost of a false negative could also be incorporated directly into the outcome-based model by a
simple modification (see Footnote 2). This may be fitting in some applications where the immediate
impact of a false negative to the individual is not zero-mean, but significantly reduces their future
success probability.

In essence, the formalism we propose requires us to understand the two-variable causal mecha-
nism that translates decisions to outcomes. This can be seen as relaxing the requirements compared
with recent work on avoiding discrimination through causal reasoning that often required stronger
assumptions [Kusner et al., 2017, Nabi and Shpitser, 2017, Kilbertus et al., 2017]. In particular,
these works required knowledge of how sensitive attributes (such as gender, race, or proxies thereof)

1In reality, a denied credit inquiry may lower one’s credit score, but the effect is small compared to a default event.
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causally relate to various other variables in the data. Our model avoids the delicate modeling step
involving the sensitive attribute, and instead focuses on an arguably more tangible economic mech-
anism. Nonetheless, depending on the application, such an understanding might necessitate greater
domain knowledge and additional research into the specifics of the application. This is consistent
with much scholarship that points to the context-sensitive nature of fairness in machine learning.

2 Problem Setting

We consider two groups A and B, which comprise a gA and gB = 1 − gA fraction of the total
population, and an institution which makes a binary decision for each individual in each group,
called selection. Individuals in each group are assigned scores in X := [C], and the scores for
group j ∈ {A,B} are distributed according πj ∈ SimplexC−1. The institution selects a policy
τ := (τA, τB) ∈ [0, 1]2C , where τ j(x) corresponds to the probability the institution selects an
individual in group j with score x. One should think of a score as an abstract quantity which
summarizes how well an individual is suited to being selected; examples are provided at the end of
this section.

We assume that the institution is utility-maximizing, but may impose certain constraints to
ensure that the policy τ is fair, in a sense described in Section 2.2. We assume that there exists a
function u : C → R, such that the institution’s expected utility for a policy τ is given by

U(τ ) =
∑

j∈{A,B} gj
∑

x∈X τ j(x)πj(x)u(x). (1)

Novel to this work, we focus on the effect of the selection policy τ on the groups A and B. We
quantify these outcomes in terms of an average effect that a policy τ j has on group j. Formally, for
a function ∆(x) : X → R, we define the average change of the mean score µj for group j

∆µj(τ ) :=
∑

x∈X πj(x)τ j(x)∆(x) . (2)

We remark that many of our results also go through if ∆µj(τ ) simply refers to an abstract change
in well-being, not necessarily a change in the mean score. Furthermore, it is possible to modify the
definition of ∆µj(τ ) such that it directly considers outcomes of those who are not selected.2 Lastly,
we assume that the success of an individual is independent of their group given the score; that is,
the score summarizes all relevant information about the success event, so there exists a function
ρ : X → [0, 1] such that individuals of score x succeed with probability ρ(x).

We now introduce the specific domain of credit scores as a running example in the rest of
the paper, after which we present two more examples showing the general applicability of our
formulation to many domains.

Example 2.1 (Credit scores). In the setting of loans, scores x ∈ [C] represent credit scores, and the
bank serves as the institution. The bank chooses to grant or refuse loans to individuals according
to a policy τ . Both bank and personal utilities are given as functions of loan repayment, and

2 If we consider functions ∆p(x) : X → R and ∆n(x) : X → R to represent the average effect of selection and
non-selection respectively, then ∆µj(τ ) :=

∑
x∈X

πj(x) (τ j(x)∆p(x) + (1− τ j(x))∆n(x)). This model corresponds
to replacing ∆(x) in the original outcome definition with ∆p(x) − ∆n(x), and adding a offset

∑
x∈X

πj(x)∆n(x).
Under the assumption that ∆p(x)−∆n(x) increases in x, this model gives rise to outcomes curves resembling those
in Figure 1 up to vertical translation. All presented results hold unchanged under the further assumption that
∆µ(βMaxUtil) ≥ 0.
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therefore depend on the success probabilities ρ(x), representing the probability that any individual
with credit score x can repay a loan within a fixed time frame. The expected utility to the bank
is given by the expected return from a loan, which can be modeled as an affine function of ρ(x):
u(x) = u+ρ(x) + u−(1− ρ(x)), where u+ denotes the profit when loans are repaid and u− the loss
when they are defaulted on. Individual outcomes of being granted a loan are based on whether
or not an individual repays the loan, and a simple model for ∆(x) may also be affine in ρ(x):
∆(x) = c+ρ(x) + c−(1− ρ(x)), modified accordingly at boundary states. The constant c+ denotes
the gain in credit score if loans are repaid and c− is the score penalty in case of default.

Example 2.2 (Advertising). A second illustrative example is given by the case of advertising
agencies making decisions about which groups to target. An individual with product interest score
x responds positively to an ad with probability ρ(x). The ad agency experiences utility u(x) related
to click-through rates, which increases with ρ(x). Individuals who see the ad but are uninterested
may react negatively (becoming less interested in the product), and ∆(x) encodes the interest
change. If the product is a positive good like education or employment opportunities, interest can
correspond to well-being. Thus the advertising agency’s incentives to only show ads to individuals
with extremely high interest may leave behind groups whose interest is lower on average. A related
historical example occurred in advertisements for computers in the 1980s, where male consumers
were targeted over female consumers, arguably contributing to the current gender gap in computing.

Example 2.3 (College Admissions). The scenario of college admissions or scholarship allotments
can also be considered within our framework. Colleges may select certain applicants for acceptance
according to a score x, which could be thought encode a “college preparedness” measure. The stu-
dents who are admitted might “succeed” (this could be interpreted as graduating, graduating with
honors, finding a job placement, etc.) with some probability ρ(x) depending on their preparedness.
The college might experience a utility u(x) corresponding to alumni donations, or positive rating
when a student succeeds; they might also show a drop in rating or a loss of invested scholarship
money when a student is unsuccessful. The student’s success in college will affect their later success,
which could be modeled generally by ∆(x). In this scenario, it is challenging to ensure that a single
summary statistic x captures enough information about a student; it may be more appropriate to
consider x as a vector as well as more complex forms of ρ(x).

While a variety of applications are modeled faithfully within our framework, there are limitations
to the accuracy with which real-life phenomenon can be measured by strictly binary decisions and
success probabilities. Such binary rules are necessary for the definition and execution of existing
fairness criteria, (see Sec. 2.2) and as we will see, even modeling these facets of decision making as
binary allows for complex and interesting behavior.

2.1 The Outcome Curve

We now introduce important outcome regimes, stated in terms of the change in average group
score. A policy (τA, τB) is said to cause active harm to group j if ∆µj(τ j) < 0, stagnation if
∆µj(τ j) = 0, and improvement if ∆µj(τ j) > 0. Under our model, MaxUtil policies can be chosen
in a standard fashion which applies the same threshold τ

MaxUtil for both groups, and is agnostic to
the distributions πA and πB. Hence, if we define

∆µ
MaxUtil
j := ∆µj(τ

MaxUtil) (3)
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2.2 Decision Rules and Fairness Criteria

We will consider policies that maximize the institution’s total expected utility, potentially subject
to a constraint: τ ∈ C ∈ [0, 1]2C which enforces some notion of “fairness”. Formally, the institution
selects τ∗ ∈ argmax U(τ ) s.t. τ ∈ C. We consider the three following constraints:

Definition 2.2 (Fairness criteria). The maximum utility (MaxUtil) policy corresponds to the null-
constraint C = [0, 1]2C , so that the institution is free to focus solely on utility. The demographic
parity (DemParity) policy results in equal selection rates between both groups. Formally, the
constraint is C =

{
(τA, τB) :

∑
x∈X πA(x)τA =

∑
x∈X πB(x)τB

}
. The equal opportunity (EqOpt)

policy results in equal true positive rates (TPR) between both group, where TPR is defined as

TPRj(τ ) :=
∑

x∈X
πj(x)ρ(x)τ (x)∑

x∈X
πj(x)ρ(x)

. EqOpt ensures that the conditional probability of selection given

that the individual will be successful is independent of the population, formally enforced by the
constraint C = {(τA, τB) : TPRA(τA) = TPRB(τB)} .

Just as the expected outcome ∆µ can be expressed in terms of selection rate for threshold
policies, so can the total utility U . In the unconstrained cause, U varies independently over the
selection rates for group A and B; however, in the presence of fairness constraints the selection rate
for one group determines the allowable selection rate for the other. The selection rates must be equal
for DemParity, but for EqOpt we can define a transfer function, G(A→B), which for every loan rate
β in group A gives the loan rate in group B that has the same true positive rate. Therefore, when
considering threshold policies, decision rules amount to maximizing functions of single parameters.
This idea is expressed in Figure 2, and underpins the results to follow.

3 Results

In order to clearly characterize the outcome of applying fairness constraints, we make the following
assumption.

Assumption 1 (Institution utilities). The institution’s individual utility function is more stringent
than the expected score changes, u(x) > 0 =⇒ ∆(x) > 0. (For the linear form presented in
Example 2.1, u−

u+
< c−

c+
is necessary and sufficient.)

This simplifying assumption quantifies the intuitive notion that institutions take a greater risk
by accepting than the individual does by applying. For example, in the credit setting, a bank loses
the amount loaned in the case of a default, but makes only interest in case of a payback. Using
Assumption 1, we can restrict the position of MaxUtil on the outcome curve in the following sense.

Proposition 3.1 (MaxUtil does not cause active harm). Under Assumption 1, 0 ≤ ∆µ
MaxUtil ≤

∆µ
∗.

We direct the reader to Appendix C for the proof of the above proposition, and all subsequent
results presented in this section. The results are corollaries to theorems presented in Section 6.

3.1 Prospects and Pitfalls of Fairness Criteria

We begin by characterizing general settings under which fairness criteria act to improve outcomes
over unconstrained MaxUtil strategies. For this result, we will assume that group A is disadvantaged
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Figure 2: Both outcomes ∆µ and institution utilities U can be plotted as a function of selection
rate for one group. The maxima of the utility curves determine the selection rates resulting from
various decision rules.

in the sense that the MaxUtil acceptance rate for B is large compared to relevant acceptance rates
for A.

Corollary 3.2 (Fairness Criteria can cause Relative Improvement). (a) Under the assumption that
βMaxUtil
A < β and βMaxUtil

B > βMaxUtil
A , there exist population proportions g0 < g1 < 1 such that, for

all gA ∈ [g0, g1], β
MaxUtil
A < β

DemParity

A < β. That is, DemParity causes relative improvement.
(b) Under the assumption that there exist βMaxUtil

A < β < β′ < β such that βMaxUtil
B >

G(A→B)(β), G(A→B)(β′), there exist population proportions g2 < g3 < 1 such that, for all gA ∈
[g2, g3], β

MaxUtil
A < β

EqOpt

A < β. That is, EqOpt causes relative improvement.

This result gives the conditions under which we can guarantee the existence of settings in which
fairness criteria cause improvement relative to MaxUtil. Relying on machinery proved in Section 6,
the result follows from comparing the position of optima on the utility curve to the outcome curve.
Figure 2 displays a illustrative example of both the outcome curve and the institutions’ utility U
as a function of the selection rates in group A. In the utility function (1), the contributions of each
group are weighted by their population proportions gj, and thus the resulting selection rates are
sensitive to these proportions.

As we see in the remainder of this section, fairness criteria can achieve nearly any position
along the outcome curve under the right conditions. This fact comes from the potential mismatch
between the outcomes, controlled by ∆, and the institution’s utility u.

The next theorem implies that DemParity can be bad for long term well-being of the protected
group by being over-generous, under the mild assumption that ∆µA(β

MaxUtil
B ) < 0:

Corollary 3.3 (DemParity can cause harm by being over-eager). Fix a selection rate β. Assume
that βMaxUtil

B > β > βMaxUtil
A . Then, there exists a population proportion g0 such that, for all

gA ∈ [0, g0], β
DemParity

A > β. In particular, when β = β0, DemParity causes active harm, and when
β = β, DemParity causes relative harm.
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The assumption ∆µA(β
MaxUtil
B ) < 0 implies that a policy which selects individuals from group

A at the selection rate that MaxUtil would have used for group B necessarily lowers average score
in A. This is one natural notion of protected group A’s ‘disadvantage’ relative to group B. In this
case, DemParity penalizes the scores of group A even more than a naive MaxUtil policy, as long as
group proportion gA is small enough. Again, small gA is another notion of group disadvantage.

Using credit scores as an example, Corollary 3.3 tells us that an overly aggressive fairness
criterion will give too many loans to people in a protected group who cannot pay them back,
hurting the group’s credit scores on average. In the following theorem, we show that an analogous
result holds for EqOpt.

Corollary 3.4 (EqOpt can cause harm by being over-eager). Suppose that βMaxUtil
B > G(A→B)(β)

and β > βMaxUtil
A . Then, there exists a population proportion g0 such that, for all gA ∈ [0, g0],

β
EqOpt

A > β. In particular, when β = β0, EqOpt causes active harm, and when β = β, EqOpt
causes relative harm.

We remark that in Corollary 3.4, we rely on the transfer function, G(A→B), which for every loan
rate β in group A gives the loan rate in group B that has the same true positive rate. Notice that
if G(A→B) were the identity function, Corollary 3.3 and Corollary 3.4 would be exactly the same.
Indeed, our framework (detailed in Section 6 and Appendix B) unifies the analyses for a large class
of fairness constraints that includes DemParity and EqOpt as specific cases, and allows us to derive
results about impact on ∆µ using general techniques. In the next section, we present further results
that compare the fairness criteria, demonstrating the usefulness of our technical framework.

3.2 Comparing EqOpt and DemParity

Our analysis of the acceptance rates of EqOpt and DemParity in Section 6 suggests that it is
difficult to compare DemParity and EqOpt without knowing the full distributions πA,πB, which is
necessary to compute the transfer function G(A→B). In fact, we have found that settings exist both
in which DemParity causes harm while EqOpt causes improvement and in which DemParity causes
improvement while EqOpt causes harm. There cannot be one general rule as to which fairness
criteria provides better outcomes in all settings. We now present simple sufficient conditions on the
geometry of the distributions for which EqOpt is always better than DemParity in terms of ∆µA.

Corollary 3.5 (EqOpt may avoid active harm where DemParity fails). Fix a selection rate β.
Suppose πA,πB are identical up to a translation with µA < µB, i.e. πA(x) = πB(x+(µB−µA)).
For simplicity, take ρ(x) to be linear in x. Suppose

β >
∑

x>µA

πA.

Then there exists an interval [g1, g2] ⊆ [0, 1], such that ∀gA > g1, β
EqOpt < β while ∀gA < g2,

βDemParity > β. In particular, when β = β0, this implies DemParity causes active harm but EqOpt
causes improvement for gA ∈ [g1, g2], but for any gA such that DemParity causes improvement,
EqOpt also causes improvement.

To interpret the conditions under which Corollary 3.5 holds, consider when we might have
β0 >

∑
x>µA

πA. This is precisely when ∆µA(
∑

x>µA
πA) > 0, that is, ∆µA > 0 for a policy that

selects every individual whose score is above the group A mean, which is reasonable in reality.
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Indeed, the converse would imply that group A has such low scores that even selecting all above
average individuals in A would hurt the average score. In such a case, Corollary 3.5 suggests that
EqOpt is better than DemParity at avoiding active harm, because it is more conservative. A natural
question then is: can EqOpt cause relative harm by being too stingy?

Corollary 3.6 (DemParity never loans less than MaxUtil, but EqOpt might). Recall the definition
of the TPR functions TPRj, and suppose that the MaxUtil policy τ

MaxUtil is such that

βMaxUtil
A < βMaxUtil

B and TPRA(τ
MaxUtil) > TPRB(τ

MaxUtil) (4)

Then β
EqOpt

A < βMaxUtil
A < β

DemParity

A . That is, EqOpt causes relative harm by selecting at a rate
lower than MaxUtil.

The above theorem shows that DemParity is never stingier than MaxUtil to the protected group
A, as long as a A is disadvantaged in the sense that MaxUtil selects a larger proportion of B than A.
On the other hand, EqOpt can select less of group A than MaxUtil, and by definition, cause relative
harm. This is a surprising result about EqOpt, and this phenomenon arises from high levels of in-
group inequality for group A. Moreover, we show in Appendix C that there are parameter settings
where the conditions in Corollary 3.6 are satisfied even under a stringent notion of disadvantage
we call CDF domination, described therein.

4 Relaxations of Constrained Fairness

4.1 Regularized fairness

In many cases, it may be unrealistic for an institution to ensure that fairness constraints are met
exactly. However, one can consider “soft” formulations of fairness constraints which either penalized
the differences in acceptance rate (DemParity) or the differences in TPR (EqOpt). In Appendix B,
we formulate these soft constraints as regularized objectives. For example, a soft-DemParity can
be rendered as

max
τ :=τA,τB

U(τ )− λΦ(〈πA, τA〉 − 〈πB, τB〉) , (5)

where λ > 0 is a regularization parameter, and Φ(t) is a convex regularization function. We show
that the solutions to these objectives are threshold policies, and can be fully characterized in terms
of the group-wise selection rate. We also make rigorous the notion that policies which solve the soft-
constraint objective interpolate between MaxUtil policies at λ = 0 and hard-constrained policies
(DemParity or EqOpt) as λ → ∞. This fact is clearly demonstrated by the form of the solutions in
the special case of the regularization function Φ(t) = |t|, provided in the appendix.

4.2 Fairness Under Measurement Error

Next, consider the implications of an institution with imperfect knowledge of scores. Under a
simple model in which the estimate of an individual’s score X ∼ π is prone to errors e(X) such
that X + e(X) := X̂ ∼ π̂. Constraining the error to be negative results in the setting
that scores are systematically underestimated. In this setting, it is equivalent to consider the
CDF of underestimated distribution π̂ to be dominated by the CDF true distribution π, that is

11



∑
x≥c π̂(x) ≤

∑
x≥c π(x) for all c ∈ [C]. Then we can compare the institution’s behavior under

this estimation to its behavior under the truth.

Proposition 4.1 (Underestimation causes underselection). Fix the distribution of B as πB and let
β be the acceptance rate of A when the institution makes the decision using perfect knowledge of
the distribution πA. Denote β̂ as the acceptance rate when the group is instead taken as π̂A. Then
βMaxUtil
A > β̂MaxUtil

A and β
DemParity

A > β̂
DemParity

A . If the errors are further such that the true TPR

dominates the estimated TPR, it is also true that β
EqOpt

A > β̂
EqOpt

A .

Because fairness criteria encourage a higher selection rate for disadvantaged groups (Corol-
lary 3.2), systematic underestimation widens the regime of their applicability. Furthermore, since
the estimated MaxUtil policy underloans, the region for relative improvement in the outcome curve
(Figure 1) is larger, corresponding to more regimes under which fairness criteria can yield favorable
outcomes. Thus the potential for measurement error should be a factor when motivating these
criteria.

4.3 Outcome-based alternative

As explained in the preceding sections, fairness criteria may actively harm disadvantaged groups.
It is thus natural to consider a modified decision rule which involves the explicit maximization of
∆µA. In this case, imagine that the institution’s primary goal is to aid the disadvantaged group,
subject to a limited profit loss compared to the maximum possible expected profit UMaxUtil. The
corresponding problem is as follows.

max
τA

∆µA(τA) s.t. UMaxUtil
A − U(τ ) < δ . (6)

Unlike the fairness constrained objective, this objective no longer depends on group B and instead
depends on our model of the mean score change in group A, ∆µA.

Proposition 4.2 (Outcome-based solution). In the above setting, the optimal bank policy τA is a
threshold policy with selection rate β = min{β∗, βmax}, where β∗ is the outcome-optimal loan rate
and βmax is the maximum loan rate under the bank’s “budget”.

The above formulation’s advantage over fairness constraints is that it directly optimizes the
outcome of A and can be approximately implemented given reasonable ability to predict outcomes.
Importantly, this objective shifts the focus to outcome modeling, highlighting the importance of
domain specific knowledge. Future work can consider strategies that are robust to outcome model
errors.

5 Optimality of Threshold Policies

Next, we move towards statements of the main theorems underlying the results presented in Sec-
tion 3. We begin by establishing notation which we shall use throughout. Recall that ◦ denotes
the Hadamard product between vectors. We identify functions mapping X → R with vectors in
RC . We also define the group-wise utilities

Uj(τ j) :=
∑

x∈X

πj(x)τ j(x)u(x) , (7)

12



so that for τ = (τA, τB), U(τ ) := gAUA(τA) + gBUB(τB).
First, we formally describe threshold policies, and rigorously justify why we may always assume

without loss of generality that the institution adopts policies of this form.

Definition 5.1 (Threshold selection policy). A single group selection policy τ ∈ [0, 1]C is called a
threshold policy if it has the form of a randomized threshold on score:

τ c,γ =





1, x > c

γ, x = c

0, x < c

, for some c ∈ [C] and γ ∈ (0, 1] . (8)

As a technicality, if no members of a population have a given score x ∈ X , there may be
multiple threshold policies which yield equivalent selection rates for a given population. To avoid
redundancy, we introduce the notation τ j

∼=πj
τ
′
j to mean that the set of scores on which τ j and τ

′
j

differ has probability 0 under πj; formally,
∑

x:τ j(x) 6=τ j(x)
πj(x) = 0. For any distribution πj, ∼=πj

is an equivalence relation. Moreover, we see that if τ j
∼=πj

τ
′
j, then τ j and τ

′
j both provide the

same utility for the institution, induce the same outcomes for individuals in group j, and have the
same selection and true positive rates. Hence, if (τA, τB) is an optimal solution to any of MaxUtil,
EqOpt, or DemParity, so is any (τ ′

A, τ
′
B) for which τA

∼=πA
τ
′
A and τB

∼=πB
τ
′
B.

For threshold policies in particular, their equivalence class under ∼=πj
is uniquely determined by

the selection rate function,

rπj
(τ j) :=

∑

x∈X

πj(x)τ j(x) , (9)

which denotes the fraction of group j which is selected. Indeed, we have the following lemma (proved
in Appendix A.1):

Lemma 5.1. Let τ j and τ
′
j be threshold policies. Then τ j

∼=πj
τ
′
j if and only if rπj

(τ j) = rπj
(τ ′

j).
Further, rπj

(τ j) is a bijection from Tthresh(πj) to [0, 1], where Tthresh(πj) is the set of equivalence
classes between threshold policies under ∼=πj

. Finally, πj ◦ r
−1
πj

(βj) is well defined.

Remark that r−1
πj

(βj) is an equivalence class rather than a single policy. However, πj ◦ r
−1
πj

(τ j) is

well defined, meaning that πj ◦τ j = πj ◦τ
′
j for any two policies in the same equivalence class. Since

all quantities of interest will only depend on policies τ j through πj ◦ τ j, it does not matter which
representative of r−1

πj
(βj) we pick. Hence, abusing notation slightly, we shall represent Tthresh(πj)

by choosing one representative from each equivalence class under ∼=πj

3.
It turns out the policies which arise in this away are always optimal in the sense that, for a

given loan rate βj , the threshold policy r−1
πj

(βj) is the (essentially unique) policy which maximizes
both the institution’s utility and the utility of the group. Defining the group-wise utility,

Uj(τ j) :=
∑

x∈X

u(x)πj(x)τ j(x) , (10)

we have the following result:

3One way to do this is to consider the set of all threshold policies τ c,γ such that, γ = 1 if πj(c) = 0 and πj(c−1) > 0
if γ = 1 and c > 1.
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Proposition 5.1 (Threshold policies are preferable). Suppose that u(x) and ∆(x) are strictly
increasing in x. Given any loaning policy τ j for population with distribution πj, then the policy
τ
thresh
j := r−1

πj
(rπj

(τ j)) ∈ Tthresh(πj) satisfies

∆µj(τ
thresh
j ) ≥ ∆µj(τ j) and Uj(τ

thresh
j ) ≥ Uj(τ j) . (11)

Moreover, both inequalities hold with equality if and only if τ j
∼=πj

τ
thresh
j .

The map τ j 7→ r−1
πj

(rπj
(τ j)) can be thought of transforming an arbitrary policy τ j into a

threshold policy with the same selection rate. In this language, the above proposition states that
this map never reduces institution utility or individual outcomes. We can also show that optimal
MaxUtil and DemParity policies are threshold policies, as well as all EqOpt policies under an
additional assumption:

Proposition 5.2 (Existance of optimal threshold policies under fairness constraints). Suppose
that u(x) is strictly increasing in x. Then all optimal MaxUtil policies (τA, τB) satisfy τ j

∼=πj

r−1
πj

(
rπj

(τ j)
)
for j ∈ {A,B}. The same holds for all optimal DemParity policies, and if in addition

u(x)/ρ(x) is increasing, the same is true for all optimal EqOpt policies.

To prove proposition 5.1, we invoke the following general lemma which is proved using standard
convex analysis arguments (in Appendix A.2):

Lemma 5.2. Let v ∈ RC , and let w ∈ RC
>0, and suppose either that v(x) is increasing in x, and

v(x)/w(x) is increasing or, ∀x ∈ X , w(x) = 0. Let π ∈ SimplexC−1 and fix t ∈ [0,
∑

x∈X π(x) ·
w(x)]. Then any

τ
∗ ∈ arg max

τ∈[0,1]C
〈v ◦ π, τ 〉 s.t. 〈π ◦w, τ 〉 = t (12)

satisfies τ
∗ ∼=π r−1

π
(rπ(τ

∗)). Moreover, at least one maximizer τ
∗ ∈ Tthresh(π) exists.

Proof of Proposition 5.1. We will first prove Proposition 5.1 for the function Uj. Given our nom-
inal policy τ j, let βj = rπj

(τ j). We now apply Lemma 5.2 with v(x) = u(x) and w(x) =
1. For this choice of v and w, 〈v, τ 〉 = Uj(τ ) and that 〈πj ◦ w, τ = rπj

(τ ). Then, if τ j ∈
argmaxτ Uj(τ ) s.t. rπj

(τ ) = βj, Lemma 12 implies that τ j
∼=πj

r−1
πj

(rπj
(τ j)).

On the other hand, assume that τ j
∼=πj

r−1
πj

(
rπj

(τ j)
)
. We show that r−1

πj
(rπj

(τ j)) is a maximizer;

which will imply that τ j is a maximizer since τ j
∼=πj

r−1
πj

(rπj
(τ j)) implies that Uj(τ j) = τ j

∼=πj

r−1
πj

(rπj
(τ j)). By Lemma 5.2 there exists a maximizer τ

∗
j ∈ Tthresh(π), which means that τ

∗
j =

r−1
πj

(rπj
(τ ∗

j )). Since τ
∗
j is feasible, we must have rπj

(τ ∗
j ) = rπj

(τ j), and thus τ
∗
j = r−1

πj
(rπj

(τ j)),
as needed. The same argument follows verbatim if we instead choose v(x) = ∆(x), and compute
〈v, τ 〉 = ∆µj(τ ).

We now argue Proposition 5.2 for MaxUtil, as it is a straightforward application of Lemma 5.2.
We will prove Proposition 5.2 for DemParity and EqOpt separately in Sections 6.1 and 6.2.

Proof of Proposition 5.2 for MaxUtil. MaxUtil follows from lemma 5.2 with v(x) = u(x), and
t = 0 and w = 0.
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5.1 Quantiles and Concavity of the Outcome Curve

To further our analysis, we now introduce left and right quantile functions, allowing us to specify
thresholds in terms of both selection rate and score cutoffs.

Definition 5.2 (Upper quantile function). Define Q to be the upper quantile function correspond-
ing to π, i.e.

Qj(β) = argmax{c :
C∑

x=c

πj(x) > β} and Q+
j (β) := argmax{c :

C∑

x=c

πj(x) ≥ β} . (13)

Crucially Q(β) is continuous from the right, and Q+(β) is continuous from the left. Further,
Q(·) and Q+(·) allow us to compute derivatives of key functions, like the mapping from selection
rate β to the group outcome associated with a policy of that rate, ∆µ(r−1

π (β)). Because we take
π to have discrete support, all functions in this work are piecewise linear, so we shall need to
distinguish between the left and right derivatives, defined as follows

∂−f(x) := lim
t→0−

f(x+ t)− f(x)

t
and ∂+f(y) := lim

t→0+

f(y + t)− f(y)

t
. (14)

For f supported on [a, b], we say that f is left- (resp. right-) differentiable if ∂−f(x) exists for
all x ∈ (a, b] (resp. ∂+f(y) exists for all y ∈ [a, b)). We now state the fundamental derivative
computation which underpins the results to follow:

Lemma 5.3. Let ex denote the vector such that ex(x) = 1, and ex(x
′) = 0 for x′ 6= x. Then

πj ◦ r
−1
πj

(β) : [0, 1] → [0, 1]C is continuous, and has left and right derivatives

∂+

(
πj ◦ r

−1
πj

(β)
)
= eQ(β) and ∂−

(
πj ◦ r

−1
πj

(β)
)
= eQ+(β) . (15)

The above lemma is proved in Appendix A.3. Moreover, Lemma 5.3 implies that the outcome
curve is concave under the assumption that ∆(x) is monotone:

Proposition 5.3. Let π be a distribution over C states. Then β 7→ ∆µ(r−1
π

(β)) is concave. In
fact, if w(x) is any non-decreasing map from X → R, β 7→ 〈w, r−1

π
(β)〉 is concave.

Proof. Recall that a univariate function f is concave (and finite) on [a, b] if and only (a) f is left- and
right-differentiable, (b) for all x ∈ (a, b), ∂−f(x) ≥ ∂+f(x) and (c) for any x > y, ∂−f(x) ≤ ∂+f(y).

Observe that ∆µ(r−1
π

(β)) = 〈∆,π ◦ r−1
π

(β)〉. By Lemma 5.3, π ◦ r−1
π

(β) has right and left
derivatives eQ(β) and eQ+(β). Hence, we have that

∂+∆µ(βB) = ∆(Q(βB)) and ∂−∆µ(βB) = ∆(Q+(βB)) . (16)

Using the fact that∆(x) is monotone, and that Q ≤ Q+, we see that ∂+∆µ(f−1
π

(βB)) ≤ ∂−∆µ(f−1
π

(βB)),
and that ∂∆µ(f−1

π
(βB)) and ∂+∆µ(f−1

π
(βB)) are non-increasing, from which it follows that ∆µ(f−1

π
(βB))

is concave. The general concavity result holds by replacing ∆(x) with w(x).
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Proof of Proposition 5.2 for DemParity. Noting that rπj
(τ j) = 〈πj, τ j〉, we see that, by Lemma 5.2,

under the special case where v(x) = u(x) and w(x) = 1, the optimal solution (τ ∗
A(β), τ

∗
B(β)) for

fixed rπA
(τA) = rπB

(τB) = β can be chosen to coincide with the threshold policies. Optimizing
over β, the global optimal must coincide with thresholds.

Hence, any optimal policy is equivalent to the threshold policy τ = (r−1
πA

(β), r−1
πB

(β)), where β
solves the following optimization:

max
β∈[0,1]

U
((
r−1
πA

(β), r−1
πB

(β)
))

. (17)

We shall show that the above expression is in fact a concave function in β, and hence the set of
optimal selection rates can be characterized by first order conditions. This is presented formally in
the following theorem:

Theorem 6.1 (Selection rates for DemParity). The set of optimal selection rates β∗ satisfying (17)
forms a continuous interval [β−

DemParity, β
+
DemParity], such that for any β ∈ [0, 1], we have

β < β−
DemParity if gAu (QA(β)) + gBu (QB(β)) > 0 ,

β > β+
DemParity if gAu

(
Q+

A (β)
)
+ gBu

(
Q+

B (β)
)
< 0 .

Proof. Note that we can write

U
((
r−1
πA

(β), r−1
πB

(β)
))

= gA〈u,πA ◦ r−1
πA

(β)〉+ gB〈u,πB ◦ r−1
πB

(β)〉 .

Since u(x) is non-decreasing in x, Proposition 5.3 implies that β 7→ U
((
r−1
πA

(β), r−1
πB

(β)
))

is
concave in β. Hence, all optimal selection rates β∗ lie in an interval [β−, β+]. To further characterize
this interval, let us us compute left- and right-derivatives.

∂+U
((
r−1
πA

(β), r−1
πB

(β)
))

= ∂+gA〈u,πA ◦ r−1
πA

(β)〉+ ∂+gB〈u,πB ◦ r−1
πB

(β)〉

= gA〈u, ∂+
(
πA ◦ r−1

πA
(β)
)
〉+ gB〈u, ∂+

(
πB ◦ r−1

πB
(β)
)
〉

Lemma 5.3
= gA〈u, eQA(β)〉+ gB〈u, eQB(β)〉

= gAu(QA(β)) + gBu(QB(β)) .

The same argument shows that

∂−U((r
−1
πA

(β), r−1
πB

(β))) = gAu(Q
+
A (β)) + gBu(Q

+
B (β)).

By concavity of U
((
r−1
πA

(β), r−1
πB

(β)
))
, a positive right derivative at β implies that β < β∗ for all β∗

satisfying (17), and similarly, a negative left derivative at β implies that β > β∗ for all β∗ satisfying
(17).

With a result of the above form, we can now easily prove statements such as that in Corollary
3.3 (see appendix C for proofs), by fixing a selection rate of interest (e.g. β0) and inverting the
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inequalities in Theorem 6.1 to find the exact population proportions under which, for example,
DemParity results in a higher selection rate than β0.

6.2 EqOpt and General Constraints

Next, we will provide a theorem that gives an explicit characterization for the range of selection rates
βA for A when the bank loans according to EqOpt. Observe that the EqOpt objective corresponds
to solving the following linear program:

max
τ=(τA,τB)∈[0,1]2C

U(τ ) s.t. 〈wA ◦ πA, τA〉 = 〈wB ◦ πB, τB〉 , (18)

where wj =
ρ

〈ρ,πj〉
. This problem is similar to the demographic parity optimization in (17), except

for the fact that the constraint includes the weights. Whereas we parameterized demographic parity
solutions in terms of the acceptance rate β in equation (17), we will parameterize equation (18) in
terms of the true positive rate (TPR), t := 〈wA ◦ πA, τA〉. Thus, (18) becomes

max
t∈[0,tmax]

max
(τA,τB)∈[0,1]2C

∑

j∈{A,B}

gjUj(τ j) s.t. 〈wj ◦ πj, τ j〉 = t, j ∈ {A,B} , (19)

where tmax = minj∈{A,B}{〈πj,wj〉} is the largest possible TPR. The magenta EO curve in Figure 3
illustrates that feasible solutions to this optimization problem lie on a curve parametrized by t.
Note that the objective function decouples for j ∈ {A,B} for the inner optimization problem,

max
τ j∈[0,1]C

∑

j∈{A,B}

gjUj(τ j) s.t. 〈wj ◦ πj, τ j〉 = t . (20)

We will now show that all optimal solutions for this inner optimization problem are πj-a.e. equal to
a policy in Tthresh(πj), and thus can be written as r−1

πj
(βj), depending only on the resulting selection

rate.

Proof of Proposition 5.2 for EqOpt. We apply Lemma 5.2 to the inner optimization in (20) with

v(x) = u(x) and w(x) = ρ(x)
〈ρ,πj〉

. The claim follows from the assumption that u(x)/ρ(x) is increasing

by optimizing over t.

This selection rate βj is uniquely determined by the TPR t (proof appears in Appendix B.1):

Lemma 6.1. Suppose that w(x) > 0 for all x. Then the function

T
j,wj

(β) := 〈r−1
πj

(β),πj ◦wj〉

is a bijection from [0, 1] to [0, 〈πj,w〉].

Hence, for any t ∈ [0, tmax], the mapping from TPR to acceptance rate, T−1
j,wj

(t), is well defined

and any solution to (20) is πj-a.e. equal to the policy r−1
πj

(T−1
j,wj

(t)). Thus (19) reduces to

max
t∈[0,tmax]

∑

j∈{A,B}

gjUj

(
r−1
πj

(
T−1

j,wj
(t)
))

. (21)
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The above expression parametrizes the optimization problem in terms of a single variable. We
shall show that the above expression is in fact a concave function in t, and hence the set of optimal
selection rates can be characterized by first order conditions. This is presented formally in the
following theorem:

Theorem 6.2 (Selection rates for EqOpt). The set of optimal selection rates β∗ for group A satsi-
fying (19) forms a continuous interval [β−

EqOpt, β
+
EqOpt], such that for any β ∈ [0, 1], we have

β < β−
EqOpt if gA

u(QA(β))

wA(QA(β))
+ gB

u(QB(G
(A→B)
w (β)))

wB(QB(G
(A→B)
w (β)))

> 0 ,

β > β+
EqOpt if gA

u(Q+
A (β))

wA(Q
+
A (β))

+ gB
u(Q+

B (G
(A→B)
w (β)))

wB(Q
+
B (G

(A→B)
w (β)))

< 0 .

Here, G
(A→B)
w (β) := T−1

B,wB
(T−1

A,wA
(β)) denotes the (well-defined) map from selection rates βA for A

to the selection rate βB for B such that the policies τ
∗
A := r−1

πA
(βA) and τ

∗
B := r−1

πB
(βB) satisfy the

constraint in (18).

Proof. Starting with the equivalent problem in (21), we use the concavity result of Lemma B.1.
Because the objective function is the positive weighted sum of two concave functions, it is also
concave. Hence, all optimal true positive rates t∗ lie in an interval [t−, t+]. To further characterize
[t−, t+], we can compute left- and right-derivatives, again using the result of Lemma B.1.

∂+
∑

j∈{A,B}

gjUj

(
r−1
πj

(T−1
j,wj

(t))
)

= gA∂+UA

(
r−1
πA

(T−1
A,wA

(t))
)
+ gA∂+UA

(
r−1
πA

(T−1
A,wA

(t))
)

= gA
u(QA(T

−1
A,wA

(t)))

wA(QA(T
−1
A,wA

(t)))
+ gB

u(QB(T
−1
B,wB

(t)))

wB(QB(T
−1
B,wB

(t)))

The same argument shows that

∂−
∑

j∈{A,B}

gjUj

(
r−1
πj

(T−1
j,wj

(t))
)
= gA

u(Q+
A (T

−1
A,wA

(t))

wA(Q
+
A (T

−1
A,wA

(t)))
+ gB

u(Q+
B (T

−1
B,wB

(t)))

wB(Q
+
B (T

−1
B,wB

(t)))
.

By concavity, a positive right derivative at t implies that t < t∗ for all t∗ satisfying (21), and
similarly, a negative left derivative at t implies that t > t∗ for all t∗ satisfying (21).

Finally, by Lemma 6.1, this interval in t uniquely characterizes an interval of acceptance rates.
Thus we translate directly into a statement about the selection rates β for group A by seeing that

T−1
A,wA

(t) = β and T−1
B,wB

(t) = G
(A→B)
w (β).

Lastly, we remark that the results derived in this section go through verbatim for any linear
constraint of the form 〈w,πA ◦ τA〉 = 〈w,πB ◦ τB〉, as long as u(x)/w(x) is increasing in x, and
w(x) > 0.
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8 Conclusion and Future Work

We argue that without a careful model of delayed outcomes, we cannot foresee the impact a fairness
criterion would have if enforced as a constraint on a classification system. However, if such an
accurate outcome model is available, we show that there are more direct ways to optimize for
positive outcomes than via existing fairness criteria.

Our formal framework exposes a concise, yet expressive way to model outcomes via the expected
change in a variable of interest caused by an institutional decision. This leads to the natural concept
of an outcome curve that allows us to interpret and compare solutions effectively. In essence, the
formalism we propose requires us to understand the two-variable causal mechanism that translates
decisions to outcomes. Depending on the application, such an understanding might necessitate
greater domain knowledge and additional research into the specifics of the application. This is
consistent with much scholarship that points to the context-sensitive nature of fairness in machine
learning.

An interesting direction for future work is to consider other characteristics of impact beyond
the change in population mean. Variance and individual-level outcomes are natural and impor-
tant considerations. Moreover, it would be interesting to understand the robustness of outcome
optimization to modeling and measurement errors.

Acknowledgements

We thank Lily Hu, Aaron Roth, and Cathy O’Neil for discussions and feedback on an earlier version
of the manuscript. We thank the students of CS294: Fairness in Machine Learning (Fall 2017,
University of California, Berkeley) for inspiring class discussions and comments on a presentation
that was a precursor of this work. This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under Grant No. DGE 1752814.

23



References

Solon Barocas and Andrew D. Selbst. Big data’s disparate impact. California Law Review, 104,
2016.

Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers with independency
constraints. In Proc. IEEE ICDMW, ICDMW ’09, pages 13–18, 2009.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. FATML, 2016.

Danielle Ensign, Sorelle A Friedler, Scott Neville, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Runaway feedback loops in predictive policing. arXiv preprint arXiv:1706.09847, 2017.

Executive Office of the President. Big data: A report on algorithmic systems, opportunity, and
civil rights. Technical report, White House, May 2016.

Dean P Foster and Rakesh V Vohra. An economic argument for affirmative action. Rationality and
Society, 4(2):176–188, 1992.

Andreas Fuster, Paul Goldsmith-Pinkham, Tarun Ramadorai, and Ansgar Walther. Predictably
unequal? the effects of machine learning on credit markets. SSRN, 2017.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
Proc. 30th NIPS, 2016.

Lily Hu and Yiling Chen. A short-term intervention for long-term fairness in the labor market. In
Proc. 27th WWW, 2018.

Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning:
Classic and contextual bandits. In Proc. 30th NIPS, pages 325–333, 2016.

Alexandra Kalev, Frank Dobbin, and Erin Kelly. Best Practices or Best Guesses? Assessing the
Efficacy of Corporate Affirmative Action and Diversity Policies. American Sociological Review,
71(4):589–617, 2006.

Stephen N. Keith, Robert M. Bell, August G. Swanson, and Albert P. Williams. Effects of affir-
mative action in medical schools. New England Journal of Medicine, 313(24):1519–1525, 1985.

Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing,
and Bernhard Schölkopf. Avoiding discrimination through causal reasoning. In In Proc. 30th
NIPS, pages 656–666, 2017.

Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. Proc. 8th ITCS, 2017.

Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In In
Proc. 30th NIPS, pages 4069–4079, 2017.

Razieh Nabi and Ilya Shpitser. Fair inference on outcomes. arXiv:1705.10378v1, 2017.

24



Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. In Advances in Neural Information Processing Systems 30, pages 5684–5693,
2017.

Stephen Ross and John Yinger. The Color of Credit: Mortgage Discrimination, Research Method-
ology, and Fair-Lending Enforcement. MIT Press, Cambridge, 2006.

US Federal Reserve. Report to the congress on credit scoring and its effects on the availability and
affordability of credit, 2007.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P. Gummadi. Fair-
ness Constraints: Mechanisms for Fair Classification. In Proc. 20th AISTATS, pages 962–970.
PMLR, 2017.

A Optimality of Threshold Policies

A.1 Proof of Lemma 5.1

We begin with the first statement of the lemma. Suppose τ j
∼=πj

τ
′
j. Then there exists a set S ⊂ X

such that πj(x) = 0 for all x ∈ S, and for all x /∈ S, τ j(x) = τ
′
j(x). Thus,

rπ(τ j)− rπj
(τ ′

j) =
∑

x∈X

πj(x)(τ j(x)− τ
′
j(x))

=
∑

x∈S

πj(x)(τ j(x)− τ
′
j(x)) = 0 .

Conversely, suppose that rπj
(τ j) = rπj

(τ ′
j). Let τ j = τ c,γ and τ

′
j = τ c′,γ′ as in Definition 5.1. We

now have the following cases:

1. Case 1: c = c′. Then τ j(x) = τ
′
j(x) for all x ∈ X − {c}. Hence,

0 = rπ(τ j)− rπj
(τ ′

j) = π(x)(τ j(c)− τ
′
j(c)) .

This implies that either τ j(c) = τ
′
j(c), and thus τ j(x) = τ

′
j(x) for all x ∈ X , or otherwise

π(c) = 0, in which case we still have τ j
∼=πj

τ
′
j (since the two policies agree every outside the

set {c}).

2. Case 2: c 6= c′. We assume assume without loss of generality that c′ < c ≤ C. Since the
policies τ c′,1 and τ c′+1,0 are identity for c′ < C, we may also assume without loss of generality
that γ′ ∈ [0, 1). Thus for all x ∈ S := {c′, c′ + 1, . . . , C}, we have τ

′
j(x) < τ j(x). This implies

that

0 = rπ(τ j)− rπj
(τ ′

j)

=
∑

x∈S

πj(x)(τ j(x)− τ
′
j(x))

≥ min
x∈S

(τ j(c)− τ
′
j(x)) ·

∑

x∈S

π(x) .
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Since minx∈S(τ j(c)− τ
′
j(x)) > 0, it follows that

∑
x∈S πj(x) = 0, whence τ j

∼=πj
τ
′
j.

Next, we show that rπ is a bijection from Tthresh(π) → [0, 1]. That rπ is injective follows
immediately from the fact if rπj

(τ ) = rπj
(τ ′

j), then τ j
∼=πj

τ
′
j. To show it is surjective, we exhibit

for every β ∈ [0, 1] a threshold policy τ c,γ for which rπj
(τ c,γ) = β. We may assume β < 1, since

the all-ones policy has a selection rate of 1.
Recall the definition of the inverse CDF

Qj(β) := argmax{c :
C∑

x=c

π(x) > β} .

Since β < 1, Qj(β) ≤ C. Let β+ =
∑C

x=Qj(β)
π(x), and let β− =

∑C
x=Qj(β)+1 π(x). Note that by

definition, we have β− ≤ β < β+, and β+ − β− = π(Qj(β)). Hence, if we define γ = β−β−

β+−β−
, we

have

rπj
(τQj(β),γ) = π(Qj(β))γ +

C∑

x=Qj(β)+1

π(x) = β− + (β+ − β−)γ = β− + β − β− = β .

A.2 Proof of Lemma 5.2

Given τ ∈ [0, 1]C , we define the normal cone at τ as NC(τ ) := ConicalHull{z : τ + z ∈ [0, 1]C}.
We can describe NC(τ ) explicitly as:

NC(τ ) := {z ∈ R
C : zi ≤ 0 if τ i = 0, zi ≥ 0 if τ i = 1} .

Immediately from the above definition, we have the following useful identity, which is that for any
vector g ∈ RC ,

〈g, z〉 ≤ 0 ∀z ∈ NC(τ ), if and only if ∀x ∈ X ,





τ (x) = 0 g(x) < 0

τ (x) = 1 g(x) > 0

τ (x) ∈ [0, 1] g(x) = 0

. (22)

Now consider the optimization problem (12). By the first order KKT conditions, we know that
for any optimizer τ ∗ of the above objective, there exists some λ̂ ∈ R such that, for all z ∈ NC(τ ∗)

〈z,v ◦ π + λ̂π ◦w〉 ≤ 0 .

By (22), we must have that

τ ∗(x) =





0 π(x)(v(x) + λ̂w(x)) < 0

1 π(x)(v(x) + λ̂w(x)) > 0

∈ [0, 1] π(x)(v(x) + λ̂w(x)) = 0

.

Now τ ∗(x) is not necessarily a threshold policy. To conclude the theorem, it suffices to exhibit a
threshold policy τ̃ ∗ such that τ ∗(x) ∼=π τ̃ ∗. (Note that τ̃ ∗(x) will also be feasible for the constraint,
and have the same objective value; hence τ̃ ∗ will be optimal as well.)
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Given τ ∗ and λ̂, let c∗ = min{c ∈ X : v(x) + λ̂w(x) ≥ 0}. If either (a) w(x) = 0 for all x ∈ X
and v(x) is strictly increasing or (b) v(x)/w(x) is strictly increasing, then the modified policy

τ̃ ∗(x) =





0 x < c∗

τ ∗(x) x = c∗

1 x > c∗

,

is a threshold policy, and τ ∗(x) ∼=π τ̃ ∗. Moreover, 〈w, τ̃ ∗〉 = 〈w, τ̃ ∗〉 and 〈π, τ̃ ∗〉 = 〈π, τ̃ ∗〉, which
implies that τ̃ ∗ is an optimal policy for the objective in Lemma 5.2.

A.3 Proof of Lemma 5.3

We shall prove

∂+

(
πj ◦ r

−1
πj

(β)
)
= eQj(β) , (23)

where the derivative is with respect to β. The computation of the left-derivative is analogous.
Since we are concerned with right-derivatives, we shall take β ∈ [0, 1). Since πj ◦ r

−1
πj

(β) does not

depend on the choice of representative for r−1
πj

, we can choose a cannonical representation for r−1
πj

.
In Section A.1, we saw that the threshold policy τQj(β),γ(β) had acceptance rate β, where we had
defined

β+ =

C∑

x=Qj(β)

π(x) and β− =

C∑

x=Qj(β)+1

π(x) , (24)

γ(β) =
β − β−
β+ − β−

. (25)

Note then that for each x, τQj(β),γ(β)(x) is piece-wise linear, and thus admits left and right deriva-
tives. We first claim that

∀x ∈ X \ {Qj(β)}, ∂+τQj(β),γ(β)(x) = 0 . (26)

To see this, note that Qj(β) is right continuous, so for all ǫ sufficiently small, Qj(β + ǫ) = Qj(β).
Hence, for all ǫ sufficiently small and all x 6= Q(β), we have τQj(β+ǫ),γ(β+ǫ)(x) = τQj(β+ǫ),γ(β+ǫ)(x),

as needed. Thus, Equation (26) implies that ∂+πj ◦ r
−1
πj

(β) is supported on x = Qj(β), and hence

∂+πj ◦ r
−1
πj

(β) = ∂+πj(x)τQj(β),γ(β)(x)
∣∣
x=Qj(β)

· eQj(β) .

To conclude, we must show that ∂+πj(x)τQj(β),γ(β)(x)
∣∣
x=Qj(β)

= 1. To show this, we have

1 = ∂+(β)

= ∂+(rπj
(τQj(β),γ(β))) since rπj

(τQj(β),γ(β)) = β ∀β ∈ [0, 1)

= ∂+

(
∑

x∈X

π(x) · τQj(β),γ(β)(x)

)
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= ∂+π(x) · τQj(β),γ(β)(x)
∣∣
x=Qj(β)

, as needed.

B Characterization of Fairness Solutions

B.1 Derivative Computation for EqOpt

In this section, we prove Lemma 6.1, which we recall below.

Lemma 6.1. Suppose that w(x) > 0 for all x. Then the function

T
j,wj

(β) := 〈r−1
πj

(β),πj ◦wj〉

is a bijection from [0, 1] to [0, 〈πj,w〉].

We will prove Lemma 6.1 in tandem with the following derivative computation which we applied
in the proof of Theorem 6.2.

Lemma B.1. The function

Uj(t;wj) := Uj

(
r−1
πj

(
T−1

j,wj
(t)
))

is concave in t and has left and right derivatives

∂+Uj(t;wj) =
u(Qj(T

−1
j,wj

(t)))

wj(Qj(T
−1
j,wj

(t)))
and ∂−Uj(t;wj) =

u(Q+
j (T

−1
j,wj

(t)))

wj(Q
+
j (T

−1
j,wj

(t)))
.

Proof of Lemmas 6.1 and B.1. Consider a β ∈ [0, 1]. Then, πj ◦ r
−1
πj

(β) is continuous and left and
right differentiable by Lemma 5.3, and its left and right derivatives are indicator vectors eQj(β) and

eQ+
j
(β), respectively. Consequently, β 7→ 〈wj,πj ◦ r−1

πj
(β)〉 has left and right derivatives wj(Q(β))

and wj(Q
+(β)), respectively; both of which are both strictly positive by the assumption w(x) > 0.

Hence, T
j,wj

(β) = 〈wj,πj ◦ r
−1
πj

(β)〉 is strictly increasing in β, and so the map is injective. It is also
surjective because β = 0 induces the policy τ j = 0 and β = 1 induces the policy τ j = 1 (up to
πj-measure zero). Hence, T

j,wj
(β) is an order preserving bijection with left- and right-derivatives,

and we can compute the left and right derivatives of its inverse as follows:

∂+T
−1
j,wj

(t) =
1

∂+Tj,wj
(β)
∣∣
β=T−1

j,wj
(t)

=
1

wj(Qj(T
−1
j,wj

(t)))
,

and similarly, ∂−T
−1
j,wj

(t) = 1
wj(Q+(T−1

j,wj
(t)))

. Then we can compute that

∂+Uj(rπj
(T−1

j,wj
(t))) = ∂+U(rπj

(β))
∣∣
β=T−1

j,wj
(t))

· ∂+Tj,wj
(sup(t))

=
u(Qj(T

−1
j,wj

(t)))

wj(Qj(T
−1
j,wj

(t)))
.

and similarly ∂−Uj(rπj
(T

j,wj
(t))) =

U(Q+
j
(T−1

j,wj
(t)))

wj(Q
+
j
(T−1

j,wj
(t)))

. One can verify that for all t1 < t2, one has that
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∂+Uj(rπj
(T−1

j,wj
(t1))) ≥ ∂−Uj(rπj

(T−1
j,wj

(t2))), and that for all t, ∂+Uj(rπj
(T−1

j,wj
(t))) ≤ ∂−Uj(rπj

(T−1
j,wj

(t))).

These facts establish that the mapping t 7→ Uj(rπj
(T−1

j,wj
(t))) is concave.

B.2 Characterizations Under Soft Constraints

Given a convex penalty Φ : R → R≥0, and λ ∈ R≥0, one can write down the general form for soft
constrained utility optimization

max
τ=(τA,τB)

U(τ )− λΦ(〈wA ◦ πA, τA〉 − 〈wB ◦ πB, τB〉) , (27)

where wA and wB represent generic constraints. Again, we shall assume that for j ∈ {A,B},
u(x)/wj(x) is non-decreasing. Recall that for wj = (1, 1, . . . , 1), one recovers the soft version of
DemParity, whereas for wj =

ρ

〈ρ,πj〉
, one recovers the soft constrained version of EqOpt.

The same argument presented in Section 6.2 shows that the optimal policies are of the form

τ j = r−1
πj

(T−1
j,wj

(tj)) ,

where (tA, tB) are solutions to the following optimization problem:

max
tA∈[0,〈πA,wA〉],tB∈[0,〈πB,wB〉]

gAUA(r
−1
πA

(T−1
A,wA

(tA))) + gBUB(r
−1
πB

(T−1
B,wB

(tB)))− λΦ(tA − tB) .

The following lemma gives us a first order characterization of these optimal TPRs, (tA, tB).

Lemma B.2. All optimal policies are equivalent to threshold policies with selection rate (βA, βB)
which satisfy

[
0
0

]
∈




[
u(QA(βA))
wA(QA(βB))

− λ∂+Φ(∆),
u(Q+

A
(βA))

wA(Q
+
A
(βA))

− λ∂−Φ(∆)
]

[
u(QB(βB))
wB(QB(βB))

+ λ∂−Φ(∆),
u(Q+

B
(β))

wB(Q
+
B
(βB))

+ λ∂+Φ(∆)
]


 , (28)

where ∆ = tA − tB = T
A,wA

(βA)− T
B,wB

(βB).

Proof. Let ∂(·) denote the super-gradient set of a concave function. Note that if F is left-and-right
differentiable and concave, then ∂F (x) = [∂+F (x), ∂−F (x)]. By concavity of Uj and convexity of
Φ, we must have that

[
0
0

]
∈ ∂

∑

j∈{A,B}

Uj

(
r−1
πj

(
T−1

j,wj
(tj)
))

− λΦ(tA − tB)

=

[
∂UA

(
r−1
πA

(T−1
A,wA

(tA))
)
+ ∂tA{−λΦ(tA − tB)}

∂UA

(
r−1
πB

(T−1
B,wB

(tB))
)
+ ∂tB{−λΦ(tA − tB)}

]

=

[
∂UA

(
r−1
πA

(T−1
A,wA

(tA))
)
− λ∂Φ(t)

∣∣
t=tA−tB

∂UB

(
r−1
πB

(T−1
B,wB

(tB))
)
+ λ∂Φ(t)

∣∣
t=tA−tB

]

=

[
[∂+UA

(
r−1
πA

(T−1
A,wA

(tA))
)
− λ∂+Φ(t)

∣∣
t=tA−tB

, ∂−UA

(
r−1
πA

(T−1
A,wA

(tA))
)
− λ∂−Φ(t)

∣∣
t=tA−tB

]

[∂+UB

(
r−1
πB

(T−1
B,wB

(tB))
)
+ λ∂−Φ(t)

∣∣
t=tA−tB

, ∂−UB

(
r−1
πB

(T−1
A,wA

(tB))
)
+ λ∂+Φ(t)

∣∣
t=tA−tB

]

]
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=




[
u(QA(T

−1
A,wA

(tA)))

wA(QA(T
−1
A,wA

(tA)))
− λ∂+Φ(t)

∣∣
t=tA−tB

,
u(Q+

A
(T−1

A,wA
(tA)))

wA(Q
+
A
(T−1

A,wA
(tA)))

− λ∂−Φ(t)
∣∣
t=tA−tB

]

[
u(QB(T

−1
B,wB

(tB)))

wB(QB(T
−1
B,wB

(tB)))
+ λ∂−Φ(t)

∣∣
t=tA−tB

,
u(Q+

B
(T−1

B,wB
(tB)))

wB(Q
+
B
(T−1

B,wB
(tB)))

+ λ∂+Φ(t)
∣∣
t=tA−tB

]




=




[
u(QA(βA))
wA(QA(βA))

− λ∂+Φ(t)
∣∣
t=tA−tB

,
u(Q+

A
(βA))

wA(Q
+
A
(βB))

− λ∂−Φ(t)
∣∣
t=tA−tB

]

[
u(QB(β))

wB(QB(βB))
+ λ∂−Φ(t)

∣∣
t=tA−tB

,
u(Q+

B
(βB))

wB(Q
+
B
(βB))

+ λ∂+Φ(t)
∣∣
t=tA−tB

]


 .

Substituting ∆ = tA − tB = T
A,wA

(βA)− T
B,wB

(βB) concludes the proof.

In general, a closed form solution for the soft constrained problem may be difficult to state.
However, for the case of Φ(t) = |t|, we can state an explicit closed form solution:

Proposition B.1 (Special case of Φ(t) = |t|). Let Φ(t) = |t|, fix λ, and let [βλ,−
A , βλ,+

A ] denote the
interval of optimal selection rates for Equation (27) with regularization λ. Finally, suppose that for
any optimal MaxUtil selection rates (βMaxUtil

A , βMaxUtil
B ), one has T

A,wA
(βMaxUtil

A ) < T
B,wB

(βMaxUtil
B ).

Let [β−
A , β

+
A ] denote the optimal loan rates in (27). Then there exists a λ∗ such that, for λ ≥ λ∗,

[β−
A , β

+
A ] coincides with the hard constrained solution. Moreover, for λ < λ∗, any β ∈ [0, 1] satifies

β < βλ,−
A if gA

u(QA(β))

wA(QA(β))
+ σ∗λ > 0

β > βλ,+
A if gA

u(Q+
A (β))

wA(Q
+
A (β))

+ σ∗λ < 0 .

Proof. Given a set of optimal constraint values (tA, tB) = (T
A,wA

(βA), TB,wB
(βB)) for optimal selec-

tion rates (βA, βB) for a given parameter λ. By Proposition B.2 below, it follows that if tA = tB for
all optimal solutions, then for all λ′ ≥ λ, all optimal solutions must also have tA = tB.

Hence, it suffices to show that (a) there exists a finite λ such that all solutions must have
tA = tB, and (b) if tA 6= tB, then the display in (B.1) holds.

To prove (a) and (b), suppose tA 6= tB. By Proposition B.2 below and the fact that T
A,wA

(βMaxUtil) <
T

B,wB
(βMaxUtil

B ), we have tA < tB. Moreover we can compute that

∂Φ(t) =





{1} t > 0

[−1, 1] t = 0

{−1} t < 0

it follows from the first order condition in Lemma B.2 that, if tA 6= tB

0 ∈ [
u(Q+

A (βA))

wA(Q
+
A (βA))

+ λ,
u(QA(βA))

wA(QA(βB))
+ λ] , (29)

which immediately implies point (b). Point (a) follows from the above display by noting that, since
wj(x) > 0 and u(x) < ∞ for all x, where exists a λ sufficiently large such that (29) cannot hold
for any βA.
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B.3 Qualitative Behavior of Soft Constraints

We now present a proposition which formalizes the intuition that soft constraints interpolate be-
tween MaxUtil and the general hard constraint (18) in Section 6.2 (for arbitrary w, not just for
EqOpt). Because optimal policies may not be unique, we define the solution sets

P(λ) := {(τA, τB) : (τA, τB) solves (27) with parameter λ} ,

with the set P(∞) denoting the set of solutions to (18).
At a high level, we parameterize the soft constrained solution in terms of the value of the

constraint tA = 〈τA,wA ◦ πA〉 for A and the difference in constraint values ∆ = 〈τA,wA ◦ πA〉 −
〈τB,wB ◦ πB〉, where (τA, τB) ∈ P(λ). We show that tA interpolates between the value of the
constraint on A at λ = 0 and at λ = ∞, and that ∆ interpolates between the difference at λ = 0
(MaxUtil) and at ∆ = 0 at λ = ∞. To be rigorous, we note that the possible values for tA and
∆ for each λ are actually contiguous intervals. Hence, to make the interpolation precise, we define
the following partial order on such intervals:

Definition B.1 (Interval order). Let S1,S2 be two intervals. We say that S1 ≺ S2 if max {x ∈
S1 } < min {x ∈ S2} and S1 � S2 if both max {x ∈ S1} ≤ max {x ∈ S2} and min{x ∈
S1} ≤ min {x ∈ S2}. We say that an interval-valued function S(λ) is non-decreasing (resp. non
increasing) in λ if S(λ) � S(λ′) (resp S(λ′) � S(λ′) for λ ≤ λ′).

In these terms, the interpolation of the soft constraints can be stated as follows:

Proposition B.2 (Soft constraints interpolate between MaxUtil and hard constrained solution).
Let Φ(t) be a convex, symmetric convex function with Φ(t) > 0 for t > 0. Then the sets

D(λ) := {∆ := 〈τA,wA ◦ πA〉 − 〈τB,wB ◦ πB〉 : (τA, τB) ∈ P(λ)}

TA(λ) := {tA := 〈τA,wA ◦ πA〉|∃τB : (τA, τB) ∈ P(λ)}

are closed intervals. Moreover,

1. In all cases, limλ→∞max{|∆| ∈ D(λ)} = 0.

2. If 0 ∈ D(λ), then there exists a MaxUtil solution satisfying (18). Thus, for all λ > 0,
P(λ) = P(∞).

3. If D(λ) ≺ {0}, then D(λ) and TA(λ) are non-decreasing on λ ∈ (0,∞], and vice versa if
D(λ) ≻ {0}.

4. If D(λ) ≺ {0}, then {0} = D(∞) � D(λ) � {min : ∆ ∈ D(0)}, and TA(∞) � TA(λ) � {min :
∆ ∈ TA(λ)}, and vice versa if D(λ) ≻ {0}.

B.3.1 Proof of Proposition B.2

Again, we parameterize all solutions to the soft-constrained problem as in correspondence with
solutions (tA, tB) to

min
(tA,tB)

gAUA(tA;wA) + gBUB(tB;wB) + λΦ(tA − tB) .

31



Letting ∆ := tB − tA, we can reparameterize the above as

min
(tA,∆)

gAUA(tA;wA) + gBUB(tA +∆;wB)− λΦ(∆) .

Note then that D(λ) denotes the set of ∆ which are partial maximimizers of the above display. If
0 ∈ {D(λ)}, this implies that there exists a MaxUtil solution for which ∆ = 0, therefore, for all
λ > 0, all solutions will be MaxUtil solutions for which D(λ) = 0. Otherwise assume without loss
of generality that D(λ) < {0}.

First, the statement {0} = D(∞) � D(λ) � {min : ∆ ∈ D(0)}, and TA(∞) � TA(λ) � {min :
∆ ∈ TA(λ)}, and vice versa if D(λ) ≻ {0} can be solved by on a case-by-case basis. The strategy
is to show that if any of these inequalities are violated, then the associated values of ∆ and tA are
not partial maximizers of the soft constraint objective. In particular, TA(λ) ⊂ [T−, T+] for some
appropriate T−, T+.

We now show that D(λ) and TA(λ) are non-increasing and non-decreasing, respectively. We
shall do so invoking the following technical lemma.

Lemma B.3. Let G1(t) be concave and let G2(t;λ) be concave in t. Let ∂G2(t;λ) denote the
super-gradient of G2, that is

∂G2(t;λ) := Conv({∂−G2(t;λ)} ∪ {∂−G2(t;λ)})

denotes the super-gradient set of the concave mapping t 7→ ∂G2(t;λ).
Then if λ 7→ ∂G2(t;λ) is non-increasing (resp. non-decreasing) in λ, the interval valued function

defined below is non-increasing (resp. non-decreasing) in λ

MAX(λ) := λ 7→ arg max
t∈[a,b]

G1(t) +G2(t;λ) .

For D(λ), one can write any partial maximizer ∆ as

max
∆≥0

G1(∆) +G2(∆;λ)

with G1(∆) = maxtA gAUA(tA;wA)+gBUB(tA+∆;wB) and G2(∆;λ) = λΦ(∆). Note that G1(∆) is
concave, being the partial maximization of a concave function, and ∂G2(∆;λ) = −t∂Φ(∆). Since
∂Φ(∆) � {0} for ∆ ≥ 0 (by convexity of φ) , we have that ∂G2(∆;λ) = −t∂Φ(∆) is non-increasing
in λ. Hence Lemma B.3 implies that interval valued function D(λ) is non-increasing.

To show that TA(λ) is non-decreasing, we have that any maximizer tA can be written as

max
tA∈[T−,T+]

G1(tA) +G2(tA;λ)

where G1(tA) = gAUA(tA;wA) and G2(tA;λ) = max∆≥0 gBUB(tA +∆;wB) + λΦ(∆). By Danskin’s
theorem,

∂G2(tA;λ) = {∂UB(tA +∆;wB) : ∆ ∈ argmaxG2(tA;λ)} .

Note that {∆ ∈ argmaxG2(tA;λ)} is non-increasing in λ for a fixed tA, since the contribution of
the regularizer increases. Since the sets ∂UB(tA + ∆;wB) are themselves non-increasing in ∆ by
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concavity, we conclude that ∂G2(tA;λ) is non-decreasing in λ. Hence, Lemma B.3 implies that
TA(λ) is non-decreasing in λ.

Finally, to show that max{|∆| : ∆ ∈ D(λ)|} → 0, Note that the left and right derivatives of
gAUA(t;wA) and gBUB(t;wB) are upper bounded by M whereas, since Φ is strictly convex, we know
that for every ǫ > 0, min{|∂+Φ(∆)|, |∂−Φ(∆)|} > m(ǫ) for all ∆ : |∆| > ǫ. Hence, the first order
optimality conditions cannot be satisfied for |∆| > ǫ, and λ > M

m(ǫ) , so as λ → ∞, |∆| → 0.

Proof of Lemma B.3. We prove the case where ∂G2(t;λ) is non-increasing. The first order condi-
tions requires that at an optimal t, one has

∂−G1(t) + ∂G2(t;λ)− ≥ 0 ≥ ∂+G1(t) + ∂G2(t;λ)+

where the super-gradients are amended to take into account boundary conditions. Suppose that
for the sake of contradiction that for λ′ > λ, MAX(λ′) � MAX(λ) fails. Then, there (a) exists a
t ∈ MAX(λ) such that {t} ≺ MAX(λ′), or (b) t ∈ MAX(λ′) such that {t} ≻ MAX(λ′). Note that
if {t} ≺ MAX(λ′), it must be the case that

∂+G1(t) + ∂G2(t;λ
′)+ > 0 .

By assumption, ∂−G2(t;λ
′)+ ≤ ∂0G2(t;λ)+ , which implies

∂+G1(t) + ∂G2(t;λ
′)+ ≤ ∂+G1(t) + ∂+G2(t;λ)−0 ≤ 0 ,

a contradiction.

C Proofs of Main Results

We remark that the proofs in this section rely crucially on the characterizations of the optimal
fairness-constrained policies developed in Section 6. We first define the notion of CDF domination,
which is referred to in a few of the proofs. Intuitively, it means that for any score, the fraction of
group B above this is higher than that for group A. It is realistic to assume this if we keep with
our convention that group A is the disadvantaged group relative to group B.

Definition C.1 (CDF domination). πA is said to be dominated by πB if ∀a ≥ 1,
∑

x>a πA <∑
x>a πB. We denote this as πA ≺ πB.

We remark that the ≺ notation in this section is entirely unrelated to the the partial order on
intervals from Section B.3. Frequently, we shall use the following lemma:

Lemma C.1. Suppose that πA ≺ πB. Then, for all β > 0, it holds that QA(β) ≤ QB(β) and
u(QA(β)) ≤ u(QA(β))

Proof. The fact that QA(β) ≤ QB(β) follows directly from the definition of monotonicty of u implies
that u(QA(β)) ≤ u(QB(β)).
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C.1 Proof of Proposition 3.1

The MaxUtil policy for group j solves the optimization

max
τ j∈[0,1]C

Uj(τ j) = max
βj∈[0,1]

Uj(r
−1
πj

(βj)) .

Computing left and right derivatives of this objective yields

∂+Uj(r
−1
πj

(βj)) = u(Qj(β)), ∂−Uj(r
−1
πj

(βj)) = u(Q+
j (β)) .

By concavity, solutions β∗ satisfy

β < β∗ if u(Qj(β)) > 0 ,

β > β∗ if u(Q+
j (β)) < 0 .

(30)

Therefore, we conclude that the MaxUtil policy loans only to scores x s.t. u(x) > 0, which implies
∆(x) > 0 for all scores loaned to. Therefore we must have that 0 ≤ ∆µ

MaxUtil. By definition
∆µ

MaxUtil ≤ ∆µ
∗.

C.2 Proof of Corollary 3.2

We begin with proving part (a), which gives conditions under which DemParity cases relative
improvement. Recall that β is the largest selection rate for which U(β) = U(βMaxUtil

A ). First, we

derive a condition which bounds the selection rate β
DemParity

A from below. Fix an acceptance rate
β such that βMaxUtil

A < β < min{βMaxUtil
B , β}. By Theorem 6.1, we have that DemParity selects to

group A with rate higher than β as long as

gA ≤ g1 :=
1

1− u(QA(β))
u(QB(β))

.

By (30) and the monotonicity of u, u(QA(β)) < 0 and u(QB(β)) > 0, so 0 < g1 < 1.
Next, we derive a condition which bounds the selection rate β

DemParity

A from above. First,
consider the case that βMaxUtil

B < β, and fix β′ such that βMaxUtil
B < β′ < β. Then DemParity selects

group A at a rate βA < β′ for any proportion gA. This follows from applying Theorem 6.1 since we
have that u(Q+

A (β
′)) < 0 and u(Q+

B (β
′)) < 0 by (30) and the monotonicity of u.

Instead, in the case that βMaxUtil
B > β, fix β′ such that β < β′ < βMaxUtil

B . Then DemParity

selects group A at a rate less than β′ as long as

gA ≥ g0 :=
1

1−
u(Q+

A
(β′))

u(Q+
B
(β′))

.

By (30) and the monotonicity of u, 0 < g0 < g1. Thus for gA ∈ [g0, g1], the DemParity selection
rate for group A is bounded between β and β′, and thus DemParity results in relative improvement.

Next, we prove part (b), which gives conditions under which EqOpt cases relative improvement.
First, we derive a condition which bounds the selection rate β

EqOpt

A from below. Fix an acceptance
rate β such that βMaxUtil

A < β and βMaxUtil
B > G(A→B)(β). By Theorem 6.2, EqOpt selects group A
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at a rate higher than β as long as

gA > g3 :=
1

1− 1
κ
· ρ(QB(G(A→B)(β)))

u(QB(G(A→B)(β)))

u(QA(β))
ρ(QA(β))

.

By (30) and the monotonicity of u, u(QA(β)) < 0 and u(QB(G
(A→B)(β))) > 0, so g3 > 0.

Next, we derive a condition which bounds the selection rate β
EqOpt

A from above. First, consider
the case that there exists β′ such that β′ < β and βMaxUtil

B < G(A→B)(β′) . Then EqOpt selects
group A at a rate less than this β′ for any gA. This follows from Theorem 6.2 since we have that
u(Q+

A (β
′)) < 0 and u(Q+

B (G
(A→B)(β′))) < 0 by (30) and the monotonicity of u.

In the other case, fix β′ such that β < β′ < β and βMaxUtil
B > G(A→B)(β′). By Theorem 6.2,

EqOpt selects group A at a rate lower than β′ as long as

gA > g2 :=
1

1− 1
κ
·
ρ(Q+

B
(G(A→B)(β′)))

u(Q+
B
(G(A→B)(β′)))

u(Q+
A
(β′))

ρ(Q+
A
(β′))

.

By (30) and the monotonicity of u, 0 < g2 < g3. Thus for gA ∈ [g2, g3], the EqOpt selection rate
for group A is bounded between β and β′, and thus EqOpt results in relative improvement.

C.3 Proof of Corollary 3.3

Recall our assumption that β > βMaxUtil
A and βMaxUtil

B > β. As argued in the above proof of
Corollary 3.2, by (30) and the monotonicity of u, u(QA(β)) < 0 and u(QB(β)) > 0. Applying
Theorem 6.1, DemParity selects at a higher rate than β for any population proportion gA ≤ g0,

where g0 = 1/(1 − u(QA(β))
u(QB(β))

) ∈ (0, 1). In particular, if β = β0, which we defined as the harm

threshold (i.e. ∆µA(r
−1
πA

(β0)) = 0 and ∆µA is decreasing at β0), then by the concavity of ∆µA, we

have that ∆µA(r
−1
πA

(β
DemParity

A )) < 0, that is, DemParity causes active harm.

C.4 Proof of Corollary 3.4

By Theorem 6.2, EqOpt selects at a higher rate than β for any population proportion gA ≤ g0,

where g0 = 1/(1 − 1
κ
· ρ(QB(G

(A→B)(β)))

u(QB(G(A→B)(β)))

u(QA(β))
ρ(QA(β))

). Using our assumptions βMaxUtil
B > G(A→B)(β) and

β > βMaxUtil
A , we have that u(QB(G

(A→B)(β))) > 0 and u(QA(β)) < 0, by (30) and the monotonicity
of u. This verifies that g0 ∈ (0, 1). In particular, if β = β0, then by the concavity of ∆µA, we have
that ∆µA(r

−1
πA

(β
EqOpt

A )) < 0, that is, EqOpt causes active harm.

C.5 Proof of Corollary 3.5

Applying Theorem 6.1, we have

−
1− gA
gA

u(QA(β)) < u(QB(β)) =⇒ βDemParity > β .
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Applying Theorem 6.2, we have:

u(QB(G
(A→B)(β))) ·

〈ρ,πB〉

〈ρ,πA〉
·

ρ(Q+
A (β))

ρ(Q+
B (G

(A→B)(β)))
< −

1− gA
gA

u(Q+
A (β)) =⇒ βEqOpt < β .

By Corollaries 3.3 and 3.4, choosing gA < g2 := 1/(1 − u(QA(β))
u(QB(β))

) and gA > g1 := 1/(1 − 1
κ
·

ρ(Q+
B
(G(A→B)(β)))

u(Q+
B
(G(A→B)(β)))

u(Q+
A
(β))

ρ(Q+
A
(β))

) satisfies the above.

It remains to check that g1 < g2. Since we assumed β >
∑

x>µA
πA, we may apply Lemma C.2

to verify this.
Thus we indeed have sufficient conditions for βDemParity > β > βEqOpt. In particular, if β =

β0, then by the concavity of ∆µA, we have that ∆µA(r
−1
πA

(β
EqOpt

A )) > 0, that is, EqOpt causes

improvement, and ∆µA(r
−1
πA

(β
DemParity

A )) < 0, that is, DemParity causes active harm.

Lastly, because βDemParity > βEqOpt, it is always true that ∆µA(r
−1
πA

(β
DemParity

A )) > 0 =⇒

∆µA(r
−1
πA

(β
EqOpt

A )) > 0, using the concavity of the outcome curve.

Lemma C.2 (Comparison of DemParity and EqOpt selection rates). Fix β ∈ [0, 1]. Suppose πA,πB

are identical up to a translation with µA < µB. Also assume ρ(x) is affine in x. Denote κ = 〈ρ,πB〉
〈ρ,πA〉

.
Then,

β >
∑

x>µA

πA

implies u(QB(G
(A→B)(β))) · κ · ρ(QA(β))

ρ(QB(G(A→B)(β)))
< u(QB(β)).

Proof. If we have β >
∑

x>µA
πA, by lemma C.3, we must also have µB

µA
< QB(β0)

QA(β0)
. This implies

κ =
∑

x πB(x)ρ(x)∑
x πA(x)ρ(x)

< ρ(QB(β))
ρ(QA(β0))

by linearity of expectation and linearity of ρ. Therefore,

κ ·
ρ(QA(β))

ρ(QB(β0))
< 1 (31)

Further, using G(A→B)(β) > β from lemma C.3 and the fact that u(x)
ρ(x) is increasing in x, we

have u(QB(G
(A→B)(β)))

ρ(QB(G(A→B)(β)))
< u(QB(β))

ρ(QB(β))
. Therefore, u(QB(G

(A→B)(β))) · κ · ρ(QA(β0))

ρ(QB(G(A→B)(β0)))
< κ · u(QB(β))

ρ(QB(β))
·

ρ(QA(β)) < u(QB(β)) where the last inequality follows from (31).

We use the following technical lemma in the proof of the above lemma.

Lemma C.3. If πA,πB that are identical up to a translation with µA < µB, then

G(β) > β ∀ β , (32)

β >
∑

x>µ

πA =⇒
µB

µA

<
QB(β)

QA(β)
. (33)

Proof. For (32), observe that TPRA = ρ(µA) < TPRB = ρ(µB). For any β, we can write QB(β) =
µB + c and QA(β) = µA + c for some c, since πA,πB that are identical up to translation by
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µA − µB. Thus, by computation, we can see that for Q(β) < µ, ∂+G
(A→B)(β) > 1 and for

Q(β) < µ, ∂+G
(A→B)(β) < 1. Since G(A→B) is monotonically increasing on [0, 1], we must have

G(A→B)(β) > β for every β ∈ [0, 1].
For (33), we have β >

∑
x>µ

πA, we can again write QB(β) = µB − c and QA(β) = µA − c, for

some c > 0. Then it is clear than we have µB

µA
< QB(β)

QA(β)
.

C.6 Proof of Corollary 3.6

Proof. βMaxUtil
A < βMaxUtil

B implies gA · u(QA(β
MaxUtil
A )) + gB · u(QB(β

MaxUtil
A )) > 0, which by Theo-

rem 6.1, implies βMaxUtil
A < β

DemParity

A .
TPRA(τ

MaxUtil) > TPRB(τ
MaxUtil) implies G(A→B)(βMaxUtil

A ) > βMaxUtil
B and so

u(QB(G
(A→B)(βMaxUtil

A ))) < 0. Therefore by Theorem 6.2, we have that βMaxUtil
A > β

EqOpt

A .

We now give a very simple example of πA ≺ πB where Theorem 3.5 holds. The construction
of the example exemplifies the more general idea of using large in-group inequality in group A to
skew the true positive rate at MaxUtil, making TPRA(τ

MaxUtil) > TPRB(τ
MaxUtil).

Example C.1 (EqOpt causes relative harm). Let C = 6, and let the utility function be such that
u(4) = 0. Suppose πA(5) = 1− 2ǫ,πA(1) = 2ǫ and πB(5) = 1− ǫ,πB(3) = ǫ.

We can easily check that πA ≺ πB. However, for any ǫ ∈ (0, 1/4), we have that TPRB(τ
MaxUtil) =

5(1−ǫ)
5(1−ǫ)+3ǫ < TPRA(τ

MaxUtil) = 5(1−2ǫ)
5(1−2ǫ)+2ǫ .

C.7 Proof of Proposition 4.1

Denote the upper quantile function under π̂ as Q̂. Since π̂ ≺ π, we have Q̂(β) ≤ Q(β). The
conclusion follows for MaxUtil and DemParity from Theorem 6.1 by the monotonicity of u.

If we have that TPRA(τ ) > T̂PRA(τ ) ∀ τ , that is, the true TPR dominates estimated TPR,
the conclusion for EqOpt follows from Theorem 6.2, by the same argument as in the proof of
Corollary 3.6.

C.8 Proof of Proposition 4.2

By Proposition 5.3, β∗ = argmaxβ ∆µA(β) exists and is unique. β0 = max{β ∈ [βMaxUtil
A , 1] :

U(βMaxUtil
A ) − UA(β) ≤ δ} which exists and is unique, by the continuity of ∆µA and Proposition

5.3.
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