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Abstract

We introduce partially-stateful data-flow, a new stream-

ing data-flow model that supports eviction and recon-

struction of data-flow state on demand. By avoiding state

explosion and supporting live changes to the data-flow

graph, this model makes data-flow viable for building

long-lived, low-latency applications, such as web appli-

cations. Our implementation, Noria, simplifies the back-

end infrastructure for read-heavy web applications while

improving their performance.

A Noria application supplies a relational schema and a

set of parameterized queries, which Noria compiles into

a data-flow program that pre-computes results for reads

and incrementally applies writes. Noria makes it easy

to write high-performance applications without manual

performance tuning or complex-to-maintain caching lay-

ers. Partial statefulness helps Noria limit its in-memory

state without prior data-flow systems’ restriction to win-

dowed state, and helps Noria adapt its data-flow to

schema and query changes while on-line. Unlike prior

data-flow systems, Noria also shares state and computa-

tion across related queries, eliminating duplicate work.

On a real web application’s queries, our prototype

scales to 5× higher load than a hand-optimized MySQL

baseline. Noria also outperforms a typical MySQL/mem-

cached stack and the materialized views of a commercial

database. It scales to tens of millions of reads and mil-

lions of writes per second over multiple servers, outper-

forming a state-of-the-art streaming data-flow system.

1 Introduction

Web applications must serve many users at low latency.

They respond to each user request using data queried

from backend stores, usually relational databases. The

vast majority of such store accesses are reads, and

evaluating them as repeated queries over the normal-

ized schema of a relational database is inefficient [54,

57]. Hence, many applications explicitly include pre-

computed query results in their database schemas, or

cache such results in separate key-value stores [8, 54].

For example, the Lobsters news aggregator [43] stores

stories’ computed vote counts and “hotness” in separate

∗ equal contribution

table columns to avoid re-computing them on every page

load [42]. As each vote is reflected in several places, ap-

plication logic must explicitly update computed columns

every time a value changes. Hence, pre-computation

complicates both application reads and writes. In gen-

eral, developers must choose between convenient, but

slow, “natural” relational queries (e.g., with inline aggre-

gations), and increased performance at the cost of appli-

cation and deployment complexity (e.g., due to caching).

Noria applications do not need to choose. Noria ex-

poses a high-level query interface (SQL), but unlike

in conventional systems, Noria accelerates the execu-

tion of even complex natural queries by answering with

pre-computed results where possible. At its core, No-

ria runs a continuous, but dynamically changing, data-

flow computation that combines the persistent store, the

cache, and elements of application logic. Each write to

Noria streams through a joint data-flow graph for the

current queries and incrementally updates the cached,

eventually-consistent internal state and query results.

Making this approach work for web applications is

challenging. A naı̈ve implementation might maintain un-

bounded pre-computed state, causing unacceptable space

and time overhead, so Noria must limit its state size.

Writes can update many pre-computed results, so Noria

must ensure that writes are fast and avoid unnecessary

work. Finally, since many web applications frequently

change their queries [20, 61], Noria must accommodate

changes without iterating over all data.

Existing data-flow systems either cannot perform fine-

grained incremental updates to state [36, 52, 75], or limit

the growth of operator state using “windowed” state (e.g.,

this week’s stories). This bounds their memory footprint

but prohibits reading older data [11, 39, 46, 51]. No-

ria’s data-flow operator state is partial instead of win-

dowed, retaining only the subset of records that the ap-

plication has queried. This is possible thanks to a new,

partially-stateful data-flow model: when in need of miss-

ing state, operators request an upquery that derives the

missing records from upstream state. Ensuring correct-

ness with this model requires careful attention to invari-

ants, as ordinary updates and upqueries can race. With-
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Websites often deploy an in-memory key-value

cache (like Redis, memcached, or TAO [8]) to speed

up common-case read queries (Figure 1b). Such a

cache avoids re-evaluating the query when the under-

lying records are unchanged. However, the application

must invalidate or replace cache entries as the records

change. This process is error-prone and requires complex

application-side logic [37, 48, 57, 64]. For example, de-

velopers must carefully avoid performance collapse due

to “thundering herds” (viz., many database queries issued

just after an invalidation) [54, 57]. Since the cache can

return stale records, reads are eventually-consistent.

Some sites use stream-processing systems [13, 39] to

maintain results for queries whose re-execution over all

past data is infeasible. One major problem for these sys-

tems is that they must maintain state at some operators,

such as aggregations. To avoid unbounded growth, exist-

ing systems “window” this state by limiting it to the most

recent records. This makes it difficult for a stream pro-

cessor to serve the general queries needed for websites,

which need to access older as well as recent state. More-

over, stream processors are less flexible than a database

that can execute any relational query on its schema: in-

troducing a new query often requires a restart.

Noria, as shown in Figure 1c, combines the best of

these worlds. It supports the fast reads of key-value

caches, the efficient updates and parallelism of streaming

data-flow, and, like a classic database, supports changing

queries and base table schemas without downtime.

3 Noria design

Noria is a stateful, dynamic, parallel, and distributed

data-flow system designed for the storage, query process-

ing, and caching needs of typical web applications.

3.1 Target applications and deployment

Noria targets read-heavy applications that tolerate even-

tual consistency. Many web applications fit this model:

they accept the eventual consistency imposed by caches

that make common-case reads fast [15, 19, 54, 72]. No-

ria’s current design primarily targets relational operators,

rather than the iterative or graph computations that are

the focus of other data-flow systems [46, 51], and pro-

cesses structured records in tabular form [12, 16]. Large

blobs (e.g., videos, PDF files) are best stored in external

blob stores [7, 24, 50] and referenced by Noria’s records.

Noria runs on one or more multicore servers that com-

municate with clients and with one another using RPCs.

A Noria deployment stores both base tables and derived

views. Roughly, base tables contain the data typically

stored persistently, and derived views hold data an appli-

cation might choose to cache. Compared to conventional

database use, Noria base tables might be smaller, as No-

ria derives data that an application may otherwise pre-

1 /* base tables */

2 CREATE TABLE stories

3 (id int, author int, title text, url text);

4 CREATE TABLE votes (user int, story_id int);

5 CREATE TABLE users (id int, username text);

6 /* internal view: vote count per story */

7 CREATE INTERNAL VIEW VoteCount AS

8 SELECT story_id, COUNT(*) AS vcount

9 FROM votes GROUP BY story_id;

10 /* external view: story details */

11 CREATE VIEW StoriesWithVC AS

12 SELECT id, author, title, url, vcount

13 FROM stories

14 JOIN VoteCount ON VoteCount.story_id = stories.id

15 WHERE stories.id = ?;

Figure 2: Noria program for a key subset of the Lobsters

news aggregator [43] that counts users’ votes for stories.

compute and store in base tables for performance. Views,

by contrast, will likely be larger than a typical cache foot-

print, because Noria derives more data, including some

intermediate results. Noria stores base tables persistently

on disk, either on one server or sharded across multiple

servers, but stores views in server memory. The applica-

tion’s working set in these views should fit in memory

for good performance, but Noria reduces memory use by

only materializing records that are actually read, and by

evicting infrequently-accessed data.

3.2 Programming interface

Applications interact with Noria via an interface that

resembles parameterized SQL queries. The application

supplies a Noria program, which registers base tables

and views with parameters supplied by the application

when it retrieves data. Figure 2 shows an example Noria

program for a Lobsters-like news aggregator application

(? is a parameter). The Noria program includes base ta-

ble definitions, internal views used as shorthands in other

expressions, and external views that the application later

queries. Internally, Noria instantiates a data-flow to con-

tinuously process the application’s writes through this

program, which in turn maintains the external views.

To retrieve data, the application supplies Noria with an

external view identifier (e.g., StoriesWithVC) and one

or more sets of parameter values. Noria then responds

with the records in the view that match those values.

To modify records in base tables, the application per-

forms insertions, updates, and deletions, similar to a SQL

database. Noria applies these changes to the appropriate

base tables and updates dependent views.

The application may change its Noria program to add

new views, to modify or remove existing views, and to

adapt base table schemas. Noria expects such changes

to be common and aims to complete them quickly. This

contrasts with most previous data-flow systems, which

lack support for efficient changes without downtime.
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1. Update completeness: if Se 6=⊥, then either all up-

dates in Te −Se are in flight toward e, or an eviction

notice for e is in flight toward e.

2. No spurious or duplicate updates: Se ⊆ Te.

3. Descendant eviction: if Se =⊥, then for all d ∈ De,

either Sd =⊥, or an eviction notice for d is in flight

toward d’s operator.

4. Eventual consistency: if Te stops growing, then

eventually either Se = Te or Se =⊥.

We now explain the mechanisms that Noria uses to real-

ize this data-flow model and maintain the invariants.

4.2 Update ordering

Noria uses update ordering to ensure eventual consis-

tency without global data-flow coordination. Each oper-

ator totally orders all updates and upquery requests it re-

ceives for an entry; and, critically, the downstream data-

flow ensures that all updates and upquery responses from

that entry are processed by all consumers in that order.

Thus, if the operator orders update u1 before u2, then

every downstream consumer likewise processes updates

derived from u1 before those derived from u2. Noria data-

flows can split and merge (e.g., at joins), but update or-

dering and operator commutativity ensure that the even-

tual result is correct independent of processing order.

4.3 Join upqueries

Join operators use upqueries (§3.3): when an update ar-

rives at one input, the join upqueries its other input for the

corresponding records, and combines them with the up-

date. Join upqueries reach the next upstream stateful op-

erator, which computes a snapshot of the requested state

entry and forwards it along the data-flow to the querying

join. Intermediate operators process the response as ap-

propriate. Unlike normal updates, upquery responses fol-

low the single path back to the querying operator without

forking. Upquery responses also commute neither with

each other nor with previous updates. This introduces a

problem for join update processing, since every such up-

date requires an upquery that produces non-commutative

results, yet must produce an update that does commute.

Noria achieves this by ensuring that no updates are

in flight between the upstream stateful operator and the

join when a join upquery occurs. To do so, Noria lim-

its the scope of each join upquery to an operator chain

processed by a single thread. Noria executes updates on

other operator chains in parallel with join upqueries.

This introduces a trade-off between parallelism and

state duplication: join processing must stay within a sin-

gle operator chain, so copies of upstream state may be

required in each operator chain that contains a join.

4.4 Eviction and recursive upqueries

Evicted state introduces new challenges for Noria’s data-

flow. If the application requests evicted state, Noria must

use recursive upqueries to fill it in. Moreover, operators

now encounter evicted state when they handle updates.

These factors influence the Noria design in several ways.

First and simplest, Noria operators drop updates that

encounter evicted entries. This reduces the time spent

processing updates downstream, but necessitates the de-

scendant eviction invariant: operators downstream of an

evicted entry never see updates for that entry, so they

must evict their own dependent entries lest they remain

permanently out of date.

Second, recursive upqueries now occasionally cascade

up in the data-flow until they encounter the necessary

state—in the worst case, up to base tables. Responses

then flow forward to the querying operator. Upquery re-

sults are snapshots of operator state, and do not com-

mute with updates. For unbranched chains, update order-

ing (§4.2) and the fact that updates to evicted state are

dropped ensure that the requested upquery response is

processed before any update for the evicted state.

Recursive upqueries of branching subgraphs, such as

joins, are more complex. A join operator must emit a sin-

gle correct response for each upquery it receives, even if

it must make one or more recursive upqueries of its own

to produce the needed state. Combining the upqueries’

results directly would be incorrect: those upqueries exe-

cute independently, and updates can arrive between their

responses. Joins thus issue recursive upqueries, but com-

pute the final result exclusively with join upqueries once

the recursive upqueries complete (multiple rounds of re-

cursive upqueries may be required). These join upqueries

execute within a single operator chain and exclude con-

current updates. Noria supports other branching opera-

tors, such as unions, which obey the same rules as joins.

Finally, a join upquery performed during update pro-

cessing may encounter evicted state. In this case, No-

ria chooses to drop the update and evict dependent en-

tries downstream; Noria statically analyzes the graph to

compute the required eviction notices. There is a trade-

off here: computing the missing entry could avoid future

upqueries. Noria chooses to evict to avoid blocking the

write path while filling in the missing state.

Such evictions are rare, but they can occur.

For example, imagine a version of Figure 2 that

adds AuthorVotes, which aggregates VoteCount by

stories.author, and the following system state:

• stories[id=1] has author=Elena.

• VoteCount[story id=1] has vcount=8.

• AuthorVotes[author=Elena] has vcount=8.

• stories[id=2] has author=Bob.

• VoteCount[story id=2] is evicted.

Now imagine that an update changes story 2’s au-

thor to Elena. When this update arrives at the join

for AuthorVotes, that join operator upqueries for

VoteCount[story id=2], which is evicted. As a result,
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Noria sends an eviction notice for Elena—whose number

of votes has changed—to AuthorVotes.

4.5 Partial and full state

Noria makes state partial whenever it can service up-

queries using efficient index lookups. If Noria would

have to scan the full state of an upstream operator to sat-

isfy upqueries, Noria disables partial state for that oper-

ator. This may happen because every downstream record

depends on all upstream ones—consider e.g., the top 20

stories by vote count. In addition, the descendant evic-

tion invariant implies that partial-state operators cannot

have full-state descendants.

Partial-state operators in Noria start out fully evicted

and are gradually and lazily populated by upqueries. As

we show next, this choice has important consequences

for Noria’s ability to transition the data-flow efficiently.

5 Dynamic data-flow

Application queries evolve over time, so Noria’s dy-

namic data-flow represents a continuously-changing set

of SQL expressions. Existing data-flow systems run sep-

arate data-flows for each expression, initialize new op-

erators with empty state and reflect only new writes, or

require restarting from a checkpoint. Changes to the No-

ria program instead adapt the data-flow dynamically.

Given new or removed expressions, Noria transitions

the data-flow to reflect the changes. Noria first plans the

transition, reusing operators and state of existing expres-

sions where possible (§5.1). It then incrementally applies

these changes to the data-flow, taking care to maintain its

correctness invariants (§5.2). Once both steps complete,

the application can use new tables and queries.

The key challenges for transitions are to avoid unnec-

essary state duplication and to continue processing reads

and writes throughout. Operator reuse and partial state

help Noria address these challenges.

5.1 Determining data-flow changes

To initiate a transition, the application provides Noria

with sets of added and removed expressions. Noria then

computes required changes to the currently-running data-

flow. This process resembles traditional database query

planning, but produces a long-term joint data-flow across

all expressions in the Noria program. This allows Noria

to reuse existing operators for efficiency: if two queries

include the same join, the data-flow contains it only once.

To plan a transition, Noria first translates each new ex-

pression into an extended query graph [21]. The query

graph contains a node for each table or view in the ex-

pression, and an edge for every join or group-by clause.

Noria uses query graphs to inexpensively reject many ex-

pressions from consideration [21, §3.4, 78, §3] and to

quickly establish a set of sharing candidates for each

new expression. The sharing candidates are existing ex-

pressions that likely overlap with the new expression.

Next, Noria generates a verbose intermediate represen-

tation (IR), which splits the new expression into more

fine-grained operators. This simplifies common subex-

pression detection, and allows Noria to efficiently merge

the new IR with the cached IR of the sharing candidates.

For each sharing candidate, Noria reorders joins in the

new IR to match the candidate when possible to max-

imize re-use opportunities. It then traverses the candi-

date’s IR in topological order from the base tables. For

each operator, Noria searches for a matching operator (or

clique of operators) in the new IR. A match represents a

reusable subexpression, and Noria splices the two IRs to-

gether at the deepest matches.

This process continues until Noria has considered all

identified reuse candidates, producing a final, merged IR.

5.2 Data-flow transition

The combined final IRs of all current expressions rep-

resent the transition’s target data-flow. Noria must add

any operator in the final IR that does not already exist in

the data-flow. To do so, Noria first informs existing op-

erators of index obligations (§3.3) incurred by new op-

erators that they must construct indexes for. Noria then

walks the target data-flow in topological order and inserts

each new operator into the running data-flow and boot-

straps its state. Finally, after installing new operators and

deleting removed queries’ external views, Noria removes

obsolete operators and state from the data-flow.

Bootstrapping operator state. When Noria adds a

new stateful operator, it must ensure that the operator

starts with the correct state. Partially-stateful operators

and views start processing immediately. They are ini-

tially empty and bootstrap via upqueries in response to

application reads during normal operation, amortizing

the bootstrapping work over time. Fully-stateful opera-

tors are initially marked as “inactive”, which causes them

to ignore all incoming updates. Noria then executes a

special, large upquery for all keys on behalf of the fully-

stateful operator. Once the last upquery response has ar-

rived, Noria activates the operator for update processing

and moves on to the next new operator.

Base table changes. As applications evolve, develop-

ers often add or remove base table columns [17]. This

affects existing operators in the data-flow: new updates

from the base table may now lack values that existing op-

erators expect. Noria could rebuild the data-flow or trans-

form the existing base table state to effect such a change,

but this would be inefficient for large base tables. Instead,

Noria base tables internally track all columns that have

existed in the table’s schema, including those that have

been deleted. When a base table processes an application

write, it automatically injects default values for missing
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columns (but does not store them). This permits queries

for different base table schemas to coexist in the data-

flow graph, and makes most base table changes cheap.

6 Implementation

Our Noria prototype implementation consists of 45k

lines of Rust and can operate both on a single server and

across a cluster of servers. Applications interface with

Noria either through native Rust bindings, using JSON

over HTTP, or through a MySQL protocol adapter.

6.1 Persistent data storage

Noria persists base tables in RocksDB [66], a high-

performance key-value store based on log-structured

merge (LSM) trees. Batches of application updates are

synchronously flushed into RocksDB’s log before No-

ria acknowledges them and admits them into the data-

flow; a background thread asynchronously merges log

entries into the LSM trees. Each base table index forms

a RocksDB “column family”. For base tables with non-

unique indexes, Noria uses RocksDB’s ordered iterators

to efficiently retrieve all rows for an index key [14, 67].

Persistence reduces Noria’s write throughput by about

5% over in-memory base tables. Reads are not greatly

impacted when an application’s working set fits in mem-

ory: only occasional upqueries access RocksDB, and

these add < 1ms of additional latency on a fast SSD.

6.2 Parallel processing

Noria shards the data-flow and allows concurrent reads

and writes with minimal synchronization for parallelism.

Sharding. Noria processes updates in parallel on a

cluster by hash-partitioning each operator on a key and

assigning shards to different servers. Each machine runs

a Noria instance, a process that contains a complete copy

of the data-flow graph, but holds state only for its shards

of each operator. When an operator with one hash parti-

tioning links to an operator with a different partitioning,

Noria inserts “shuffle” operators that perform inter-shard

transfers over TCP connections. Upqueries across shuf-

fle operators are expensive since they must contact all

ancestor shards. This limits scalability, but allows opera-

tors below a shuffle to maintain partial state.

Multicore parallelism. Noria achieves multicore par-

allelism within each server in two ways: a server can

handle multiple shards by running multiple Noria in-

stances, and each instance runs multiple threads to pro-

cess its shard. Each instance has two thread pools: data-

flow workers process updates within the data-flow graph,

and read handlers handle reads from external views.

At most one data-flow worker executes updates for

each data-flow operator at a time. This arrangement

yields CPU parallelism among different operators, and

also allows lock-free processing within each operator.

There are typically fewer data-flow workers than oper-

ators in the data-flow graph, so Noria multiplexes opera-

tor work across the worker threads. Within one instance,

Noria schedules chains of operators with the same key as

a unit. This reduces queueing and inter-core data move-

ment at operator boundaries. It also allows Noria to op-

timize some upqueries: an upquery within a chain can

simply access the ancestor’s data synchronously, without

worry of contamination from in-flight updates (§4.3).

Read handlers process clients’ RPCs to read from ex-

ternal views. They must access the view with low latency

and high concurrency, even while a data-flow worker is

applying updates to the view. To minimize synchroniza-

tion, Noria uses double-buffered hash tables for external

views [27]: the data-flow worker updates one table while

read handlers read the other, and an atomic pointer swap

exposes new writes. This trades space and timeliness for

performance: with skewed key popularity distributions,

it can improve read throughput by 10× over a single-

buffered hash table with bucket-level locks.

6.3 Distributed operation

A Noria controller process manages distributed in-

stances on a cluster of servers, and informs them of

changes to the data-flow graph and of shard assign-

ments. Noria elects the controller and persists its state

via ZooKeeper [34]. Clients discover the controller via

ZooKeeper, and obtain long-lived read and write handles

to send requests directly to instances.

Noria handles failures by rebuilding the data-flow. If

the controller fails, Noria elects a new controller that re-

stores the data-flow graph. It then streams the persistent

base table data from RocksDB to rebuild fully-stateful

operators and views. Partial operators are instead pop-

ulated through on-demand upqueries. If individual in-

stances fail, Noria rebuilds only the affected operators.

6.4 MySQL adapter

Our prototype includes an implementation of the

MySQL binary protocol in a dedicated stateless adapter

that appears as a standard MySQL server to the applica-

tion. This adapter allows developers to easily run existing

applications on Noria. The adapter transparently trans-

lates prepared statements and ad-hoc queries into transi-

tions on Noria’s data-flow, and applies reads and writes

using Noria’s API behind the scenes. Its SQL support is

sufficiently complete to run some unmodified web appli-

cations (e.g., JConf [74] written in Django [22]), and to

run Lobsters with minimal syntax adaptation.

6.5 Limitations

Our current prototype has some limitations that we plan

to address in future work; none of them are fundamental.

First, it only shards by hash partitioning on a single col-

umn, and resharding requires sending updates through
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a single instance, which limits scalability. Second, it

re-computes data-flow state on failure; recovering from

snapshots or data-flow replicas would be more efficient

(e.g., using selective rollback [35]). And third, it does not

currently support range indices or multi-column joins.

7 Applications

This section discusses our experiences with developing

Noria applications. Noria aims to simplify the develop-

ment of high-performance web applications; several as-

pects of our implementation help it achieve that goal.

First, applications written for a MySQL database can

use Noria directly via its MySQL adapter, provided

they generate parameterized SQL queries (for instance,

via libraries like PHP Data Objects [69] or Python’s

MySQL connector [55, §10.6.8]). Porting typically pro-

ceeds in three steps. First, the developer points the appli-

cation at the Noria MySQL adapter instead of a MySQL

server and imports existing data into Noria from database

dumps. The application will immediately see perfor-

mance improvements for read queries that formerly ran

substantial in-line compute. Though the MySQL adapter

even supports ad-hoc read queries (it transitions the

data-flow as required to support each query), the most

benefit will be seen for frequently-reused queries. Sec-

ond, the developer creates views for computations that

the MySQL application manually materialized, such as

the per-story vote count in Lobsters. These views co-

exist with the manual materializations, and allow exist-

ing queries to continue to work as the developer updates

the write path so that it no longer manually updates de-

rived views and caches. Third, the developer incremen-

tally rewrites their application to rely on natural views

and remove manual write optimizations. These changes

gradually increase application performance as the devel-

oper removes now-unnecessary complexity from the ap-

plication’s read and write paths.

The porting process is not burdensome. We ported

a PHP web application for college room ballots—

developed by one of the authors and used production

for a decade—to Noria; the process took two evenings,

and required changes to four queries. We also used

the MySQL adapter to port the Lobsters application’s

queries to Noria; the result is a focus of our evaluation.

Developing native Noria applications can be even eas-

ier. We developed a simple web application to show the

results of our continuous integration (CI) tests for No-

ria. The CI system stores its results in Noria, and the

web application displays performance results and aggre-

gate statistics. Since we developed directly for Noria, we

were not tempted to cache intermediate results or ap-

ply other manual optimizations, and could use aggrega-

tions and joins in queries without fear that performance

would suffer as a result (e.g., due to aggregations over the

long commit history). Most application updates reduced

to single-table inserts, deletes, or updates.

Limitations. Though applications traditionally use

parameterized queries to avoid SQL injection attacks

and cache query plans, Noria parameterized queries also

build materialized views. An application with many dis-

tinct parameterized queries can thus end up with more

views than necessary. The developer can correct this by

adding shared views. Our prototype does not yet support

update and delete operations conditioned on non-primary

key columns, and lacks support for parameterized range

queries (e.g., age > ?), which some applications need.

Planned support for range indexes and an extended base

table implementation will address these limitations.

8 Evaluation

We evaluated our Noria prototype using backend work-

loads generated from the production Lobsters web appli-

cation, as well as using individual queries. Our experi-

ments seek to answer the following questions:

1. What performance gains does Noria deliver for a

typical database-backed web application? (§8.1)

2. How does Noria perform compared to a

MySQL/memcached stack, the materialized

views of a commercial database, and an idealized

cache-only deployment? (§8.2)

3. Given a scalable workload, how does our prototype

utilize multiple servers, and how does it compare to

a state-of-the-art data-flow system? (§8.3)

4. What space overhead does Noria’s data-flow state

impose, and how does Noria perform with limited

memory and partial state? (§8.4)

5. Can Noria data-flows adapt to new queries and input

schema changes without downtime? (§8.5)

Setup. In all experiments, Noria and other storage

backends run on an Amazon EC2 c5.4xlarge instance

with 16 vCPUs; clients run on separate c5.4xlarge in-

stances unless stated otherwise. Our setup is “partially

open-loop”: clients generate load according to a Poisson

distribution of interarrival-times and have a limited num-

ber of backend requests outstanding, queueing additional

requests. This ensures that clients maintain the measure-

ment frequency even during periods of high latency [45].

Our test harness measures offered request throughput and

“sojourn time” [62], which is the delay from request gen-

eration until a response returns from the backend.

8.1 Application performance: Lobsters

We first evaluate Noria’s performance on a realistic web

application workload to answer two questions:

1. Do Noria’s fast reads help it outperform a conven-

tional database on a real application workload, even

on a hand-optimized application?
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clients request such items, Noria’s upqueries bring them

into the working set, making subsequent reads fast.

9 Related work

Noria builds on considerable related work.

Data-flow systems excel at data-parallel comput-

ing [36, 51], including on streams, but cannot serve web

applications directly. They only achieve low-latency in-

cremental updates at the expense of windowed state (and

incomplete results) or by keeping full state in memory.

Noria’s partially-stateful data-flow lifts this restriction. A

few data-flow systems can reuse operators automatically:

for example, Nectar [28] detects similar subexpressions

in DryadLINQ programs, similar to Noria’s automated

operator reuse, using DryadLINQ-specific merge and

rewrite rules. Support for dynamic changes to a running

data-flow is more common: CIEL [52] dynamically ex-

tends batch-processing data-flows, as does Ray [58] for

stateful “actor” operators’ state transitions in reinforce-

ment learning applications. Noria dynamically changes

long-running, low-latency streaming computations by

modifying the data-flow; unlike existing streaming data-

flow systems like Naiad [51] or Spark Streaming [76], it

has no need for a restart or recovery from a checkpoint.

Stream processing systems [3, 11, 39, 71, 76] often

use data-flow, but usually have windowed state and static

queries that process only new records. STREAM [6]

identifies opportunities for operator reuse among static

queries; Noria achieves similar reuse for dynamic

queries. S-Store [47] lacks Noria’s partial materialization

and state reuse, but combines a classic database with a

stream processing system using trigger-based view main-

tenance. S-Store enables transactional processing, a fu-

ture goal for Noria.

Database materialized views [29, 41] were devised

to cache expensive analytical query results. Commercial

databases’ materialized view support [1] is limited [49,

63] and views must usually be rebuilt on change. How-

ever, there is considerable research on incremental view

maintenance in databases [30, 40, 41, 70, 77, 81]. No-

ria builds upon ideas from this work, but applies them

in the context of a concurrent, stateful data-flow system

for web applications. This requires efficient fine-grained

access to views, solutions to new coordination problems

and concurrency races, as well as inexpensive long-term

adaptation as view definitions change. DBToaster [2, 53]

supports incremental view maintenance under high write

loads with generated recursive delta query implemen-

tations. Noria sees lower single-threaded performance,

but supports parallel processing and changing queries;

adding native-code generation to Noria might further im-

prove its performance, but would complicate operator

reuse. Pequod [37] and DBProxy [4] support partial ma-

terialization in response to client demand, although Pe-

quod is limited to static queries, and unlike Noria, neither

shares state nor processing across queries.

The problem of detecting shared subexpressions

(§5.1) is a multi-query optimization (MQO) prob-

lem [21, 59, 78]. MQO tries to maximize sharing across

a batch of expressions, with the freedom to rewrite any

expression to suit the others. Like joint query process-

ing systems [10, 25, 31], Noria faces the more restricted

problem of mutating new expressions to increase their

opportunity to share existing expressions in the data-flow.

A wide array of tools deal with websites’ query and

schema transitions [9, 23, 26, 56, 65]. Like Noria,

they aim to transition backend stores without interrup-

tion in client service, but they require developers to

manually configure complex “ghost tables” or binlog-

following triggers. Base table schema changes increase

complexity further [73]. Noria handles query changes

transparently, and efficiently applies common base table

schema changes by supporting many concurrent base ta-

ble schemas. Most of its data-flow transitions are live for

reads and writes without added complexity.

Finally, some open-source systems have experi-

mented with flexible query and schema changes. Apache

Kafka [5] achieves some flexibility in query and schema

changes as used by the New York Times [68], and sim-

ilar ideas were proposed as an extension proposal for

Samza [38]. To our knowledge, however, no prior sys-

tem achieves the performance and flexibility of Noria.

10 Conclusions

Noria is a web application backend that delivers high

performance while allowing for simplified application

logic. Partially-stateful data-flow is essential to achiev-

ing this goal: it allows fast reads, restricts Noria’s mem-

ory footprint to state that is actually used, and enables

live changes to the data-flow. In future work, we plan

to add more flexible sharding, range indexes, and better

eviction strategies.

Noria is open-source software and available at:

https://pdos.csail.mit.edu/noria
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