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Abstract—Trust in data collected by and passing through
Internt of Things (IoT) networks is paramount. The quality
of decisions made based on this collected data is highly de-
pendent upon the accuracy of the data. Currently, most trust
assessment methodologies assume that collected data follows a
stationary Gaussian distribution. Often, a trust score is estimated
based upon the deviation from this distribution. However, the
underlying state of a system monitored by an IoT network can
change over time, and the data collected from the network
may not consistently follow a Gaussian distribution. Further,
faults that occur within the estimated Gaussian distribution may
go undetected. In this study, we present a model-based trust
estimation system that allows for concept drift or distributions
that can change over time. The presented methodology uses data-
driven models to estimate the value of the data produced by
a sensor using the data produced by the other sensors in the
network. We assume that an untrustworthy piece of data falls in
the tails of the residual distribution, and we use this concept to
assign a trust score. The method is evaluated on a smart home
data set consisting of temperature, humidity, and energy sensors.

I. INTRODUCTION

Data is being collected at an ever increasing rate, and
technological advances are allowing users to store and analyze
the vast amounts of data present in modern society. The
sources of data are diverse and include sensor networks, smart
phones, cyber-physcial systems, and social networks. End
users extract information from collected data and ultimately
wish to make decisions utilizing this information. One com-
mon interest to all of these domains is the need to evaluate
the trustworthiness of the data being collected and supplied
to end users. Corrupted data, either intentionally corrupted or
corrupted through natural causes, supplied to an end user or
decision maker will degrade the performance of the system and
could lead to incorrect or even fatal decisions. For example,
untrustworthy IoT data in a smart-city setting [1] could lead a
decision maker to deploy city resources, such as fire fighters
and ambulances, to incorrect or unnecessary locations. This
mismanagement of resources could cause waste and resources
not being available for real events such as fires or medical
emergencies.

Internet of things (IoT) networks are growing in popularity
and becoming a larger source of data. Privacy, security, and
trust play a prominent role in any IoT deployment [2], [3],

[4], [5]. Trust in IoT networks can be broken down into
two concepts: (1) trust in the interactions between entities
in the network, and (2) trust in the network itself [4]. This
study focuses on evaluating the trust of an IoT network,
and in particular, mechanisms for a user to evaluate the
trustworthiness of the data produced by an IoT network.

Trust is a difficult concept to define, and researchers often
define a narrow definition of trust that reflects their empirical
study [6]. In a network, trust can be thought of as the belief
that an entity will perform an action given a particular cir-
cumstance [7]. This definition directly applies to peer-to-peer
(P2P) networks where entities are interacting with each other.
However, this definition does not align with a network that
solely provides information or data. We amend this definition
to apply to IoT networks that produce data:

Definition 1. Data Trustworthiness in IoT Networks Trust in
data in IoT networks is the subjective probability that data
observed by a user is consistent with the data at the source.

Given this definition, we wish to construct models that can
accurately assess the trust a user can place in a piece of data
collected or produced by an IoT network.

The concept of trust has been applied to numerous types
of systems and networks. P2P networks link users directly
and allow them to share files. These networks are not only a
security risk but also require that user be evaluated in terms of
competence or quality. Bayesian networks have been used to
estimate the trustworthiness of file providers based on several
attribute including download speed and file quality [8], [9],
[10]. Bearly and Kumar [11] develop a general framework
for trust in a P2P network where entities are included in
the trust network if they are reliable. Ad hoc networks lack
infrastructure and have dynamic topologies. Trust models for
these types of networks must account for these characteristics
[12], [13]. In both of these networks, the trust model estimates
the reputation of the entity. It is assumed that an entity with a
good reputation will provide quality data, but the trust of the
data is not explicitly estimated.

Wireless sensor networks (WSNs) are composed of small
autonomous nodes. Due to a self-contained power supply,
each node has a limited communication and computational
capability. Jiang et al [14] develop an efficient trust framework



for WSNs. They draw a distinction between direct and indirect
trust, where the former is calculated based on interaction and
the latter is calculated based on a third-party assessment. Hur
et al [15] create a trust model that uses data to distinguish
between “illegal” and “legal” nodes. The basic premise of
this model is to collect multiple redundant data source and
compare them for consistency. Feng et al [16] offer a trust
evaluation algorithm for WSNs that incorporates a number of
trust factors into the final trust calculation. Won and Bertino
[17] assume that data similarity is correlated with physical
distance between nodes.

Yan, Zhang, and Vasilakos, [18] provide a survey of trust
management in IoT networks and cover several topics includ-
ing trust properties, trust evaluation, trust frameworks, and the
perception of data trust. Sicari et al. [19] survey the literature
on security, privacy, and trust for IoT networks. WSNs and
IoT networks both require some form of data trust evaluation,
however most of the existing methods rely on the behavior
of nodes or the ability to evaluate the interactions between
nodes and do not consider the data itself. Javed and Wolf [20]
develop a method for estimating the trustworthiness of data
in an IoT network based on the physical distance between
nodes and outlier detection. A pattern-wise trust assessment
[21] allows for nodes to be grouped into neighborhoods based
on different states of the world.

Several trust models utilize data provenance to generate
trust scores. The W7 model [22] conceptualizes provenance
as a combination of several factors: what, when, where, why,
how, who, and which. Dai et al. [23] make the case for
using provenance to estimate the trust of data and the data
sources. They break provenance, or the information about the
data used to estimate the trust score, into four attributes: data
similarity, data conflict, path similarity, and data deduction.
In [24] and [25], Lim, Moon, and Bertino present a model
for evaluating the trustworthiness of data and nodes in a
network for streaming data. The proposed cyclic framework
uses models for the data, provenance, and similarity measures
to estimate trust scores. Wang, Govindan, and Mohapatra
[26] estimate a provenance-based notion of trust using path
similarity and information similarity.

Most of the previously mentioned methods rely on a sim-
ilarity metric that compares past data with newly collected
data and then assigns a trust score. Often, the similarity
metric assumes that the data follows a stationary Gaussian
distribution. In these cases, data that may be not be trustworthy
could fool the trust model if it is “close” to the mean of
the estimated Gaussian distrubtion. Systems can also evolve
over time, which can cause new trustworthy data to appear
as untrustworthy data. To combat these issues, we propose a
model-based trust assessment method that estimates a value
for the data, and then evaluates the trustworthiness of the
data based on the residual between the estimated value and
the collected value. The outlier-based method in [20] has a
similar concept but we build on that work in 2 key areas.
First, Javed and Wolf specifically recommend using a linear
regression model for predicting the future value of the data.

We generalize and recommend exploring several types of data-
driven models and selecting the model that is best for the
application. Second, Javed and Wolf do not specify how to
determine if an observation is an outlier. In the proposed
method, we provide a method for detecting an outlier based
on the residuals and convert this value into a trust score.

The primary contribution of this study is the use of residuals
from a data-driven model to estimate a trust score for individ-
ual pieces of data. In Section II, the proposed model-based
method for estimating trust is outlined. Section III provides
numerical experiments on an IoT dataset. In Section IV, we
provide our conclusions on the proposed method.

II. METHOD

Let Xi(t) be the value of the data from node i in an IoT
network at time t for i = 1...I and t = 1...T . Further, let
X(t) = {X1(t), ..., XI(t)}, the set of all the data from the
nodes in the IoT network at t. In the proposed method, we
assume that there is a relationship between all the nodes in the
network that can be characterized using a data-driven model.
More specifically, we assume that Xi(t) can be estimated
using the data from all the other nodes in the network
represented by X̄(t) = {Xj(t) ∈ X(t)|1 ≤ j ≤ I, j 6= i}.
Let fi(·) be a model that estimates Xi(t), where

X̂i(t) = fi(X̄(t)). (1)

The model fi(·) is estimated or learned during a training
process from training data X procured sometime before t.
Let T ′ be the number of observations in X and τ = 1...T ′.
The proposed model-based trust assessment method compares
X̂i(t) with Xi(t) and then estimates a trust score. Let Ri(t)
be the residual

Ri(t) = X̂i(t)−Xi(t). (2)

Residuals follow a student’s t-distribution, and the param-
eters of the residual distribution {µ, σ, ν} are estimated from
the residuals of X . Inspired by the work in [24], a trust score
Si(t) is estimated using

Si(t) = 2

∫ ∞

R̄i(t)

p(x|ν)dx, if R̄i(t) < 0, (3)

and

Si(t) = 2

∫ R̄i(t)

0

p(x|ν)dx, if R̄i(t) ≥ 0, (4)

where R̄i(t) is the standardized residual, and p(x|ν) is the
probability density function of the standardized student’s t-
distribution. Note that µ and σ are omitted from p(x|ν)
because µ = 0 and σ = 1 for the standardized distribution.
The primary difference between Equations 3 and 4 and the
intermediate trust score in [24] is that we estimate trust based
on the residual while Lim, Moon, and Bertino estimate the in-
termediate trust score using the raw data. When standardizing
the residuals, α can be added to σ to increases the standard



deviation of the estimated residual distribution. Under the
estimated distribution, some trustworthy observations would
naturally occur in the tails of the distribution. By increasing the
variance of the estimated distribution, the likelihood of trust-
worthy observations assigned low trust scores is decreased.
Algorithm 1 displays the entire model-based trust scoring
algorithm.

Algorithm 1: Model-Based Trust Scoring Algorithm
Result: Trust scores for all nodes i = 1...I at all time

points t = 1...T
1 Build models fi(·) ∀i using X
2 Calculate R′

i(τ) for τ = 1...T ′ and i = 1...I
3 Estimate µi, σi, and νi from R′

i

4 Increase standard deviation of estimated distribution
σ = σ + α

5 for t = 1...T do
6 for i = 1...I do
7 X̂i(t) = fi(X̄(t))

8 Ri(t) = X̂i(t)−Xi(t)
9 R̄i(t) = (Ri(t)− µ)/σ

10 if R̄i(t) < 0 then
11 Si(t) = 2

∫∞
R̄i(t)

p(x|ν)dx

12 else
13 Si(t) = 2

∫ R̄i(t)

0
p(x|ν)dx

14 end
15 end
16 end

III. EXPERIMENTS

The model-based trust scoring method outlined in Al-
goirthm 1 is demonstrated on a smart home data set [27]
publicly available on the UCI machine learning repository1.
Temperature, relative humidity, and energy consumption are
collected from inside the home. Weather data from the local
airport is also available. The data set contains over 19,000
observations and was collected every 10 minutes from January
11, 2016 to May 27, 2016. Fig. 1 displays the relative humidity
data from sensor RH 1. The numerical experiments are limited
to this sensor, but it could be easily applied to any of the
sensors in the dataset. The first month of the data is used for
training, and the trust score is evaluated for the rest of the
data.

First, we will point out a limitation of standard trust
algorithms when trying to estimate the trust score for RH 1.
The reputation-based framework for assessing the integrity of
sensors presented in [28] relies heavily on outlier detection
algorithms, and the authors recommend the local outlier factor
(LOF) method [29]. The LOF algorithm is applied to the
RH 1 data, and Fig. 2 displays the results. The algorithm
assigns non-outliers a value of 1, and outliers the value of 2.
Given the training data, the algorithm identifies several outliers

1https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

Fig. 1. Relative humidity data from sensor RH 1.

Fig. 2. LOF algorithm applied to RH 1. A 1 indicates a non-outlier, and a 2
indicates an outlier as predicted by the algorithm.

throughout the testing dataset even though these are legitimate
data values. This will significantly affect the results of the
reputation-based system.

The authors of [28] present several types of faults that can
be injected into a data stream to represent untrustworthy data.
The offset fault, displayed in Fig. 3, adds an offset value m
to the true data value. The variance fault, displayed in Fig.
4, adds a value sampled from a Gaussian distribution with
mean 0 and variance v to the true data value. The stuck fault,
displayed in Fig. 5, replaces the true data value with a single
value s. The LOF algorithm is applied to data with the stuck
fault, and the outlier detection results are displayed in Fig. 6.
The LOF algorithm completely misses the fault.

The presented model-based method is applied to the RH 1
data stream. First, a model that predicts the relative humidity
from RH 1 must be selected. The inputs into the model
are the other relative humidity sensors in the data set, the
temperature sensors, the energy sensors, and the local weather
data. Several models were tested including linear regression,
random forest regression, gradient boosted machines, and



Fig. 3. RH 1 with an offset fault injected from late March to late April.

Fig. 4. RH 1 with a variance fault injected from late March to late April.

Fig. 5. RH 1 with a stuck fault injected from late March to late April.

Fig. 6. LOF algorithm applied to RH 1 with a stuck fault. A 1 indicates a
non-outlier, and a 2 indicates an outlier as predicted by the algorithm.

TABLE I
ROOT MEAN SQUARE ERROR (RMSE)

Model Training RMSE Testing RMSE
Linear Regression 1.1 1.6

Random Forest 0.6 3.0
Gradient Boosted Machines 0.5 5.3

Multilayer Perceptrons 3.0 4.6

multilayer perceptrons. Table I displays the root mean square
error for the training and testing sets. The training set error was
estimated using 10-fold cross validation. The gradient boosted
machine has the lowest training error but does not generalize
well to the test set. Linear regression was chosen because of
the low error on the test set.

First, we test the presented method on the testing data from
RH 1 under normal conditions and an α = 3 (Fig. 7). The
trust scores are predominantly above 0.4. Fig. 8, Fig. 9, and
Fig. 10 display the trust scores for the offset, variance, and
stuck faults, respectively. The algorithm clearly identifies the
offset fault and the stuck fault. It appears that the trust score
decreases in the region of the variance fault.

Fig. 7. Model-based trust scoring algorithm applied to RH 1.



Fig. 8. Model-based trust scoring algorithm applied to RH 1 w/ an offset
fault.

Fig. 9. Model-based trust scoring algorithm applied to RH 1 w/ a variance
fault.

Fig. 10. Model-based trust scoring algorithm applied to RH 1 w/ a stuck
fault.

TABLE II
MODEL-BASED SENSITIVITY AND SPECIFICITY

Fault Sensitivity Specificity
Offset 1.00 0.99

Variance 0.32 0.99
Stuck 0.51 0.99

TABLE III
LOF SENSITIVITY AND SPECIFICITY

Fault Sensitivity Specificity
Offset 0.06 0.89

Variance 0.21 0.89
Stuck 0 0.89

To further evaluate the proposed method, individual data
points are classified as either trustworthy or untrustworthy
using a threshold of 0.4, i.e. data points with a trust score
below 0.4 are classified as untrustworthy. For this analysis,
we consider the faulty data point to be a positive outcome.
Sensitivity and specificity for each fault are displayed in Table
II. The proposed method has a specificity of 0.99 for all faults
meaning that trustworthy data points are rarely assigned trust
scores below the threshold. The offset fault has a sensitivity of
1 meaning that all of the untrustworthy data points have a trust
score below the threshold. The method identifies just over half
the untrustworthy data points for the stuck fault, but it only
identifies a third of untrustworthy data points for the variance
fault. As a comparison, Table III displays the sensitivity and
specificity for the LOF outlier detection algorithm. The model-
based method outperforms the LOF outlier detection method
on both performance metrics.

IV. CONCLUSION

A model-based trust scoring algorithm is presented and
tested on a smart-home IoT data set. The method builds
upon previous work by generalizing to a data-driven model,
specifying a method for detecting outliers, and converting
the outlier detection to a trust score. It is demonstrated that
other common outlier detection methods, specifically the LOF
method, have trouble on this dataset when the first month of
the data is used for training. Outliers are often detected for true
values and the method misses faults that lie within the bounds
of the training data. The presented model-based method can
detect the areas in the data where three common faults are
injected.
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