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Abstract

Consequential decision-making typically incentivizes individuals to behave strategically,
tailoring their behavior to the specifics of the decision rule. A long line of work has therefore
sought to counteract strategic behavior by designing more conservative decision boundaries in
an effort to increase robustness to the effects of strategic covariate shift.

We show that these efforts benefit the institutional decision maker at the expense of the
individuals being classified. Introducing a notion of social burden, we prove that any increase
in institutional utility necessarily leads to a corresponding increase in social burden. Moreover,
we show that the negative externalities of strategic classification can disproportionately harm
disadvantaged groups in the population.

Our results highlight that strategy-robustness must be weighed against considerations of
social welfare and fairness.

1 Introduction

As machine learning increasingly supports consequential decision making, its vulnerability to ma-
nipulation and gaming is of growing concern. When individuals learn to adapt their behavior to
the specifics of a statistical decision rule, its original predictive power will deteriorate. This widely
observed empirical phenomenon, known as Campbell’s Law or Goodhart’s Law, is often summarized
as: “Once a measure becomes a target, it ceases to be a good measure” [25].

Institutions using machine learning to make high-stakes decisions naturally wish to make their
classifiers robust to strategic behavior. A growing line of work has sought algorithms that achieve
higher utility for the institution in settings where we anticipate a strategic response from the the
classified individuals [10, 5, 14]. Broadly speaking, the resulting solution concepts correspond to
more conservative decision boundaries that increase robustness to some form of covariate shift.

But there is a flip side to strategic classification. As insitutional utility increases as a result of more
cautious decision rules, honest individuals worthy of a positive classification outcome may face a
higher bar for success.

The costs incurred by individuals as a consequence of strategic classification are by no means
hypothetical, as the example of lending shows. In the United States, credit scores are widely deployed
to allocate credit. However, even creditworthy individuals routinely engage in artificial practices
intended to improve their credit scores, such as opening up a certain number of credit lines in a



certain time period [9]. In this work, we study the tension between institutional and individual utility
in strategic classification. We first introduce a general measure of the cost of strategic classification,
which we call the social burden. Informally, the social burden measures the expected cost that a
positive individual needs to incur to be correctly classified as positive.

For a broad class of cost functions, we prove there exists an intrinsic trade-off between institutional
accuracy and social burden: any increase in institutional accuracy comes at an increase in social
burden. Moreover, we precisely characterize this trade-off and show the commonly considered
Stackelberg equilibrium solution that achieves maximal institutional accuracy comes at the expense
of maximal social burden.

Equipped with this generic trade-off result, we turn towards a more careful study of how the social
burden of strategic classification impacts different subpopulations. We find that the social burden
can fall disproportionally on disadvantaged subpopulations, under two different notions by which one
group can be disadvantaged relative to another group. Furthermore, we show that as the institution
improves its accuracy, it exacerbates the gap between the burden to an advantaged and disadvantaged
group. Finally, we illustrate these conditions and their consequences with a case study on FICO
data.

1.1 Owur Contributions

In this paper, we make the following contributions:

1. We prove a general result demonstrating the trade-off between institutional accuracy and
individual utility in the strategic setting. Our theoretical characterization is supplemented
with examples illustrating when an institution would prefer to operate along different points in
this trade-off curve.

2. We show fairness considerations inevitably arise in the strategic setting. When individuals
incur cost as a consequence of making a classifier robust to strategic behavior, we show the costs
can disproportionally fall by disadvantaged subpopulations. Furthermore, as the institution
increases its robustness, it also increases the disparity between the subpopulations.

3. Using FICO credit data as a case-study, we empirically validate our modeling assumptions and
illustrate both the general trade-offs and fairness concerns involved with strategic classification
in a concrete setting.

Reflecting on our results, we argue that the existing view of strategic classification has been
instituition-centric, ignoring the social burden resulting from improved institutional utility. Our
framework makes it possible to select context-specific trade-offs between institutional and individual
utility, leading to a richer space of solutions.

Another key insight is that discussions of strategy-robustness must go hand in hand with considera-
tions of fairness and the real possibility that robustness-promoting mechanisms can have disparate
impact in different segments of the population.



2 Model

Strategic classification. Throughout this work, we consider the binary classification setting.
Each individual has features € X and a label y € J) = {0, 1}. The institution publishes a classifier
f: X = Y. In the non-strategic setting, the institutional utility is simply the classification accuracy

of f:

In the strategic setting, the individual can modify their features x to new features x’. However,
modification incurs a cost given by c¢: X x X — R>o. The individual utility after changing from z
to o’ is then f(a’) — ¢(x, ). We assume the individual optimally adapts their features to maximize
this utility. The best-response of individual with features = to classifier f is given by

A(z; f) = argmax f(2') — c(z, 2').
-
When it is clear from context we will drop the dependence on f and write the individual’s best
response as A(z). The expression above may not have a unique maximizer. We assume that the
individual  does not adapt her features if she is already accepted by the classifier, i.e f(x) =1, or if
there is no maximizer 2’ she can move to such that f(z') = 1. In cases where the individual does
adapt, we let 2/ be an arbitrary maximizer such that f(z') = 1.

In line with prior work [15], we assume that the institution has knowledge of the cost function
¢, although in practice, the cost function would likely need to be learned from data. When the
institution knows the cost function, it can take into account how individuals will adapt when choosing
what classifier to use. For example, imagine that the institution is trying to rank pages on a social
network. Although the number of likes a page has may be predictive, if the institution knows that it
is low cost for individuals to game how many likes they have, it can choose to weigh the feature less.

In the strategic setting, the institution’s utility is modified to account for this manipulation of
features. The strategic utility for the institution measures accuracy after individual responses:

Social burden. Focusing purely on maximizing Ua, as done in prior work [4, 15, 12|, ignores the
cost that a classifier imposes on individuals, particularly true positives. To measure this cost, we
introduce the social burden, defined as the expected minimum cost my(x) = min (- c(x,2’) that
positive individuals must incur in order to be classified correctly.

Definition 2.1 (Social burden). The social burden of a classifier f is defined as

B =FE| min c(z,2 =1].
) =E | min cw) |y

The social burden measures two types of negative effects on positive individuals, depending on
whether they change their features or not. Since individuals respond optimally, if m(z), the
minimum cost necessary to be accepted, is less than one, then the individual adapts their features.



On the other hand, if my(x) is greater than or equal to one, then the individual does not adapt
their features because the cost of changing their features outweighs the benefit she gets from being
accepted.

In the first case, the individual still gets accepted, but incurs a cost for changing their features.
In the second case, the individual does not adapt their features and does not get accepted by the
classifier, so it is more appropriate to view m¢(x) as a hypothetical cost that blocks the individual
from being accepted. The social burden, which takes an expectation over my(x), measures both the
cost incurred in order to be accepted and the hypothetical cost that prevents acceptance.

Assumptions on cost function. While there are many possible models for the cost function, we
restrict our attention to a natural set of cost functions that we call outcome monotonic. Outcome
monotonic costs capture two intuitive properties: (1) Monotonically improving one’s outcome requires
monotonically increasing amounts of work, and (2) it is zero cost to worsen one’s outcome. This
captures the intuition that, for example, it is harder to pay back loans than it is to go bankrupt.

Definition 2.2 (Outcome likelihood). The outcome likelihood of an individual z is ¢(x) = P(Y =
1| X =uz).

Definition 2.3 (Outcome Monotonic Cost). A cost function ¢ : X x X — R>( is outcome monotonic
if for any z,2’, z* € X the following properties hold.

e Zero-cost to move to lower outcome likelihoods. ¢(xz,x’) > 0 if and only if £(x) > £(z').
e Monotonicity in first argument. c(x,x*) > c(x,2’) > 0 if and only if £(z*) > ¢(z") > {(x).
e Monotonicity in second argument. c¢(z,z*) > c(x,z’) > 0 if and only if £(z*) > £(z') > {(z).

Under these assumptions, we can equivalently express the cost as a cost over outcome likelihoods,
cr, 1 U(X) x £(X) = R>g, defined in the following lemma.

Lemma 2.1. When the cost function c¢(x,x') is outcome monotonic, then it can be written as a
cost function over outcome likelihoods cr(1,1") == c(x,z") where x,x’ € X are any points such that

I =4(x) and l' = £(2').

Proof. The monotonicity assumptions imply that if ¢(z*) = £(2'), then c¢(-,2") = ¢(-,2*) and
c(a',) = e(x*,-). Thus, cp(1,I') == c(x,2’) is well-defined because any points x and z’ such that
I ={(x) and I" = £(2) yireld the same value of ¢(z,2’). O

Throughout the paper, we will make use of the equivalent likelihood cost ¢;, when a proof is more

naturally expressed with ¢y, rather than with the underlying cost c.

3 Imstitutional Utility Versus Social Burden

In this section, we characterize the inherent trade-offs between institutional utility and social burden
in the strategic setting. In particular, we show any classifier that improves institutional utility over
the best classifier in the static setting causes a corresponding increase in social burden.



We prove this result in two steps. First, we prove any classifier can be represented as a threshold
classifier that depends only on a threshold 7 € [0,1]. Then, we show increasing utility for the
institution corresponds to raising this threshold 7, but that the social burden monotonically increases
in 7.

Equipped with this result, we show the (Pareto-optimal) set of classifiers that increase institutional
utility in the strategic setting corresponds to an interval I. Each threshold 7 € I represents a
particular trade-off between institutional utility and social burden. Strategic classification corresponds
to one extremum: the best strategic utility but the worst social burden. The non-strategic utility
corresponds to the other: doing nothing to prevent gaming. Neither is likely to be the right trade-off
in practical contexts. Real domains will require a careful weighting of these two utilities, leading to
a choice somewhere in between. Thus, a main contribution of our work is exposing this interval.

3.1 General Trade-Off

We now proceed to prove the trade-off between institutional utility and social burden. Our first step
is to show that in the strategic setting we can restrict attention to classifiers that threshold on the
outcome likelihood (assuming the cost is outcome monotonic as in Definition 2.3).

Definition 3.1 (Outcome threshold classifier). An outcome threshold classifier f is a classifier of
the form f(x) =1{¢(x) > 7} for 7 € [0,1].

In practice, the institution may not know the outcome likelihood ¢(x) = P(Y =1 | X = x). However,
as shown in the next lemma, for any classifier that they do use, there is a threshold classifier with
equivalent institutional utility and social burden. Thus, we can restrict our theoretical analysis to
only consider threshold classifiers.

Lemma 3.1. For any classifier [ there is an outcome threshold classifier f' such that Ua(f) = UA(f")
and By (f) = B4(f').

Proof. Let 7(f) = ming, (;)—1 £(x) be the outcome likelihood at which an individual is accepted by
the classifier f. Then, let f' =1{{(z) > 7(f)} be the outcome threshold classifier that accepts all
individuals above 7(f). We will show that the institutional utility and social burden of f and f’ are
equal.

Since the cost function is outcome monotonic, it is the same cost to move to any point with the
same outcome likelihood. Furthermore, it is higher cost to move to points of higher likelihood, i.e, if
0(x") > (x*), then c(z,2") > ¢(z, z*). Since individuals game optimally, when an individual changes
her features in response to the classifier f, she has no incentive to move to a point with probability
higher than 7(f) — that would just cost more. Therefore, she will move to any point with likelihood
7(f) to be accepted by f and will incur the same cost, regardless of which point it is. Thus, we can
write the set of individuals accepted by f, Aa(f), as

ot
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Figure 1: The general shapes of the institution utility and social burden as a function of the threshold the
institution chooses. The threshold ¢y is the non-strategic optimal, while the threshold 7* is the Stackelberg
equilibrium.

Since 7(f) = 7(f’), the individuals accepted by f and f" are equal: AaA(f) = Aa(f’). Therefore,
their institutional utilities Ua(f) and UA(f') are equal. We can similarly show that the social
burdens of f and f’ are also equal:

B(f) = | min c(o) |y =1] .
CElew) [y=1] o &)= (f)
=E[c(z,2") |y=1] 2 :0")=7(f)
=K f/r(r;/i)n_l c(z,2") |y = 1] =B, (f)

O

Since outcome threshold classifiers can represent all classifiers in the strategic setting, we will
henceforth only consider outcome threshold classifiers. We will overload notation and use Ua (7) and
B (1) refer to Ua(fr) and By (f;) where f(z) = I{¢(x) > 7} is the outcome threshold classifier
with threshold 7.

Figure 1 illustrates how institutional utility and social burden change as the threshold of the
classifier increases. The institutional utility is quasiconcave, while the social burden is monotonically
non-decreasing. The next lemma provides a formal characterization of the shapes shown in Figure 1.

Theorem 3.1. The institution utility UA(T) is quasiconcave in T and has a mazimum at a threshold
T > 19 where 19 = 0.5 is the threshold of the non-strategic optimal classifier. The social burden
B4 (1) is monotonically non-decreasing in 7. Furthermore, if Ua(T) # UA(T"), then By (1) # By (7').

Proof. Let Aa(7) and A(7) be the set of individuals accepted by f in the strategic and non-strategic
setting, respectively. If 7 < 79, we have Aa(7) O Aa(10) 2 A(7p). Since A(7p) is the optimal
acceptance region, Ua(7) < Ua(79). Therefore, if a threshold 7* is optimal for the institution, i.e,
UA(T*) = max,UA(T), then 7" > 7.



Recall that a univariate function f(z) is quasiconcave if there exists z* such that f is non-decreasing
for 2 < z* and is non-increasing for z > z*. Note that if 7 < 7* we have that Aa(7) 2 Aa(7*), thus
UA(T) S UA(T*). Similarly, for any 7 > 7% we have that A (7*) D Aa(7), and thus Ua (1) < UA(T).
Therefore, Una(7) is quasiconcave in 7.

Let ¢z(7) be the cost required for a specific individual = to be classified positively: c,(7) =
c(x,2") where 2’ is any point such that ¢(z') = 7. The social burden can then be expressed as
By (1) = E[cx(7) | y = 1]. Since ¢, (7) is monotonically non-decreasing, B () is also monotonically
non-decreasing.

Suppose Ua (T) # Ua (") and without loss of generality let 7 < 7. For all individuals z, ¢, (7/) >
If there is at least one individual = such that ¢, (7') > ¢;(7), then B4 (7") > B4 (7). But since Ua
UA(7"), there must exist an individual = such that € AA(7)/Aa(7) and p(X =2 |Y =1
For this individual ¢;(7") > ¢;(7). Therefore, Ua(T) # Ua(T) = By (1) # B4 (7).

~—
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T
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As a corollary, if the institution increases its utility beyond that attainable by the optimal classifier
in the non-strategic setting, then the institution also causes higher social burden.

Corollary 3.1. Let 7 be any threshold and 79 = 0.5 be the optimal threshold in the non-strategic
setting. If Un(T) > Ua(10), then Us(T) < Us(T0).

3.2 Choosing a Concrete Trade-off

We have now shown that increases in institutional utility come at a cost in terms of social burden
and vice-versa. This still leaves open the question: what is the concrete trade-off an institution
should choose?

Theorem 3.1 provides a precise characterization of the choices available to trade-off between in-
stitutional utility and social burden. The baseline choice for the institution is to not account for
strategic behavior and use the non-strategic optimum 7y. Maximizing utility without regard to social
burden leads the institution to choose 7*. In general, the interval [, 7*] offers the set of trade-offs
the institution considers. Choosing 7 > 7y can increase robustness at the price of increasing social
burden. Thresholds 7 > 7* are not Pareto-efficient and are not considered.

Much of the prior work in machine learning has focused exclusively on solutions corresponding to
the thresholds at the extreme: 79 and 7*. The threshold 7 is the solution when strategic behavior is
not accounted for. The threshold 7* is also known as the Stackelberg equilibrium and is the subject
of recent work in strategic classification [4, 14, 12]. While using 7* may be warranted in some cases,
a proper accounting of social burden would lead institutions to choose classifiers somewhere between
the extremes of 7y and 7*.

The exact choice of T € [19, 7*] is context-dependent and depends on balancing concerns between
institutional and broader social interest. We now highlight cases where using 79 or 7% may be
suboptimal, and using a threshold 7 € (79, 7") that balances robustness with social burden is
preferable.

Example 3.1 (Expensive features.). If measuring a feature is costly for individuals and offers
limited institutional gains, an institution may choose to ignore the feature, even if it means giving



up accuracy on the margin. In an educational context, a university may decide to no longer require
applicants to submit standardized test scores, which can cost applicants hundreds of dollars, if the
corresponding improvement in admissions outcomes is very small [1].

Example 3.2 (Reducing social burden under resource constraints.). Aid organizations use machine
learning to determine where to allocate resources after natural disasters [18|. In these cases, positive
individuals are precisely those people who are in need of aid and may experience very high costs to
change their features. Using thresholds with high social burden is therefore undesirable. At the same
time, organizations giving out aid often face significant resource constraints. False positives from
individuals gaming the classifier ties up resources that could be better used elsewhere. Consequently,
using the non-strategic threshold is also undesirable. The aid organization should choose a some
threshold 7 with 79 < 7 < 7* that reflects these trade-offs.

Example 3.3 (Misspecification of agent model.). Strategic classification models (including ours)
typically assume that the individual optimally responds to the classifier f. However, in reality,
individuals will not have perfect knowledge of the classifier f when it is first deployed. Instead,
they may be able to learn about how the classifier works over time, and gradually improve their
ability to game the classifier. For example, self-published romance authors exchanged information in
private chat groups about how to best game Amazon’s book recommendation algorithms [19]. For
the institution, it is difficult to a priori model the dynamics of how information about the classifier
propagates. A preferable solution may be to simply make the assumption that the individual can
best respond to the classifier, but to only gradually increase the threshold from the non-strategic
to the Stackelberg optimal 7% over time.

In fact, misspecification of the agent model (described above), is why [5] suggest that the Stackelberg
equilibrium is too conservative, and instead prefer to use Nash equilibrium strategies. Complementary
to their observation, we show that there is a more general reason Nash equilibria may be preferable.
Namely, that Nash equilibria have lower social burden than the Stackelberg solution. As the following
lemma shows, in our context, the set of Nash equilibrium form an interval [tx,7*] C I for some
tny > tg. The proof is deferred to the appendix.

Lemma 3.2. Suppose the cost over likelihoods cy, is continuous and £(X) = [0, 1], i.e, all likelihoods
have non-zero support. Then, the set of Nash equilibrium strategies for the institution is [Ty, T*]
for some T > 19 where 19 = 0.5 is the non-strategic optimal threshold and T is the Stackelberg
equiltbrium strategy.

The Stackelberg equilibrium requires the institution to choose 7%, whereas Nash equilibria give the
institution latitude to trade-off between institutional utility and social burden by choosing from the
interval [ty,7*] C I. This provides an additional argument in favor of Nash equilibria— institutions
can reason in terms of equilibria and achieve more favorable outcomes in terms of social burden.

4 Fairness to Subpopulations

Our previous section showed that increased robustness in the face of strategic behavior comes
at the price of additional social burden. In this section, we show this social burden is not fairly
distributed: when the individuals being classified are from latent subpopulations, say of race,
gender, or socioeconomic status, the social burden can disproportionately fall on disadvantaged



subpopulations. Furthermore, we find that improving the institution’s utility can exacerbate the gap
between the social burden incurred by an advantaged and disadvantaged group.

Concretely, suppose each individual is from a subpopulation G' € {a,b}. The social burden a classifier
f has on a group g € G is the expected minimum cost required for a positive individual from group
g to be accepted: By 4(f) =E [minf(x/)zl cle, )Y =1,G = g]. We can then define the social
gap between groups a and b:

Definition 4.1 (Social gap). The social gap G(f) induced by a classifier f is the difference in the
social burden to group b compared to a: G(f) = By (f) — B+.a(f)-

The social gap is a measure of how much more costly it is for a positive individual from group b to
be accepted by the classifier than a positive individual from group a. For example, there is evidence
that women need to attain higher educational qualifications than their male counterparts to receive
the same salary [6].

A high social gap is alarming for two reasons. First, even when two people from group a and group
b are equally qualified, the individual from group a may choose not to participate at all because of
the cost she would need to endure to be accepted. Secondly, if she does decide to participate, she
may continue to be at a disadvantage after being accepted because of the additional cost she had to
endure, e.g., repaying student loans.

Non-strategic classification can already induce a social gap between two groups, and strategic
classification can exacerbate this gap. We show this under two natural ways group b may be
disadvantaged. In the first setting, the feature distributions of group a and b are such that a positive
individual from group b is less likely to be considered positive, compared to group a. In the second
setting, individuals from group b have a higher cost to adapt their features compared to group a.
Under both of these conditions, any improvement the institution can make to its own strategic utility
has the side effect of worsening (increasing) the social gap.

4.1 Different Feature Distributions

In the first setting we analyze, the way groups a and b differ is through their distributions over
features. We say that group b is disadvantaged if the features distributions are such that positive
individuals from group b are less likely to be considered positive than those from group a. Formally,
this can be characterized as the following:

Definition 4.2 (Disadvantaged in features). Let Ly, = 4(X) | Y = 1,G = g be the outcome
likelihood of a positive individual from group g, and let F ; be the cumulative distribution function
of Ly 4. We say that group b is disadvantaged in features if F'y (1) > F; ,(1) for all [ € (0,1).

In the economics literature, the relationship between L, , and L, ; is referred to as strict first-
order stochastic dominance [21]. An equivalent way to understand the definition is that group b is
disadvantaged in features if and only if the distribution of L , can be transformed to the distribution
of L by transferring probability mass from higher values to lower values. This definition captures
the notion that the outcome likelihood of positive individuals from group b is skewed lower than the
outcome likelihood of positive individuals from a.



In a case study on FICO credit scores in Section 5, we find the minority group (blacks) is disadvantaged
in features compared to the majority group (whites) (see Figure 2). There are many reasons that a
group could be disadvantaged in features. Below, we go through a few potential causes.

Example 4.1 (Group membership explains away features). Even if two groups are equally likely
to have positive individuals, i.e., P(Y =1 | G =a) =P(Y =1 | G = b), group b can still be
disadvantaged compared to group a. Consider the graph below. Although the label Y is independent
of the group G, the label Y is not independent of the group G once conditioned on the features X
because the group GG can provide an alternative reason for the observed features.

()

Concretely, let groups a and b be native and non-native speakers of english, X be the number of
grammatical errors on an individual’s job application, and Y be whether the individual is a qualified
candidate. Negative individuals (Y = 0) are less meticulous when filling out their application and
more likely to have grammatical errors. However, for individuals from group b there is another
explanation for having grammatical errors — being a non-native speaker. Thus, positive individuals
from group b end up with lower outcome likelihoods than those from a, even though they may be
equally qualified.

Example 4.2 (Predicting base rates). Suppose the rate of positives in group b is lower than that of
groupa: P(Y =1|G=0b) <P(Y =1| G =a). If there is a feature in the dataset that can be used
as a proxy for predicting the group, such as zip code or name for predicting race, then the outcome
likelihoods of positive individuals from group b can end up lower than those of positive individuals
from group a because the features are simply predicting the base rate of each group.

Social gap increases. We now state and prove the main result showing that the social gap
increases as the institution increases its threshold for acceptance. Before turning to the result,
we introduce one technical requirement. The likelihood condition is that &LT(ZI’T) is monotonically
non-increasing in 7 for I, 7 € [0,1]. When the cost function ¢ is outcome monotonic, the likelihood
condition is satisfied for a broad class of differentiable likelihood cost functions ¢y, such as the

following examples.

e Differentiable separable cost functions of the form ¢y (1,1") = max(co(I') — ¢1(1),0) for c1,¢s :
[0, 1] — Rzo.

e Differentiable shift-invariant cost functions of the form

ol —1) 1<l
)= {0 1>

for Cco . [O, 1] — Rzo.

10



Notably, any linear cost cr,(,1") = max(« (!’ —1),0) where o > 0 satisfies the likelihood condition.

Under the likelihood condition, we now show that the social gap increases as the institution increases
its threshold for acceptance.

Theorem 4.1. Let T € (0,1] be the threshold of the classifier. If group b is disadvantaged in features

compared to group a, and BCLT(;’T) is monotonically non-increasing in T, then G(T) is positive and

monotonically increasing over T.

Proof. By Lemma 2.1, any outcome monotonic cost function can be written as a cost over outcome
likelihoods. Therefore, the social burden can be written as

Boylr) =E| min cl.a)| ¥ =16 =g

= /T CL(Z,T) ng,l(l)v
0

where Iy ;, denotes the CDF of the outcome likelihood L, 4. Integrating by parts, we obtain a
simple expression for B 4(7):

By y(1) = /OT cr(l,7)dF, (1)

. T ocr(l, T
~ ) Fya )~ [ PR
_ T aCL(l,T)
- 0 al F—l—,g(l) dl7

where the last line follows because cr(7,7) = 0 and F 4(0) = 0. This expression for B, 4(7) allows
us to conveniently write the social gap as

(1) = Balr) ~ Bualr) = [ PEETNFL0) - Fra)al

It is easy to observe G(7) is positive. By the monotonicity assumptions, (%LT(ZZ’T) < 0 for l € (0,7).
Since group b is disadvantaged in features, F.y ,(I) — Fy p(I) < 0 for [ € (0,1). Therefore, the social
gap G(1) > 0.

Now, we show G(7) is increasing in 7. Let 0 < 7 < 7/ < 1. Then,the difference in the social gap is
given by

6() - 9(r) = [ HLCD =D o) - P a

" /TT &:L((??T/)(Fﬁa(l) — F, (1)) dl.

Since group b is disadvantaged in features, (Fly 4(1) — F (1)) < 0 for all {. By assumption, &LT(;’T)

is monotonically non-increasing in 7, so the first term is non-negative. Similarly, BCL(%’T/) < 0 by
monotonicity, so the second term is positive. Hence, G(7') — G(7) > 0, which establishes G(7) is
monotonically increasing in 7. O

11



As a corollary, if the institution improves its utility beyond the non-strategic optimal classifier, then
it also causes the social gap to increase.

o . 9 (L,7)
Corollary 4.1. Suppose group b is disadvantaged in features compared to group a, and =57~

is monotonically non-decreasing in 7. Let T € (0,1] be a threshold and 79 = 0.5 be the optimal
non-strategic threshold. If Ua(T) > Ua(70), then G(T) > G(T9).

Proof. By Theorem 3.1, if Ua(T) > Ua(7p), then 7 > 79. By Theorem 4.1, if 7 > 79, then
G(r) > G(m). O

4.2 Different Costs

In Section 4.1, we showed that when two subpopulations have different feature distributions, the social
burden can disproportionately fall on one group. In this section, we give show, even if the feature
distributions of the two groups are exactly identical, the social burden can still disproportionately
impact one group.

We have thus far assumed the existence of a cost function ¢ that is uniform across groups a and
b. For a variety of structural reasons, it is unlikely this assumption holds in practice. Rather, it is
often the case that different groups experience different costs for changing their features.

When the cost for group b is systematically higher than the cost for group a, we prove group b incurs
higher social burden than group a. Furthermore, if the institution improves its utility by increasing
its threshold 7, then as a side effect it also increases the social gap between group b and a (Theorem
4.2).

Much of the prior work on fairness in classification focuses on preventing unfairness that can arise
when different subpopulations have different distributions over features and labels [13, 15, §]. Our
result provides a reason to be concerned about the unfair impacts of a classifier even when two
groups have identical initial distributions. Namely, that it can be easier for one group to game the
classifier than another.

Formally, we say that group b is disadvantaged in cost compared to group a if the following condition
holds.

Definition 4.3 (Disadvantaged in cost). Let ¢4(x,2’) be the cost for an individual from group g

to adapt their features from z to 2’. Group b is disadvantaged in cost if ¢p(z, 2") > cq(z, 2’) for all
/

r,x' € X.

Next, we give a variety of example scenarios of when a group can be disadvantaged in cost.

Example 4.3 (Opportunity Costs). Many universities have adopted gender-neutral policies that
stop the “tenure-clock” for a year for family-related reasons, e.g. childbirth. Ostensibly, no research
is expected while the clock is stopped. The policies were made gender-neutral in an attempt to
decrease the stigma women felt around taking time off for family reasons. However, the adoption of
gender-neutral clocks actually increased the gap between the percentage of men and women who
received tenure |2]. The suggested cause is that women still shoulder more of the burden of bearing
and caring for children, compared to men. Men who stop their tenure clock are more productive
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during the period than women, who have a higher opportunity cost to doing research while raising a
child.

Example 4.4 (Information Asymmetry). A large portion of high-achieving, low-income students
do not apply to selective colleges, despite the fact that these colleges are typically less expensive
for them because of the financial aid they would receive [16]. This phenomenon seems to be due to
low-income students having less access to information about college [17]. Since low-income students
have more barriers to gaining information about college, it is natural to assume that, compared to
their wealthier peers, they have a higher cost to strategically manipulating their admission features.

Example 4.5 (Economic Differences). Consider a social media company that wishes to classify
individuals as “influencers,” either to more widely disseminate their content or to identify promising
accounts for online marketing campaigns. Wealthy individuals can purchase followers or likes,
whereas other groups have to increase these numbers organically [7]. Consequently, the costs to
increasing one’s popularity metric differs based on access to capital.

Finally, our main technical result shows that even when the distributions of groups a and b are
identical, if group b is disadvantaged in cost, then when the institution increases its threshold for
acceptance, it also increases the social gap between the two groups.

Theorem 4.2. Suppose positive individuals from groups a and b have the same distribution over
features, i.e, if Z = (X | Y = 1), then Z is independent of the group G. If group b is disadvantaged in
cost compared to group a, then the social gap G(T) is non-negative and monotonically non-decreasing
wn the threshold T.

Proof. The social burden to a group g can be written as

By 4(7) =/ min  cy(z, 2 )p(X =2 |V =1)dz
X z':fr(z')=1

because X | Y =1 is independent of G. The social gap can then be expressed as
G(1) =By p(7) — Bya(7)

= / ( min  cq(x,2") — cb(x,x’)> pX=z|Y =1)dz.
x \&:fr(2')=1

The gap in individual cost ming.¢ ;=1 ca(z,2") — cp(z, ") is always non-negative and is monotoni-
cally non-decreasing in 7, thus G(7) is non-negative and monotonically non-decreasing. O

5 Case Study: FICO Credit Data

We illustrate the impact of strategic classification on different subpopulations in the context of credit
scoring and lending. FICO scores are widely used in the United States to predict credit worthiness.
The scores themselves are derived from a proprietary classifier that uses features such as the number
of open bank accounts that are susceptible to gaming and strategic manipulation.

We use a sample of 301,536 FICO scores derived from TransUnion TransRisk scores [24] and
preprocessed by [15]. The scores X are normalized to lie between 0 and 100. An individual’s outcome
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Disadvantaged in Features Repayment Probability as a Function of Score
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Figure 2: Comparison of the distribution of Figure 3: Repayment probability as a function
FICO scores among black and white borrowers of credit score. Crucially, the probability of re-
who repaid their loans. Credit-worthy black in- payment P(Y = 1| ) is monotonically increasing
dividuals tend to have lower credit scores than in x.

credit-worthy white individuals. The compari-
son of the corresponding CDFs demonstrates our
“disadvantaged in features” assumption holds.

is labeled as a default if she failed to pay a debt for at least 90 days on at least one account in the
ensuing 18-24 month period. Default events are labeled with Y = 0, and otherwise repayment is
denoted with Y = 1. The two subpopulations are given by race: a = white and b = black.

We assume the credit lending institution accepts individuals based on a threshold on the FICO score.
Using the normalized scale, a threshold of 7 = 58 is typically used to determine eligibility for prime
rate loans [15]. Our results thus far have used thresholds on the outcome likelihood, rather than
a score. However, as shown in Figure 3, the outcome likelihood is monotonic in the FICO score.
Therefore, all our conditions and results can be validated using the score instead of the outcome

likelihood.

5.1 Different Feature Distributions

In Section 4.1, we studied the scenario where the distribution of outcome likelihoods ¢(X) = P(Y =
1| X) differed across subpopulations. In particular, if the likelihoods of the positive individuals
in group B tend to be lower than the positive individuals in group A, then increasing strategic
robustness increases the social gap between A and B.

Interestingly, such a skew in score distributions exists in the FICO data. Black borrowers who repay
their loans tend to have lower FICO scores than white borrowers who repay their loans. In terms of
the corresponding score CDFs, for every score @, Fiy piack(%) > Fiy ynite(x). Figure 2 demonstrates
this observation.

When the score distribution among positive individuals is skewed, Theorem 4.1 guarantees the social
gap between groups is increasing in the threshold under a reasonable cost model. Operationally,
raising the loan threshold to protect against strategic behavior increases the relative burden on
the black subgroup. To demonstrate this empirically, we use a coarse linear cost model, ¢(x,2’) =
max(a(z’ — x),0) for some v > 0. Since the probability of repayment P(Y =1 | x) is monotonically

14



Social Gap with the Same Cost Per-Group Social Gap with Different Costs Per-Group
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Figure 4: Impact of increasing the threshold 7 Figure 5: Impact of increasing the threshold 7
on white and black credit applicants. When the on white and black credit applicants, under the
cost to changing one’s score « is small, increases assumption that both groups incur different costs
to the threshold have only a small effect on the for increasing their credit score. As the ratio
social gap. However, as « becomes large, even of costs g increases, the social cost gap grows
small increases to the threshold can create large rapidly between the two groups.
discrepancies in social burden between the two
groups.

increasing in x, the linear cost c¢ satisfies the requisite outcome monotonicity conditions.

In Figure 4, we compute G(7) as 7 varies from 0 to 100 for a range of different value of o. For any
a, the social utility gap is increasing in 7. Moreover, as « (the cost of raising one’s credit score)
becomes large, the rate of increase in the social gap grows large as well.

5.2 Different Cost Functions

In Section 4.2, we demonstrated when two subpopulations are identically distributed, but incur
different costs for changing their features, there is a non-trivial social gap between the two. In the
context of the FICO scores, it’s plausible blacks are both disadvantaged in features and experience
higher costs for changing their scores. For instance, outstanding debt is an important component of
FICO scores. One way to reduce debt is to increase earnings. However, a persistent black-white wage
gap between the two subpopulations suggest increasing earnings is easier for group a than group b
[11]. This setting is not strictly captured by our existing results, and we should expect the effects of
both different costs functions and different feature distributions to compound and exacerbate the
unfair impacts of strategic classification.

To illustrate this phenomenon, we again use a coarse linear cost model for both groups. Suppose
group A has cost ca(x,2’) = max{a(z’ — z),0} for some o > 0 and group B has cost cp(z,2’) =
max{f(z’ — x),0} for some 8 > . Since we are interested in the relative cost for each group, the
key parameter controlling the rate of increase in G(7) is the ratio g In Figure 5, we show the social
gap G(7) for various settings of g The social gap is always increasing as a function of 7, and the
rate of increase grows large for even moderate values of g When g is large, even small increases in
7 can disproportionately increase the social burden for the disadvantaged subpopulation.
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6 Related Work

Strategic Classification Prior work on strategic classification focuses solely on the institution,
primarily aiming to create high-utility solutions for the institution. Our work, on the other hand,
studies the tradeoff between the institution’s utility and the burden to the individuals being classified.

[14, 12, 4] give algorithms to compute the Stackelberg equilibrium, which corresponds to the
extreme 7" solution in our trade-off curves. Although the Stackelberg equilibrium leads to maximal
institutional utility, we show that it also causes high social burden. We give several examples of
when the high social burden induced by the Stackelberg equilibrium makes it an undesirable solution
for the institution.

Rather than the Stackelberg equilibrium, others have also considered finding Nash equilibria of the
game [5, 10]. [5] argue that since in practice people cannot optimally respond to the classifier, the
Stackelberg solution tends to be too conservative, and thus a Nash equilibrium strategy is preferable.
Our work provides a complementary reason to prefer Nash equilibria over the Stackelberg solution.
Namely that (for a broad class of cost functions), any Nash equilibrium that is not equal to the
Stackelberg equilibrium places lower social burden on individuals.

Finally, we focus on the setting where individuals are merely “gaming” their features, i.e., they do
not improve their true label by adapting their features. However, if the classifier is able to incentivize
strategic behavior that helps improve negative individuals, then the social burden placed on positive
individuals may be considered acceptable. [20] studies how to design classifiers that produce such
incentives.

Fairness Our work studies how strategic classification results in differing impacts to different
subpopulations and is complementary to the large body of work studying the differing impacts of
classification |23, 3|.

The prior work on classification is primarily concerned with preventing unfairness that can arise due
to subpopulations having differing distributions over features or labels [15, 13, 8]. We show that in
the strategic setting, a classifier can have differing impact due to the subpopulations having differing
distributions or differing costs to adapting their features. Therefore, when individuals are strategic,
our work provides an additional reason to be concerned about the fairness of a classifier. Namely,
that it can be easier for one group to game the classifier than another.

Furthermore, we show that if the institution modifies the classifier it uses to be more robust to
strategic behavior, then it also as a side effect, increases the gap between the cost incurred by
a disadvantaged subpopulation and an advantaged population. Thus, strategic classification can
exacerbate unfairness in classification.

Our work is also complementary to [22]|, who also analyze how the institution’s utility trades-off
with the impact to individuals. They study the trade-off in the non-strategic setting and measure
the impact of a classifier using a dynamics model of how individuals are affected by the classification
they receive. We study the tradeoff in the strategic setting and measure the impact of a classifier by
the cost of the strategic behavior induced by the classifier.
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A Proof of Lemma 3.2

Proof. The lemma follows by proving the following properties about the Nash equilibrium strategies
for the institution.

e The Stackelberg threshold 7* is a Nash equilibrium strategy.
e All Nash equilibrium strategies lie in the interval [rp, 7].
e If 7y is a Nash equilibrium strategy, then all 7 € [7y, 7*] are also Nash equilibrium strategies.

Together, the three properties imply that the set of institution equilibrium strategies is [ry, 7*] for
some Ty € [10, T"].

Before proceeding, recall the outcome likelihood ¢(x) = P(Y = 1 | X = ). For any threshold 7,
define the strategic outcome likelihood ¢a_(2') = P(Y =1 | A (X) = 2'). Let A-(z) be the best
response of individual x to the threshold 7. Define the set of individuals accepted for threshold 7
and response A by A, (1) ={z: fr(A-(z)) = 1}.

For the pair (7,A;) to be a Nash equilibrium, 7 must be a best response to the individual’s best
response A, (x). With knowledge of the individual’s response, ' = A (z), the institution’s best
response is to play a threshold 7’ so that 2’ € Aa. (7') iff €A (2") > 0.5. Therefore, to show (7, Ar)
is a Nash equilibrium, we must show 7 =7/, i.e. 2’ € Aa_ (7) iff a_(2') > 0.5.

To verify the condition 2’ € A, (7) iff o (2") > 0.5, there are three cases to consider.

1. If £(z) > 7, then € Ax_(7), Ar(z) =z, and la_(x) = {(x). Therefore, it suffices to check
l(x) > 0.5.

2. If {(z) < 7 and cp(U(x),7) > 1, then = € Ax_(7) and A(z) = z. In this case, it suffices to
check £(z) < 0.5.

3. If {(z) < 7 and c(¢(x),7) < 1, then A (x) € Aa. (7), but  # A, (x), so we must directly
verify P(Y =1 | cp.((z),7) < 1,4(x) < 7) > 0.5.

We now proceed to the proof.

First, we show the Stackelberg equilibrium (7%, A;+) is a Nash equilibrium. The Stackelberg threshold
7* is the largest 7% such that ¢ (0.5,7%) < 1. If () > 7*, by monotonicity, ¢(z) > 0.5. If {(z) < 7*
and cr,(¢(x), 7*) > 1, then £(z) < 0.5 by definition of 7*. Similarly, if £(x) < 7* and ¢ (¢(z),7*) < 1,
then ¢(z) > 0.5, so trivially P(Y =1 | cp.(4(z),7) < 1,4(z) < T1) > 0.5. Hence, (7%, A;«) is a Nash
equilibrium.

Next, we show that all Nash strategies must lie in the interval [7g, 77].

1. Suppose 7 < 19 = 0.5. For all z such that {(A(z)) = 7, {(z) < 0.5. Therefore, P(Y =1 |
cr((z),7) < 1,0(x) < 7)< 0.5, so 7 cannot be a Nash equilibrium strategy for the institution.

2. Suppose 7 > 7*. By definition, 7* is the largest 7 such that ¢z (0.5,7) < 1. Thus, if 7 > 7%,
there exists « with ¢(z) < 7* and ¢, (¢(z),7) > 1, but ¢(x) > 0.5. Hence, 7 cannot be a Nash
strategy.
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Finally, we show that if 7 is a Nash equilibrium strategy, then so if 7 for any 7 € [rn,7*]. We
consider each of the three cases in turn.

1. Suppose £(z) > 7. Then ¢(x) > 7 > 75y > 79 = 0.5.

)
2. Suppose {(z) < 7 and cr(¢(z),7) > 1. Since 7 < 7%, by monotonicity, 1 < cr(l(z),7) <
cr,(U(z), 7). However, ¢1,(0.5,7%) < 1, so it follows that ¢(z) < 0.5.

3. Suppose ¢(x) < 7 and ¢, (¢(x),7) < 1. Since 7y is a Nash strategy, P(Y = 1| c,(¢(X),7n) <
1,4(X) < 7n) > 0.5, and this probability is increasing in 7 since ¢(x) > 0.5 for £(z) > 7.
Therefore, since 7 > 75, P(Y =1 | e (¢(X),7) < 1,4(X) < 71) > 0.5.

Since each of the three cases are satisfied, any 7 € [Ty, 7*] is a Nash strategy.

We have now demonstrated each of the three properties outlined at the beginning, and the lemma
follows. m
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