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Abstract— This paper discusses moving ground target estima-
tion using a recently proposed, uniformly globally asymptoti-
cally stable observer for simultaneous localization and mapping
(SLAM), which only requires a monocular camera and an
inertial measurement unit (IMU). The observer operates under
a persistent excitation constraint and requires the inertial origin
to remain in view throughout its operation. The contributions of
this paper are an iterative procedure to increase convergence
speed of nonlinear observers and a process for keeping the
inertial origin within view. Simulation results demonstrate fast
observer convergence and tracking of a maneuvering ground
target relative to the observer’s landmark estimates.

I. NOMENCLATURE

Rb
a Rotation from reference frame a to b

â Estimate of true variable a
ā Measurement of a
ȧ Time derivative a

Superscript
i Expressed in the inertial coordinate frame
b Expressed in the vehicle body coordinate frame
cb Expressed in the camera body coordinate frame
c Expressed in the camera coordinate frame
> Matrix transpose

Subscript
a/b Velocity or angular rate of frame a w.r.t. frame b
ab Vector from a to b

II. INTRODUCTION

Autonomously tracking multiple targets has remained an
active area of research for many years, due to the many
applications, including law enforcement [1], air traffic control
[2], collision avoidance [3], simultaneous localization and
mapping (SLAM) [4], tracking space debris [5], and others.
There are often three main difficulties in multiple target
tracking (MTT): collecting sensor measurements of the tar-
gets, associating these measurements with the correct targets
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(data association), and filtering clutter from true target mea-
surements. Measurement collection can be computationally
expensive when image processing is required, for example,
when tracking with video cameras. Data association also
becomes more difficult as the number of targets and the
amount of clutter in the measurements increases.

Many algorithms attempt to solve the MTT problem, such
as multiple hypothesis tracking (MHT) [6], joint probabilistic
data association (JPDA) [7], and probabilistic hypothesis
density (PHD) [8] algorithms. These suffer from compu-
tational complexity, requirements of unknown prior infor-
mation, poor track continuity, or large variance in target
estimates. Recursive RANSAC (R-RANSAC) is a recently
introduced MTT algorithm [9], [10], [11], [12], [13] that
improves upon many of these issues. R-RANSAC extends the
traditional random sample consensus (RANSAC) algorithm
to recursively estimate multiple dynamic signals in clutter.
It stores a set of track hypotheses and identifies the best
hypothesis of each target’s track, and given a sliding window
of measurements, the algorithm either updates the existing
hypotheses with a Kalman update or generates new tracks
with the set of measurements using RANSAC. R-RANSAC
can run in real time on desktop processors or with GPU
image processing, but efforts have been made to improve
real-time viability for aerial vehicles with low computational
power, to track targets in scenes with a large amount of
clutter [14].

The R-RANSAC algorithm can represent tracks directly in
the image plane [12], or it can represent tracks in the inertial
reference frame [15]. In order to track in the inertial frame,
measurements are first projected from pixel coordinates into
the inertial frame via a perspective projection. However, due
to ease of implementation, MTT is typically done in the
image frame using nearly constant velocity, acceleration,
or jerk models for motion propagation. Object tracking in
the image frame has several advantages, including noise
introduced into the measurement only comes from one sensor
(the camera), image noise is typically minimal for modern
cameras, and the tracker does not depend on camera pose
estimation. Advantages of inertial tracking include the ability
to use target specific motion propagation models, tracks are
readily available for multi-vehicle problems, the tracker can
account for geography, and poor homography estimates do
not directly affect the tracker.

In order to track targets in the inertial reference frame,
inertial measurements must be provided to the target tracker.
These inertial measurements can be obtained with a SLAM
or some visual odometry (VO) algorithms. Many state-of-
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the-art SLAM [16] and VO [17] alorithms use nonlinear op-
timization techniques to estimate camera pose as well as 3D
landmark positions. Others, such as [18], [19], take a filter-
based approach and may include all desired estimates in,
for example, an extended Kalman filter, unscented Kalman
filter, or particle filter. These filter-based SLAM algorithms
lack stability guarantees, recently however, others have begun
to emerge [20], [21] with provable stability under persistent
excitation constraints. In [21], the authors derive a linear,
time-varying Kalman filter, where a measured velocity is
required for input as well as an accurate attitude estimate.
One concern with this filter is that its estimates converge but
to an unknown inertial origin location. Additionally, velocity
measurements for a multi-copter require an accurate drag
model with no wind or a downward-facing camera to run
optical flow with well-estimated scene depth. Similarly, the
algorithm in [20] requires an accurate attitude estimate but
doesn’t require a velocity measurement. This is because it
directly integrates accelerometer measurements for position
and velocity, while simultaneously estimating a velocity bias.

The primary contributions of this paper are two modifi-
caitons to enable a practical implementation of the observer
in [20], that is, sliding window observer iteration and origin
shifting. In [20], the observer assumes that the inertial origin
is viewed by the camera at all times. This guarantees that
position estimation converges to something that is measured,
i.e. the landmark. However, it is not practical to assume that
a single landmark will always be observed. This is overcome
by occasionally updating the origin to a new inertial position
that is in the camera’s field of view whenever the previous
origin is about to leave the current field of view. Position
and landmark estimates are then shifted appropriately. This
approach is similar to changing node frames as in [22]
and also allows us to operate in a relative manner, while
estimating the vector from the first origin simultaneously
by simply storing the vectors associated with each origin
update. Another issue with the nonlinear observer in [20] is
that estimates do not usually converge quick enough for real
time implementation. It is not desirable to fly around the
starting point to force landmark and position estimates to
converge over a ten to twenty second period. To compensate
for this, we allow the observer to iterate on a sliding window
of saved velocities and bearing measurements. We store the
estimated velocity and bearing measurements for a time
window, integrate the position estimate backward in time to
the beginning of the window, and then re-run the observer
over this window, using the saved data. Each time step, data
older than the window size is dropped, new data is added,
and the observer processes the new time window. While, this
iterative procedure only runs for a short time on initialization
and after origin updates, it greatly decreases the time to
convergence. Finally, in order to estimate the position of
a maneuvering target, we take three or more estimates of
stationary landmarks close to the target to approximate a
plane and then scale the bearing vector to the moving target
so that it intersects this plane [23].

The data pipeline for tracking targets in an inertial frame is

shown in Fig. 1. The nonlinear observer recently introduced
in [20] is used to localize the vehicle and landmarks simulta-
neously in the inertial frame. Given these landmark estimates
and the bearing vectors to the targets, we produce inertial
measurements of the ground targets, which are then passed
in a multiple target tracker (R-RANSAC) to create ground
tracks for each of the targets. The pipeline requires four
coordinate frames. The inertial frame is a fixed, Euclidean
reference frame parameterized in North-East-Down coordi-
nates. The body frame defines the translation and attitude
of the vehicle body with respect to the inertial frame. The
camera body frame is the translation and rotation of the
camera with respect to the vehicle body. Finally, the camera
frame’s z-axis is aligned with the camera body frame’s x-axis
and its x-axis aligned with the camera body frame’s y-axis,
where the camera frame’s z-axis aligns with the camera’s
optical axis with the y-axis down and x-axis to the right.

Fig. 1. The data pipeline for multiple target tracking in an inertial frame.
Blue blocks represent functions and the red blocks represent outputs of these
functions.

III. NONLINEAR OBSERVER SLAM

A. Observer Overview
There are four different observers derived in [20], but

we are interested in the fourth one, which assumes an
unknown velocity bias and unknown landmark positions. Let
the state be defined by x =

[
pi
ib; pi

il,1; · · · ; pi
il,N−1

]
for estimating N landmark positions. The inertial kinematics
of the vehicle body and jth landmark are given by

ṗi
ib = Ri

bv
b
b/i (1)

v̇i
b/i = Ri

bā
b
b/i + gi (2)

ṗi
il,j = 0, (3)
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where j = 0, 1, . . . , N −1, ābb/i is the acceleration measured
by the IMU, gi is the gravity vector in the inertial frame,
and vb

b/i is the velocity of the vehicle in the body frame. The
camera provides bearing vector measurements to each land-
mark given by yc

j = pc
cl,j/

∥∥∥pc
cl,j

∥∥∥, which are transformed
into the inertial frame for use in the observer by

pi
bl,j = Ri

b

(
pb
bc +Rb

cbR
cb
c pc

cl,j

)
(4)

yi
j =

pi
bl,j∥∥∥pi
bl,j

∥∥∥ . (5)

In (4), we note that pc
cl,j is not available. Therefore,

bearing measurements are simply rotated into the inertial
frame by yi

j = Ri
bR

b
cbR

cb
c yc

j . This introduces error into
the bearing measurements that increases inversely with the
distance to the landmarks, however, placing the camera and
IMU near the body center, minimizes this error.

Because the multi-copter is constantly in motion, the
IMU cannot correctly meausure the direction of gravity for
attitude estimation, as in [24], and therefore an alternative
form of attitude estimation is needed. Velocity-aided attitude
observers, e.g. [25], show great promise for the camera-
IMU sensor combination but throughout this paper, it is
assumed that attitude is known. Having dropped superscripts
for simplicity, the nonlinear observer derived in [20] is then
given by

˙̂x =

[
v̂
0

]
− kMΠx̂ (6)

˙̂v = Ri
bā

b + g (7)
˙̂
β = −MΠM β̂ −MΠx̂ (8)

Ṁ = I − kMΠM (9)

x̂β = x̂+M β̂, (10)

where x̂ is the biased state estimate, x̂β is the unbiased
state estimate, β̂ is the estimated velocity bias, k > 0 is
the observer gain, M is a real valued matrix, and

Π =



∑N−1
j=0 πy,j −πy,1 −πy,2 · · · −πy,N−1

−πy,1 πy,1 0 · · · 0
−πy,2 0 πy,2 · · · 0

...
...

...
...

...
−πy,N−1 0 0 0 πy,N−1


(11)

πy,j = I − yjy
>
j . (12)

We initialize β̂ with zeros because the velocity error due to
acceleration integration is initially small and M as identity,
although it could be any symmetric, positive definite matrix.

B. Origin Shifting

The nonlinear observer defines the inertial origin as
pi
il,0 = 0, which means that the observer state is defined

relative to the landmark pi
il,0. Note that the landmark pi

il,0

is not contained in the state because it is the origin and is
always zero. The observer requires a bearing measurement to
the origin landmark at all times, and therefore we must select
a new origin whenever pi

il,0 is about to leave the camera’s
field of view. Since the observer is globally stable, we could
select any landmark, even a newly acquired one but this
would not allow us to easily track change in position from
the first origin. Therefore, we select the new origin to be one
of the landmark estimates that has already converged and is
expected to leave the frame later than other current landmark
estimates.

Assume that we have a history of origins O0 . . .Op, where
O0 is the initial origin and Op is the origin at the current time
step. Let d represent the vector pointing from O0 to Op. The
estimate d̂ is initialized to a zero vector and every time the
origin changes, we have d̂ = d̂+ p̂il,j , where we’ve selected
the jth landmark p̂il,j to be the new origin. Additionally,
the position estimate and each landmark estimate has to be
shifted to account for the change in origin by

x̂new = x̂old −

p̂il,j

...
p̂il,j

 . (13)

It is easy to see that error in d̂ accumulates over time
because imperfect estimates p̂il,j are continually added to it,
however, this is true of many SLAM algorithms operating
without some global measurement, such as GPS.

C. Sliding Window Observer Iteration

The nonlinear observer struggles to converge quickly on
startup. Increasing the gain helps to a limited extent but
causes a larger error in steady state, in addition to M growing
rapidly beyond machine precision, due to the large error at
startup when the gain is too large. Another possible method
of improving convergence is to save all measurements and
state data over a time window and guess the initial con-
ditions iteratively, then select the guess that produced the
least amount of error over the window. Guess-and-check
methods are costly. Therefore, we could improve this by
integrating backward in time from the end of the window
to the beginning, use this as the new initial guess, re-run the
observer over the window using the saved data, and repeat.
The problem with this method is that measurement windows
with insufficient excitation drive the estimates away from
truth, so we improve upon this by allowing the window to
slide with time. A sliding window gives us the ability to
intelligently estimate the initial state iteratively, while con-
tinually using new measurements that have varying levels of
excitation for each of the landmarks. Thus, in order to reduce
the convergence time of the observer without introducing
instability, we allow the observer to iterate on a sliding
window of saved bearing measurements and velocities. This
process is outlined in Algorithm 1 for a window of size S
time steps.
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In line 8 of Algorithm 1, we use Euler integration to
propagate the position backward in time to the beginning
of the sliding window. We do not backward integrate M
and β̂. This is because β̂ depends on M and M must be
a solution to the Ricatti equation given in (9), which means
that M must also be positive definite. Backward integration
of M is given by M (t− 1) = M (t)− I∆t, which removes
the positive definite guarantee on M . Therefore, we simply
save the values of M and β̂ at the beginning of each window
and use these initial values for forward integration. Another
subtlety of this algorithm is that landmark estimates are not
backward integrated. Recall that the observer is operating in
the inertial frame, hence static landmark kinematics given in
(3) do not change the landmark estimates.

Algorithm 1 Sliding Window Observer Iteration
1: for each t do
2: Save y0...N−1 and v̂ to history window.
3: if history size > S then
4: Trim oldest values of y0...N−1 and v̂.
5: end if
6: if history size = S then
7: for j = 0 to T − 1 do
8: for m = S − 2 to 0 do
9: p̂i

ib = p̂i
ib − v̂m∆t

10: end for
11: M = Msaved

12: β̂ = β̂saved

13: for n = 0 to S − 2 do
14: M = M + (I − kMΠnM)∆t

15: β̂ = β̂ +
(
−MΠnM β̂ −MΠnx̂

)
∆t

16: x̂ = x̂+

([
v̂n

0

]
− kMΠnx̂

)
∆t

17: end for
18: end for
19: Msaved = M
20: β̂saved = β̂
21: end if
22: end for

The observer iteration procedure reduces convergence time
of the observer but also accelerates observer divergence from
truth when observability is low. In practice, observer iteration
also hinders the observer’s ability to track the velocity bias,
which causes the velocity error to slowly grow, so iteration
should only be used briefly on initialization and after origin
changes. In general, observer iteration improves state error
reduction, given a time window where observations are
persistently exciting and velocity error is small. Because
global, exponential stability of the nonlinear observer, as-
suming persistent excitation, is proven in [20], any set of
initial conditions are driven toward the truth by the observer,
resulting in less error at the end of a time window than at the
beginning, given a large enough window. While the error in
velocity is small over a small window, backward integration
of the position results in a new initial condition with less

error than the original initial condition.

IV. SIMULATION RESULTS

To investigate the performance of the nonlinear observer
and its modifications in a SLAM setting, we setup a multi-
copter simulation, where the multi-copter uses a PID con-
troller to fly a user-defined 3D path. Control inputs are
computed based on the multi-copter’s true state, so that we
can easily compare results on the same observed state. This
work is done in simulation prior to hardware implementation
so that observer performance can easily be separated from the
quality of data association of camera measurements. There-
fore, the supplied measurements are created by computing
unit vectors pointing to landmarks in the vehicle body frame.
This is less realistic in that there is no simulated camera or
restrictions from having a finite field of view, but we can still
demonstrate the validity and shortcomings of the proposed
methods in an ideal scenario. In the following simulations,
the multi-copter takes off near the initial origin and flies a
figure-eight path at a nearly constant altitude of ten meters.
The simulated accelerometer has added Gaussian noise set
to a standard deviation of 0.1 m/s2 with a small, constant
bias. It is assumed that a separate observer provides accurate
attitude estimates, therefore we simply assume it is known.
Sliding window iteration has parameters T = 1, S = 20,
and only runs for two seconds after initialization and origin
shifts. The landmark of the first origin is located at zero to
simplify plotting.

The figures in this section demonstrate the performance of
this observer, in addition to running it with sliding window
iteration, origin shifting, and using it for target tracking in the
inertial frame. Figs. 2 and 3 show the position and velocity
estimation performance of the observer with and without
sliding window iteration enabled. Fig. 4 is just one of ten
inertial landmark estimates over time, shown as an example
of landmark convergence. We see that sliding window itera-
tion of the observer greatly reduces the convergence time on
startup. Fig. 5 shows that the observer is able to track the
general trend of the velocity bias over time with and without
sliding window iteration.

Results for origin shifting are also shown in Figs. 2-4,
where we shift the inertial origin to the location of the
second landmark pi

il,1 every five seconds and replace pi
il,1

with a random, new landmark until the thirty second mark.
We do this because there is no field of view constraint in
the simulation, but we still need to show how the observer
behaves when the origin changes. This results in small,
sudden changes in the position and velocity estimates due
to the poor initial estimation of the new landmark. In Fig.
4, we see that the new landmark’s north and east estimates
converge quickly, while covergence of the down estimate
is delayed by a second or two. This happens because the
observer projects the estimate onto the measurement direc-
tion, decreasing the landmark vector’s length significantly,
which is then increased as more observations arrive. An
improved method of initializating landmark estimates would
likely reduce this initial error, and due to the consensus style
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of estimation, diminish the jumps in the other estimates.
Additionally, origin drift is apparent in Fig. 4, but the drift
of the iterated observer’s estimates is reduced because of the
fast convergence of landmark estimates.
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Fig. 2. Position components of the observer with origin shifting every five
seconds compared against truth. Solid blue is ground truth, dash-dot red
is the estimate without sliding window iteration, and dashed green is the
estimate with sliding window iteration.

0 5 10 15 20 25 30 35 40

0

2

No
rth

Velocity Components (m/s)

0 5 10 15 20 25 30 35 40

−2.5

0.0

2.5

Ea
st

0 5 10 15 20 25 30 35 40
Time (s)

−4

−2

0

Do
wn

Fig. 3. Velocity components of the observer with origin shifting every five
seconds compared against truth. Solid blue is ground truth, dash-dot red
is the estimate without sliding window iteration, and dashed green is the
estimate with sliding window iteration.

Finally, Fig. 6 shows the inertial position estimation of a
maneuvering target over time using the planar approximation
method presented in [23], where it is assumed that target
bearing vector is measured. This requires the landmark esti-
mates to be defined with respect to the vehicle body, which
is accomplished for the jth landmark by pi

bl,j = pi
il,j −

pi
ib,j . This remains in the inertial frame and creates vectors

pointing from the vehicle body to the landmarks. Now, we
see from Fig. 6 that the tracker works about as well as the
position estimation, being affected by the changing origin
and like the other estimates, quickly converging toward the
truth after each origin shift.
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Fig. 4. Landmark position components of the observer with origin shifting
every five seconds compared against truth. Solid blue is ground truth, dash-
dot red is the estimate without sliding window iteration, and dashed green
is the estimate with sliding window iteration.

0 50 100 150 200 250 300
−1

0
No

rth

Velocity Bias Components (m/s)

0 50 100 150 200 250 300
−1

0

Ea
st

0 50 100 150 200 250 300
Time (s)

0.0

0.5

1.0

Do
wn

Fig. 5. Velocity bias components of the observer with and without sliding
window iteration enabled on startup compared against truth. Solid blue is
ground truth, dash-dot red is the estimate without sliding window iteration,
and dashed green is the estimate with sliding window iteration.
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Fig. 6. Target position components with origin shifting every five seconds
compared against truth using sliding window iteration. Solid blue is ground
truth and dashed red is the estimate.
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V. CONCLUSIONS

We presented two methods necessary for a practical im-
plementation of the observer from [20], namely, origin shift-
ing and sliding window observer iteration. Origin shifting
suffered from large errors immediately after the change
in origin, but due to the global stability of the observer
and sliding window observer iteration, this error quickly
diminishes. Smoothing the estimation during origin changes
is to be carefully examined in future work. One possibility
for smoothing is to use a second observer for the initial
estimation new landmarks only, so that newly added land-
marks don’t negatively affect current position and landmark
estimates. Sliding window iteration dramatically improves
observer convergence speed during sequences of persistent
excitation and is necessary for hardware implementation of
this observer. We require further analysis of this method to
better specify optimal conditions of its operation, such as
how long it should run after newly established origins. Poor
initial estimates combined with suboptimal observability of
landmarks can cause observer iteration to degrade filter
performance, therefore, detection of these scenarios should
also be investigated. Lastly, we showed that this observer
could be used to track a maneuvering ground target with
accuracy comparable to its own position estimation.
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