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ABSTRACT
Recommender system is an important component of many web
services to help users locate items that match their interests. Sev-
eral studies showed that recommender systems are vulnerable to
poisoning a�acks, in which an a�acker injects fake data to a recom-
mender system such that the system makes recommendations as
the a�acker desires. However, these poisoning a�acks are either ag-
nostic to recommendation algorithms or optimized to recommender
systems (e.g., association-rule-based or matrix-factorization-based
recommender systems) that are not graph-based. Like association-
rule-based and matrix-factorization-based recommender systems,
graph-based recommender system is also deployed in practice, e.g.,
eBay, Huawei App Store (a big app store in China). However, how to
design optimized poisoning a�acks for graph-based recommender
systems is still an open problem.

In this work, we perform a systematic study on poisoning a�acks
to graph-based recommender systems. We consider an a�acker’s
goal is to promote a target item to be recommended to as many
users as possible. To achieve this goal, our a�acks inject fake users
with carefully cra�ed rating scores to the recommender system.
Due to limited resources and to avoid detection, we assume the
number of fake users that can be injected into the system is bounded.
�e key challenge is how to assign rating scores to the fake users
such that the target item is recommended to as many normal users
as possible. To address the challenge, we formulate the poisoning
a�acks as an optimization problem, solving which determines the
rating scores for the fake users. We also propose techniques to solve
the optimization problem. We evaluate our a�acks and compare
them with existing a�acks under white-box (recommendation algo-
rithm and its parameters are known), gray-box (recommendation
algorithm is known but its parameters are unknown), and black-
box (recommendation algorithm is unknown) se�ings using two
real-world datasets. Our results show that our a�ack is e�ective
and outperforms existing a�acks for graph-based recommender
systems. For instance, when 1% of users are injected fake users,
our a�ack can make a target item recommended to 580 times more
normal users in certain scenarios.
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1 INTRODUCTION
In the era of big data, a fundamental challenge is to locate the data
that are relevant to a particular user. Recommender systems aim to
address this challenge: given a user’s historical behavior and social
data, a recommender system �nds the data that match the user’s
preference. Indeed, recommender systems are widely deployed by
web services (e.g., YouTube, Amazon, and Google News) to recom-
mend users relevant items such as products, videos, and news. In
particular, collaborative �ltering based recommender systems, which
analyze the correlations between users’ historical behavior data
for making recommendations, are widely deployed due to their
e�ectiveness and generality. Depending on the techniques used to
capture the correlations between users’ behavior data, collaborative
�ltering based recommender systems can further include matrix-
factorization-based [17], association-rule-based [6, 22], and graph-
based [7] recommender systems. For instance, matrix-factorization-
based recommender systems are deployed by Net�ix to recommend
movies, association-rule-based recommender systems are deployed
by YouTube to recommend videos [6], and graph-based recom-
mender systems are deployed by eBay [25, 26] and Huawei App
Store (a big app store in China) [12, 13].

It is commonly believed that recommender systems recommend
users items that match their personal interests. However, several
studies [19–21, 24, 35] have demonstrated that recommender sys-
tems are vulnerable to poisoning a�acks, which inject fake data to
a recommender system such that the recommender system makes
recommendations as an a�acker desires. For instance, an a�acker
can inject fake users with carefully cra�ed fake rating scores to a
recommender system such that a target item is recommended to as
many users as possible. Conventional poisoning a�acks [19, 21, 24]
(also known as shilling a�acks) are agnostic to recommendation
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algorithms, i.e., they are not optimized to a certain type of recom-
mender systems. �erefore, such a�acks o�en achieve suboptimal
performance when the recommendation algorithm is known. To
address this limitation, recent studies [20, 35] proposed poisoning
a�acks that were optimized for a particular type of recommender
systems. For instance, Li et al. [20] proposed poisoning a�acks
optimized for matrix-factorization-based recommender systems,
while Yang et al. [35] proposed poisoning a�acks optimized for
association-rule-based recommender systems. However, how to
design optimized poisoning a�acks to graph-based recommender
systems is still an open problem.

In this work, we aim to design poisoning a�acks for graph-
based recommender systems [7, 12, 13, 25, 26]. A graph-based
recommender system uses a user preference graph to represent
users’ rating scores to items. In the graph, a node is a user or an
item, an edge between a user and an item means that the user rated
the item, and the edge weight is the corresponding rating score.
To make recommendations to a user, the recommender system
performs a random walk in the user preference graph, where the
random walk starts from the user and jumps back to the user with
a certain probability (called restart probability) in each step. A�er
the random walk converges, each item has a stationary probability
that essentially characterizes the closeness between the item and
the user. Finally, the system recommends the items that have the
largest stationary probabilities to the user.

In our poisoning a�acks, an a�acker’s goal is to promote a target
item, i.e., making a graph-based recommender system recommend
the target item to as many users as possible. Like most existing
poisoning a�acks to recommender systems [19–21, 24], our a�acks
inject fake users with carefully cra�ed rating scores to the target
recommender system to achieve the a�ack goal. Due to limited
resources and to avoid detection, we assume an a�acker can inject
m fake users at most and each fake user rates n items at most. For
convenience, we call the items, which a fake user rates, the user’s
�ller items. �e key challenge is to determine the �ller items and
their rating scores for each fake user. To address the challenge, we
formulate poisoning a�acks to graph-based recommender systems
as an optimization problem, whose objective function is the hit
ratio of the target item (i.e., the fraction of normal users whose
recommended items include the target item) and whose constraints
are that at most m fake users with at most n �ller items can be
injected. Solving this optimization problem producesm fake users
that maximize the hit ratio of the target item.

However, this optimization problem is computationally intractable
because 1) the hit ratio is related to the fake users’ rating scores in a
very complex way, and 2) the rating scores are integer variables. To
address the computational challenge, we propose several techniques
to solve the optimization problem approximately. Speci�cally, we
approximate the hit ratio using the items’ stationary probabilities,
which are used to make recommendations in graph-based recom-
mender systems. Moreover, we relax the fake users’ rating scores
as continuous variables, solve the optimization problem, and then
generate �ller items and their integer rating scores based on the
continuous variables. Finally, we propose a projected gradient de-
scent based method to solve the optimization problem with an
approximate hit ratio and relaxed continuous variables.

We evaluate our poisoning a�acks and compare them with sev-
eral existing a�acks using two real-world datasets. First, we eval-
uate the a�acks under the white-box se�ing, i.e., the graph-based
recommendation algorithm and its parameter (i.e., restart prob-
ability) are known to the a�acker. We �nd that our a�ack can
e�ectively enhance the hit ratio of a target item. For instance, when
the system recommends 10 items to each user and the number of
injected fake users is 1% of the number of normal users, our at-
tack could improve the hit ratio of an unpopular target item by
around 580 times. Moreover, our a�ack is signi�cantly more e�ec-
tive than existing a�acks for graph-based recommender systems.
For instance, compared to the poisoning a�ack proposed by Yang
et al. [35], our a�ack can improve the hit ratio from 0.0% to 0.4%
for an unpopular target item. �e reason is that existing a�acks are
not optimized for graph-based recommender systems. Second, we
evaluate the a�acks under gray-box se�ing (the graph-based recom-
mendation algorithm is known but its parameter is unknown) and
black-box se�ing (the recommendation algorithm is unknown). We
�nd that, in the gray-box se�ing, even if the a�acker does not know
the restart probability, our a�ack can still substantially improve the
hit ratios of target items. In the black-box se�ing, we assume an
a�acker generates fake users based on a graph-based recommender
system, while the target recommender system is based on matrix
factorization. Our results show that our a�acks can also transfer to
matrix factorization based recommender systems.

We also study detecting fake users via supervised machine learn-
ing techniques and their impact on the e�ectiveness of poisoning
a�acks. Intuitively, the rating scores of fake users are generated in
speci�c ways, and thus it could be possible to distinguish between
normal users and fake users using their rating scores. Speci�cally,
we extract features from a user’s rating scores and learn a binary
classi�er using a training dataset that includes both normal users
and fake users. �e binary classi�er is then used to predict a user
to be normal or fake. We �nd that a small fraction of normal users
are falsely predicted to be fake, while a large fraction (20%⇠50%) of
fake users are falsely predicted to be normal. �e service provider
could deploy such a detector to predict fake users and exclude the
predicted fake users from the recommender system. We evaluate
our poisoning a�acks and existing a�acks under such scenario.
We �nd that the poisoning a�acks are still e�ective when such
a detector is deployed, and our a�ack is still more e�ective than
existing a�acks. �e reason is that a large fraction of fake users are
not detected.

In summary, our contributions are as follows:

• We provide the �rst systematic study on poisoning a�acks to
graph-based recommender systems. We formulate poisoning
a�acks as an optimization problem and propose techniques
to solve the optimization problem approximately.

• We extensively evaluate our a�acks and compare them with
existing a�acks using two real-world datasets.

• We study detecting fake users using their rating scores and
evaluate the e�ectiveness of poisoning a�acks when such a
detector is deployed.
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2 BACKGROUND AND RELATEDWORK

2.1 Collaborative Filtering

Collaborative filtering based recommender systems have beenwidely

deployed in various web services such as Amazon, YouTube, Net-

flix, and Google Play. Suppose we are given a user-item rating score

matrix, where the entry rui is the rating score that user u gave to

item i , e.g., a product on Amazon, a video on YouTube, a movie on

Netflix, and an app on Google Play. For instance, a rating score rui
can be 0, 1, 2, 3, 4, or 5, where rui=0 indicates that u did not rate

the item i , 1 means the most negative rating score, and 5 means the

most positive rating score. The goal of collaborative filtering is to

recommend each user in the user-item rating score matrix N items

that the user did not rate before but the user may have interests in,

via analyzing the rating score matrix. Depending on the techniques

that are used to analyze the rating score matrix, collaborative filter-

ing can be roughly classified to 4 categories, i.e., neighborhood-based,

association-rule-based, matrix-factorization-based, and graph-based.

Neighborhood-based, association-rule-based, andmatrix-fac-

torization-based recommender systems: Neighborhood-based

recommender systems [27] find neighbors of a user or neighbors

of an item in order to recommend items to a user. For instance, to

recommend a user items, the methods can first find the nearest-

neighbors of the user, predict the user’s rating scores to items based

on the rating scores of the nearest neighbors, and recommend the

N items that have the highest predicted rating scores to the user.

Association-rule-based recommender systems [6, 22] aim to identify

frequent co-occurrence between items in user reviews. For instance,

if many users give high rating scores to both item A and item B,
then there is a certain association between the two items. For a user

who gave a high rating score to item A, item B is recommended

to the user. Matrix-factorization-based recommender systems [17]

assume that the user-item rating score matrix can be explained by a

small number of latent factors. Based on the assumption, they use a

low-rank matrix to approximate the user-item rating score matrix.

The low-rank matrix predicts missing values in the user-item rating

score matrix, i.e., for each user, the low-rank matrix predicts rating

scores to all items that the user did not rate before; and the N items

that have the highest predicted rating scores are recommended to

the user.

Graph-based recommender systems: In this work, we focus on

graph-based recommender systems [7]. Graph-based recommender

systems were deployed by several popular web services such as

eBay [25, 26] and Huawei App Store [12, 13] in China. The key idea

of graph-based recommender system is to model users’ preference

for items as a weighted bipartite graph G = (U , I , E), namely user

preference graph. The two sets of vertex U and I represent the user
set and the item set, respectively; an edge (u, i) between a user

u ∈ U and an item i ∈ I represents that the user rated the item; and

the weight of an edge (u, i) is the rating score that the user gave

to the item. Figure 1 illustrates a user preference graph with an

example of 3 users and 3 items.

To generate the top-N recommendation list for a user, the rec-

ommender system performs a random walk in the graph, where the

random walk starts from the user and jumps back to the user with

a probability α in each step, where α is called restart probability.

The stationary probability distribution of the random walk is used

Figure 1: An illustration of user preference graph

to rank items and make recommendations. We denote by pu the

stationary probability distribution of the random walk that starts

from the user u. Then, the stationary probability distribution is a

solution of the following linear system:

pu = (1 − α) ·Q · pu + α · eu , (1)

where eu is a unit vector whose uth entry is 1 and all other entries

are 0, and the matrix Q is called transition matrix, which is defined

as follows:

Qxy =

⎧⎪⎪⎨
⎪⎪⎩

rxy∑
z∈Γx

rxz
if (x,y) ∈ E

0 otherwise,
(2)

where Γx is the set of neighbors of node x . More specifically, for

a user node x , Γx is the set of items that were rated by x ; for an
item node x , Γx is the set of users that rated x . To solve pu , we start
from a random probability distribution and then iteratively update

pu as p
(t+1)
u = (1 − α) · Q · p

(t )
u + α · eu until convergence. Then,

we rank the items that were not rated by the user u with respect

to their stationary probabilities. The top-N items with the largest

stationary probabilities are recommended to the user u.

2.2 Attacks to Recommender Systems

2.2.1 Security Attacks. These attacks aim to spoof a recom-

mender system such that a target item is recommended to as many

or few users as possible. Specifically, poisoning attacks (also known

as shilling attacks) [19, 21, 24] aim to inject fake users with fake

rating scores to the system such that a bad recommender system

is learnt from the user-item rating score matrix. Profile pollution

attacks [34] aim to pollute the rating behavior of normal users

to manipulate the recommendations to them. By analogy to ad-

versarial machine learning, poisoning attacks are to manipulate
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recommender systems at “training time”, while pro�le pollution
a�acks are to manipulate recommender systems at “testing time”.

Poisoning attacks: Poisoning a�acks were �rst studied more than
a decade ago [19, 21, 24]. However, these a�acks are heuristics-
driven and are not optimized to a particular type of recommender
systems. For instance, in random a�acks [19], given the number
of fake users an a�acker can inject into the system, the a�acker
randomly selects some items for each fake user and then generates
a rating score for each selected item from a normal distribution,
whose mean and variance are calculated from the rating scores in
the entire user-item rating score matrix. In average a�acks [19],
the a�acker generates a rating score for a selected item from a
normal distribution, whose mean and variance are computed from
the rating scores to the selected item in the user-item rating score
matrix.

More recent poisoning a�acks [20, 35] generate fake rating
scores or behavior that are optimized to a particular type of rec-
ommender systems. Speci�cally, Li et al. [20] proposed poisoning
a�acks to matrix-factorization-based recommender systems. Yang
et al. [35] proposed poisoning a�acks (they called them fake co-
visitation injection a�acks) to association-rule-based recommender
systems, in which each user injects fake co-visitations between
items instead of fake rating scores to items. We aim to study opti-
mized poisoning a�acks to graph-based recommender systems.

Pro�le pollution attacks: Xing et al. [34] proposed pro�le pol-
lution a�acks to recommender systems and other personalized
services, e.g., web search. �eir a�acks aim to pollute a user’s pro-
�le, e.g., browsing history, via cross-site request forgery (CSRF) [37].
With a polluted user pro�le, the a�acker can recommend arbitrary
items to the user. �ey showed that popular web services including
YouTube, Amazon, and Google search are vulnerable to the a�acks.
However, the limitation of these a�acks is that they rely on CSRF,
which makes it hard to perform the a�acks at a large scale.

2.2.2 Privacy A�acks. Two a�acks, i.e., item inference a�acks
and a�ribute inference a�acks, were proposed to compromise user
privacy in recommender systems.

Item inference attacks: Calandrino et al. [4] proposed privacy at-
tacks to infer the items that a target user has rated before, e.g., such
items could be products that the target user purchased on Amazon,
music the target user liked on Last.fm, and books the target user
read on Library�ing. �e key intuition of their a�acks is that a col-
laborative �ltering recommender system makes recommendations
based on users’ past behavior. �erefore, the recommendations
made by a recommender system include information about users’
past behavior. Via tracking and analyzing the publicly available
recommendations over time, an a�acker could infer a target user’s
past behavior, e.g., the items the user rated.

Attribute inference attacks: A user’s rating behavior (e.g., rating
scores to items, page likes on Facebook) is essentially statistically
correlated to the user’s a�ributes (e.g., gender, political view, sexual
orientation, interests, and location). �erefore, an a�acker could
infer a user’s private a�ributes based on its rating behavior via
machine learning techniques, which capture the statistical corre-
lations between rating behavior and a�ributes. Such a�acks are
called a�ribute inference a�acks [9] and have been demonstrated to

be feasible by multiple studies [9–11, 16, 18, 33]. In particular, given
a set of users whose rating behavior and a�ributes are known to
an a�acker, the a�acker learns a machine learning classi�er which
takes a user’s rating behavior as an input and predicts the user’s at-
tributes. �en, the a�acker applies this classi�er to infer a�ributes
of the users who did not disclose their a�ributes. A notable example
of real-world a�ribute inference a�acks is that Cambridge Ana-
lytica leveraged Facebook users’ rating behavior (e.g., page likes)
to infer users’ a�ributes, based on which targeted advertisements
are delivered to users [1]. Jia and Gong [15] recently proposed a
practical defense against a�ribute inference a�acks via adversarial
machine learning. �e key idea is to add carefully cra�ed noise to
a user’s rating behavior data such that the a�acker’s classi�er is
very likely to make incorrect predictions.

3 PROBLEM FORMULATION
3.1 �reat Model

Attack goal: We consider an a�acker’s goal is to promote a target
item t to as many users as possible. Suppose the system recom-
mends N items to each user. We denote by h(t) the fraction of
normal users whose top-N recommendations include the target
item a�er the a�ack. h(t) is called hit ratio of the target item t .
�e a�acker’s goal is to maximize the hit ratio. We note that an
a�acker could also demote a target item, i.e., minimize the hit ratio
of the target item. However, demotion is a special case of promo-
tion [21, 35]. Speci�cally, an a�acker can promote other items such
that the target item is demoted in recommendation lists. �erefore,
we will focus on promotion a�acks in this work.

Attack approach: �e a�acker uses data poisoning a�acks to
achieve the a�ack goal. In particular, the a�acker injects some
fake users to the system. Each fake user gives a high rating score
to the target item and well-cra�ed rating scores to certain selected
items, which we call �ller items. A key challenge for the a�acker is
to determine the �ller items and their rating scores for each fake
user. Since normal users o�en rate a small number of items, we
assume the number of �ller items for each fake user is at most n, to
avoid being detected simply based on the number of rated items.

Attacker’s background knowledge and capability:We assume
an a�acker has the following background knowledge: 1) the rec-
ommendation algorithm used by the given recommender system;
and 2) the user-item rating score matrix, which is usually publicly
available and can be collected by the a�acker. We note that the
a�acker could also collect a partial user-item rating score matrix
for a subset of users and subset of items, and design a�acks based
on the partial matrix. Our threat model is also known as white-box
se�ing. In our experiments, we will demonstrate that our a�acks
can also be transferred between recommender systems under the
grey-box se�ing (i.e., the a�acker does not know the parameters of
the recommendation algorithm) or the black-box se�ing (i.e., the
a�acker does not know the recommendation algorithm).

In practice, an a�acker o�en has limited resources so the a�acker
can only inject a bounded number of fake users into the system,
though the bounded number could still be large. For instance, an
a�acker could leverage compromised machines to register and
maintain fake users. Detecting such fake users is also known as
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Sybil detection, and many methods (e.g., [8, 28, 32]) have been devel-
oped to detect fake users. For instance, the service provider could
analyze the IP addresses of the users to detect fake ones. To avoid
such IP-based detection, an a�acker o�en registers a small number
of fake users on a compromised machine. Indeed,�omas et al. [29]
found that a half of compromised machines under an a�acker’s
control maintain less than 10 fake users in online social networks.
More formally, we assume the a�acker can injectm fake users into
the recommender system.

3.2 Attacks as an Optimization Problem
We formulate poisoning a�acks as an optimization problem, solving
which maximizes the hit ratio of the target item. Let r� be the rating
score vector of a fake user � , where r�i is the rating score that the
fake user � gives to the item i . We consider a rating score is in the
set of integers {0, 1, · · · , rmax }, where rmax is the maximum rating
score. For instance, in many recommender systems, rmax = 5. A
rating score of 0 means that the user did not rate the corresponding
item. Essentially, we aim to �nd the rating score vector for each fake
user that maximizes the hit ratio of the target item. Speci�cally, we
�nd the rating score vectors via solving the following optimization
problem:

max h(t) (3)
subject to |r� |0  n + 1,8� 2 {�1,�2, · · · ,�m }

r�i 2 {0, 1, · · · , rmax },8� 2 {�1,�2, · · · ,�m },
where {�1,�2, · · · ,�m } is the set ofm fake users, |r� |0 is the num-
ber of non-zero entries in the rating score vector r� , and n is the
maximum number of �ller items (the �ller items do not include
the target item). �e hit ratio h(t), which is the fraction of normal
users whose top-N recommended items include the target item
t , is computed by a recommender system on the entire user-item
rating score matrix that includes them fake users. We note that
our formulation in Equation 3 is applicable to data poisoning at-
tacks to any recommender system. In this work, we will focus on
graph-based recommender systems.

4 OUR POISONING ATTACKS
4.1 Overview
A solution to the optimization problem in Equation 3 is a data poi-
soning a�ack. However, �nding the exact optimal solution to the
optimization problem in Equation 3 is computationally intractable
(i.e., NP-hard) because 1) the objective function h(t) is related to the
rating score variables r� (� 2 {�1,�2, · · · ,�m }) in a very complex
way, and 2) the variables are integer variables. �erefore, we pro-
pose techniques to �nd approximate solutions to the optimization
problem.

Speci�cally, to address the computational challenge, we propose
several approximation techniques. First, instead of optimizing the
rating scores for them fake users simultaneously, we optimize their
rating scores one by one. In particular, given the normal users and
fake users we have added so far, we �nd the rating scores for the
next fake user to optimize the hit ratio of the target item. Second, we
approximate the hit ratio h(t) in the objective function using some
function that is easier to optimize. Speci�cally, since graph-based
recommender systems leverage the stationary probabilities of items

to make recommendations, our approximate objective function
roughly requires that the stationary probabilities of the target item
are high for many users. �ird, we relax the rating scores to be
continuous variables in the range [0, rmax ] and then transform
them to integer rating scores a�er solving the optimization problem.
We propose a projected gradient descent based method to solve the
optimization problem with the approximate objective function and
relaxed continuous variables.

4.2 Approximating the Optimization Problem
Suppose t is the target item that the a�acker aims to promote. We
add fake users to the recommender system one by one. Assume
G = (U , I , E) is the current user preference graph which includes
rating scores for both normal users and fake users added so far. S
is the set of normal users who have not rated the target item t . We
denote the set of top-N recommended items for a user u as Lu .

Relaxing rating scores to be continuous variables: We add a
fake user � to the user preference graphG , wherew�i is the rating
score that the fake user gives to item i . We model w�i as the
weight of the edge (�, i). For simplicity, we denote by w� the
vector of weights of edges that connect the fake user � and all
items. Our goal is to �nd the edge weights w� that optimize the
hit ratio of the target item. Since rating scores are integers,w� are
integer variables whose values could be 0, 1, · · · , rmax . However,
such integer variables make the optimization problem intractable.
�erefore, we relax the variables as continuous variables whose
values are in the range [0, rmax ], solve the optimization problem
using the continuous variables, and transform them to integer
rating scores. Note thatw�i is di�erent from r�i . Speci�cally,w�i
is a continuous variable we use to model a rating score, while r�i
is the �nal integer rating score that user � gives to item i .

Approximating the hit ratio: Since the hit ratio is related to the
edge weightsw� in a very complex way, which makes the optimiza-
tion problem intractable, we approximate the hit ratio using the
stationary probabilities of random walks, which are used to gener-
ate the top-N recommended items in graph-based recommender
systems. In the user preference graph with the new fake user � , to
make recommendations for a normal user u, we �rst perform a ran-
domwalk fromu and compute its stationary probability distribution
pu , where pui is the stationary probability for item i . Speci�cally,
the stationary probability distribution pu is computed according
to Equation 1, where the transition matrix Q is a function of the
edge weights w� . �e recommendation list Lu consists of the N
items that 1) u has not rated yet and 2) have the largest stationary
probabilities. �e target item t hits the user u if t is among the
recommendation list Lu , i.e., if put > pui for a certain item i in the
recommendation list Lu , otherwise the target item does not hit the
user u.

1) Loss function for one user. To approximate the hit ratio, we
leverage a loss function lu over the stationary probability distribu-
tion for each user u. We aim to design a loss function that satis�es
two goals: 1) for each item i 2 Lu , if pui < put (i.e., the target item
ranks before the item i), then the loss for item i is smaller, and 2)
the loss is smaller if the target item ranks higher in the recommen-
dation list Lu . To achieve these goals, we adopt the following loss
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Algorithm 1 Our Poisoning A�acks

Input: Rating matrix R, parameters t,m,n, �,b.
Output: m fake users �1,�2, · · · ,�m .
1: //Add fake users one by one.
2: for � = �1,�2, · · · ,�m do
3: Solve the optimization problem in Equation 6 with the cur-

rent rating matrix R to getw� .
4: //Assign the maximum rating score to the target item.
5: r�t = rmax .
6: //Find the �ller items
7: �e n items with the largest weights are �ller items.
8: //Generate rating scores for the �ller items.
9: r� j ⇠ N(µ j , � 2

j ), for each �ller item j.
10: //Inject the fake user with rating scores r� to the system.
11: R  R [ r� .
12: end for
13: return r�1 , r�2 , · · · , r�m .

function:

lu =
’
i 2Lu

�(pui � put ), (4)

where �(x) = 1
1+exp(�x/b) is called the Wilcoxon-Mann-Whitney

loss function [3] and b is a parameter called width. In the machine
learning community, the Wilcoxon-Mann-Whitney loss function
is known to optimize the ranking performance [3], i.e., the loss is
smaller when the target item ranks higher in the recommendation
list in our case.

2) Loss function for all normal users. Our goal is to recom-
mend the target item to as many normal users as possible. �erefore,
we sum the loss of all normal users as follows:

l =
’
u 2S

lu , (5)

where S is the set of normal users who have not rated the target
item yet.

3) Approximate optimization problem. Recall that, in our
threat model, each fake user rates at most n items to avoid detection,
which essentially constrains the values of w� . Considering this
constraint, we propose to solve the following optimization problem:

min F (w� ) = kw� k22 + � · l
subject tow�i 2 [0, rmax ], (6)

where kw� k22 regularizes w� and is used to model the constraint
that each fake user can rate a small number of items, while � bal-
ances the regularization term and the loss function.

4.3 Solving the Optimization Problem
We solve the optimization problem in Equation 6 using projected
gradient descent. Speci�cally, in each iteration, we compute the
gradient of F (w� )with respect tow� , movew� a small step towards
the inverse direction of the gradient, and project each w�i back
to the range [0, rmax ]. We can compute the gradient of F (w� ) as

Table 1: Dataset statistics.
Dataset #Users #Items #Ratings Sparsity
Movie 943 1,682 100,000 93.67%
Video 5,073 10,843 48,843 99.91%

follows:

@F (w� )
@w�

= 2w� + �
’
u 2S

’
i 2Lu

@�(pui � put )
@w�

= 2w� + �
’
u 2S

’
i 2Lu

@�(�it )
@�it

( @pui
@w�

� @put
@w�

),
(7)

where �it = pui � put .
�e key challenge of computing the gradient is to compute the

gradient @pu
@w�

for each normal user u. From Equation 1, we have:

@pu
@w�

= (1 � �) @Q
@w�

pu + (1 � �)Q
@pu
@w�
. (8)

Furthermore, according to Equation 2, we have:

@Qx�

@w�
=

8>><
>>:

@wx�
@w�

Õ
j wx j�wx�

Õ
j

@wx j
@w�

(Õj wx j )2
, if (x,�) 2 E

0, otherwise,
(9)

wherewx� is the discrete rating score that user x gave to the item
� when x is not the new fake user, andwx� is the continuous edge
weight to be optimized when x is the new fake user. �erefore,
Equation 8 is a system of linear equations with respect to @pu

@w�
. We

iteratively solve the linear system to obtain @pu
@w�

. A�er solving
@pu
@w�

, we can compute the gradient @F (w� )
@w�

.

4.4 Generating Rating Scores
A�er solving the weightsw� , we generate rating scores for the fake
user � . First, we assume the fake user gives the maximum rating
score to the target item. Second, we rank the items according to
the weights w�i and select the n items with the highest weights
as the �ller items. �e fake user only generates rating scores for
the �ller items. �ird, for each �ller item, we sample a number
from a normal distribution that is ��ed to the rating scores that
all normal users gave to the item, and then discretize the number
to an integer rating score. We only use the weights to select �ller
items instead of assigning their rating scores, because the weights
are approximate values. We generate rating scores for the �ller
items from such a normal distribution so that the fake user is likely
to be similar to more normal users, which makes it more likely to
recommend the target item to more normal users.

Algorithm 1 summarizes our poisoning a�acks. We generate
fake users one by one. For each fake user, we use projected gradient
descent to solve the optimization problem in Equation 6 with the
current rating score matrix (i.e., the current user preference graph).
A�er solving theweightsw� , we generate rating scores. Speci�cally,
N(µ j , � 2

j ) at Line 9 is the normal distribution with mean µ j and
variance � 2

j that are ��ed using the rating scores that normal users
gave to the item j.
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5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Datasets. We perform experiments using two real-world
datasets, which are widely used for evaluating recommender sys-
tems in the data mining community. �e �rst dataset isMovieLens
100K (Movie) [23]. �is dataset consists of 943 users, 1,682 movies,
and 100,000 ratings. �e second dataset isAmazon Instant Video
(Video) [2], which includes 5,073 users, 10,843 items, and 48,843
ratings. We de�ne the sparsity of a dataset as follows:

Sparsit� = 1 � number of ratings
number of users ⇥ number of items

. (10)

As we will show, the a�ack performance is related to the sparsity
of a recommender system. Table 1 shows the dataset statistics.

5.1.2 Compared A�acks. We compare our poisoning a�acks to
several poisoning a�acks. In all these a�acks, an a�acker injectsm
fake users to the recommender system. Each fake user gives the
maximum rating score to the target item and gives certain rating
scores to n selected items (called �ller items). Di�erent a�acks use
di�erent strategies to select the �ller items and generate rating
scores for them.

Random attack [19]: In this a�ack, the a�acker �rst �ts a normal
distribution for the rating scores in the entire user-item rating score
matrix. For each fake user, the a�acker selects n items as the �ller
items uniformly at random. �en, for each �ller item, the a�acker
samples a number from the normal distribution and discretizes it
to be a rating score.

Average attack [19]: In this a�ack, the a�acker �ts a normal
distribution for the rating scores of each item. Like the random
a�ack, average a�ack also samples n items as �ller items uniformly
at random. However, for each �ller item, the a�acker generates a
rating score from the normal distribution ��ed for the item. �e
intuition is that generating rating scores around the average rating
scores of �ller items could enable the fake users to bemore similar to
normal users, and thus have a larger e�ect on the recommendations.

Bandwagon attack [21]: �is a�ack considers item popularity
when selecting �ller items. We implement a variant of bandwagon
a�ack as follows: for each fake user, the a�acker selects n ⇥ 10%
items whose average rating scores are high (e.g., 5 in our exper-
iments) and selects n ⇥ 90% items uniformly at random as �ller
items. For each �ller item, the a�acker generates a rating score
from the normal distribution ��ed for the entire user-item rating
score matrix (like the random a�ack). �e intuition is that the
a�acker aims to recommend the target item to users who rated the
popular items.

Co-visitation attack [35]:�is a�ackwas designed for association-
rule-based recommender systems. We note that in the original
a�ack, the a�acker does not necessarily need to register fake users,
because some association-rule-based recommender systems con-
sider visitations from any visitors to make recommendations. In
our work, we focus on recommender systems using rating scores
and only registered users can provide rating scores. �erefore, the
a�acker injects fake users to the system. Moreover, if a user rates
both items i and j, then we say i and j are co-visited by the user.

�erefore, the a�ack technique developed by Yang et al. [35] es-
sentially �nds the �ller items for each fake user. For each �ller
item of each fake user, we generate a rating score from the normal
distribution ��ed for the item (like the average a�ack).

5.1.3 Target Items (Random Target Items vs. Unpopular Target
Items). We consider two types of target items. First, an a�acker aims
to promote a random target item. Speci�cally, in our experiments,
we sample an item uniformly at random and treat it as the target
item. Second, an a�acker could also promote an unpopular item
(e.g., a new item that belongs to the a�acker). To simulate this
a�acker, we sample an item that has 5 ratings at most uniformly at
random and treat it as the target item.

5.1.4 Evaluation Metric (HR@N). We use the hit ratio (HR@N)
as our evaluation metric. Suppose the recommender system recom-
mends N items for each user. Given a target item, HR@N is the
fraction of normal users whose N recommended items include the
target item. For both random target items and unpopular target
items, we compute the hit ratio averaged over 10 target items.

5.1.5 Parameter Se�ing. Without otherwise mentioned, we use
the following default parameter se�ing: the restart probability � in
graph-based recommender systems is set to be 0.3, � = 0.01,b =
0.01,N = 10, and n = 10. Moreover, the number of fake users (i.e.,
a�ack size) is 3% of the normal users in the recommender system.
By default, we assume graph-based recommender system is used.

5.2 Attacking Graph-based Systems
We �rst consider the white-box se�ing, i.e., the graph-based recom-
mender system and its restart probability are known to the a�acker.
Impact of attack size: Table 2 shows the results for the compared
poisoning a�acks with di�erent a�ack sizes. �e a�ack size means
that the number of fake users is a certain fraction of the normal
users, e.g., 1% a�ack size means that the number of fake users is 1%
of the number of normal users. �e row in “None” means the hit
ratios without any a�acks. First, our a�ack can e�ectively promote
target items. For instance, in the Video dataset, when injecting
1% fake users, the hit ratio of a random target item increases by
around 33 times, while the hit ratio of an unpopular target item
increases by around 580 times. Second, our a�ack is signi�cantly
more e�ective than existing a�acks. For instance, in the Movie
dataset, when injecting 1% fake users, our a�ack improves the hit
ratio upon the best compared a�ack by 2.3 times for a random
target item, while our a�ack improves the hit ratio from 0 to 0.0042
for an unpopular target item. �e reason is that random a�ack,
average a�ack, and bandwagon a�ack are agnostic to recommender
systems, while the co-visitation a�ack was speci�cally designed
for association-rule-based recommender systems.

�ird, the hit ratio gain is more signi�cant for unpopular target
items than random target items. For instance, our a�ack improves
the hit ratio by 96 times and 1700 times for a random target item
and an unpopular target item respectively, when injecting 3% fake
users into the Video dataset. Fourth, all a�acks are more e�ective
on the Video dataset than the Movie dataset. We speculate the
reason is that Video is more sparse, and thus is easier to a�ack.
More speci�cally, when the dataset is more sparse, it is easier to
inject fake users that are similar to a large number of normal users.
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Table 2: HR@10 for di�erent attacks with di�erent attack sizes.

Dataset A�ack

A�ack size

Random target items Unpopular target items

0.5% 1% 3% 5% 0.5% 1% 3% 5%

Movie

None 0.0022 0.0022 0.0022 0.0022 0 0 0 0
Random 0.0028 0.0030 0.0038 0.0052 0 0 0 0
Average 0.0027 0.0030 0.0038 0.0049 0 0 0 0

Bandwagon 0.0027 0.0030 0.0037 0.0048 0 0 0 0
Co-visitation 0.0030 0.0030 0.0037 0.0050 0 0 0.0005 0.0027
Our a�ack 0.0040 0.0069 0.0134 0.0168 0.0005 0.0042 0.0104 0.0131

Video

None 0.0019 0.0019 0.0019 0.0019 0.0001 0.0001 0.0001 0.0001
Random 0.0181 0.0377 0.1456 0.2692 0.0137 0.0317 0.1323 0.2500
Average 0.0185 0.0397 0.1472 0.2775 0.0148 0.0323 0.1358 0.2554

Bandwagon 0.0171 0.0372 0.1443 0.2660 0.0130 0.0314 0.1305 0.2481
Co-visitation 0.0180 0.0378 0.1460 0.2688 0.0135 0.0313 0.1333 0.2579
Our a�ack 0.0323 0.0625 0.1828 0.2966 0.0285 0.0576 0.1727 0.2845

Table 3: HR@N for di�erent N .

Dataset A�ack
N

1 5 10 15 20

Movie

None 0 0.0001 0.0022 0.0060 0.0085
Random 0 0.0004 0.0038 0.0076 0.0109
Average 0 0.0005 0.0038 0.0077 0.0112

Bandwagon 0 0.0004 0.0037 0.0076 0.0109
Co-visitation 0 0.0007 0.0040 0.0074 0.0108
Our a�ack 0.0024 0.0066 0.0134 0.0193 0.0243

Video

None 0.0001 0.0008 0.0019 0.0036 0.0047
Random 0.0461 0.0989 0.1456 0.1820 0.2130
Average 0.0476 0.1019 0.1472 0.1840 0.2144

Bandwagon 0.0454 0.0975 0.1443 0.1783 0.2090
Co-visitation 0.0479 0.1018 0.1463 0.1835 0.2131
Our a�ack 0.0665 0.1359 0.1828 0.2116 0.2314

Impact of the number of recommended items: Table 3 shows
the hit ratios for di�erent a�acks when the recommender system
recommends di�erent numbers (i.e., N ) of items to users, where
random target items are used and the a�ack size is �xed to be 3%.
First, we observe that our a�ack is e�ective and is more e�ective
than the existing a�acks for di�erent values of N . Second, when
N is smaller, the hit ratio gains of our a�ack over existing a�acks
are more signi�cant. For instance, when N = 20 and N = 5, our
a�ack’s hit ratios improve upon the best existing a�acks by twice
and by 9.5 times in the Movie dataset, respectively. �is indicates
that our a�ack ranks the target item higher in the recommendation
lists than existing a�acks. �e reason is that the Wilcoxon-Mann-
Whitney loss function [3] adopted by our a�acks aims to optimize
the ranking performance of the target item.
Impact of the number of �ller items: Figure 2 shows the impact
of the number of �ller items on our a�acks for random target items.
On the Movie dataset, the hit ratio decreases as the a�acker uses
more �ller items. However, on the Video dataset, the hit ratio
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Figure 2: Impact of the number of �ller items.

increases and �uctuates as more �ller items are used. �erefore,
the relationship between the hit ratio and the number of �ller items
heavily depends on datasets. We note that Mobasher et al. [21]
had similar observations for the average and bandwagon a�acks.
Intuitively, an a�acker should be more powerful and achieve be�er
hit ratios when using more �ller items. Our results and previous
study [21] show that this intuition does not hold. Understanding
such phenomena theoretically is an interesting future work.

5.3 Transferring to Other Systems
In the previous section, we assume that the a�acker has a white-
box access to the target recommender system. In this section, we
consider an a�acker has a gray-box and black-box access to the
recommender system. In particular, in the gray-box se�ing, the
recommender system is still graph-based recommender system, but
the key parameter restart probability � is unknown to the a�acker.
In the black-box se�ing, the a�acker does not know the target
recommender system algorithm. To simulate such black-box se�ing,
we assume the a�acker generates fake users based on a graph-based
recommender system, while the target recommender system uses
matrix factorization.
Gray-box setting:�e a�acker uses a restart probability� = 0.3 in
graph-based recommender system to generate fake users. Figure 3
shows the hit ratios for random target items of our a�acks when
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Figure 3: Hit ratio of our attack as a function of the restart
probability of the target graph-based recommender system
under the gray-box setting.

the target graph-based recommender system uses di�erent restart
probabilities. We observe that the hit ratio reaches the maximum
when the restart probability is 0.3. �e reason is that the a�acker
also sets the restart probability to be 0.3, which essentially reduces
to a white-box a�ack. When the target recommender system uses a
restart probability other than 0.3, our a�ack is less e�ective. How-
ever, our a�ack is still much more e�ective than existing a�acks
(please refer to Table 2).
Black-box setting:We assume the a�acker generates fake users
using a graph-based recommender system, while the target rec-
ommender system uses matrix factorization. In particular, we use
the popular matrix factorization technique proposed in [17] to im-
plement the target recommender system. Table 4 shows the hit
ratios of our a�acks and existing a�acks for random target items.
First, all compared a�acks can transfer to matrix factorization based
recommender systems, especially on the Video dataset. Speci�cally,
all a�acks signi�cantly improve the hit ratios of target items upon
no a�acks on the Video dataset. However, the hit ratio gains on
the Movie dataset is less signi�cant. We suspect the reason is that
the Movie dataset is denser and is harder to a�ack.

Second, the di�erences between our a�ack and the existing
a�acks are small, which means that di�erent a�acks have similar
transferability to matrix factorization based recommender systems.
�ird, the hit ratio gains of all a�acks are less (or more) signi�cant
in the black-box se�ing than in the white-box se�ing on the Movie
(or Video) dataset (comparing Table 2 and Table 4). For instance,
on the Movie dataset, our a�ack improves the hit ratio over no
a�acks by 3 times and by 20% in the white-box se�ing and black-
box se�ing, respectively, when the a�ack size is 1%. However, on
the Video dataset, our a�ack improves the hit ratio over no a�acks
by 33 times and 4000 times in the white-box se�ing and black-box
se�ing, respectively, when the a�ack size is 1%. �is is because
matrix factorization is known to achieve be�er hit ratios when the
dataset is denser [17]. For instance, matrix factorization achieves
lower hit ratios than the graph-based recommender system on the

Table 4: HR@10 under the black-box setting, where the
attacker generates fake users using a graph-based recom-
mender system while the target recommender system uses
matrix factorization.

Dataset A�ack
A�ack size

0.5% 1% 3% 5%

Movie

None 0.0104 0.0104 0.0104 0.0104
Random 0.0116 0.0125 0.0144 0.0198
Average 0.0116 0.0125 0.0144 0.0196

Bandwagon 0.0116 0.0125 0.0144 0.0198
Co-visitation 0.0015 0.0125 0.0144 0.0196
Our a�ack 0.0116 0.0124 0.0169 0.0226

Video

None 0.0001 0.0001 0.0001 0.0001
Random 0.0336 0.4142 0.5771 0.5884
Average 0.0317 0.4149 0.5776 0.5895

Bandwagon 0.0329 0.4142 0.5773 0.5883
Co-visitation 0.0325 0.4145 0.5775 0.5886
Our a�ack 0.0340 0.4158 0.5767 0.5852

Video dataset when there are no a�acks. A�er the a�acker adds
fake users, the target item has dense rating scores and thus it is
recommended to many users by matrix factorization. As a result,
the poisoning a�acks have evenmore signi�cant hit ratio gains over
no a�acks in the black-box se�ing than in the white-box se�ing.

6 DETECTING FAKE USERS
Detecting fake users is closely related to Sybil detection in social
networks. Many methods have been developed for Sybil detection.
�ese methods leverage IP addresses (e.g., [28]), user behavior
(e.g., [32]), or social relationships between users (e.g., [8, 30, 31]).
Since we do not have access to IP addresses nor social relationships
of users, we explore a behavior based method. In particular, we
extract a set of features from a user’s rating scores and train a binary
classi�er to classify users to be normal or fake. We will also study
the e�ectiveness of the poisoning a�acks when the recommender
system has deployed such a detector to predict fake users and has
excluded the predicted fake users from the recommender system.
Rating scores based detection: Intuitively, the fake users’ rating
scores are generated in speci�c ways, and thus it may be possible to
distinguish between normal users and fake users using their rating
scores. Indeed, previous studies [5, 21] extracted several features
from rating scores to train a binary classi�er to distinguish between
normal users and fake users. We adopt these features in our work.
Speci�cally, the features are as follows.

• Rating Deviation from Mean Agreement (RDMA) [5]: �is
feature measures the average deviation of a user’s rating
scores to the mean rating scores of the corresponding items.
Formally, for a user u, RDMA is computed as follows:

RDMAu =

Õ
i 2Iu

|rui�ri |
oi

|Iu |
, (11)

where Iu is the set of items that user u has rated, |Iu | is the
number of items in Iu , rui is the rating score that u gave
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Table 5: Detection results for di�erent attacks.

Dataset A�ack
FPR FNR

0.5% 1% 3% 5% 0.5% 1% 3% 5%

Movie

Random 0.0458 0.0477 0.0463 0.0483 0 0.2400 0.4367 0.4060
Average 0.0468 0.0463 0.0478 0.0475 0 0.2300 0.4567 0.4140

Bandwagon 0.0414 0.0417 0.0415 0.0445 0 0.1900 0.4100 0.3400
Co-visitation 0.0437 0.0460 0.0454 0.0461 0 0.2400 0.4200 0.3950
Our a�ack 0.0479 0.0474 0.0483 0.0493 0.1600 0.3900 0.4567 0.4220

Video

Random 0.0719 0.0717 0.0706 0.0719 0.2520 0.2820 0.3773 0.5116
Average 0.0721 0.0700 0.0698 0.0693 0.2120 0.2860 0.3820 0.5452

Bandwagon 0.0721 0.0699 0.0701 0.0702 0.2040 0.2740 0.3467 0.5404
Co-visitation 0.0719 0.0705 0.0705 0.0702 0.2105 0.2850 0.3747 0.5369
Our a�ack 0.0730 0.0729 0.0725 0.0725 0.1880 0.2220 0.3353 0.5000

Table 6: HR@10 for di�erent attacks when the service
provider deploys a classi�er to predict fake users and ex-
cludes the predicted fake users from the system.

Dataset A�ack
A�ack size

0.5% 1% 3% 5%

Movie

None 0 0 0 0
Random 0 0 0.0011 0.0031
Average 0 0 0.0014 0.0032

Bandwagon 0 0 0 0.0016
Co-visitation 0 0 0.0009 0.0027
Our a�ack 0 0.0024 0.0066 0.0109

Video

None 0.0008 0.0008 0.0008 0.0008
Random 0.0046 0.0087 0.0713 0.1530
Average 0.0058 0.0098 0.0891 0.1509

Bandwagon 0.0032 0.0071 0.0772 0.1459
Co-visitation 0.0025 0.0077 0.0739 0.1515
Our a�ack 0.0064 0.0197 0.1028 0.1788

to item i , ri is the average rating score for item i , and oi is
the total number of ratings for item i .

• Weighted Degree of Agreement (WDA) [21]: �is feature
is simply the numerator of the RDMA feature, i.e., this
feature is computed as follows:

WDAu =
’
i 2Iu

|rui � ri |
oi

. (12)

• Weighted Deviation from Mean Agreement (WDMA) [21]:
�is feature is also based on RDMA, but it puts higher
weights on rating deviations for items that have less ratings.
�e WDMA feature for a user u is calculated as follows:

WDMAu =

Õ
i 2Iu

|rui�ri |
o2i

|Iu |
. (13)

• Mean Variance (MeanVar) [21]: �is feature measures the
average variance of a user’s rating scores to the mean
rating scores of the corresponding items. Speci�cally, the

MeanVar feature for a user u is given by:

MeanVaru =

Õ
i 2Iu

(rui � ri )2

|Iu |
. (14)

• Filler Mean Target Di�erence (FMTD) [21]: �is feature
measures the divergence between a user’s rating scores,
and it is computed as follows:

FMTDu =

�������

Õ
i 2IuT

rui

|IuT |
�

Õ
j 2IuF

ruj

|IuF |

������� , (15)

where IuT is the set of items in Iu thatu gave the maximum
rating score and IuF includes all other items in Iu .

For each poisoning a�ack, the service provider generates some
fake users using the a�ack and labels some normal users as a train-
ing dataset. In our experiments, we generate 150 fake users (these
fake users could be di�erent from the fake users an a�acker syn-
thesizes when performing a�acks) and sample 150 normal users
as the training dataset. �en, using the above features, the ser-
vice provider learns a KNN classi�er, where K is determined via
cross-validation in the training dataset.
Results of detecting fake users:We apply the classi�ers to detect
fake users generated by di�erent poisoning a�acks. We use False
Positive Rate (FPR) and False Negative Rate (FNR) to measure the
detection performance. Speci�cally, FPR is the fraction of normal
users that are predicted to be fake, while FNR is the fraction of fake
users that are predicted to be normal.

Table 5 shows the FPR and FNR when detecting the fake users
generated in our experiments in Section 5 under the default pa-
rameter se�ing. We observe that a small fraction of normal users
are predicted to be fake. When the service provider excludes the
predicted fake users from the recommender system, these normal
users won’t receive personalized recommendations from the recom-
mender system. �e service provider could leverage other methods
to recommend items for such users, e.g., the service provider always
recommends popular items to them (such recommendation is not
personalized). Moreover, the detector misses a large fraction of
fake users, i.e., FNR is large. Moreover, the FNR tends to increase
as the a�acker injects more fake users. A possible reason is that
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more fake users have more diverse pa�erns, and thus it is harder
to detect them.
Attack e�ectiveness when detector is deployed: Suppose the
service provider deploys the classi�er to detect fake users. In partic-
ular, the service provider excludes the predicted fake users from the
recommender system. Note that a small fraction of normal users
will be excluded from the recommender system, while a large frac-
tion of fake users will still be included in the recommender system.
We re-compute the recommended items for each remaining user
a�er excluding the predicted fake users from the recommender
system and re-compute the hit ratios of the target items. �e hit
ratio of a target item is the fraction of the remaining normal users
whose recommended items include the target item.

Table 6 shows the hit ratios of random target items for the com-
pared poisoning a�acks under the white-box se�ing. First, we
observe that these a�acks are still e�ective in many cases. �is
is because a large fraction of fake users are not detected. Second,
compared to the case where the service provider does not detect
fake users, the hit ratios are smaller (comparing Table 6 with Ta-
ble 2). �e reason is that a large fraction of fake users are detected
and excluded from the recommender system. �ird, our a�ack still
substantially outperforms existing a�acks.

7 CONCLUSION AND FUTUREWORK
In this work, we propose optimized poisoning a�acks to graph-
based recommender systems. We show that poisoning a�acks to
graph-based recommender systems can be formulated as an opti-
mization problem and the optimization problem can be approxi-
mately solved by a projected gradient descent method. Via evalua-
tions on real-world datasets, we �nd that our a�acks can make a
target item recommended to substantially more users. Moreover,
our a�acks are more e�ective than existing a�acks for manipulat-
ing graph-based recommender systems. �e reason is that existing
a�acks are not optimized for graph-based recommender systems,
while our a�acks are. Our a�acks can also transfer to other recom-
mender systems under the gray-box and black-box se�ings. �e
service provider can detect a large fraction of fake users but also
falsely predict a small fraction of normal users to be fake, via using
supervised machine learning techniques to analyze the users’ rating
scores. Moreover, our a�acks are still e�ective when the service
provider deploys such a detector and excludes the predicted fake
users from the recommender system.

Interesting future works include 1) evaluating our poisoning
a�acks on real-world graph-based recommender systems, 2) design-
ing optimized poisoning a�acks to other graph-based recommender
systems (e.g., graph convolutional neural network based recom-
mender systems [36]), 3) designing optimized poisoning a�acks
to neural network based recommender systems (e.g., [14]), and 4)
designing defenses against poisoning a�acks.
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