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Abstract— Deep Belief Networks (DBNs) offer promising alternatives
to conventional processors to conduct unsupervised learning with
reduced chip area and energy consumption. Nonetheless, their reliance
on analog computation warrants verification of noise-tolerance which
to-date has been lacking in the literature. Herein, the noise sensitivity
of a representative DBN circuit implementation using resistive weights
and probabilistic spin logic devices as stochastic binary neurons is
assessed. A Probabilistic Inference Network-Simulator (PIN-Sim)
framework was adapted to optimize the circuit implementation of
784x10 and 784x200x10 DBN topologies. Noise-induced voltage
variations ranging from £ImV to £20mV are applied to the input of
the p-bit based neurons. Circuit simulation results indicate maximum
fluctuations of 3% and 1.4% in the recognition accuracy of 78410
and 784x200x10 DBNSs, respectively. Thus, acceptable robustness
from noise-induced variations are achievable for the investigated
hybrid spintronic/CMOS hardware implementation of the DBNs under
the conditions assessed herein.
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I. INTRODUCTION

In recent decades, the fields of machine learning (ML),
artificial intelligence (Al) and artificial neural networks (ANN)
have grown significantly [1]. The most commonly used
technique used in ANNSs rely on supervised learning, where the
error rate is measured by comparing the output from the network
with a known desired output. Unsupervised learning approaches,
used in intelligent biological systems, allow systems to evolve
as they encounter and analyze more data samples. Deep belief
networks (DBNs) are a class of ML techniques that utilize an
unsupervised learning approach, which demonstrates impressive
learning abilities for various applications such as natural
language understanding [1]. Recently, an energy-efficient
hybrid spintronic/CMOS based hardware implementation of
DBNs is proposed in [2], which we have leveraged herein to
analyze the effect of noise on DBNs using the popular MNIST
pattern recognition application [2].

II. DEEP BELIEF NETWORK

Figure 1 shows the structure of a Deep Belief Network
(DBN), which is comprised of hierarchically-connected
Restricted Boltzmann Machines (RBMs). RBMs consist of two
fully-connected non-recurrent layers, called the Aidden layer and
visible layer. Neurons in the RBM structure compute a
probabilistic sigmoidal activation function, and the weights can
be trained using the contrastive divergence algorithm proposed
in [3]. As shown in Figure 1, RBMs can be implemented using
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Fig. 1. (a) An RBM structure, (b) RBM implemented by crossbar
architecture, (c) a DBN structure including multiple hidden layers [2].

memristive  crossbar architectures. Recently, stochastic
spintronic devices are proposed to be utilized within the DBNs
to realize the probabilistic sigmoidal activation functions [2].

III. SPIN-BASED PROBABILISTIC ACTIVATION FUNCTION

In [4], probabilistic spin logic devices (p-bits) are proposed
as the building blocks to realize stochastic binary neurons
generating a probabilistic sigmoidal activation function. In
particular, Magnetic Random Access Memories (MRAMs),
which are conventionally used for memory applications are
modified to generate a probabilistic sigmoidal function.
Magnetic Tunnel Junctions (MTJs), which are the building block
for embedded MRAM-based p-bits, include two nanomagnets
that are separated by an oxide layer. MTJs have a high or low
resistance level based on the relation between its magnetization
directions. In a conventional MTJ device, there is an energy
barrier between its high and low resistive levels which makes it
a non-volatile device. However, recent experiments have
proposed methods to realize an unstable, near-zero energy
barrier MTJ device, the resistance of which can randomly
fluctuate in presence of thermal noise [5]. These MTJ devices
with stochastic nanomagnets are used as the building blocks for
p-bit based neurons realizing the probabilistic sigmoidal
function required in DBN architectures [2, 3]. Energy efficiency
gains arise by replacing the floating-point cross-product
calculations with an analog resistive crossbar, although their
narrow operating margins may be susceptible to noise.
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Fig. 2. Error rate versus the neuron’s input voltage noise, (a) 784*10 DBN
trained by 3,000 images, (b) 784 x200x10 DBN trained by 3,000 images.

IV. SIMULATION FRAMEWORK

Herein, we use the Probabilistic Inference Network-
Simulator (PIN-Sim) proposed in [2] to investigate the effect of
noise on the accuracy of two different DBN topologies for the
MNIST pattern recognition application [6]. PIN-Sim is a
hierarchical simulation framework that consists of five main
modules: (1) trainDBN: a MATLAB-based module used for
training the deep belief network architecture [7], (2)
mapWeight: amodule developed in MATLAB that converts the
trained weights and biases to their corresponding resistance
values, (3) mapDBN: a python-based module which provides a
circuit-level implementation of the restricted Boltzmann
machine using the obtained weight and bias resistances, (4)
neuron: a SPICE model of the MRAM-based stochastic neuron
[4], (5) testDBN: the main module developed in Python that
executes test evaluations to assess the error rate and power
consumption using the other modules in PIN-Sim. The PIN-Sim
framework was utilized to conduct 1,000-trial Monte Carlo
circuit-level simulations using a p-bit SPICE model for 14nm
CMOS technology operating at a nominal voltage of 0.8V.

V. NOISE ANALYSIS

Herein, we have modified Module-4 in the PIN-Sim
framework, i.e. the neurons, by adding random variations to the
input voltage of the p-bits, which can be induced by different
sources of noise [8]. In particular, we have added random noises
ranging between +1 mV, +5 mV, +£10 mV, and 20 mV to the

input of the p-bit based neurons in two 784x/0 DBN and
784x200x10 DBN topologies, as shown in Figures 2(a) and
2(b), respectively. The results exhibit that the hybrid
spintronic/CMOS based implementation of the DBNs using
memristive weights and p-bit based neurons is relatively robust
against noise-induced variations in input voltage of the neurons.
Moreover, it is shown that the maximum fluctuations in the error
rate for a 78410 network is 3%, while a 784x200x10 DBN
exhibits a maximum of 1.4% increase in error rate. Thus, larger
networks are seen to exhibit increased tolerance against noise.
This result matches expectations as network size grows and also
provides an enlightening quantification of noise impact in
memristive DBNs as being tolerable as they are scaled-up.

VI. CONCLUSION

Modification of the PIN-Sim framework proposed in [2] to
investigate the effect of noise on the hardware implementation
of DBNs using a resistive crossbar as weighted arrays and
probabilistic spin logic devices as stochastic binary neurons. In
particular, we have applied noise-induced variation ranging
from £1mV to £20mV to the input voltage of the p-bit based
neurons using the modified PIN-Sim tool. The results exhibited
the robustness of hybrid spintronic/CMOS DBN circuits to
noise-induced variations. Moreover, it was shown lower
fluctuation in the recognition accuracy of the DBNs can be
achieved by using a sufficiently-sized network having increased
numbers of layers and/or artificial neurons.
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