usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Noria: dynamic, partially-stateful data-flow
for high-performance web applications

Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, and Lara Timbé Aratijo,
MIT CSAIL; Martin Ek, Norwegian University of Science and Technology;
Eddie Kohler, Harvard University; M. Frans Kaashoek and Robert Morris, MIT CSAIL

https://www.usenix.org/conference/osdi18/presentation/gjengset

This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI "18).

October 8-10, 2018 « Carlsbad, CA, USA
ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems
Design and Implementation

is sponsored by USENIX.

Noria: dynamic, partially-stateful data-flow
for high-performance web applications

Malte Schwarzkopf *
Eddie Kohler*

Jon Gjengset *
Martin Ek'

Jonathan Behrens Lara Timbo Araujo

M. Frans Kaashoek Robert Morris

MIT CSAIL T Norwegian University of Science and Technology ~* Harvard University

Abstract

We introduce partially-stateful data-flow, a new stream-
ing data-flow model that supports eviction and recon-
struction of data-flow state on demand. By avoiding state
explosion and supporting live changes to the data-flow
graph, this model makes data-flow viable for building
long-lived, low-latency applications, such as web appli-
cations. Our implementation, Noria, simplifies the back-
end infrastructure for read-heavy web applications while
improving their performance.

A Noria application supplies a relational schema and a
set of parameterized queries, which Noria compiles into
a data-flow program that pre-computes results for reads
and incrementally applies writes. Noria makes it easy
to write high-performance applications without manual
performance tuning or complex-to-maintain caching lay-
ers. Partial statefulness helps Noria limit its in-memory
state without prior data-flow systems’ restriction to win-
dowed state, and helps Noria adapt its data-flow to
schema and query changes while on-line. Unlike prior
data-flow systems, Noria also shares state and computa-
tion across related queries, eliminating duplicate work.

On a real web application’s queries, our prototype
scales to 5x higher load than a hand-optimized MySQL
baseline. Noria also outperforms a typical MySQL/mem-
cached stack and the materialized views of a commercial
database. It scales to tens of millions of reads and mil-
lions of writes per second over multiple servers, outper-
forming a state-of-the-art streaming data-flow system.

1 Introduction

Web applications must serve many users at low latency.
They respond to each user request using data queried
from backend stores, usually relational databases. The
vast majority of such store accesses are reads, and
evaluating them as repeated queries over the normal-
ized schema of a relational database is inefficient [54,
57]. Hence, many applications explicitly include pre-
computed query results in their database schemas, or
cache such results in separate key-value stores [8, 54].
For example, the Lobsters news aggregator [43] stores
stories’ computed vote counts and “hotness” in separate

* equal contribution

table columns to avoid re-computing them on every page
load [42]. As each vote is reflected in several places, ap-
plication logic must explicitly update computed columns
every time a value changes. Hence, pre-computation
complicates both application reads and writes. In gen-
eral, developers must choose between convenient, but
slow, “natural” relational queries (e.g., with inline aggre-
gations), and increased performance at the cost of appli-
cation and deployment complexity (e.g., due to caching).

Noria applications do not need to choose. Noria ex-
poses a high-level query interface (SQL), but unlike
in conventional systems, Noria accelerates the execu-
tion of even complex natural queries by answering with
pre-computed results where possible. At its core, No-
ria runs a continuous, but dynamically changing, data-
flow computation that combines the persistent store, the
cache, and elements of application logic. Each write to
Noria streams through a joint data-flow graph for the
current queries and incrementally updates the cached,
eventually-consistent internal state and query results.

Making this approach work for web applications is
challenging. A naive implementation might maintain un-
bounded pre-computed state, causing unacceptable space
and time overhead, so Noria must limit its state size.
Writes can update many pre-computed results, so Noria
must ensure that writes are fast and avoid unnecessary
work. Finally, since many web applications frequently
change their queries [20, 61], Noria must accommodate
changes without iterating over all data.

Existing data-flow systems either cannot perform fine-
grained incremental updates to state [36, 52, 75], or limit
the growth of operator state using “windowed” state (e.g.,
this week’s stories). This bounds their memory footprint
but prohibits reading older data [11, 39, 46, 51]. No-
ria’s data-flow operator state is partial instead of win-
dowed, retaining only the subset of records that the ap-
plication has queried. This is possible thanks to a new,
partially-stateful data-flow model: when in need of miss-
ing state, operators request an upquery that derives the
missing records from upstream state. Ensuring correct-
ness with this model requires careful attention to invari-
ants, as ordinary updates and upqueries can race. With-

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation

213

Write— _

| | stories | ||v0tes | || users |

@ Write
|| stories | || votes |

Write
| stories | ”votes ||| users |

. @ Query on

read miss

Read-side work Write work

Read

(a) Classic database operation (b) Two-tier stack with

with compute on reads.

demand-filled cache [54, §2].

@) Stream

through

@ Update view

l Story WithVC S

Read

(c) Noria: stateful data-flow operators pre-compute data for
reads incrementally; data-flow change supports new queries.

Figure 1: Overview of how current website backends and Noria process frontend reads and writes.

out care, such races could produce permanently incorrect
state, and therefore incorrect cached query results.

The state that Noria keeps is similar to a material-
ized view, and its data-flow processing is akin to view
maintenance [2, 37]. Noria demonstrates that, contrary
to conventional wisdom, maintaining materialized views
for all application queries is feasible. This is possible
because partially-stateful operators can evict rarely-used
state, and discard writes for that state, which reduces
state size and write load. Noria further avoids redundant
computation and state by jointly optimizing its queries to
merge overlapping data-flow subgraphs.

Few existing streaming data-flow systems can change
their queries and input schemas without downtime. For
example, Naiad must re-start to accommodate changes,
and Spark’s Structured Streaming must restart from a
checkpoint [18]. Noria, by contrast, adapts its data-flow
to new queries without interrupting existing clients. It ap-
plies changes while retaining existing state and while re-
maining live for reads throughout. Writes from current
clients see sub-second interruptions in the common case.

Noria’s techniques remain compatible with traditional
parallel and distributed data-flow, and allow Noria to
parallelize and scale fine-grained, partially materialized
view maintenance over multiple cores and machines.

In summary, Noria makes four principal contributions:

1. the partially-stateful data-flow model, its correct-
ness invariants, and a conforming system design;

2. automatic merge-and-reuse techniques for data-
flow subgraphs in joint data-flows over many
queries, which reduce processing cost and state size;

3. near-instantaneous, dynamic transitions for data-
flow graphs in response to changes to queries or
schema without loss of existing state; and

4. a prototype implementation and an evaluation that
demonstrates that practical web applications benefit
from Noria’s approach.

Our Noria prototype exposes a backwards-compatible

MySQL protocol interface and can serve real web appli-
cations with minimal changes, although its benefits in-

crease for Noria-optimized applications. When serving
the Lobsters web application on a single Amazon EC2
VM, our prototype outperforms the default MySQL-
based backend by 5x while simultaneously simplifying
the application (§8.1). For a representative query, our
prototype outperforms the widely-used MySQL/mem-
cached stack and the materialized views of a commer-
cial database by 2-10x (§8.2). It also scales the query
to millions of writes and tens of millions of reads per
second on a cluster of EC2 VMs, outperforming a state-
of-the-art data-flow system, differential dataflow [46, 51]
(§8.3). Finally, our prototype adapts the data-flow with-
out any perceptible downtime for reads or writes when
transitioning the same query to a modified version (§8.5).

Nevertheless, our current prototype has some limita-
tions. It only guarantees eventual consistencys; its evic-
tion from partial state is randomized; it is inefficient for
sharded queries that require shuffles in the data-flow; and
it lacks support for some SQL keywords. We plan to ad-
dress these limitations in future work.

2 Background

We now explain how current website backends and Noria
process data. Figure 1 shows an overview.

Many web applications use a relational database to
store and query data (Figure la). Page views generate
database queries that frequently require complex compu-
tation, and the query load tends to be read-heavy. Across
one month of traffic data from a HotCRP site and the
production deployment of Lobsters [32], 88% to 97%
of queries are reads (SELECT queries), and these reads
consume 88% of total query execution time in HotCRP.
Since read performance is important, application devel-
opers often manually optimize it. For example, Lob-
sters stores individual votes for stories in a votes ta-
ble, but also stores per-story vote counts as a column in
the stories table. This speeds up read queries of vote
counts, but “de-normalizes” the schema and complicates
vote writes, which must update the derived counts.

214 13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Websites often deploy an in-memory Kkey-value
cache (like Redis, memcached, or TAO [8]) to speed
up common-case read queries (Figure 1b). Such a
cache avoids re-evaluating the query when the under-
lying records are unchanged. However, the application
must invalidate or replace cache entries as the records
change. This process is error-prone and requires complex
application-side logic [37, 48, 57, 64]. For example, de-
velopers must carefully avoid performance collapse due
to “thundering herds” (viz., many database queries issued
just after an invalidation) [54, 57]. Since the cache can
return stale records, reads are eventually-consistent.

Some sites use stream-processing systems [13, 39] to
maintain results for queries whose re-execution over all
past data is infeasible. One major problem for these sys-
tems is that they must maintain state at some operators,
such as aggregations. To avoid unbounded growth, exist-
ing systems “window” this state by limiting it to the most
recent records. This makes it difficult for a stream pro-
cessor to serve the general queries needed for websites,
which need to access older as well as recent state. More-
over, stream processors are less flexible than a database
that can execute any relational query on its schema: in-
troducing a new query often requires a restart.

Noria, as shown in Figure lc, combines the best of
these worlds. It supports the fast reads of key-value
caches, the efficient updates and parallelism of streaming
data-flow, and, like a classic database, supports changing
queries and base table schemas without downtime.

3 Noria design

Noria is a stateful, dynamic, parallel, and distributed
data-flow system designed for the storage, query process-
ing, and caching needs of typical web applications.

3.1 Target applications and deployment

Noria targets read-heavy applications that tolerate even-
tual consistency. Many web applications fit this model:
they accept the eventual consistency imposed by caches
that make common-case reads fast [15, 19, 54, 72]. No-
ria’s current design primarily targets relational operators,
rather than the iterative or graph computations that are
the focus of other data-flow systems [46, 51], and pro-
cesses structured records in tabular form [12, 16]. Large
blobs (e.g., videos, PDF files) are best stored in external
blob stores [7, 24, 50] and referenced by Noria’s records.

Noria runs on one or more multicore servers that com-
municate with clients and with one another using RPCs.
A Noria deployment stores both base tables and derived
views. Roughly, base tables contain the data typically
stored persistently, and derived views hold data an appli-
cation might choose to cache. Compared to conventional
database use, Noria base tables might be smaller, as No-
ria derives data that an application may otherwise pre-

1

/* base tables */

> CREATE TABLE stories

(id int, author int, title text, url text);
CREATE TABLE votes (user int, story_id int);

s CREATE TABLE users (id int, username text);

s /* internal view: vote count per story */

7 CREATE INTERNAL VIEW VoteCount AS

SELECT story_id, COUNT(*) AS vcount
FROM votes GROUP BY story_id;
/% external view: story details */
CREATE VIEW StoriesWithVC AS
SELECT id, author, title, url, vcount
FROM stories
JOIN VoteCount ON VoteCount.story_id = stories.id
WHERE stories.id = ?;

Figure 2: Noria program for a key subset of the Lobsters
news aggregator [43] that counts users’ votes for stories.

compute and store in base tables for performance. Views,
by contrast, will likely be larger than a typical cache foot-
print, because Noria derives more data, including some
intermediate results. Noria stores base tables persistently
on disk, either on one server or sharded across multiple
servers, but stores views in server memory. The applica-
tion’s working set in these views should fit in memory
for good performance, but Noria reduces memory use by
only materializing records that are actually read, and by
evicting infrequently-accessed data.

3.2 Programming interface

Applications interact with Noria via an interface that
resembles parameterized SQL queries. The application
supplies a Noria program, which registers base tables
and views with parameters supplied by the application
when it retrieves data. Figure 2 shows an example Noria
program for a Lobsters-like news aggregator application
(? is a parameter). The Noria program includes base ta-
ble definitions, internal views used as shorthands in other
expressions, and external views that the application later
queries. Internally, Noria instantiates a data-flow to con-
tinuously process the application’s writes through this
program, which in turn maintains the external views.

To retrieve data, the application supplies Noria with an
external view identifier (e.g., StoriesWithVC) and one
or more sets of parameter values. Noria then responds
with the records in the view that match those values.
To modify records in base tables, the application per-
forms insertions, updates, and deletions, similar to a SQL
database. Noria applies these changes to the appropriate
base tables and updates dependent views.

The application may change its Noria program to add
new views, to modify or remove existing views, and to
adapt base table schemas. Noria expects such changes
to be common and aims to complete them quickly. This
contrasts with most previous data-flow systems, which
lack support for efficient changes without downtime.

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation

215

I 9 upstream II upstream

b blo
(2 sUM Jrga |7 [srare (3 sum }—at7]state

! upquery
1 l 2 l 2l I ,' ®imo
®incoming L,._]G'F”‘TFR upstream ®upquery
record I,’ state a7 response
at join
triggers
upquery [1]2Ta7]

Figure 3: Noria’s data-flow operators can query into up-
stream state: a join issues an upquery (I) to retrieve a
record from upstream state to produce a join result (II).

In addition to its native SQL-based query interface,
Noria provides an implementation of the MySQL bi-
nary protocol, which allows existing applications that use
prepared statements against a MySQL database to in-
teract with Noria without further changes. The adapter
turns ad-hoc queries and prepared SQL statements into
writes to base tables, reads from external views, and in-
crementally effects Noria program changes. Noria sup-
ports much, but not all, SQL syntax. We discuss the ex-
perience of building and porting applications in §7.

3.3 Data-flow execution

Noria’s data-flow is a directed acyclic graph of relational
operators such as aggregations, joins, and filters. Base
tables are the roots of this graph, and external views form
the leaves. Noria extends the graph with new base tables,
operators, and views as the application adds new queries.

When an application write arrives, Noria applies it to
a durable base table and injects it into the data-flow as
an update. Operators process the update and emit de-
rived updates to their children; eventually updates reach
and modify the external views. Updates are deltas [46,
60] that can add to, modify, and remove from down-
stream state. For example, a count operator emits deltas
that indicate how the count for a key has changed; a
join may emit an update that installs new rows in down-
stream state; and a deletion from a base table generates
a “negative” update that revokes derived records. Neg-
ative updates remove entries when Noria applies them
to state, and retain their negative “sign” when combined
with other records (e.g., through joins). Negative updates
hold exactly the same values as the positives they revoke
and thus follow the same data-flow paths.

Noria supports stateless and stateful operators. State-
less operators, such as filters and projections, need no
context to process updates; stateful operators, such as
count, min/max, and top-k, maintain state to avoid inef-
ficient re-computation of aggregate values from scratch.
Stateful operators, like external views, keep one or more
indexes to speed up operation. Noria adds indexes based
on indexing obligations imposed by operator semantics;

for example, an operator that aggregates votes by user ID
requires a user ID index to process new votes efficiently.
In most stream processors, join operators keep a win-
dowed cache of their inputs [3, 76], allowing an up-
date arriving at one input to join with all relevant state
from the other. In Noria, joins instead perform upqueries,
which are requests for matching records from stateful an-
cestors (Figure 3): when an update arrives at one join
input, the join looks up the relevant state by querying
its other inputs. This reduces Noria’s space overhead,
since joins often need not store duplicate state, but re-
quires care in the presence of concurrent updates, an is-
sue further discussed in §4. Upqueries also impose in-
dexing obligations that Noria detects and satisfies.

3.4 Consistency semantics

To achieve high parallel processing performance, Noria’s
data-flow avoids global progress tracking or coordina-
tion. An update injected by a base table takes time to
propagate through the data-flow, and the update may ap-
pear in different views at different times. Noria opera-
tors and the contents of its external views are eventually-
consistent. Eventual consistency is attractive for perfor-
mance and scalability, and is sufficient for many web ap-
plications [15, 54, 72].

Noria does ensure that if writes quiesce, all external
views eventually hold results that are the same as if the
queries had been executed directly against the base ta-
ble data. Making this work correctly requires some care.
Like most data-flow systems, Noria requires that opera-
tors are deterministic functions over their own state and
the inputs from their ancestors. In addition, Noria must
avoid races between updates and upqueries; avoid re-
ordering updates on the same data-flow path; and resolve
races between related updates that arrive independently
at multi-ancestor operators via different data-flow paths.
Consider an OR that combines filters using a union oper-
ator, or a join between data-flow paths connected to the
same base table: such operators’ final output (and state)
must be commutative over the order in which updates
arrive at their inputs. The standard relational operators
Noria supports have this property.

Web applications sometimes rely on database trans-
actions, e.g., to atomically update pre-computed val-
ues. Noria approach’s is compatible with basic,
optimistically-concurrent multi-statement transactions,
but Noria also often obviates the need for them. For ex-
ample, Lobsters uses transactions only to avoid write-
write conflicts on vote counts and stories’ “hotness”
scores. A multi-statement transaction is required only be-
cause baseline Lobsters pre-computes hotness for perfor-
mance. Noria instead computes hotness in the data-flow,
which avoids write-write conflicts without a transaction,
albeit at the cost of eventual consistency for reads. We

216 13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

1 11 @recursive upquery hits
X7 C SN —F5]7
@ k|y]|2 5 y|2
recursive 1
upquery | {
misses, (2 sum }— 1
recurses k| L H 9
1 kI' 9
Dread /
misses (@ upquery response
---->k L kK|S fills missing record

Figure 4: A partially-stateful view sends a recursive up-
query to derive evicted state (L) for key k from upstream
state (I); the response fills the missing state (II).

omit further discussion of transactions with Noria in this
paper; we plan to describe them in future work.

3.5 Challenges

An efficient Noria design faces two key challenges: first,
it must limit the size of its state and views (§4); and sec-
ond, changes to the Noria program must adapt the data-
flow without downtime in serving clients (§5).

4 Partially-stateful data-flow

Noria must limit the size of its views, as the state for
an application with many queries could exceed available
memory and become too expensive to maintain.

The partially-stateful data-flow model lets operators
maintain only a subset of their state. This concept of par-
tial materialization is well-known for materialized views
in databases [79, 80], but novel to data-flow systems. Par-
tial state reduces memory use, allows eviction of rarely-
used state, and relieves operators from maintaining state
that is never read. Partially-stateful data-flow generalizes
beyond Noria, but we highlight specific design choices
that help Noria achieve its goals.

Partial state introduces new data-flow messages to No-
ria. Eviction notices flow forward along the update data-
flow path; they indicate that some state entries will no
longer be updated. Operators drop updates that would
affect these evicted state entries without further pro-
cessing or forwarding. When Noria needs to read from
evicted state—for instance, when the application reads
state evicted from an external view—Noria re-computes
that state. This process sends recursive upqueries to the
relevant ancestors in the graph (Figure 4). An ancestor
that handles such an upquery computes the desired value
(possibly after sending its own upqueries), then forwards
a response that follows the data-flow path to the query-
ing operator. When the upquery response eventually ar-
rives, Noria uses it to populate the evicted entry. After the
evicted entry has been filled, subsequent updates through
the data-flow keep it up-to-date until it is evicted again.

For correctness, upqueries must produce eventually-
consistent results. For performance, Noria should con-
tinue to process updates—including updates to the wait-

stories votes

id |author| text user | story id
o] W [a w | o T, = {[wl1].[w]1]}
1| ul b ul 1
u3 1 VoteCount
mml story_id[vcount
D3 J0IN (X count}— ? J1' e

id:story_id
StoriesWithvC

= 111
story _id |author| text | vcount SE { }
0 L =
1 |w | o] 2 D, ={[JutTe]2]}

Figure 5: Definitions for partial state entry e (yellow)
in VoteCount: an in-flight update from votes (blue) is
in 7,, but not yet in S.; the entry in StoriesWithVC is
key-descendant from e via story_id (green).

ing operator—while (possibly slow) upqueries are in
flight. These requirements complicate the design.

4.1 Data-flow model and invariants

We first describe high-level correctness invariants of No-
ria’s partially-stateful data-flow. These invariants ensure
that Noria remains eventually-consistent and never re-
turns results contaminated by duplicate, missing, or spu-
rious updates. Since Noria allows operators to execute in
parallel to take advantage of multicore processors, these
invariants must hold in the presence of concurrent up-
dates and eviction notices. The invariants concern state
entries, where a state entry models one record in one op-
erator or view. Data-flow implementations derive state
entry values from input records, possibly after multi-
ple steps. For ease of expression, we model a state en-
try as the multiset of input records that produced that
entry’s value. Noria’s eventual consistency requires that
each state entry’s contents approach the ideal set of input
records that would produce the most up-to-date value.

Given some state entry e, we define:

* T, is the set of all input records received so far that, in
a correct implementation of the data-flow graph, would
be used to compute e.

* S, is either the multiset of input records actually used
to compute in e, or L, which represents an evicted entry.
We use a multiset so the model can represent potential
bugs such as duplicate updates.

e D, is the set of key-descendant entries of e. These

are entries of operators downstream of e in the data-flow
that depend on e through key lookup.
T, and S, are time-dependent, whereas the dependencies
represented in D, can be determined from the data-flow
graph. If e is the VoteCount entry for some story in
Figure 5, then 7, contains all input votes ever received
for that story; S, contains the updates represented in its
vcount; and D, includes its StoriesWithVC entry.

Correctness of partially-stateful data-flow relies on en-
suring these invariants:

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation 217

1. Update completeness: if S, # L, then either all up-
dates in T, — S, are in flight toward e, or an eviction
notice for e is in flight toward e.

2. No spurious or duplicate updates: S, C T,.

3. Descendant eviction: if S, = L, then forall d € D,,
either S; = L, or an eviction notice for d is in flight
toward d’s operator.

4. Eventual consistency: if 7, stops growing, then
eventually either S, =T, or S, = L.

We now explain the mechanisms that Noria uses to real-
ize this data-flow model and maintain the invariants.

4.2 Update ordering

Noria uses update ordering to ensure eventual consis-
tency without global data-flow coordination. Each oper-
ator totally orders all updates and upquery requests it re-
ceives for an entry; and, critically, the downstream data-
flow ensures that all updates and upquery responses from
that entry are processed by all consumers in that order.
Thus, if the operator orders update u; before u,, then
every downstream consumer likewise processes updates
derived from u; before those derived from u,. Noria data-
flows can split and merge (e.g., at joins), but update or-
dering and operator commutativity ensure that the even-
tual result is correct independent of processing order.

4.3 Join upqueries

Join operators use upqueries (§3.3): when an update ar-
rives at one input, the join upqueries its other input for the
corresponding records, and combines them with the up-
date. Join upqueries reach the next upstream stateful op-
erator, which computes a snapshot of the requested state
entry and forwards it along the data-flow to the querying
join. Intermediate operators process the response as ap-
propriate. Unlike normal updates, upquery responses fol-
low the single path back to the querying operator without
forking. Upquery responses also commute neither with
each other nor with previous updates. This introduces a
problem for join update processing, since every such up-
date requires an upquery that produces non-commutative
results, yet must produce an update that does commute.
Noria achieves this by ensuring that no updates are
in flight between the upstream stateful operator and the
join when a join upquery occurs. To do so, Noria lim-
its the scope of each join upquery to an operator chain
processed by a single thread. Noria executes updates on
other operator chains in parallel with join upqueries.
This introduces a trade-off between parallelism and
state duplication: join processing must stay within a sin-
gle operator chain, so copies of upstream state may be
required in each operator chain that contains a join.

4.4 Eviction and recursive upqueries

Evicted state introduces new challenges for Noria’s data-
flow. If the application requests evicted state, Noria must

use recursive upqueries to fill it in. Moreover, operators
now encounter evicted state when they handle updates.
These factors influence the Noria design in several ways.

First and simplest, Noria operators drop updates that
encounter evicted entries. This reduces the time spent
processing updates downstream, but necessitates the de-
scendant eviction invariant: operators downstream of an
evicted entry never see updates for that entry, so they
must evict their own dependent entries lest they remain
permanently out of date.

Second, recursive upqueries now occasionally cascade
up in the data-flow until they encounter the necessary
state—in the worst case, up to base tables. Responses
then flow forward to the querying operator. Upquery re-
sults are snapshots of operator state, and do not com-
mute with updates. For unbranched chains, update order-
ing (§4.2) and the fact that updates to evicted state are
dropped ensure that the requested upquery response is
processed before any update for the evicted state.

Recursive upqueries of branching subgraphs, such as
joins, are more complex. A join operator must emit a sin-
gle correct response for each upquery it receives, even if
it must make one or more recursive upqueries of its own
to produce the needed state. Combining the upqueries’
results directly would be incorrect: those upqueries exe-
cute independently, and updates can arrive between their
responses. Joins thus issue recursive upqueries, but com-
pute the final result exclusively with join upqueries once
the recursive upqueries complete (multiple rounds of re-
cursive upqueries may be required). These join upqueries
execute within a single operator chain and exclude con-
current updates. Noria supports other branching opera-
tors, such as unions, which obey the same rules as joins.

Finally, a join upquery performed during update pro-
cessing may encounter evicted state. In this case, No-
ria chooses to drop the update and evict dependent en-
tries downstream; Noria statically analyzes the graph to
compute the required eviction notices. There is a trade-
off here: computing the missing entry could avoid future
upqueries. Noria chooses to evict to avoid blocking the
write path while filling in the missing state.

Such evictions are rare, but they can occur.
For example, imagine a version of Figure 2 that
adds AuthorVotes, which aggregates VoteCount by
stories.author, and the following system state:

* stories[id=1] has author=Elena.

* VoteCount[story_id=1] has vcount=8.

* AuthorVotes[author=Elena] has vcount=8.

e stories[id=2] has author=Bob.

e VoteCount[story_id=2] is evicted.

Now imagine that an update changes story 2’s au-
thor to Elena. When this update arrives at the join
for AuthorVotes, that join operator upqueries for
VoteCount [story_id=2], which is evicted. As a result,

218 13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Noria sends an eviction notice for Elena—whose number
of votes has changed—to AuthorVotes.

4.5 Partial and full state

Noria makes state partial whenever it can service up-
queries using efficient index lookups. If Noria would
have to scan the full state of an upstream operator to sat-
isfy upqueries, Noria disables partial state for that oper-
ator. This may happen because every downstream record
depends on all upstream ones—consider e.g., the top 20
stories by vote count. In addition, the descendant evic-
tion invariant implies that partial-state operators cannot
have full-state descendants.

Partial-state operators in Noria start out fully evicted
and are gradually and lazily populated by upqueries. As
we show next, this choice has important consequences
for Noria’s ability to transition the data-flow efficiently.

5 Dynamic data-flow

Application queries evolve over time, so Noria’s dy-
namic data-flow represents a continuously-changing set
of SQL expressions. Existing data-flow systems run sep-
arate data-flows for each expression, initialize new op-
erators with empty state and reflect only new writes, or
require restarting from a checkpoint. Changes to the No-
ria program instead adapt the data-flow dynamically.

Given new or removed expressions, Noria transitions
the data-flow to reflect the changes. Noria first plans the
transition, reusing operators and state of existing expres-
sions where possible (§5.1). It then incrementally applies
these changes to the data-flow, taking care to maintain its
correctness invariants (§5.2). Once both steps complete,
the application can use new tables and queries.

The key challenges for transitions are to avoid unnec-
essary state duplication and to continue processing reads
and writes throughout. Operator reuse and partial state
help Noria address these challenges.

5.1 Determining data-flow changes

To initiate a transition, the application provides Noria
with sets of added and removed expressions. Noria then
computes required changes to the currently-running data-
flow. This process resembles traditional database query
planning, but produces a long-term joint data-flow across
all expressions in the Noria program. This allows Noria
to reuse existing operators for efficiency: if two queries
include the same join, the data-flow contains it only once.

To plan a transition, Noria first translates each new ex-
pression into an extended query graph [21]. The query
graph contains a node for each table or view in the ex-
pression, and an edge for every join or group-by clause.
Noria uses query graphs to inexpensively reject many ex-
pressions from consideration [21, §3.4, 78, §3] and to
quickly establish a set of sharing candidates for each

new expression. The sharing candidates are existing ex-
pressions that likely overlap with the new expression.
Next, Noria generates a verbose intermediate represen-
tation (IR), which splits the new expression into more
fine-grained operators. This simplifies common subex-
pression detection, and allows Noria to efficiently merge
the new IR with the cached IR of the sharing candidates.

For each sharing candidate, Noria reorders joins in the
new IR to match the candidate when possible to max-
imize re-use opportunities. It then traverses the candi-
date’s IR in topological order from the base tables. For
each operator, Noria searches for a matching operator (or
clique of operators) in the new IR. A match represents a
reusable subexpression, and Noria splices the two IRs to-
gether at the deepest matches.

This process continues until Noria has considered all
identified reuse candidates, producing a final, merged IR.

5.2 Data-flow transition

The combined final IRs of all current expressions rep-
resent the transition’s farget data-flow. Noria must add
any operator in the final IR that does not already exist in
the data-flow. To do so, Noria first informs existing op-
erators of index obligations (§3.3) incurred by new op-
erators that they must construct indexes for. Noria then
walks the target data-flow in topological order and inserts
each new operator into the running data-flow and boot-
straps its state. Finally, after installing new operators and
deleting removed queries’ external views, Noria removes
obsolete operators and state from the data-flow.

Bootstrapping operator state. When Noria adds a
new stateful operator, it must ensure that the operator
starts with the correct state. Partially-stateful operators
and views start processing immediately. They are ini-
tially empty and bootstrap via upqueries in response to
application reads during normal operation, amortizing
the bootstrapping work over time. Fully-stateful opera-
tors are initially marked as “inactive”, which causes them
to ignore all incoming updates. Noria then executes a
special, large upquery for all keys on behalf of the fully-
stateful operator. Once the last upquery response has ar-
rived, Noria activates the operator for update processing
and moves on to the next new operator.

Base table changes. As applications evolve, develop-
ers often add or remove base table columns [17]. This
affects existing operators in the data-flow: new updates
from the base table may now lack values that existing op-
erators expect. Noria could rebuild the data-flow or trans-
form the existing base table state to effect such a change,
but this would be inefficient for large base tables. Instead,
Noria base tables internally track all columns that have
existed in the table’s schema, including those that have
been deleted. When a base table processes an application
write, it automatically injects default values for missing

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation 219

columns (but does not store them). This permits queries
for different base table schemas to coexist in the data-
flow graph, and makes most base table changes cheap.

6 Implementation

Our Noria prototype implementation consists of 45k
lines of Rust and can operate both on a single server and
across a cluster of servers. Applications interface with
Noria either through native Rust bindings, using JSON
over HTTP, or through a MySQL protocol adapter.

6.1 Persistent data storage

Noria persists base tables in RocksDB [66], a high-
performance key-value store based on log-structured
merge (LSM) trees. Batches of application updates are
synchronously flushed into RocksDB’s log before No-
ria acknowledges them and admits them into the data-
flow; a background thread asynchronously merges log
entries into the LSM trees. Each base table index forms
a RocksDB “column family”. For base tables with non-
unique indexes, Noria uses RocksDB’s ordered iterators
to efficiently retrieve all rows for an index key [14, 67].
Persistence reduces Noria’s write throughput by about
5% over in-memory base tables. Reads are not greatly
impacted when an application’s working set fits in mem-
ory: only occasional upqueries access RocksDB, and
these add < 1ms of additional latency on a fast SSD.

6.2 Parallel processing

Noria shards the data-flow and allows concurrent reads
and writes with minimal synchronization for parallelism.

Sharding. Noria processes updates in parallel on a
cluster by hash-partitioning each operator on a key and
assigning shards to different servers. Each machine runs
a Noria instance, a process that contains a complete copy
of the data-flow graph, but holds state only for its shards
of each operator. When an operator with one hash parti-
tioning links to an operator with a different partitioning,
Noria inserts “shuffle” operators that perform inter-shard
transfers over TCP connections. Upqueries across shuf-
fle operators are expensive since they must contact all
ancestor shards. This limits scalability, but allows opera-
tors below a shuffle to maintain partial state.

Multicore parallelism. Noria achieves multicore par-
allelism within each server in two ways: a server can
handle multiple shards by running multiple Noria in-
stances, and each instance runs multiple threads to pro-
cess its shard. Each instance has two thread pools: data-
Sflow workers process updates within the data-flow graph,
and read handlers handle reads from external views.

At most one data-flow worker executes updates for
each data-flow operator at a time. This arrangement
yields CPU parallelism among different operators, and
also allows lock-free processing within each operator.

There are typically fewer data-flow workers than oper-
ators in the data-flow graph, so Noria multiplexes opera-
tor work across the worker threads. Within one instance,
Noria schedules chains of operators with the same key as
a unit. This reduces queueing and inter-core data move-
ment at operator boundaries. It also allows Noria to op-
timize some upqueries: an upquery within a chain can
simply access the ancestor’s data synchronously, without
worry of contamination from in-flight updates (§4.3).

Read handlers process clients’ RPCs to read from ex-
ternal views. They must access the view with low latency
and high concurrency, even while a data-flow worker is
applying updates to the view. To minimize synchroniza-
tion, Noria uses double-buffered hash tables for external
views [27]: the data-flow worker updates one table while
read handlers read the other, and an atomic pointer swap
exposes new writes. This trades space and timeliness for
performance: with skewed key popularity distributions,
it can improve read throughput by 10x over a single-
buffered hash table with bucket-level locks.

6.3 Distributed operation

A Noria controller process manages distributed in-
stances on a cluster of servers, and informs them of
changes to the data-flow graph and of shard assign-
ments. Noria elects the controller and persists its state
via ZooKeeper [34]. Clients discover the controller via
ZooKeeper, and obtain long-lived read and write handles
to send requests directly to instances.

Noria handles failures by rebuilding the data-flow. If
the controller fails, Noria elects a new controller that re-
stores the data-flow graph. It then streams the persistent
base table data from RocksDB to rebuild fully-stateful
operators and views. Partial operators are instead pop-
ulated through on-demand upqueries. If individual in-
stances fail, Noria rebuilds only the affected operators.

6.4 MySQL adapter

Our prototype includes an implementation of the
MySQL binary protocol in a dedicated stateless adapter
that appears as a standard MySQL server to the applica-
tion. This adapter allows developers to easily run existing
applications on Noria. The adapter transparently trans-
lates prepared statements and ad-hoc queries into transi-
tions on Noria’s data-flow, and applies reads and writes
using Noria’s API behind the scenes. Its SQL support is
sufficiently complete to run some unmodified web appli-
cations (e.g., JConf [74] written in Django [22]), and to
run Lobsters with minimal syntax adaptation.

6.5 Limitations

Our current prototype has some limitations that we plan
to address in future work; none of them are fundamental.
First, it only shards by hash partitioning on a single col-
umn, and resharding requires sending updates through

220 13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

a single instance, which limits scalability. Second, it
re-computes data-flow state on failure; recovering from
snapshots or data-flow replicas would be more efficient
(e.g., using selective rollback [35]). And third, it does not
currently support range indices or multi-column joins.

7 Applications

This section discusses our experiences with developing
Noria applications. Noria aims to simplify the develop-
ment of high-performance web applications; several as-
pects of our implementation help it achieve that goal.

First, applications written for a MySQL database can
use Noria directly via its MySQL adapter, provided
they generate parameterized SQL queries (for instance,
via libraries like PHP Data Objects [69] or Python’s
MySQL connector [55, §10.6.8]). Porting typically pro-
ceeds in three steps. First, the developer points the appli-
cation at the Noria MySQL adapter instead of a MySQL
server and imports existing data into Noria from database
dumps. The application will immediately see perfor-
mance improvements for read queries that formerly ran
substantial in-line compute. Though the MySQL adapter
even supports ad-hoc read queries (it transitions the
data-flow as required to support each query), the most
benefit will be seen for frequently-reused queries. Sec-
ond, the developer creates views for computations that
the MySQL application manually materialized, such as
the per-story vote count in Lobsters. These views co-
exist with the manual materializations, and allow exist-
ing queries to continue to work as the developer updates
the write path so that it no longer manually updates de-
rived views and caches. Third, the developer incremen-
tally rewrites their application to rely on natural views
and remove manual write optimizations. These changes
gradually increase application performance as the devel-
oper removes now-unnecessary complexity from the ap-
plication’s read and write paths.

The porting process is not burdensome. We ported
a PHP web application for college room ballots—
developed by one of the authors and used production
for a decade—to Noria; the process took two evenings,
and required changes to four queries. We also used
the MySQL adapter to port the Lobsters application’s
queries to Noria; the result is a focus of our evaluation.

Developing native Noria applications can be even eas-
ier. We developed a simple web application to show the
results of our continuous integration (CI) tests for No-
ria. The CI system stores its results in Noria, and the
web application displays performance results and aggre-
gate statistics. Since we developed directly for Noria, we
were not tempted to cache intermediate results or ap-
ply other manual optimizations, and could use aggrega-
tions and joins in queries without fear that performance
would suffer as a result (e.g., due to aggregations over the

long commit history). Most application updates reduced
to single-table inserts, deletes, or updates.

Limitations. Though applications traditionally use
parameterized queries to avoid SQL injection attacks
and cache query plans, Noria parameterized queries also
build materialized views. An application with many dis-
tinct parameterized queries can thus end up with more
views than necessary. The developer can correct this by
adding shared views. Our prototype does not yet support
update and delete operations conditioned on non-primary
key columns, and lacks support for parameterized range
queries (e.g., age > ?), which some applications need.
Planned support for range indexes and an extended base
table implementation will address these limitations.

8 [Evaluation

We evaluated our Noria prototype using backend work-
loads generated from the production Lobsters web appli-
cation, as well as using individual queries. Our experi-
ments seek to answer the following questions:

1. What performance gains does Noria deliver for a
typical database-backed web application? (§8.1)

2. How does Noria perform compared to a
MySQL/memcached stack, the materialized
views of a commercial database, and an idealized
cache-only deployment? (§8.2)

3. Given a scalable workload, how does our prototype
utilize multiple servers, and how does it compare to
a state-of-the-art data-flow system? (§8.3)

4. What space overhead does Noria’s data-flow state
impose, and how does Noria perform with limited
memory and partial state? (§8.4)

5. Can Noria data-flows adapt to new queries and input
schema changes without downtime? (§8.5)

Setup. In all experiments, Noria and other storage
backends run on an Amazon EC2 c5.4xlarge instance
with 16 vCPUs; clients run on separate c5.4xlarge in-
stances unless stated otherwise. Our setup is “partially
open-loop”: clients generate load according to a Poisson
distribution of interarrival-times and have a limited num-
ber of backend requests outstanding, queueing additional
requests. This ensures that clients maintain the measure-
ment frequency even during periods of high latency [45].
Our test harness measures offered request throughput and
“sojourn time” [62], which is the delay from request gen-
eration until a response returns from the backend.

8.1 Application performance: Lobsters

We first evaluate Noria’s performance on a realistic web
application workload to answer two questions:
1. Do Noria’s fast reads help it outperform a conven-
tional database on a real application workload, even
on a hand-optimized application?

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation 221

=A— MariaDB, baseline qu. =—©=— Noria, baseline qu. == Noria, natural qu.
T T T

100

Latency [ms]

Offered load [page views/sec]

Figure 6: Noria scales Lobsters to a 5x higher load
than MariaDB (2.3 x with baseline queries) at sub-100ms
95%ile latency (dashed: median). MariaDB is limited by
read computation, while Noria becomes write-bound.

2. Can Noria preserve good performance for an appli-
cation without hand optimization?

Our workload models production Lobsters traffic. The
benchmark emulates authenticated Lobsters users vis-
iting different pages according to the access frequen-
cies and popularity distributions in the production work-
load [32]. Lobsters is a Ruby-on-Rails application, but
our benchmark generates database operations directly in
order to eliminate Rails overhead. We seed the database
with 9.2k users, 40k stories and 120k comments—the
size of the real Lobsters deployment—and run increasing
request loads to push the different setups to their limits.

The baseline queries include the Lobsters developers’
optimizations, which manually materialize and maintain
aggregate values like vote counts to reduce read-side
work. We also developed “natural” queries that produce
the same results using Noria data-flow to compute ag-
gregations rather than manual optimizations. We com-
pare MariaDB (a community-developed MySQL fork;
v10.1.34) with Noria using baseline queries, and then
to Noria using natural queries (both via Noria’s MySQL
adapter). We configured MariaDB to use a thread pool,
to avoid flushing to disk after transactions, and to store
the database on a ramdisk to remove overheads unrelated
to query execution. With the baseline queries, the median
page view executes 11 queries; this reduces to eight with
natural queries. This experiment uses an m5.24xlarge
EC2 instance for the CPU-intensive clients.

Figure 6 shows the results as throughput-latency
curves. An ideal system would show as a horizontal line
with low latency; in reality, each setup hits a “hockey
stick” once it fails to keep up with the offered load.
MariaDB scales to 1,000 pages/second, after which it
saturates all 16 CPU cores with read-side computation
(e.g., for per-page notification counts [33]). Noria run-
ning the same baseline queries scales to a 2.3 x higher
offered load, since its incremental write-side processing
avoids redundant re-computation on reads.

The baseline queries manually pre-compute aggre-
gates. MariaDB requires this for performance: without
the pre-computation, it supports just 20 pages/sec. Noria
instead maintains pre-computed aggregates in its data-
flow. This allows us to include the aggregations directly
in the queries, which normalizes the base table schema,
reduces write load, and avoids bugs due to missed up-
dates to pre-computed values. With all aggregate compu-
tation moved into Noria’s data-flow (“natural queries”),
throughput scales higher still, to 5,000 pages/second (5 x
MariaDB). Eliminating application pre-computation re-
duces overall write load and compacts the data-flow,
which lets Noria parallelize it more effectively.

The result is that Noria achieves both good perfor-
mance and natural, robust queries. We observed similar
benefits with other applications (e.g., a synthetic TPC-
W-like workload), which we omit for space.

8.2 In-depth performance comparison

We compare to alternative systems using a subset of
Lobsters. This restriction gives us better control over
workload properties, while capturing the aspects of web
workloads that motivated the Noria design. We use one
kind of write, inserting a vote, and one read query,
StoriesWithVC from Figure 2. This read query fetches
stories and their vote counts; 85% of page views in pro-
duction Lobsters are for pages that execute this query.

We compare five single-server deployments that all
have access to the same resources, but differ in how they
store and calculate the per-story vote count. MariaDB
uses the baseline Lobsters approach of pre-computing
and storing vote counts in a column of the Lob-
sters stories table. System Z, a commercial database
with materialized view support, uses an incrementally-
maintained materialized view defined similarly to
StoriesWithVC; we use System Z to compare database
view maintenance with Noria’s data-flow-based ap-
proach. MariaDB and System Z run at the fastest transac-
tional isolation level (“read uncommitted’) and are con-
figured to keep data in memory. MariaDB+memcached
adds a demand-filled memcached (v1.5.6) cache [54]
to MariaDB that caches StoryWithVC entries. This re-
duces read load on MariaDB, but complicates applica-
tion code even beyond pre-computation: writes must in-
validate the cache and reads must sometimes populate it.
We also measure memcached-only without a relational
backend. This setup offers good performance, but is un-
realistic: it does not store individual votes or stories, is
not persistent, and cannot prevent double-voting. It helps
us estimate how a backend that serves all reads from
memory and does minimal work for writes might per-
form. Finally, we measure Noria sharded four ways on
stories.id, with the remaining 12 cores serving reads.

222 13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

—_
ol
(=}

MariaDB (hand-opt.)
System Z

MariaDB+memcached
memcached-only
Noria (4 shards)

95%-ile latency [ms]
N
S

=]

T
0 2M 4M 6M 8M 10M
Offered load [requests/sec]

T
12M 14M

(a) Read-heavy workload (95%/5%): Noria outperforms all
other systems (all but memcached at 100-200k requests/sec).

—_
ol
(=}

MariaDB (hand-opt.)

—+— System Z
MariaDB+memcached
memcached-only

—HE— Noria (4 shards)

95%-ile latency [ms]
N
S

=]

T T T T T

2M 4M 6M 8M 10M
Offered load [requests/sec]

T
12M 14M

=]

(b) Mixed read-write workload (50%/50%): Noria outperforms
all systems but memcached (others are at 20k requests/sec).

Figure 7: A Lobsters subset (Figure 2) benchmarked on Noria hand-optimized MariaDB, System Z’s materialized
views, a MariaDB/memcached setup, and on memcached only, all with Zipf-distributed (s = 1.08) reads and votes.

g 100 + —A— MariaDB (hand-opt.)
E‘ —+— System Z
s MariaDB+memcached
E‘; 50 - memcached-only
= —HE— Noria (4 shards)
o
2
0 = T T T T T

T T
0 2M 4M 6M 8M 10M 12M 14M

Offered load [requests/sec]

Figure 8: For a uniformly-distributed, read-heavy
(95%/5%) workload on Figure 2, Noria performs simi-
larly to the (unrealistic) memcached-only setup.

Noria uses natural queries; other systems except System
Z manually pre-compute vote counts.

Clients read and insert votes for randomly-chosen sto-
ries; we measure the 95th-percentile latency for each of-
fered load. Before measurement begins, we populate the
stories table with 500k records and perform 40 sec-
onds of warmup using the same workload as the bench-
mark itself. Absolute throughput is higher in these ex-
periments because the data-flow only contains a single
query and clients batch reads and writes for up to Ims.

Figure 7 shows results for a skewed workload simi-
lar to Lobsters’, with story popularity following a Zip-
fian distribution (s = 1.08). With 95% reads, Noria
outperforms all other systems, including the unrealis-
tic cache-only deployment (Figure 7a). Most updates
write votes for popular stories, which creates write
contention problems in MariaDB and System Z. The
MariaDB+memcached setup performs equally poorly:
on memcached invalidations for popular keys, multiple
clients miss and a “thundering herd” of clients simulta-
neously issues database queries [54, §3.2.1]. memcached
on its own scales, but Noria outperforms it (despite do-
ing more work) since Noria’s lockless views avoid con-
tention for popular keys. Noria scales to 14M request-

s/second with four shards. Noria also handles a write-
heavy workload (50% writes) well (Figure 7b): although
absolute performance has dropped, Noria still outper-
forms all other systems apart from the cache-only setup.
This is because sharding allows data-parallel write pro-
cessing, which helps Noria scale to 2M requests/second.

With a (less-realistic) uniform workload, other
systems come closer to Noria’s SM requests/second
(Figure 8). System Z does better than before, but
suffers from slow writes to the materialized view.
MariaDB+memcached, perhaps surprisingly, performs
worse than MariaDB, which scales to 3M requests/sec-
ond: the reason lies in the extra work (and RPCs) the ap-
plication must perform for invalidations. This illustrates
that a look-aside cache only helps if it avoid expensive
queries; a write-through cache avoids invalidation over-
heads, but would still perform worse than the idealized
memcached-only setup (and thus, than Noria).

Separately, we evaluated Noria’s view maintenance
against DBToaster [2, 53], a state-of-the-art material-
ized view maintenance system that compiles view def-
initions to native code. DBToaster (v2.2.3387) lacks
support for persistent base tables, concurrent reads, or
multicore parallelism—its only read operation snap-
shots entire views—but it does provide fast updates
to materialized views. When we constrain Noria to
only one shard and data-flow worker thread, we expect
DBToaster to outperform it, since DBToaster’s generated
C++ code does close-to-minimal work to incrementally
maintain the vote count. We measure the write through-
put of 50M uniformly-distributed votes that update
StoriesWithVC for 500k stories. Noria achieves 240k
single-record writes/second for fully-populated state, and
1M writes/second for fully-evicted state. DBToaster only
supports fully-populated state, and achieves 520k single-
record writes/second. At the same time, Noria is more
memory-efficient, using 6.2 GB of memory for base ta-
bles and all derived state, 36% of DBToaster’s 17 GB.

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation 223

< 30M H
§ —&— Differential Dataflow
~
g —HB— Noria
= 20M +
=
=
s 10M ~
2
=
0 T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10
Number of machines

Figure 9: For a uniform 95%/5% workload, Noria scales
to ten machines with sub-100ms 95th %tile latency by
sharding the data-flow. Differential dataflow [44] scales
less well due to its inter-worker coordination.

Additionally, Noria can process shards in parallel and use
more machines to increase throughput.

8.3 Distribution over multiple servers

We next evaluate Noria’s support for distributed opera-
tion. Can Noria effectively use multiple machines’ re-
sources given a scalable workload?

We evaluate the 95%-read Lobsters subset from §8.2
with two million stories. We shard the data-flow on
stories.id and vary the number of machines from one
to ten, with each machine hosting four shards. For a de-
ployment with n Noria machines, we scale client load to
nx3M requests/second in a partially open-loop test har-
ness. This arrangement achieves close to Noria’s maxi-
mum load at sub-100ms 95th-percentile latency for two
million stories on one machine. Load generators select
stories uniformly at random, so the workload is perfectly
shardable. The ideal result is a straight diagonal, with n
machines achieving n times the throughput of a single
one. Figure 9 shows that Noria achieves this and serves
the full per-machine load at all points.

We also implemented this benchmark for a state-
of-the-art Differential Dataflow (DD) implementation
(v0.7) in Rust [44] based on Naiad and its earlier version
of DD [46, 51]. Since DD lacks a client-facing RPC in-
terface, we co-locate DD clients with workers; this does
not disadvantage DD since load generation is cheap com-
pared to RPC processing. DD uses 12 worker threads and
four network threads per machine.

Figure 9 shows that Noria is competitive with DD on
this benchmark. On one and two machines, DD supports
a slightly higher per-machine load (3.5M requests/sec-
ond vs. Noria’s 3M) within our 95th-percentile latency
budget of 100ms. Beyond four machines, however, DD
fails to meet Noria’s maximum per-machine load. Its
supported throughput tails off to around 20M requests/-
sec at ten machines. This tail-off is due to DD’s progress-
tracking protocol, which coordinates between workers to
expose writes atomically, and which imposes increasing

overhead as the number of machines grows. DD amor-
tizes this coordination by increasing its batch size, and
consequently sees increased latency as throughput in-
creases. Noria avoids such coordination and scales well,
but offers only eventually-consistent reads.

8.4 State size

Noria relies on partial state to keep its memory footprint
low. How much of Noria’s state for Lobsters can be par-
tial, and how does Noria perform when it evicts from par-
tial state to meet a memory limit? We investigate these
questions using the full Lobsters application, first at Lob-
sters production scale, and then at 10x scale.

The Noria data-flow for the natural Lobsters queries
has 235 operators, of which 60 of are stateful. With par-
tial state disabled, i.e., forcing all data-flow operators
to keep full state, Noria needs 789 MB of in-memory
state (8 the base table size of 137 MB). With partial
state enabled, 35 of the stateful operators can use partial
state; the remaining 25 are part of unparameterized views
(e.g., all stories on the front page) whose state Noria can-
not make partial as they lack suitable keys. Together,
the non-partial state occupies 73 MB: Noria’s essential
memory requirement for Lobsters therefore amounts to
9% of total state (adding an overhead of 53% of base ta-
ble size). Noria can evict and re-compute the remaining
91% of state should it exceed a memory limit.

As for any cache, this memory limit should exceed
the application’s working set size to achieve low read
latency and avoid thrashing of evictions and upqueries.
For Lobsters, the working set size depends on the of-
fered load, as higher load means a wider range of sto-
ries are read. We determine it by varying Noria’s state
size limit (and hence, eviction frequency) and measur-
ing 95th-percentile read latency. With production-scale
Lobsters data, Noria’s working set contains 525 MB of
state (60% of total, 3.8 x base tables) at an offered load of
2,300 pages/second. However, with a few thousand users,
the production Lobsters deployment is small. Our bench-
mark further understates its size as we use synthetic story
and comment texts of a few bytes. Hence, we repeated
this experiment with the Lobsters data scaled up by 10x.
Noria meets sub-100ms 95th percentile latency at 2,300
pages/second if the memory limit exceeds the 2.6 GB
working set (38% of 7 GB total state; 3x base tables).

These results suggest that Noria imposes a reasonable
space overhead (around 3 x base table size) for Lobsters,
and that partial state is key to reducing the overhead.

8.5 Live data-flow adaptation

In a traditional database, query changes are easy and
instantaneous. Can Noria’s data-flow adaptation seam-
lessly transition to include new SQL expressions? The
goal is for the transition to complete quickly, for write

224 13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

I Total write throughput % fast reads from new view

™
(e}
(=}
~

o,

¥

1
b
1
1
E
4

i M

100%
I 1 1 1 0%

Throughput
(3]
S
S
~
e

(a) With partial materialization and reuse (Zipfian).

]

mnARmm

100%
1 1 0%

Throughput
[\
S
S
oSARN
r ,1’

(b) With partial materialization and reuse (uniform).

=)

= 200K At :

& 100K E E

= F : s 3 100%

= 1 1 I 1 0%
-15 0 30 60 90

Time after transition start [sec]

(¢) No reuse or partial materialization (Zipfian).

Figure 10: Reuse and partial state allow Noria to adapt
the live data-flow. Gray lines delimit start and end of the
transition (in (a) and (b), the transitions are almost in-
stantaneous); the green shaded area shows the fraction of
new view reads that require no upqueries. Reads from the
old view (not shown) proceed at full speed throughout.

performance to remain stable, for reads from existing
views to be unaffected, and for reads from newly-added
views to quickly achieve low latency.

We test this by adding a modified version of the
StoriesWithVC view to the Lobsters subset. This
new view, StoriesWithRatings, uses numeric rat-
ings stored in a ratings base table instead of votes.
It also reflects old votes scaled to a rating. We first
load an unsharded Noria with 2M stories and 30M
votes, then transition to the new program. Once the
transition finishes, clients perform ‘“rating reads” from
StoriesWithRatings and start writing to the new
ratings table. Throughout the experiment, clients
also read the StoriesWithVC view, and write to the
votes table. We expect post-transition throughput to
be reduced—the new data-flow graph is larger, with
more tables and deeper paths—although removing the
old view would increase throughput again. However, we
hope that throughput and latency do not suffer greatly
during the transition.

Figure 10a shows the transition with reuse and par-
tial materialization enabled. The transition completes im-
mediately: Noria creates the new operators and view as
empty, and populates them on demand in response to
reads. Due to the skewed read and write distributions,
upqueries for only a few popular keys suffice for No-

ria to serve the majority of rating reads without recur-
sive upqueries. Reuse is also crucial: without reusing
VoteCount, Noria must upquery rating reads by re-
computing from the base tables. This leads to slow up-
queries for popular stories, as the data-flow must re-
count their votes. With reuse enabled, pre-computed vote
counts satisfy the upqueries. The results also follow this
pattern for a uniform workload (Figure 10b). Initially,
most rating reads are slow, but fast reads increase as the
partial state populates; write throughput is reduced be-
cause data-flow updates contend with upquery responses.
Contention increases as more entries populate, since
fewer updates hit evicted state.

Figure 10c shows the same transition (with a Zip-
fian workload), but with partial materialization and
operator reuse disabled. Noria fully populates the
StoriesWithRatings view and all internal stateful
operators during the transition. It copies votes and
stories to bootstrap the rating aggregation state, and
then copies the resulting state again to initialize the
new external view. Each copy stops write processing
for several seconds, and Noria’s state transfer to the
new operators via the data-flow slows down concurrent
writes. When transition completes after 25 seconds, the
StoriesWithRatings view is fully materialized and all
rating reads are fast. This illustrates that partial state and
reuse are crucial for downtime-free data-flow transitions.

How often can Noria achieve a live transition in
practice? In a separate analysis of query and schema
changes in HotCRP and TPC-W, we found that Noria
live-transitioned for over 95% of program changes. Ex-
isting approaches are less flexible: System Z must rebuild
its materialized views on change; a memcached clus-
ter must be carefully transitioned [54, §4.3]; DBToaster
lacks support for query changes; and even relational
databases pause writes during some schema updates.

8.6 Discussion

We evaluated Lobsters both at production scale and at
10x scale, but many web applications are much larger
still. We believe that Noria can also support such appli-
cations. For applications with many queries, and conse-
quently a large data-flow, Noria can assign shards of only
some operators to each machine, sending cross-operator
traffic over the network. Similarly, Noria can shard large
base tables and operators with large state across ma-
chines. Efficient resharding and partitioning the data-
flow to minimize network transfers are important future
work for Noria to achieve truly large scale.

We also believe Noria is well suited for applications
whose working sets change over time. Many large, real-
world applications see such changing workloads; for in-
stance, an old story may suddenly become popular. As

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation 225

clients request such items, Noria’s upqueries bring them
into the working set, making subsequent reads fast.

9 Related work

Noria builds on considerable related work.

Data-flow systems excel at data-parallel comput-
ing [36, 51], including on streams, but cannot serve web
applications directly. They only achieve low-latency in-
cremental updates at the expense of windowed state (and
incomplete results) or by keeping full state in memory.
Noria’s partially-stateful data-flow lifts this restriction. A
few data-flow systems can reuse operators automatically:
for example, Nectar [28] detects similar subexpressions
in DryadLINQ programs, similar to Noria’s automated
operator reuse, using DryadLINQ-specific merge and
rewrite rules. Support for dynamic changes to a running
data-flow is more common: CIEL [52] dynamically ex-
tends batch-processing data-flows, as does Ray [58] for
stateful “actor” operators’ state transitions in reinforce-
ment learning applications. Noria dynamically changes
long-running, low-latency streaming computations by
modifying the data-flow; unlike existing streaming data-
flow systems like Naiad [51] or Spark Streaming [76], it
has no need for a restart or recovery from a checkpoint.

Stream processing systems [3, 11, 39, 71, 76] often
use data-flow, but usually have windowed state and static
queries that process only new records. STREAM [6]
identifies opportunities for operator reuse among static
queries; Noria achieves similar reuse for dynamic
queries. S-Store [47] lacks Noria’s partial materialization
and state reuse, but combines a classic database with a
stream processing system using trigger-based view main-
tenance. S-Store enables transactional processing, a fu-
ture goal for Noria.

Database materialized views [29, 41] were devised
to cache expensive analytical query results. Commercial
databases’ materialized view support [1] is limited [49,
63] and views must usually be rebuilt on change. How-
ever, there is considerable research on incremental view
maintenance in databases [30, 40, 41, 70, 77, 81]. No-
ria builds upon ideas from this work, but applies them
in the context of a concurrent, stateful data-flow system
for web applications. This requires efficient fine-grained
access to views, solutions to new coordination problems
and concurrency races, as well as inexpensive long-term
adaptation as view definitions change. DBToaster [2, 53]
supports incremental view maintenance under high write
loads with generated recursive delta query implemen-
tations. Noria sees lower single-threaded performance,
but supports parallel processing and changing queries;
adding native-code generation to Noria might further im-
prove its performance, but would complicate operator
reuse. Pequod [37] and DBProxy [4] support partial ma-
terialization in response to client demand, although Pe-

quod is limited to static queries, and unlike Noria, neither
shares state nor processing across queries.

The problem of detecting shared subexpressions
(§5.1) is a multi-query optimization (MQO) prob-
lem [21, 59, 78]. MQO tries to maximize sharing across
a batch of expressions, with the freedom to rewrite any
expression to suit the others. Like joint query process-
ing systems [10, 25, 31], Noria faces the more restricted
problem of mutating new expressions to increase their
opportunity to share existing expressions in the data-flow.

A wide array of tools deal with websites’ query and
schema transitions [9, 23, 26, 56, 65]. Like Noria,
they aim to transition backend stores without interrup-
tion in client service, but they require developers to
manually configure complex “ghost tables” or binlog-
following triggers. Base table schema changes increase
complexity further [73]. Noria handles query changes
transparently, and efficiently applies common base table
schema changes by supporting many concurrent base ta-
ble schemas. Most of its data-flow transitions are live for
reads and writes without added complexity.

Finally, some open-source systems have experi-
mented with flexible query and schema changes. Apache
Kafka [5] achieves some flexibility in query and schema
changes as used by the New York Times [68], and sim-
ilar ideas were proposed as an extension proposal for
Samza [38]. To our knowledge, however, no prior sys-
tem achieves the performance and flexibility of Noria.

10 Conclusions

Noria is a web application backend that delivers high
performance while allowing for simplified application
logic. Partially-stateful data-flow is essential to achiev-
ing this goal: it allows fast reads, restricts Noria’s mem-
ory footprint to state that is actually used, and enables
live changes to the data-flow. In future work, we plan
to add more flexible sharding, range indexes, and better
eviction strategies.
Noria is open-source software and available at:

https://pdos.csail.mit.edu/noria

Acknowledgements

We thank Joana da Trindade and Nikhil Benesch for
contributions to our implementation, as well as Frank
McSherry for assisting with implementation and tuning
of the differential dataflow benchmark. Jon Howell pro-
vided helpful feedback that much improved the paper,
as did Ionel Gog, Frank McSherry, David DeWitt, Sam
Madden, Amy Ousterhout, Tej Chajed, Anish Athalye,
and the PDOS and Database groups at MIT. We are also
grateful to the helpful comments we received from our
anonymous reviewers, as well as from Wyatt Lloyd, our
shepherd. This work was funded through NSF awards
CSR-1301934, CSR-1704172, and CSR-1704376.

226 13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R.
Narasayya. “Automated Selection of Materialized
Views and Indexes in SQL Databases”. In: Pro-
ceedings of the 26" International Conference on
Very Large Data Bases (VLDB). Cairo, Egypt,
Sept. 2000, pages 496-505.

Yanif Ahmad, Oliver Kennedy, Christoph Koch,
and Milos Nikolic. “DBToaster: Higher-order
Delta Processing for Dynamic, Frequently Fresh
Views”. In: Proceedings of the VLDB Endowment
5.10 (June 2012), pages 968-979.

Tyler Akidau, Alex Balikov, Kaya Bekiroglu,
Slava Chernyak, Josh Haberman, Reuven Lax,
Sam McVeety, Daniel Mills, Paul Nordstrom, and
Sam Whittle. “MillWheel: Fault-tolerant Stream
Processing at Internet Scale”. In: Proceedings
of the VLDB Endowment 6.11 (Aug. 2013),
pages 1033-1044.

Khalil Amiri, Sanghyun Park, Renu Tewari, and
Sriram Padmanabhan. “DBProxy: a dynamic data
cache for web applications”. In: Proceedings of
the 19" International Conference on Data Engi-
neering (ICDE). Mar. 2003, pages 821-831.

Apache Software Foundation. Apache Kafka: a
distributed streaming platform. URL: http://
kafka.apache.org/ (visited on 09/14/2017).

Arvind Arasu, Brian Babcock, Shivnath Babu,
John Cieslewicz, Mayur Datar, Keith Ito, Ra-
jeev Motwani, Utkarsh Srivastava, and Jennifer
Widom. “STREAM: The Stanford Data Stream
Management System”. In: Data Stream Man-
agement: Processing High-Speed Data Streams.
Edited by Minos Garofalakis, Johannes Gehrke,
and Rajeev Rastogi. Berlin/Heidelberg, Germany:
Springer, 2016, pages 317-336.

Doug Beaver, Sanjeev Kumar, Harry C. Li, Ja-
son Sobel, and Peter Vajgel. “Finding a Nee-
dle in Haystack: Facebook’s Photo Storage”. In:
Proceedings of the 9" USENIX Conference on
Operating Systems Design and Implementation
(OSDI). Vancouver, British Columbia, Canada,
Oct. 2010, pages 1-8.

Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Fer-
ris, Anthony Giardullo, Sachin Kulkarni, Harry
Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar,

[9]

[10]

(11]

[12]

[13]

(14]

[15]

Yee Jiun Song, and Venkat Venkataramani. “TAO:
Facebook’s Distributed Data Store for the Social
Graph”. In: Proceedings of the USENIX Annual
Technical Conference. San Jose, California, USA,
June 2013, pages 49-60.

Mark Callaghan. Online Schema Change for
MySQL. URL: https: //www . facebook. com/
note.php?note_id=430801045932 (visited on
02/01/2017).

George Candea, Neoklis Polyzotis, and Radek
Vingralek. “A Scalable, Predictable Join Opera-
tor for Highly Concurrent Data Warehouses”. In:
Proceedings of the VLDB Endowment 2.1 (Aug.
2009), pages 277-288.

Paris Carbone, Stephan Ewen, Seif Haridi, As-
terios Katsifodimos, Volker Markl, and Kostas
Tzoumas. “Apache Flink: Stream and batch pro-
cessing in a single engine”. In: IEEE Data Engi-
neering 38.4 (Dec. 2015).

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Mike Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert
E. Gruber. “Bigtable: A Distributed Storage Sys-
tem for Structured Data”. In: Proceedings of the
7" USENIX Symposium on Operating System De-
sign and Implementation (OSDI). Seattle, Wash-
ington, USA, Nov. 2006.

Guogiang Jerry Chen, Janet L. Wiener, Shrid-
har Iyer, Anshul Jaiswal, Ran Lei, Nikhil Simha,
Wei Wang, Kevin Wilfong, Tim Williamson, and
Serhat Yilmaz. “Realtime Data Processing at
Facebook™. In: Proceedings of the 2016 SIG-
MOD International Conference on Management
of Data. San Francisco, California, USA, 2016,
pages 1087-1098.

CockroachDB. Structured data encoding in Cock-
roachDB SQL. Jan. 2018. URL: https : / /
github . com / cockroachdb / cockroach /
blob/master/docs/tech-notes/encoding.
md (visited on 04/20/2018).

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh
Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. “PNUTS: Yahoo!’s Hosted
Data Serving Platform”. In: Proceedings of the
VLDB Endowment 1.2 (Aug. 2008), pages 1277—
1288.

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation

227

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, J. J. Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebas-
tian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David
Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,
Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. “Span-
ner: Google’s Globally Distributed Database”. In:
ACM Transactions on Computer Systems 31.3
(Aug. 2013), 8:1-8:22.

Carlo A. Curino, Letizia Tanca, Hyun J. Moon,
and Carlo Zaniolo. “Schema Evolution in
Wikipedia: toward a Web Information System
Benchmark™. In: Proceedings of the International
Conference on Enterprise Information Systems
(ICEIS). June 2008.

Databricks, Inc. Structured Streaming in Produc-
tion — Recover after changes in a streaming query.
URL: https : / / docs . databricks . com /
spark / latest / structured - streaming /
production . html # recover - after -
changes-in-a-streaming-query (visited on
09/06/2018).

Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash Lak-
shman, Alex Pilchin, Swaminathan Sivasubrama-
nian, Peter Vosshall, and Werner Vogels. “Dy-
namo: Amazon’s Highly Available Key-value
Store”. In: Proceedings of 21*' ACM SIGOPS
Symposium on Operating Systems Principles
(SOSP). Stevenson, Washington, USA, Oct. 2007,
pages 205-220.

Dror G. Feitelson, Eitan Frachtenberg, and Kent
L. Beck. “Development and Deployment at Face-
book”. In: IEEE Internet Computing 17.4 (July
2013), pages 8-17.

Sheldon Finkelstein. “Common Expression Anal-
ysis in Database Applications”. In: Proceedings
of the 1982 ACM SIGMOD International Confer-
ence on Management of Data. Orlando, Florida,
USA, June 1982, pages 235-245.

Django Software Foundation. Django: The Web
[framework for perfectionists with deadlines. Mar.
2018. URL: https : //www . djangoproject .
com/ (visited on 03/20/2018).

Matt Freels. TableMigrator. URL: https : / /
github. com/ freels/table_migrator (vis-
ited on 02/01/2017).

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. “The Google File System”. In: Pro-
ceedings of the 19" ACM Symposium on Operat-
ing Systems Principles (SOSP). Bolton Landing,
NY, USA, Oct. 2003, pages 29-43.

Georgios Giannikis, Gustavo Alonso, and Donald
Kossmann. “SharedDB: Killing One Thousand
Queries with One Stone”. In: Proceedings of the
VLDB Endowment 5.6 (Feb. 2012), pages 526—
537.

GitHub, Inc. gh-ost: GitHub’s online schema mi-
gration for MySQL. URL: https : //github .
com/github/gh-ost (visited on 02/01/2017).

Jon Gjengset. evmap: A lock-free, eventually con-
sistent, concurrent multi-value map. URL: https:
//github. com/jonhoo/rust-evmap (visited
on 09/13/2018).

Pradeep Kumar Gunda, Lenin Ravindranath,
Chandramohan A. Thekkath, Yuan Yu, and Li
Zhuang. “Nectar: Automatic Management of Data
and Computation in Datacenters”. In: Proceedings
of the 9" USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI). Vancou-
ver, British Columbia, Canada, 2010, pages 75—
88.

Himanshu Gupta and Inderpal Singh Mumick.
“Selection of views to materialize in a data ware-
house”. In: IEEE Transactions on Knowledge and
Data Engineering 17.1 (Jan. 2005), pages 24-43.

Himanshu Gupta and Inderpal Singh Mumick.
“Incremental Maintenance of Aggregate and Out-
erjoin Expressions”. In: Information Systems 31.6
(Sept. 2006), pages 435—464.

Stavros Harizopoulos, Vladislav Shkapenyuk, and
Anastassia Ailamaki. “QPipe: A Simultaneously
Pipelined Relational Query Engine”. In: Proceed-
ings of the 2005 ACM SIGMOD International
Conference on Management of Data. Baltimore,
Maryland, USA, June 2005, pages 383-394.

Peter Bhat Harkins. Lobste.rs access pattern
statistics for research purposes. Mar. 2018. URL:
https://lobste.rs/s/cqnzl5/lobste_
rs_access_pattern_statistics_for#c_
hjOrib (visited on 03/12/2018).

Peter Bhat Harkins. replying comments
view in Lobsters. Feb. 2018. URL: https :
//github.com/lobsters/lobsters/blob/

640f2cdcal®cc737aa627dbdf0bbe398b81b497f/

db / views / replying _ comments _v06 . sql
(visited on 04/20/2018).

228

13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Patrick Hunt, Mahadev Konar, Flavio Paiva Jun-
queira, and Benjamin Reed. “ZooKeeper: Wait-
free Coordination for Internet-scale Systems”. In:
Proceedings of the USENIX Annual Technical
Conference. Boston, Massachusetts, USA, June
2010, pages 149-158.

Michael Isard and Martin Abadi. “Falkirk Wheel:
Rollback Recovery for Dataflow Systems”. In:
CoRR abs/1503.08877 (2015).

Michael Isard, Mihai Budiu, Yuan Yu, Andrew
Birrell, and Dennis Fetterly. “Dryad: Distributed
Data-parallel Programs from Sequential Building
Blocks”. In: Proceedings of the 2" ACM SIGOPS
European Conference on Computer Systems (Eu-
roSys). Lisbon, Portugal, Mar. 2007, pages 59-72.

Bryan Kate, Eddie Kohler, Michael S. Kester,
Neha Narula, Yandong Mao, and Robert Morris.
“Easy Freshness with Pequod Cache Joins”. In:
Proceedings of the 11™ USENIX Symposium on
Networked Systems Design and Implementation
(NSDI). Seattle, Washington, USA, Apr. 2014,
pages 415-428.

Martin Kleppmann. Turning the database inside-
out with Apache Samza. Mar. 2015. URL: https:
//martin . kleppmann . com/2015/03/04/
turning - the-database-inside-out.html
(visited on 05/09/2016).

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu,
Vikas Kedigehalli, Christopher Kellogg, Sailesh
Mittal, Jignesh M. Patel, Karthik Ramasamy, and
Siddarth Taneja. “Twitter Heron: Stream Process-
ing at Scale”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Manage-
ment of Data. Melbourne, Victoria, Australia,
May 2015, pages 239-250.

Per-Ake Larson and Jingren Zhou. “Efficient
Maintenance of Materialized Outer-Join Views”.
In: Proceedings of the 23'¢ International Con-
ference on Data Engineering (ICDE). Apr. 2007,
pages 56-65.

Ki Yong Lee and Myoung Ho Kim. “Optimiz-
ing the Incremental Maintenance of Multiple Join
Views”. In: Proceedings of the 8" ACM Inter-
national Workshop on Data Warehousing and
OLAP (DOLAP). Bremen, Germany, Nov. 2005,
pages 107-113.

Lobsters Developers. Lobsters Database Schema
(schema.rb). Apr. 2018. URL: https : / /
github . com / lobsters / lobsters / blob /

93fe0£fdd74028c£678134d6d112ae084d8£dd928/

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

db / schema .
04/23/2018).

Lobsters Developers. Lobsters News Aggregator.
Mar. 2018. URL: https://lobste. rs (visited
on 03/02/2018).

Frank McSherry. Differential Dataflow in Rust.
URL: https : / / crates . io / crates /
differential - dataflow (visited on
01/15/2017).

Frank McSherry. Throughput and Latency in
Differential Dataflow: open-loop measurements.
Aug. 2017. URL: https : / / github . com /
frankmcsherry/blog/blob/master/posts/
2017 - 07 - 24 . md # addendum - open - loop -
measurements - 2017 - 08 - 14 (visited on
04/13/2018).

Frank McSherry, Derek G. Murray, Rebecca
Isaacs, and Michael Isard. “Differential dataflow”.
In: Proceedings of the 6™ Biennial Conference on
Innovative Data Systems Research (CIDR). Asilo-
mar, California, USA, Jan. 2013.

John Meehan, Nesime Tatbul, Stan Zdonik, Cansu
Aslantas, Ugur Cetintemel, Jiang Du, Tim Kraska,
Samuel Madden, David Maier, Andrew Pavlo,
Michael Stonebraker, Kristin Tufte, and Hao
Wang. “S-Store: Streaming Meets Transaction
Processing”. In: Proceedings of the VLDB Endow-
ment 8.13 (Sept. 2015), pages 2134-2145.

Jhonny Mertz and Ingrid Nunes. “Understand-
ing Application-Level Caching in Web Applica-
tions: A Comprehensive Introduction and Survey
of State-of-the-Art Approaches”. In: ACM Com-
puting Surveys 50.6 (Nov. 2017), 98:1-98:34.

Microsoft, Inc. Create Indexed Views — Additional
Requirements. SQL Server Documentation. URL:
https://docs.microsoft.com/en-us/sql/
relational - databases / views / create -
indexed-views#additional - requirements
(visited on 04/16/2017).

Subramanian Muralidhar, Wyatt Lloyd,
Sabyasachi Roy, Cory Hill, Ernest Lin, Wei-
wen Liu, Satadru Pan, Shiva Shankar, Viswanath
Sivakumar, Linpeng Tang, and Sanjeev Kumar.
“f4: Facebook’s Warm BLOB Storage System”.
In: Proceedings of the 11™ USENIX Conference
on Operating Systems Design and Implementation
(OSDI). Broomfield, Colorado, USA, Oct. 2014,
pages 383-398.

rb # L145 - L148 (visited on

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation

229

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Derek G. Murray, Frank McSherry, Rebecca
Isaacs, Michael Isard, Paul Barham, and Martin
Abadi. In: Proceedings of the 24™ ACM Sympo-
sium on Operating Systems Principles (SOSP).
Farmington, Pennsylvania, USA, Nov. 2013,
pages 439-455.

Derek G. Murray, Malte Schwarzkopf, Christo-
pher Smowton, Steven Smith, Anil Mad-
havapeddy, and Steven Hand. “CIEL: a universal
execution engine for distributed data-flow com-
puting”. In: Proceedings of the 8™ USENIX
Symposium on Networked System Design and
Implementation (NSDI). Boston, Massachusetts,
USA, Mar. 2011, pages 113-126.

Milos Nikolic, Mohammad Dashti, and Christoph
Koch. “How to Win a Hot Dog Eating Contest:
Distributed Incremental View Maintenance with
Batch Updates”. In: Proceedings of the 2016 ACM
SIGMOD International Conference on Manage-
ment of Data (SIGMOD). San Francisco, Califor-
nia, USA, 2016, pages 511-526.

Rajesh Nishtala, Hans Fugal, Steven Grimm,
Marc Kwiatkowski, Herman Lee, Harry C. Li,
Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, David Stafford, Tony Tung, and Venkatesh-
waran Venkataramani. “Scaling Memcache at
Facebook”. In: Proceedings of the 10" USENIX
Conference on Networked Systems Design and
Implementation (NSDI). Lombard, Illinois, USA,
Apr. 2013, pages 385-398.

Oracle Corp. MySQL Connector/Python Devel-
oper Guide. URL: https://dev.mysql.com/
doc / connector - python / en / connector -
python - api - mysglcursorprepared . html
(visited on 09/05/2018).

Percona LLC. pt-online-schema-change. URL:
https://www.percona.com/doc/percona-
toolkit/2.2/pt-online-schema-change.
html (visited on 02/01/2017).

Dan R. K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. “Transac-
tional Consistency and Automatic Management in
an Application Data Cache”. In: Proceedings of
the 9" USENIX Conference on Operating Systems
Design and Implementation (OSDI). Vancouver,
British Columbia, Canada, 2010, pages 279-292.

“Ray: A Distributed Framework for Emerging
Al Applications”. In: Proceedings of the 13"
USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI). Carlsbad, Cal-
ifornia, USA, Oct. 2018.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Prasan Roy, S. Seshadri, S. Sudarshan, and Sid-
dhesh Bhobe. “Efficient and Extensible Algo-
rithms for Multi Query Optimization”. In: Pro-
ceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data. Dal-
las, Texas, USA, May 2000, pages 249-260.

Kenneth Salem, Kevin Beyer, Bruce Lindsay, and
Roberta Cochrane. “How to Roll a Join: Asyn-
chronous Incremental View Maintenance”. In:
Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data. Dal-
las, Texas, USA, 2000, pages 129-140.

Tony Savor, Mitchell Douglas, Michael Gen-
tili, Laurie Williams, Kent Beck, and Michael
Stumm. “Continuous Deployment at Facebook
and OANDA”. In: Proceedings of the 38" In-
ternational Conference on Software Engineering
(ICSE). Austin, Texas, USA, 2016, pages 21-30.

Bianca Schroeder, Adam Wierman, and Mor
Harchol-Balter. “Open Versus Closed: A Caution-
ary Tale”. In: Proceedings of the 3" USENIX Con-
ference on Networked Systems Design and Im-
plementation (NSDI). San Jose, California, USA,
2006, pages 239-252.

Jes Schultz Borland. What You Can (and Can’t)
Do With Indexed Views. Brent Ozar Unlimited
Blog. URL: https://www . brentozar . com/
archive /2013 /11 /what - you- can - and -
cant -do-with- indexed- views/ (visited on
04/16/2017).

Ziv Scully and Adam Chlipala. “A Program
Optimization for Automatic Database Result
Caching”. In: Proceedings of the 44" ACM SIG-
PLAN Symposium on Principles of Program-
ming Languages (POPL). Paris, France, 2017,
pages 271-284.

SoundCloud Ltd. Large Hadron Migrator. URL:
https://github.com/soundcloud/lhm (vis-
ited on 02/01/2017).

Facebook Open Source. A persistent key-value
store for fast storage environments. Apr. 2018.
URL: http : / / rocksdb . org/ (visited on
04/20/2018).

Facebook Open Source. MyRocks data dictionary
format. Apr. 2018. URL: https://github.com/
facebook/mysql-5.6/wiki/MyRocks-data-
dictionary-format (visited on 04/20/2018).

Boerge Svingen. Publishing with Apache Kafka at
The New York Times. Confluent, Inc. blog. Sept.
2017. URL: https : / /www . confluent . io/
blog / publishing - apache - kafka - new -
york-times/ (visited on 09/14/2017).

230

13th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

[69]

[70]

[71]

[72]

[73]

[74]

[75]

The PHP Group. PHP Data Objects. URL: http:
//php .net/manual /en/book . pdo . php (vis-
ited on 09/05/2018).

Frank W. Tompa and Joseph A. Blakeley. “Main-
taining Materialized Views Without Accessing
Base Data”. In: Information Systems 13.4 (Oct.
1988), pages 393-406.

Ankit Toshniwal, Siddarth Taneja, Amit Shukla,
Karthik Ramasamy, Jignesh M. Patel, Sanjeev
Kulkarni, Jason Jackson, Krishna Gade, Maosong
Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal,
and Dmitriy Ryaboy. “Storm@ Twitter”. In: Pro-
ceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. Snowbird,
Utah, USA, June 2014, pages 147-156.

Werner Vogels. “Eventually Consistent”. In: Com-
munications of the ACM 52.1 (Jan. 2009),
pages 40—44.

Jacqueline Xu. Online migrations at scale. Stripe
engineering blog. URL: https : / / stripe .
com / blog / online - migrations (visited on
02/01/2017).

Jean Yang, Travis Hance, Thomas H. Austin,
Armando Solar-Lezama, Cormac Flanagan, and
Stephen Chong. “Precise, Dynamic Information
Flow for Database-backed Applications”. In: Pro-
ceedings of the 37" ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (PLDI). Santa Barbara, California,
USA, June 2016, pages 631-647.

Matei Zaharia, Mosharaf Chowdhury, Tathagata
Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Sto-
ica. “Resilient Distributed Datasets: A Fault-
tolerant Abstraction for In-memory Cluster Com-
puting”. In: Proceedings of the 9"" USENIX Con-
ference on Networked Systems Design and Im-

[76]

[77]

(78]

[79]

(80]

[81]

plementation (NSDI). San Jose, California, USA,
Apr. 2012, pages 15-28.

Matei Zaharia, Tathagata Das, Haoyuan Li, Tim-
othy Hunter, Scott Shenker, and Ion Stoica. “Dis-
cretized Streams: Fault-tolerant Streaming Com-
putation at Scale”. In: Proceedings of the 24™
ACM Symposium on Operating Systems Prin-
ciples (SOSP). Farmington, Pennsylvania, USA,
Nov. 2013, pages 423—438.

Jingren Zhou, Per-Ake Larson, and Hicham G.
Elmongui. “Lazy Maintenance of Materialized
Views”. In: Proceedings of the 33" International
Conference on Very Large Data Bases. Vienna,
Austria, Sept. 2007, pages 231-242.

Jingren Zhou, Per-Ake Larson, Johann-Christoph
Freytag, and Wolfgang Lehner. “Efficient Ex-
ploitation of Similar Subexpressions for Query
Processing”. In: Proceedings of the 2007 ACM
SIGMOD International Conference on Manage-
ment of Data (SIGMOD). Beijing, China, 2007,
pages 533-544.

Jingren Zhou, Per-Ake Larson, and Jonathan
Goldstein. Partially Materialized Views. Techni-
cal report MSR-TR-2005-77. Microsoft Research,
June 2005.

Jingren Zhou, Per-Ake Larson, Jonathan Gold-
stein, and Luping Ding. “Dynamic Materialized
Views”. In: Proceedings of the 23" International
Conference on Data Engineering (ICDE). Istan-
bul, Turkey, Apr. 2007, pages 526-535.

Yue Zhuge, Héctor Garcia-Molina, Joachim Ham-
mer, and Jennifer Widom. “View Maintenance in
a Warehousing Environment”. In: Proceedings of
the 1995 ACM SIGMOD International Confer-
ence on Management of Data. San Jose, Califor-
nia, USA, May 1995, pages 316-327.

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation

231

