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Abstract— Unmanned vehicles are capable of working as
teams to accomplish a wide variety of mission objectives, such as
searching for and tracking targets. In this paper, vehicle search
paths are dictated by a joint cost function which maximizes the
reward earned from partitioned sections across the search area.
In previous work, these rewards were assigned based on the
elapsed time since the section had last been searched. This
approach is effective in rewarding vehicles to search out areas
which haven’t been visited in a long time, yet it lacks the ability
to weight grid cells differently based on the probability that
targets will be in that section. This paper proposes a method of
using accumulated knowledge of the average density of targets
within an area, along with a Gaussian process regression to
assign rewards. Vehicles then choose paths that are more likely
to find targets rather than seeking areas which have not been
searched recently. Through numerical simulations we show that
this method increases the number of targets seen by cooperating
UAVs and provides an accurate estimate of target density within
a search area.

I. INTRODUCTION

The high demand for unmanned aerial vehicles (UAVs)
continues to rise due to their many desirable applications
and qualities. They have a multitude of practical uses such
as patrolling [1], target tracking [2], search and rescue [3],
mapping dangerous regions [4], [5], and surveillance [6].
Additionally, UAVs are usually cheaper than conventional
methods, such as manned aircraft, and keep the pilots out of
harm’s way [7].

Patrolling, searching, and surveillance objectives all face
challenges when there aren’t enough UAVs to view the
entire area simultaneously. In these cases, the UAVs must
coordinate their trajectories to optimally cover the largest
area possible. This task becomes increasingly difficult when
either the search area becomes large or there is a limitation
in the number of available UAVs.

The effectiveness of a search method is evaluated by the
overall mission goal, such as equal and frequent coverage
of an area or finding and monitoring moving targets within
the region. Each overall goal has its benefits and drawbacks.
Frequency-based algorithms focus on optimizing the amount
of elapsed time between visits to locations in the search area.
Some seek to minimize this elapsed time, as in [8], [9],
while others work towards making the elapsed time uniform
across the search grid, as seen in [10]. Another approach is
searching for high interest points in the least amount of time,
which utilizes a more probabilistic algorithm, as seen in [11].
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Reinforcement learning has been introduced as an aspect to
minimize the search area coverage rate and has been been
examined in [12], [13].

Although these methods are effective in their evaluation
criteria, they have weaknesses in the application of search-
ing for and monitoring moving targets. They fall short in
maximizing the number of targets discovered and tracked. In
many situations targets are not uniformly distributed across a
search area and UAVs spend time searching areas where they
will see few or no targets. This paper presents a method of
using learned knowledge from the environment to maximize
the number of detected targets. In this approach, UAVs have
higher revisit rates in areas where they are more likely to gain
information on new or existing targets, and they decrease
time spent in areas where targets are rarely observed.

This result is achieved by balancing the exploration and
exploitation of learned information about target densities
and patterns through the use of Gaussian Process (GP)
regressions. GP regressions are an effective way for the
prediction of Gaussian processes [14]. GP regressions have
been used in previous research for estimating wind fields
for gliders and UAVs [15], [16], pattern discovery [17], and
predictive controls in UAVs [18], [19].

The contribution of this paper is the development of a new
search method that improves tracking of moving targets in a
bounded area through a combined use of GP regressions,
which drive the information gathering, and target density
heat maps, which characterized the best understanding of
the density within the search area. The heat map integrates
its calculated average target density with the UAV’s path
planning cost function by using it to dynamically modify
the reward value given for searching. The modified reward
value is used to cooperatively decide each UAV’s desired
path.

This method thrives in search areas where target location
densities and frequencies are nonuniform. For example, a
search area which has a mix of downtown and suburban
areas, sparsely distributed roads, or a secluded army base. As
the UAVs learn where they are more likely to see targets, they
adjust their paths to visit these areas more often. This method
was tested and compared against two baseline approaches,
that will be described in Section IV, to validate its utility.

The paper proceeds as follows. Section II describes the
overall path planning approach and how cooperating vehicles
are driven to optimize their search area using a cost function.
The main contributions of this paper are outlined in Section
III, where the method of calculating and modifying the
grid cell rewards from learned information is described. The
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comparisons of this method with baseline approaches are
given in Section IV. And Section V provides conclusions
and a summary.

II. VEHICLE PATH PLANNING

This section describes the path planning algorithm and
how it enables cooperative control among UAVs. Fig. 1
shows the main components of the simulation framework
where each vehicle is capable of gathering information from
within its sensing field of view. Using that information it
forms a local common operating picture (COP) that encap-
sulates its learned knowledge of the environment. The COP
information is communicated with peer vehicles and used
to update the parameters of a search reward-function. The
vehicle’s best understanding of the environment is propa-
gated forward and then used to cooperatively compute the
UAVs paths. Once all the vehicles move forward in time
this discrete process is repeated.

In the remainder of this section, the UAV model will be
explained (Section II-A), as well as the method for choosing
vehicle paths using a receding horizon control (Section II-B).

A. Vehicle and Target Model

All UAVs are modeled as fixed wing aircrafts that are
controlled by commanding their roll angles. It is assumed
that each UAV travels at a constant velocity and altitude and
that changes in heading follow a coordinated turn model

_ 9 tan ¢, (t)

)

where ¢, (t) is the roll angle, g is the gravitational constant,
V,(t) is the UAV speed at time ¢, and 1), (t) is the turn rate.
All aircrafts have a saturation limit on the amount they can
roll by |éy] < dmaz-

The target state of the pth vehicle is given by z, =
[zp yp ¥p Up)T and contains the target’s Cartesian position
and velocity. Aircraft are equipped with a sensor capable
of detecting ground targets within their sensing radii. UAV
sensors measure range and azimuth, therefore detections
must be converted from this measurement space to the
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Functional components of the cooperative search discrete simulation.

Cartesian state space. The measurement noise w, of vehicle
v is parameterized by range and azimuth uncertainty o, and
oy and measurement noise covariance R = diag[o?, o7].
The measurement matrix, which relates measurement space

to state space, is given by the the Jacobian
z,(k)—x,(k p(K)—yu (k

s 00
w® =y k) _zplE—a g |

Tp0(k)? Tp,0(k)?
where the planar position of each vehicle is repre-
sented at time step k as (z,(k),y,(k)), each tar-
get is positioned at (z,(k),yp(k)), and 7, ,(k)
V(@ (k) — 2o (k)% + (yp (k) — yu(k))? is the Euclidean
distance between them.

Cartesian measurements are modeled as z,,(k)
H, ,(k)x,(k) + w, and estimates of the target’s state are
updated using a Kalman filter as described in [20]. Detections
on targets are shared with all other cooperating vehicles.

Hv,p(k) =

B. Search Mission and Vehicle Routing

A search mission is implemented by rewarding vehicles
that enter unexplored grid cells. The UAVs are directed to
search an area S € R2. S is partitioned into equally spaced
grid cells S, with grid number ¢ and location (x4, y,) in the
east-north frame.

The reward function for a UAV is

Jsearch = ZJg(k)a v.g € Fa
g

where I is the union of grid points that lie within the vehicles
sensing radius, 7y = /(24 — 2,)% + (yg — yu)?> < 75 and
Jg(k) is the reward of the gth cell. J,(k) is time-varying
and may be different for each cell. The process of defining
Jg(k) is the topic of Section IIL

A receding horizon control (RHC) is used to jointly plan
the paths of all the vehicles. RHCs work by choosing a path
that maximizes the reward function over an event horizon.
The vehicles then move forward one step along their decided
paths and the process iterates with a reevaluation of the
reward function to the next event horizon. At each time step
in its horizon, the vehicle evaluates all its potential control




commands. For this paper, each UAV commands its roll
angle, ¢., and may choose to bank left, go straight, or bank
I'ight, le ¢C S [_¢77Laa;a 07 ¢muw}'

A joint-search RHC must maximize the reward given for
the combined UAV paths. The group reward is computed
using [21]

J;/sarch = Z Jg(k)v v‘g € PV)
g

where TV = {UL/(T,] < rg)} is the set of grid points that
lie within every vehicle’s sensing radius. The grid cell value,
Jg(k), is rewarded if it is contained within the field of of
view of any vehicle. Thus, viewing the same grid point
simultaneously by multiple vehicles yields no additional
reward.

Joint path planning is a computationally expensive pro-
cess. When completed using an exhaustive search, the reward
for every combination of potential UAV paths must be evalu-
ated. This approach becomes intractable even with moderate
numbers of vehicles and short event horizons. To alleviate
computational cost a Rollout policy is used to reduce the
number of paths evaluated.

The Rollout policy uses a combination of exhaustive
search with a greedy-heuristic algorithm. Initially each pos-
sible combination of command decisions are evaluated.
However, after a specified number of time steps only the
immediate best reward is greedily chosen. This drastically
reduces the number of potential UAV paths (and therefore
combinations of paths) that must be evaluated.

This paper uses a variation of the Rollout policy presented
in [6]. It is augmented with an adaptable threshold that
determines when to switch from the exhaustive search to
the greedy-heuristic algorithm. The criteria is based off the
separation between concurrent UAV paths and forces spatial
diversity between the command decisions being evaluated.

III. DETERMINING GRID CELL REWARDS

This section describes the method of setting the grid cell
values which are awarded to a UAV if it searches that
cell. The high level objective for all UAVs is to search
the operational region in a manner that maximizes track
detections on the largest number of targets. Therefore the
individual grid cell values must incentivize vehicles to search
in cells that contain high target densities. To accomplish this
goal, reward values are dynamically modified to fluctuate
with the regions predicted target density.

The process for computing grid cell rewards is seen in
the right half portion of Fig. (1). The steps, which will
be expounded upon in the subsequent subsections, are as
follows:

1) Heat Map Update: The number of targets detected
within each viewable grid cell are shared, measured,
and the heat map is updated.

2) Gaussian Process Regression: A GP regression is per-
formed on the grid cells using the mean and standard
deviation from the heat map.

3) Normalization and Scaling: The GP regression esti-
mate is increased by its standard deviation and then
normalized to a predetermined maximum .,,,,. The
normalized counts are assigned to each grid cell as their
upper reward limit, Jg maz-

4) Time Update: The current reward values for all cells
are calculated using an exponential function which
increases beginning from the time the grid cell was last
searched.

A. Heat Map Update

Information of each grid cell is saved in a one-dimensional
array Cy and variable T,. Each entry of C; contains the
number of targets within the cell when it was sensed by a
vehicle. Ty is the number of times that cell has been viewed.
Whenever a grid cell g falls within a vehicle’s sensing radius,
the number of targets detected within that cell are appended
to C4, and Ty is incremented. At the beginning of each
simulation, C, and T, are populated with non-zero target
counts to encourage an initial exploration of all grid cells.
The average targets in each cell over time is calculated as

%, _ ZnColh) "

Ty

and the standard deviation is

c.(k) - X,)°
- >, ( g(Tg) g). )

The values of X create a target density heat map, which
reflects its best knowledge of the area. This heat map will
continue to change as the UAVs search the area and take
more measurements of targets within the domain.

B. Gaussian Process Regression

In this section the aspects of GP regression relevant to
this paper are introduced. A more comprehensive treatment
of this topic is given in [14].

Using information from the target density heat map, a GP
regression is performed across all the grid cells using their
updated means and variances, Yg and sg. GP is a collection
of random variables at input points X that are characterized
by a mean function m (X ') and covariance function k(X, X”).
The distribution over an arbitrary function f(X) is defined
as

F(X) ~ GP(m(X), k(X, X")).

A GP regression uses Bayes’ rule to compute a posterior
distribution over functions based on training and test points.
For this work, the training data comes from the grid cell
measurements, and the test points are all grid cells within
the search area. The posterior distribution is used to infer
knowledge about the target density throughout the search
region.

It is assumed that m(X) = 0, and our input X is defined as
all grid cells in S. Our prior covariance matrix K is n X n,
where n is the number of grid cells which have at least
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Fig. 2. Shows an example of how the length factor and a? affect the GP regression fit using test data of a sine wave with added noise.

one measurement. K is constructed using a Laplacian kernel
which computes each 7, jth component with the function

k(Si, S;) = 0]2664)\/<miij>2+<yifyj>2|, 3)
where a? is the variance of the signal, )\ is the length scale,
and ¢,j € &, where £ C S and only contains the grid points
which have been measured at least once.

The length scale affects the distance traveled in the input
space before the output changes significantly [14]. In a
similar manner to [14], Fig. (2) shows how the length factor
and signal variance affect the GP regression, where varying
their values can create a good-fit, under-fit, or over-fit result.
Data points drawn from a noisy sine wave are shown as red
+ symbols. The blue line is the GP prediction and the gray
area represents the 95% confidence region. Panel 2(a) is a
GP regression with high O'J% and a length factor which makes
it under fit. Panel 2(b) is an example of a GP regression
with a lower 02 and a chosen length factor that provides
a good fit. Panel 2(c) shows an over-fit GP regression. The
GP prediction follows the training data too perfectly and the
region of uncertainty expands out extremely quickly, even in
small distances from a training data point.

The hyperparameters, A and O’?, must be chosen carefully
and are optimized once to be kept constant for all simu-
lations. The length scale is adjusted to create a good fit
based on the distances between grid points. The Laplacian
kernel has the benefit of being less sensitive to changes in
its hyperparameters in comparison to other kernels.

To predict the mean target density and its variance, a joint
covariance matrix of current data and desired estimates, K,
must also be constructed. The matrix K is [ X n, where [ is
the total number of grid cells, and n is still the number of
grid cells with one or more measurements. It is constructed
using equation (3), where K (4, j) = k(S;,S;), Vi € S and
vy € &

New grid cell predictions are calculated through

f=K{(K+E)"'X, €
where E is a diagonal matrix with elements E(i,i) = s7,
Vi € &, and s is derived from equation (2) [22], [23]. X ar

0.5
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Fig. 3. GP regression of grid cell values.

the cell averages from equation (1) and f becomes an array
of length /. Graphing the GP predictions f produces a result
like Fig. (3). This figure is for a 1.5 km square search grid
and has sample data at six locations.

The variance of f is calculated by

0?2 =K, — K,(K +s*I)7'K], (5)

where K,(2,7) = k(S;, S;), Vi,j € S.

C. Normalization and Scaling

The outputs from the GP regression are the predicted
target densities within each grid cell and its uncertainty. To
incentivize exploration, we add one standard deviation to the
predicted target density according to Y, = f, + o4, where
Y = 1,Ya,...,Y,]" and n € S. Initializing C, and T},
with non-zero values ensures Y, is not initially zero and the
UAVs will have an incentive to explore a grid cell multiple
time before the variance is decreased.

The array Y needs to be normalized to maintain a bal-
anced reward function when integrating with other mission
objectives, such as target tracking or collision avoidance. Any
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Algorithm 1 Method for calculating the grid cell rewards at each time step.

1: Procedure: GRID CELL REWARD UPDATE

Outputs: grid cell reward J,; at time %

Use ¢ and j to update counts within each grid cell
For all grid cells g within sensing radii of UAVs
Increment T,

Append counts(g) to the array of previous counts Cg
Compute average targets in cell, X, (Equation (1))
Compute target-count variance, 53 (Equation (2))

: end for

GP Regression:

R A T ol

—_—
- o

Y, < fotoq

Normalization and Scaling:

Normalize Y, (Equation (6)) to find Jy mqx

. Time Update:

: Find grid cell reward .J,; at time %k (Equation (7))

: Compute covariance matrices K, K, K, (Equation (3))
Find estimations f and variances o2 (Equations (4) and (5))

Inputs: w = grid cell width, h = grid cell height, 1 = western search boundary, y1 = southern search boundary

Make array targetsInRange of all target (x,y) locations within sensing radii of UAVs
Compute %, the horizontal cell number of the location of each target using targetsInRange
Compute j, the vertical cell number of the location of each target using targetsInRange

negative values are set to zero, and each grid cell maximum
reward is computed by

Yg Jmaz
max(Y)

where J,,4, 1s the set maximum reward for any grid.

(6)

Jg,maw =

D. Time Update

The reward for viewing a region grows exponentially
beginning from the time it was last searched. For a single
grid point, g, at time k the reward is [21]

Jg(k) = Jgmaz — (Jgmaz — Jg(k — 1)) e~ At/A %

where A is a growth rate, k is the time step, and Jg pqq 1S
an upper reward limit that the grid cell cannot exceed.

E. Grid Cell Reward Summary

Algorithm 1 shows an overview of the grid cell reward
method. This process is repeated at every time step and
incorporates the most recently gained knowledge of target
positions. Reward values therefore represent the best value
for the information gained up to that current time. The UAVs
use the reward values to infer their environment and optimize
routes, as seen in Fig. (1). Equation (7) is used to compute
grid cell values, Jg(k:), for future time steps that are used in
the RHC.

IV. RESULTS

In this section we use two simulated environments to
test the GP regression methodology for calculating grid
cell rewards. The first scenario contains both urban and
rural areas and illustrates the algorithm’s ability to map and
explore a mixed environment. The second scenario contains
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two separate hubs of high density targets with a sparse area
in between. It shows that the vehicles do not get trapped in
a local maxima by focusing only on one of the high density
regions.

Using these simulations, the GP regression method is
tested against two alternative methods of searching. The
results show that GP regression improves the ability to accu-
rately model the target environment and therefore increases
the UAVs tracking capabilities.

The first comparison method uses uniform maximum
search rewards (UMSR). UMSR uses equations (6) and (7)
with a fixed Jp,q, rather than one that changes dynamically
based off learned information. Grid cell rewards are then
only dependent upon the time since their last update.

The second comparison method lets the learned heat map
dictate each cell’s maximum grid cell rewards, Jg yq.. This
method is called “Heat Map Maximum Search Reward”
(HMMSR). It uses the mean target value for each cell
to compute the normalized reward. This method lacks the
incentive to search regions which were initially found to have
a low mean target value. It also lacks the ability to predict
mean target values in cells which have not yet been searched.

An overall heat map is created for each search area and
updated using the true target positions at every time step.
This is calculated by keeping a running sum of targets within
each cell and dividing by the current time. Because this heat
map uses all target truths, it provides the true heat map
for each time step. This allows for numerical comparison
between it and the computed heat maps from the three
different search algorithms.

These three methods are compared using two different
metrics. The first is the fraction of targets seen. This is the
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Fig. 4. Shows the Chatsworth simulation environment at time ¢ = 550 seconds.
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number of targets being tracked by the UAVs divided by
the total number of targets in the search area. This metric
should be high, reflecting that the search method is effective
in leading the UAVs to areas with a higher target density.
However, the search needs to balance exploitation of dense
target areas with exploration of the entire search region. This
ensures that the UAVs are following the true densities of the
environment, and not getting fixated on a local maximum.
Therefore, high accuracy of the UAVs learned heat map of
targets in the search area is also desirable.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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(b) HMMSR Method
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(e) Heat map for HMMSR
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Shows Chatsworth simulation for each of the search methods at time ¢ = 550 seconds.

The second metric is the root mean squared (RMS) error
of the learned heat maps compared with the overall (true)
heat map at each time step. The initial values given to all
grid cells to artificially add variability is removed in order
to compare only the information learned by the UAVs. New
cell target averages are calculated from equation (1). The
RMS error then represents the difference in the knowledge
of target densities. A lower value reflects a better knowledge
of the environment and target densities, which can be used
in the future to increase the fraction of targets seen.



A. Chatsworth Search Simulation

Our first simulation environment is seen in Fig. (4). In
Panel 4(a), the blue dotted line shows the 5000 meter square
search area over a section of Chatsworth, California. The
red lines show all of the target paths over the length of
the whole simulation. The target trajectories were generated
using the Simulation of Urban Mobility (SUMO) software
package, which moves each target according to realistic
driving patterns and actual road networks [24]. The target
densities reflect that more targets are present on larger
roads and disperse out to the rural areas. A freeway runs
horizontally starting from the middle left side of the search
area. There are also two exits from the freeway in the middle
and right section of the freeway. An overall heat map of
Chatsworth at time ¢ = 550 seconds is seen in Fig. 4(b).

Each of the three search methods is tested in the
Chatsworth simulation with 100 Monte Carlo runs, ten look-
ahead steps, 181 total targets, and two UAVs. Fig. (5) shows
simulation results of a single Monte Carlo run.

Panel 5(a), 5(b), and 5(c) show the vehicle and target
paths given at ¢ = 550 seconds for each of the three search
algorithms. The red lines are the paths of the targets shown
over the entire simulation time and the green x symbols
indicate where targets are located at the final time (¢ = 550
seconds). The blue circles are the two UAVs with the larger
dotted blue circles representing their sensing radii. The blue
arrow is the UAV’s velocity vector. The two long blue lines
show the paths taken by the UAVs for the simulation time.
The gray grid cells in the simulation indicate the current
reward value for searching that cell. The darker the grid cell,
the higher the reward. Where the UAV is currently sensing
is white because the UAV has already gained that reward.

Panel 5(a) shows the simulation for the UMSR method.
As expected, it is evident that the UAVs are covering the
search area in an even manner and showing no discretion
to target densities. The decision to revisit areas which have
previously been searched is dictated by the amount of time
which has passed since it was last viewed. This is seen in the
grid cell rewards. Cells which were recently searched have a
light gray color, while those which haven’t been searched in
a long time are dark gray. Panel 5(d) shows the learned heat
map from the UMSR method. In comparing it to panel 4(b),
the outline of the road can be seen, but it lacks the clarity
from repeated measurements.

Panel 5(b) shows the HMMSR simulation. The influence
of the learned heat map is seen in the grid cell rewards. There
is a darker grid cell in the center of the search area because
the UAVs have learned that there tend to be many targets in
that area. The freeway and main streets of Chatsworth tend
to receive the highest rewards. This is because the maximum
grid cell rewards, Jg 44, Were set to a higher value so those
grid cells are searched more often. This leads the UAVs to
gravitate toward areas where there are more targets and they
don’t travel evenly across the search area as they did in
Panel 5(a). Using the HMMSR method results in seeing more
targets and having a more accurate heat map than the UMSR
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method, even though they may not encourage exploration as
much. This can be seen from it’s heat map (Panel 5(e)).
It provides a closer representation of the overall heat map
and has a lower RMS error than the UMSR method for the
high density regions, but it lacks the comprehensive coverage
given by Panel 5(d).

The simulation for our GP regression method is seen in
Panel 5(c). The paths of the UAVs are similar to those in the
HMMSR method in that the UAVs spend more time focused
on the road networks in the south-west part of the search
area. The UAVs gravitate to the areas where more targets
tend to be. However, with GP regression there is clearly
more exploration done by the UAVS. This is seen in the
comparisons of their heat maps. Panel 5(f) shows the heat
map for the GP regression method which has even more
detail than the heat map for HMMSR. The freeway is almost
completely captured in the heat map all the way to the west
border of the search area.

One of the advantages of using a GP regression is its
ability to produce predictions of target densities in areas
which have not been searched. In the west-central section of
the search area in panel 5(c), there is a darker spot where the
UAVs have not searched. This means the GP regression, due
to information gathered in neighboring areas, has predicted
that there is a high average amount of targets that will
be in those grid cells. Because of this high prediction, the
maximum grid cell reward is assigned a high value. This
will lead the UAVs to treat searching those grid cells as a
higher priority than others. In the case of this simulation,
the prediction of the GP regression is correct and the UAV
would find a high density of targets in those cells.

RMS Heat Map Error

RMS Heat Map Error

I . .

150 200 250
Time (s)

—— UMSR Method ——HMMSR Method

I
50 100 300

GP Regression Method

Fig. 6. Heat map RMS error over the course of the Chatsworth simulation.

Fig. (6) shows the RMS error of the heat maps for all three
methods from time ¢ = [0, 300] seconds. Each of the methods
start out with the same error and stay close for the first part
of the simulation (around 25 seconds). But after that, the GP
regression error clearly drops below the rest and stays lower
for the remainder of the simulations. The HMMSR method
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does worse than the UMSR method for almost all of the
simulation. This is rooted in the HMMSR method relying
fully on exploitation of knowledge, rather than balancing
with exploration in order to gain more knowledge.

TABLE I
CHATSWORTH SIMULATIONS AVERAGE AND STANDARD DEVIATION OF
THE RMS ERROR. AND THE AVERAGE AND STANDARD DEVIATION OF
THE AVERAGE FRACTION OF TARGETS SEEN.

Approach \ Final Heat Map Error \ Average % Targets Seen
UMSR 7.61+/-1.10 11.1+/-2.8%
HMMSR 7.47+/-1.24 11.4+/-3.0%
GP Regression | 6.75+/-0.94 13.2+/-3.0%

Table I shows the averages and standard deviation of the
mean heat map RMS error and fraction of targets seen for
each search method. As expected, the GP regression method
outperformed the other two methods in heat map RMS error.
It had an average error of 6.75, while UMSR and HMMSR
had errors of 7.61 and 7.47 respectively. Performing a two
sample t-test on the error of the GP regression method and
UMSR resulted in a p-value of 9.53e-9. Doing the same
with the GP regression method and HMMSR resulted in a
p-value of 3.56e-6. This shows that the RMS errors between
the different methods is statistical significant.

Likewise, Table I shows the GP regression method also
performs better in the average fraction of targets seen, with
an average of 13.2%. This surpasses HMMSR with 11.4%
and UMSR with 11.1%. Performing the two sample t-test
between the GP regression method and UMSR produces a
p-value of 4.99e-7, and doing the same test between the
GP regression method and HMMSR produces a p-value
of 1.71e-5. These p-values show a statistical significance
between the fraction of targets seen.

B. Sparse Search Simulation

Our second simulation environment is designed to repli-
cate a military scenario. The search area is a 5000 meter
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(b) Overall heat map for the sparse simulation.

Shows the sparse simulation environment at time ¢t = 550 seconds.

square region in a sparsely visited area. There are two hot
spots of activity representing military camps or bases which
need to be found and searched. Panel 7(a) shows the search
area (blue dotted box) and target paths (red lines). An overall
heat map for search area is seen in panel 7(b). The two hots
spots are clearly seen while all other surrounding grids have
no target tracks.

All three search methods are compared with 100 Monte
Carlo runs, ten look-ahead steps, 20 total targets, and two
UAVs. A single Monte Carlo simulation is depicted for each
method in Fig. (8).

Panel 8(a) shows the UMSR method. Again, the UAV
paths traverse across the search area in an even manner
without regard to target locations. Its heat map in Panel 8(d)
shows a fairly representative picture compared to the overall
heat map in Panel 7(b).

The HMMSR method, in Panel 8(b), led the UAVs to
search the north-east corner of the area multiple times. The
UAVs still explored the whole search area and didn’t stay
fixated on the two high density areas. The south-west corner
of the search area has high grid cell reward because of the
learned heat map seen in panel 8(e).

The GP regression method performed well in the sparse
simulation. In Panel 8(c) it is clear that one of the UAVs
started in the south-west corner where there is a high density
of targets, explored north, returned to the high density corner,
explored east, and returned again. This shows the balance of
exploration and exploitation. The UAVs continue to explore,
but return to the areas of the highest target densities. The GP
regression identified and rewarded the two areas of highest
target densities. The learned heat map in panel 8(f) is very
comparable to the overall heat map.

Fig. (9) shows the average heat map RMS error for each
of the three methods over the course of the 100 Monte Carlo
runs. For the sparse simulation, the RMS errors for each of
the three methods stayed closer together and did not diverge
as much, when compared with the Chatsworth simulation. At



5000

4500

4000

3500

3000

2500

North (m)

2000

1500

1000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
East (m)

(a) UMSR Method

(m)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0

(d) Heat map for UMSR

Fig. 8.

the beginning of the simulations, the GP regression matched
the RMS error of the other methods closely, but as time
went on it improved more than the others. In this test,
the UMSR method again had a lower RMS error than the
HMMSR method. The two methods had very close RMS
errors throughout the simulation. This likely resulted from
the search area being mostly empty, and ten look-ahead steps
isn’t enough for the UAVs using HMMSR to plan paths back
to the areas of high target densities. Once the UAVs are in
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Shows a sparse simulation for each of the search methods at time ¢ = 550 seconds.

the uniformly empty space, they act similarly to the UMSR
method. The HMMSR method is then slightly disadvantaged
because of low uniform maximum grid cell values, which
created negligible variability in grid cell values and didn’t
help dictate planned vehicle paths.

TABLE II
SPARSE SIMULATIONS AVERAGE AND STANDARD DEVIATION OF THE
RMS ERROR. AND THE AVERAGE AND STANDARD DEVIATION OF THE
AVERAGE FRACTION OF TARGETS SEEN.

Approach \ Final Heat Map Error \ Average % Targets Seen
UMSR 3.32+/-.40 12.9+/-3.8%
HMMSR 3.37+/-.42 13.1+/-3.9%
GP Regression | 3.25+/-.40 14.0+/-3.9%

Table II contains the averages and standard deviation of the
mean heat map RMS error and fraction of targets seen. Here
is also shown that the GP regression method had the lowest
RMS heat map error of 3.25. UMSR was next lowest with
3.32 and then HMMSR with 3.37. Performing a two sample
t-test on the RMS error of the GP regression method and
UMSR resulted in a p-value of .117, which is not statistically
significant. For the GP regression method and HMMSR, the
two sample t-test resulted in a p-value of .020. Due to the
large empty spaces with no targets, this simulation allows
for any method to gather a nearly correct estimation of target
densities over a short amount of time. Each of the methods
act in similar ways until enough time has passed that the
different methods can react to the learned information. For
example, the GP regression has a clearer advantage near 200



seconds into the simulation, as seen in Fig. (9).

Again, the GP regression method had the highest fraction
of targets seen with 14.0%. HMMSR and UMSR lower and
had very close values of 13.1 and 12.9, respectively. This
shows the advantage of using the GP regression as part of
the algorithm, rather than relying solely on the heat map. A
two sample t-test on the fraction of targets seen for the GP
regression method and UMSR produces a p-value of .017.
The same test for the GP regression method and HMMSR
results in a p-value of .043. These results are significant
on a 95% confidence level, but are not as significant as
the Chatsworth simulation. In this simulation, the number
of targets was much lower and they were grouped closely
together. As the targets moved in the search space, it created
large changes in the heat map, allowing for an increase in
the RMS error when sensed by the UAVs. This simulation
shows there is a greater advantage in using the GP regression
method when there is a higher number of targets and the
nonuniform target densities is dispersed across many grid
cells.

V. CONCLUSION

This paper presents an improved method for searching,
patrolling, or surveillance in areas with nonuniform target
densities. While searching, this GP regression method uses
a continual stream of new knowledge about target locations
to influence how the UAVs coordinate their paths. Larger re-
wards are given for searching areas with high target densities.
The GP regression does well at estimating and predicting
target densities, even in regions of the search area which have
not yet been seen. Results from testing show the numerical
advantages of using a GP regression when compared with
baseline search methods. As illustrated with two example
simulations, the GP regression method balanced exploitation
and exploration while maintaining the highest percentage of
targets tracked and lowest error in its learned heat map of
the target densities.
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