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Abstract—Many security and privacy problems can be mod-
eled as a graph classification problem, where nodes in the graph
are classified by collective classification simultaneously. State-
of-the-art collective classification methods for such graph-based
security and privacy analytics follow the following paradigm:
assign weights to edges of the graph, iteratively propagate
reputation scores of nodes among the weighted graph, and use
the final reputation scores to classify nodes in the graph. The
key challenge is to assign edge weights such that an edge has a
large weight if the two corresponding nodes have the same label,
and a small weight otherwise. Although collective classification
has been studied and applied for security and privacy problems
for more than a decade, how to address this challenge is still an
open question. For instance, most existing methods simply set a
constant weight to all edges.

In this work, we propose a novel collective classification
framework to address this long-standing challenge. We first
formulate learning edge weights as an optimization problem,
which quantifies the goals about the final reputation scores
that we aim to achieve. However, it is computationally hard
to solve the optimization problem because the final reputation
scores depend on the edge weights in a very complex way. To
address the computational challenge, we propose to jointly learn
the edge weights and propagate the reputation scores, which is
essentially an approximate solution to the optimization problem.
We compare our framework with state-of-the-art methods for
graph-based security and privacy analytics using four large-scale
real-world datasets from various application scenarios such as
Sybil detection in social networks, fake review detection in Yelp,
and attribute inference attacks. Our results demonstrate that
our framework achieves higher accuracies than state-of-the-art
methods with an acceptable computational overhead.

I. INTRODUCTION

Graphs are a powerful tool to represent complex interac-
tions between various entities. A particular family of graph-
based machine learning techniques called collective classifi-
cation [1] have been applied to various security and privacy
problems, including malware detection [2]–[6], Sybil detec-
tion in social networks [7]–[22], fake review detection [23]–
[25], malicious website detection [26]–[28], auction fraud
detection [29], APT infection detection [30], and attribute

Fig. 1: Illustration of collective classification.

inference attacks [31]–[37]. Moreover, some collective classifi-
cation methods have been deployed in industry, e.g., Symantec
deployed collective classification to detect malware [5] and
Tuenti, the largest social network in Spain, deployed collective
classification to detect Sybils [13], [14].

Figure 1 illustrates the setting of collective classification:
given 1) a graph, which can be either undirected or directed,
and 2) a training dataset, which consists of some labeled
positive nodes and/or labeled negative nodes, collective clas-
sification is to classify the remaining unlabeled nodes to be
positive or negative simultaneously. For different security and
privacy applications, nodes represent different entities, edges
represent different relationships, and the labels “positive” and
“negative” have different semantic meanings. Table I shows
the possible meanings of nodes, edges, positive, and negative
in several security and privacy problems. We will discuss more
details about how these problems were modeled as collective
classification in Section II.

State-of-the-art collective classification methods [2], [5],
[6], [11], [13]–[15], [17]–[20], [22]–[29] have three key steps.
In Step I, they assign a prior reputation score to every node
in the graph based on the training dataset. In Step II, they
assign weights to edges in the graph, where a large weight
of an edge (u, v) indicates that u and v are likely to have
the same label. In Step III, they iteratively propagate the
prior reputation scores among the weighted graph to obtain
a posterior reputation score for every node. The posterior
reputation scores are used to classify or rank nodes. The details
of one or more of the three steps could be different for different
collective classification methods. For instance, some methods
leverage random walks for propagation in Step III, while some
methods leverage loopy belief propagation in Step III, which
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TABLE I: Possible meanings of nodes, edges, positive, and negative in example security and privacy application scenarios.

Security & Privacy Problem Nodes Edges Positive Negative
Sybil Detection Users Friendship, Following Sybil Benign User

Fake Review Detection Users, Reviews, Products Reviewing Fake Review Genuine Review

Malware Detection Files, Hosts Appearance Malware Benign File

Malicious Website Detection Websites Redirection Malicious Website Benign Website

Attribute Inference Attack Users Friendship Having the Attribute Not Having the Attribute

we call random walk (RW)-based methods and loopy belief
propagation (LBP)-based methods, respectively.

An edge (u, v) is said to be homogeneous if u and v have
the same label, otherwise it is said to be heterogeneous. The
propagation in Step III requires that homogeneous edges have
large weights and heterogeneous edges have small weights.
However, existing methods face a key limitation: they assign
small weights to a large number of homogeneous edges and/or
large weights to a large number of heterogeneous edges in Step
II. Specifically, most existing methods [2], [3], [5], [13], [15],
[17]–[20], [23]–[25], [29] simply set a large constant weight
to all edges, ignoring the difference between homogeneous
and heterogeneous edges. A few methods [14], [22] proposed
to learn edge weights using features extracted from nodes’
characteristics and the graph structure. For instance, to detect
Sybils in social networks, Íntegro [14] first learns a classifier
based on users’ profiles to predict the probability that a node
is a victim (a victim is a benign user connecting to at least one
Sybil) and then assigns small weights to all edges of the nodes
that are victims with high probabilities. However, Íntegro
assigns small weights to a large number of homogeneous
edges, because a large number of nodes are victims [22].
SybilFuse [22] extracts features from the graph structure for
each node, learns a classifier to predict the prior reputation
score for each node using the training dataset, and uses the
prior reputation scores to assign edge weights. In particular,
an edge has a larger weight if the two nodes of the edge
are more likely to have the same label, where a node’s label
is determined by its prior reputation score. Since the prior
reputation scores are inaccurate at determining nodes’ labels
(otherwise we do not need to propagate the prior reputation
scores to obtain posterior reputation scores in Step III), a large
number of heterogeneous edges are assigned large weights
while a large number of homogeneous edges are assigned small
weights.

As a result, existing methods have a limited success in
the security and privacy problems that have a large amount of
heterogeneous edges, e.g., Sybil detection in weak-trust social
networks like Twitter, fake review detection, and attribute
inference.

In this work, we propose a new framework to learn edge
weights for graph-based security and privacy analytics. Our
framework is applicable to both RW-based and LBP-based
methods. Our key intuition is that the edge weights and
the final posterior reputation scores produced by a collective
classification method should satisfy two goals. First, the la-
beled positive nodes and the labeled negative nodes in the
training dataset should have high and low posterior reputation

scores, respectively. Second, the edge weights and the posterior
reputation scores should be consistent. Specifically, we use the
final posterior reputation scores to predict labels of nodes; an
edge is predicted to be homogeneous if the two nodes of the
edge are predicted to have the same label, otherwise the edge
is predicted to be heterogeneous. Consistency between edge
weights and posterior reputation scores means that an edge that
is predicted to be homogeneous should have a large weight,
while an edge that is predicted to be heterogeneous should
have a small weight.

We formulate learning edge weights as minimizing an
objective function, where the objective function is small if
the two goals are achieved. However, it is computationally
challenging to solve the formulated optimization problem (we
will discuss more details in Section IV-B) because the final
posterior reputation scores depend on the edge weights in a
very complex way, e.g., every edge weight could influence the
final posterior reputation score of every node.

To address the computational challenge, we propose to
jointly learn the edge weights and propagate the posterior
reputation scores, which can be viewed as an approximate
solution to our formulated optimization problem. Our key idea
is that the posterior reputation scores are iteratively updated
in Step III and thus we iteratively learn edge weights using
the current posterior reputation scores instead of the final
posterior reputation scores. Specifically, given the posterior
reputation scores in the tth iteration, we learn new edge
weights and then use the learnt edge weights to update the
posterior reputation scores in the (t+1)th iteration. We aim to
learn the edge weights to satisfy the two goals: 1) the posterior
reputation scores in the (t+1)th iteration should be large and
small for the labeled positive nodes and negative nodes in the
training dataset, respectively; and 2) the learnt edge weights
should be consistent with the posterior reputation scores in
the tth iteration. Learning edge weights is efficient under our
framework because the posterior reputation scores of the nodes
in the training dataset in the (t + 1)th iteration only depend
on weights of the edges of the nodes in the training dataset.

We compare our framework with state-of-the-art RW-based
and LBP-based methods using multiple large-scale real-world
datasets, which are from different application scenarios includ-
ing Sybil detection in social networks, fake review detection,
and attribute inference attacks. For instance, the Twitter dataset
for Sybil detection has 42M users and 1.5B edges, while the
Google+ dataset for attribute inference attacks has 5M users
and 31M edges. Our results demonstrate that our framework
has significantly higher accuracies than state-of-the-art meth-
ods, with an acceptable computational overhead (around 2-
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3 times slower than state-of-the-art methods). Moreover, we
apply our framework to detect Sybils in a large-scale directed
Sina Weibo (a large social network in China) dataset with 3.5M
users and 653M edges. We manually verify the detected Sybils
and our results show that our framework can accurately detect
Sybils, e.g., 95% of the top-ranked 100K users are Sybils.

We summarize our contributions as follows:

• We propose a novel framework to learn edge weights for
graph-based security and privacy analytics.

• We formulate learning edge weights as solving an op-
timization problem. Moreover, we design efficient algo-
rithms to solve the optimization problem.

• We compare our framework with state-of-the-art methods
using multiple large-scale real-world datasets from differ-
ent security and privacy application scenarios.

II. RELATED WORK

Modeling security/privacy problems as graph-based col-
lective classification problems: Studies from multiple
communities–such as security, data mining, and networking–
have shown that various security and privacy problems can
be modeled as collective classification problems on graphs.
Specifically, given a graph (undirected or directed) and a train-
ing dataset consisting of labeled positive nodes and negative
nodes, collective classification aims to classify the remaining
unlabeled nodes simultaneously.

For instance, in Sybil detection on social networks, the
graph is a social graph, where nodes are users and edges
represent friendships or following relationships between users;
a positive node means a Sybil and a negative node means a be-
nign user. In malware detection, a host-file graph is constructed
to represent the relationships between hosts and executable
files [2]–[6]. Specifically, in this graph, a node is a host or
an executable file; an edge between a host and an executable
file means that the file appears on the host; a positive node
means a malware or compromised host, while a negative node
means a benign file or normal host. In fake review detection,
a user–review–product graph is constructed to represent the
relationships between users, reviews, and products [25]. In this
graph, a node is a user, a review, or a product; an edge between
a user and a review means that the user writes the review; an
edge between a review and a product means that the review is
for the product; a positive node means a fake review while a
negative node means a genuine review. In attribute inference
attacks [31], [32], [34], [35], the graph is the social graph
between users; a node is positive if the node has a given
attribute (e.g., republican), otherwise the node is negative.
Table I summarizes several security and privacy problems that
can be modeled as collective classification on graphs. We note
that some security problems [42]–[44] can be modeled as
graph analytics other than collective classification. However,
we will focus on collective classification based security/privacy
analytics.

State-of-the-art collective classification methods have three
key steps: a prior reputation score is assigned to every node
in the graph based on the training dataset in Step I, a weight
is assigned to every edge in the graph in Step II, and the
prior reputation scores are propagated among the weighted
graph to obtain a posterior reputation score for every node

in Step III. A larger reputation score means that the node is
more likely to be positive. Different collective classification
methods have different details with respect to the three steps.
For example, random walk (RW)-based methods use various
random walks in Step III, while loopy belief propagation
(LBP)-based methods rely on LBP in Step III. Table II summa-
rizes representative collective classification methods developed
for different security and privacy applications. We note that a
method developed for one application (e.g., Sybil detection)
could also be applied to other applications (e.g., attribute
inference). Next, we discuss RW-based methods and LBP-
based methods. In particular, we will discuss the differences
in their three steps.

RW-based methods: Depending on which labeled nodes in
the training dataset are used to assign the prior reputation
scores in Step I, we classify RW-based methods into three
categories, i.e., RW-N (Negative), RW-P (Positive), and RW-
B (Both). RW-N [13], [14], [26]–[28], [34] leverages labeled
negative nodes to assign prior reputation scores, e.g., every
labeled negative node in the training dataset has a prior
reputation score of -1 (the absolute value of the reputation
score does not matter since these RW-based methods rely
on relative reputation scores) and the remaining nodes have
prior reputation scores of 0. RW-P [27], [38] leverages labeled
positive nodes to assign prior reputation scores, e.g., every
labeled positive node has a prior reputation score of 1 and the
remaining nodes have prior reputation scores of 0. RW-B [3],
[19], [45] leverages both labeled positive nodes and labeled
negative nodes to assign prior reputation scores, e.g., labeled
positive nodes, labeled negative nodes, and unlabeled nodes
have prior reputation scores of 1, -1, and 0, respectively.

In Step II, most RW-based methods simply set a constant
weight to all edges. Íntegro [14], developed under the context
of Sybil detection in social networks, learns edge weights
using features extracted from nodes. Specifically, Íntegro first
trains a node classifier based on nodes’ features to predict the
probability that a node is a victim (a victim is a negative node
connecting to at least one positive node). Then, Íntegro assigns
small weights to all edges of the nodes that are predicted to
be victims. To be convenient with the notations, we denote
Íntegro as RW-FLW (Fixed Learnt Weights) since it learns the
edge weights and fixes them in Step II.

In Step III, different methods use different random walks to
propagate the reputation scores. For instance, on an undirected
graph, RW-N, RW-P, and RW-FLW iteratively distribute a
node’s current reputation score to its neighbors and a node
sums the reputation scores distributed from its neighbors as
its new reputation score. In particular, a node u shares a
fraction of its reputation score to a neighbor v, where the
fraction is the edge weight divided by the weighted degree
of u. On a directed graph, RW-N [26] (or RW-P [12], [27])
shares a fraction of node u’s current reputation score to each
outgoing (or incoming) neighbor, where the fraction is the
edge weight divided by the total weights of u’s outgoing (or
incoming) edges. RW-B is applicable to undirected graphs and
uses a different random walk to propagate reputation scores.
Specifically, the fraction is the edge weight divided by the
weighted degree of v instead of u when u shares its reputation
score to a neighbor v.
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TABLE II: Representative methods developed for different security and privacy applications. Training Dataset: Negative,
Positive, or Both means that a method leverages labeled negative nodes, labeled positive nodes, or both to assign prior
reputation scores. Weight Learning: Y or N means that a method learns edge weights or does not. We note that all these
methods assign edge weights and fix them in Step II.

Method Application Graph
Type

Training
Dataset

Weight
Learning Publication

RW

SybilGuard [7] Sybil Detection Undirected Negative N SIGCOMM’06

SybilLimit [8] Sybil Detection Undirected Negative N S&P’08

SybilInfer [9] Sybil Detection Undirected Negative N NDSS’09

SybilRank [13] Sybil Detection Undirected Negative N NSDI’12

CIA [38] Sybil Detection Directed Positive N WWW’12

Íntegro [14] Sybil Detection Undirected Negative Y NDSS’15

SmartWalk [39] Sybil Detection Undirected Negative N CCS’16

SybilWalk [19] Sybil Detection Undirected Both N DSN’17

ELSIEDET [21] Sybil Detection Undirected Positive N NDSS’18

TrustRank [26] Malicious Website Detection Directed Negative N VLDB’04

DistrustRank [27] Malicious Website Detection Directed Positive N MTW’06

Li et al. [28] Malicious Website Detection Directed Negative N S&P’13

Ye et al. [3] Malware Detection Undirected Both N KDD’11

Marmite [6] Malware Detection Undirected Both N ACSAC’17

RWwR-SAN [32] Attribute Inference Undirected Positive N TIST’14

VAIL [34] Attribute Inference Undirected Positive N Security’16

EdgeExplain [40] Attribute Inference Undirected Both N JMLR’17

LBP

SybilBelief [15] Sybil Detection Undirected Both N TIFS’14

SybilSCAR [17], [18] Sybil Detection Undirected Both N INFOCOM’17

GANG [20] Sybil Detection Directed Both N ICDM’17

SybilFuse [22] Sybil Detection Undirected Both Y CNS’18

Burst [41] Fake Review Detection Undirected Both N ICWSM’13

FraudEagle [23] Fake Review Detection Undirected Both N ICWSM’13

SpEagle [25] Fake Review Detection Undirected Both N KDD’15

Polonium [2] Malware Detection Undirected Both N SDM’11

AESOP [5] Malware Detection Undirected Both N KDD’14

NetProbe [29] Auction Fraud Detection Undirected Both N WWW’07

Olteanu et al. [36] Attribute Inference Undirected Both N TMC’17

AttriInfer [35] Attribute Inference Undirected Both N WWW’17
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LBP-based methods: These methods [2], [5], [15], [17], [18],
[20], [22]–[25], [29] leverage both labeled positive nodes and
labeled negative nodes in the training dataset to assign prior
reputation scores in Step I, e.g., labeled positive nodes, labeled
negative nodes, and unlabeled nodes have prior reputation
scores of 1, -1, and 0, respectively. In Step II, most LBP-
based methods simply set a constant weight to all edges in
the graph. SybilFuse [22], developed under the context of
Sybil detection, learns edge weights using features extracted
from the graph structure. Specifically, SybilFuse first trains a
node classifier using structure-based node features (e.g., local
clustering coefficient) to predict the prior reputation score for
each node. Then, SybilFuse uses the prior reputation scores
to assign edge weights in a way that a larger edge weight
is assigned if the two corresponding nodes are more likely
to have the same label based on the prior reputation scores.
We note that SybilFuse can also extract structure-based edge
features (e.g., common neighbors between two nodes) to train
an edge classifier to assign the edge weights. However, such
edge weights are not effective in real-world graphs as shown
in [22]. To stress the fact that SybilFuse learns edge weights
and fixes them in Step II, we denote it as LBP-FLW.

In Step III, these LBP-based methods [2], [5], [15], [23]–
[25], [29] leverage either a standard LBP [46] or an optimized
LBP [17], [18], [20], [47], [48] to propagate the reputation
scores among the weighted graph. The optimized LBP is an
order of magnitude more efficient than the standard LBP. On
an undirected graph, the optimized LBP shares a fraction of a
node u’s reputation score to its neighbor v, where the fraction
is simply the edge weight, and a node sums its prior reputation
score and the reputation scores shared from its neighbors as
its new reputation score in each iteration. On a directed graph,
the optimized LBP shares a node u’s reputation score to its
neighbor v like on an undirected graph if both the directed
edges (u, v) and (v, u) exist. However, when u connects with
v with only an outgoing edge, the optimized LBP shares u’s
reputation score with v like on an undirected graph only if u’s
current reputation score is negative. When u connects with v
with only an incoming edge, the optimized LBP shares u’s
reputation score with v only if u’s current reputation score is
positive.

III. PROBLEM DEFINITION

Suppose we are given a graph (either undirected or di-
rected) G = (V,E), where u ∈ V is a node and (u, v) ∈ E is
an edge, which indicates a certain relationship between u and
v. |V | and |E| are the number of nodes and edges, respectively.
We are also given a training dataset L, which consists of a
set of labeled positive nodes LP and a set of labeled negative
nodes LN . We denote by yu the label of node u, where yu = 1
means that u is positive and yu = −1 means that u is negative.
We formally define the collective classification problem as
follows:

Definition 1 (Collective Classification Problem): Suppose
we are given 1) a graph (either undirected or directed) and 2)
a training dataset including both labeled positive nodes and
labeled negative nodes. Collective classification is to classify
or rank the unlabeled nodes in the graph.

A. Evaluation Metrics

Like previous studies [2], [5], [10], [11], [13]–[15], [17],
[20], we adopt the following metrics to evaluate a collective
classification method for graph-based security and privacy
analytics.

Accuracy: One way to measure the accuracy of a collective
classification method is to use its posterior reputation scores
to classify the unlabeled nodes, i.e., a node is predicted to
be positive if its posterior reputation score is bigger than a
certain threshold, and negative otherwise. Then, accuracy is
the fraction of unlabeled nodes whose labels are correctly
predicted. However, such accuracy highly relies on the thresh-
old. Moreover, it is challenging to select a good threshold
for various collective classification methods. Therefore, Area
Under the Receiver Operating Characteristic Curve (AUC) is
widely used to measure the accuracy of a collective classi-
fication method. AUC does not depend on a threshold and
can be consistently used to evaluate all collective classification
methods that produce posterior reputation scores. In particular,
we rank all unlabeled nodes in a decreasing order with respect
to their posterior reputation scores. AUC is the probability
that a randomly selected positive node ranks higher than a
randomly selected negative node. If a method ranks all positive
nodes before negative nodes, then the method has an AUC of
1 (there exists a threshold such that all nodes are correctly
classified); if a method ranks all negative nodes before positive
nodes, then the method has an AUC of 0 (there exists a
threshold such that all nodes are incorrectly classified); a
method has an AUC of 0.5 if the method ranks the unlabeled
nodes uniformly at random.

Scalability: In real-world security and privacy problems, the
graph often has a very large scale, e.g., hundreds of millions of
nodes and edges. Therefore, a collective classification method
should be scalable. In particular, we use the computational time
a method consumes to measure its scalability/efficiency.

Robustness to label noise: The training dataset is often
obtained via manual inspection of nodes, or is crowdsourced
from users or workers in a crowdsourcing platform such as
Amazon Mechanical Turk [49]. For instance, online social
networks often provide users an option to report a certain user
as a spammer or fraudulent user, which could be incorporated
into the training dataset. However, due to human mistakes [49],
[50], the training dataset could have noise, i.e., some negative
nodes are falsely labeled as positive and/or some positive
nodes are falsely labeled as negative. Therefore, we also use
robustness to label noise in the training dataset to evaluate
collective classification methods. In particular, suppose α%
of the nodes in the training dataset are falsely labeled and
a method achieves an AUC of β with such training dataset.
Then, we say the method has a robustness of β when the label
noise is at the level of α%.

IV. OUR FRAMEWORK

We first summarize state-of-the-art collective classification
methods. In particular, the posterior reputation scores are es-
sentially solutions to a system of equations. Then, we formulate
learning edge weights as an optimization problem, which quan-
tifies our goals on the posterior reputation scores. However,
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it is computationally challenging to solve this optimization
problem because the posterior reputation scores depend on
the edge weights in very complex ways. Finally, we introduce
our strategy to alternately learn edge weights and propagate
posterior reputation scores. Our strategy is an approximate
solution to our formulated optimization problem.

A. Background

In state-of-the-art collective classification methods [2], [5],
[11], [13]–[15], [17], [19], [20], [22]–[29], [35], [38], the pos-
terior reputation scores are solutions to the following system
of equations:

p = f(q,W,p), (1)

where the column vector q is the nodes’ prior reputation
scores, the column vector p is the nodes’ posterior reputation
scores, and the matrix W is the edge weight matrix. Different
methods have different prior reputation scores q, assign differ-
ent edge weight matrix W, and use different function f . Next,
we discuss the choices for these parameters in state-of-the-
art methods. Since LBP-based methods outperform RW-based
methods [17], [20], [35], [51], we will focus on LBP-based
methods for simplicity. However, we stress that our framework
is also applicable to RW-based methods (see more details in
Section VI).

LBP-based methods on undirected graphs: These meth-
ods [2], [5], [15], [17], [22], [29], [35] often assign a positive
prior reputation score to a labeled positive node and a negative
prior reputation score to a labeled negative node in the training
dataset. For example, the prior reputation score qu of the node
u can be assigned as follows:

qu =


θ if u ∈ LP

−θ if u ∈ LN

0 otherwise,
(2)

where θ > 0 (e.g., θ = 1 in our experiments), LP is the set of
labeled positive nodes, and LN is the set of labeled negative
nodes in the training dataset. The entry wuv of the matrix W
is 0 if u and v are not connected, otherwise wuv and wvu are
the weight of the edge (u, v). The edge weight wuv indicates
the likelihood that u and v have the same label. Specifically,
wuv > 0 means that u and v are likely to have the same label,
i.e., the edge (u, v) is homogeneous; wuv < 0 means that u
and v are likely to have different labels, i.e., the edge (u, v) is
heterogeneous; wuv = 0 means that u and v are not correlated.
Moreover, the function f is as follows:

f(q,W,p) = q+Wp, (3)

where we consider the optimized LBP [17], [20], [47], [48]
instead of the standard LBP [46].

LBP-based methods on directed graphs: These meth-
ods [20] also assign the prior reputation scores in Equation 2.
Moreover, each connected node pair (u, v) has two entries
wuv and wvu in the weight matrix W, where wuv does not
necessarily equal wvu. However, they use a different function
f as follows:

f(q,W,p) = q+ (W ◦Ab)p+ (W ◦Ai)I(p) + (W ◦Ao)J (p),
(4)

where the operator ◦ represents element-wise product of two
matrices; the matrix Ab is the adjacency matrix for bidirec-
tional edges, i.e., if both the edge (u, v) and the edge (v, u)
exist, then Ab,uv = Ab,vu = 1, otherwise Ab,uv = Ab,vu = 0;
Ai is the adjacency matrix for unidirectional incoming edges,
i.e., if (v, u) exists but (u, v) does not, then Ai,uv = 1, other-
wise Ai,uv = 0; Ao is the adjacency matrix for unidirectional
outgoing edges, i.e., if (u, v) exists but (v, u) does not, then
Ao,uv = 1, otherwise Ao,uv = 0; I and J are functions that
apply to every entry of p, and they reset the positive and
negative entries to be 0, respectively.

Suppose v is a neighbor of u. In LBP-based methods,
a bidirectional neighbor v multiplies its posterior reputation
score by the edge weight and shares it with the node u; an
incoming neighbor v does so only if v’s posterior reputation
score is negative; and an outgoing neighbor v does so only if
v’s posterior reputation score is positive. The intuition is that
an incoming neighbor v influences the node u’s label only
if v is predicted to be negative, while an outgoing neighbor
v influences the node u’s label only if v is predicted to
be positive. For instance, in Sybil detection on Twitter, if v
follows u but u does not follow back, then v is informative
for determining u’s label only if v is benign, because a Sybil
can arbitrarily follow any users; if u follows v but v does not
follow back, then v is informative for determining u’s label
only if v is Sybil, because any users can follow a benign user.

Iteratively solving the posterior reputation scores: The
posterior reputation scores in Equation 1 are often solved
iteratively. Specifically, the posterior reputation scores are
initialized to the prior reputation scores. Then, the posterior
reputation scores are iteratively updated until convergence as
follows:

p(t+1) = f(q,W,p(t)), (5)

where p(t) is the posterior reputation scores in the tth iteration.
Note that the edge weight matrix W is fixed during the
iterative process. Finally, in LBP-based methods, a node is
predicted to be positive if the node’s posterior reputation score
is positive, otherwise the node is predicted to be negative.

B. Learning Edge Weights as An Optimization Problem

Our key intuition is that the edge weights and the poste-
rior reputation scores produced by a collective classification
method should satisfy the following two goals.

• Goal 1. The posterior reputation scores of the labeled
positive nodes and the labeled negative nodes in the
training dataset should be large and small, respectively.
• Goal 2. The edge weights and the posterior reputation

scores should be consistent. In particular, we use the
posterior reputation scores to predict node labels; an edge
is predicted to be homogeneous if the two corresponding
nodes are predicted to have the same label, otherwise the
edge is predicted to be heterogeneous. Consistency means
that an edge that is predicted to be homogeneous should
have a positive weight, while an edge that is predicted to
be heterogeneous should have a negative weight.

Quantifying Goal 1: Given the training dataset L, we quantify
the Goal 1 as finding an edge weight matrix W such that
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the difference between the posterior reputation scores of the
labeled nodes and their labels is minimized. Formally, we aim
to find an edge weight matrix W that minimizes the following
function:

L(W) =
1

2

∑
l∈L

(pl − yl)
2, (6)

where pl is the posterior reputation score of node l and yl is
the label of node l in the training dataset, where yl = 1 if u is
positive and yl = −1 otherwise. In machine learning, L(W)
is known as a loss function over the training dataset.

Quantifying Goal 2: An edge weight wuv is consistent with
the posterior reputation scores of u and v when 1) u and v are
predicted to have the same label (i.e., pupv > 0) and wuv is
positive, or 2) u and v are predicted to have different labels
(i.e., pupv < 0) and wuv is negative. Therefore, to capture
Goal 2, we aim to learn a weight matrix W that maximizes
the following function:

C(W) =
∑

(u,v)∈E

pupvwuv, (7)

where C(W) measures the consistency of a given weight
matrix.

Optimization problem: Combining the two goals, we aim to
learn a weight matrix W via solving the following optimiza-
tion problem:

min
W

L(W) = L(W)− λC(W), (8)

where λ > 0 is a hyperparameter to balance the two goals.

Challenge for solving the optimization problem: It is com-
putationally challenging to solve the optimization problem in
Equation 8. The reason is that every node’s posterior reputation
score depends on every edge weight. For instance, we can use
the gradient descent method to solve the optimization problem.
Specifically, we can iteratively update the edge weight wuv as
follows:

wuv ← wuv − γ
∂L(W)

∂wuv
, (9)

where γ is called learning rate. However, the derivative
∂L(W)
∂wuv

depends on ∂p
∂wuv

(derivative of every node’s posterior
reputation score with respect to the edge weight), due to the
consistency term C(W). Since p is a solution to Equation 1,
∂p

∂wuv
is a solution to the following system of equations:

∂p

∂wuv
=

∂f(q,W,p)

∂wuv
. (10)

Therefore, in each iteration of gradient descent at updating
the weight matrix, we need to iteratively solve Equation 10
with |V | variables for each edge, which is computationally
infeasible for large graphs.

W(0) p(0)

W(1) p(1)

W(2) p(2)

…

)

Update p Update W

…
p

p)

Fig. 2: Jointly learning edge weights and updating posterior
reputation scores.

C. Joint Weight Learning and Propagation

The reason for the computational challenge is that we
quantify the two goals using the final posterior reputation
scores. We observe that the final posterior reputation scores are
iteratively computed using Equation 5. Therefore, we propose
to quantify the two goals using the current posterior reputation
scores during the iterative process. Specifically, given the
posterior reputation scores in the tth iteration, we aim to learn
a weight matrix such that 1) the posterior reputation scores in
the (t + 1)th iteration of the labeled positive nodes and the
labeled negative nodes in the training dataset are large and
small, respectively (Goal 1); and 2) the edge weights and the
posterior reputation scores in the tth iteration are consistent
(Goal 2). Then, we compute the posterior reputation scores
in the (t + 1)th iteration using the learnt weight matrix. In
other words, we alternately learn edge weights and propagate
reputation scores. Figure 2 illustrates our framework.

Propagating posterior reputation scores: Given the weight
matrix W(t−1) and the posterior reputation scores p(t−1) in
the (t − 1)th iteration, we compute the posterior reputation
score p(t) in the tth iteration as follows:

p(t) = f(q,W(t−1),p(t−1)). (11)

Learning weight matrix: Moreover, given the weight matrix
W(t−1) in the (t− 1)th iteration and the posterior reputation
score p(t) in the tth iteration, we learn the weight matrix W(t)

in the tth iteration as a solution to the following optimization
problem:

min
W(t)

L(W(t)) =
1

2

∑
l∈L

(p
(t+1)
l − yl)

2 − λ
∑

(u,v)∈E

p(t)u p(t)v w(t)
uv ,

(12)

where the first term in the objective function L(W(t)) quan-
tifies the Goal 1, the second term quantifies the Goal 2,
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and p(t+1) = f(q,W(t),p(t)). From a machine learning
perspective, the first term is known as a loss function over the
training dataset, while the second term is a regularization term,
which we call consistency regularization. We use gradient
descent to solve the optimization problem. Specifically, we
initialize W(t) to be the weight matrix W(t−1), and then we
iteratively update the edge weight w(t)

uv for each edge (u, v)

using Equation 9: w(t)
uv ← w

(t)
uv−γ ∂L(W(t))

∂w
(t)
uv

. However, different
from the objective function L(W) in Equation 8, the derivative
∂L(W(t))

∂w
(t)
uv

can be efficiently computed because p(t) is given. In
particular, we have:

∂L(W(t))

∂w
(t)
uv

=
∑
l∈L

(p
(t+1)
l − yl)

∂p
(t+1)
l

∂w
(t)
uv

− λp(t)u p(t)v . (13)

For LBP-based methods on undirected graphs, the function
f is described in Equation 3. Therefore, we have:

LBP for undirected graphs:

∂p
(t+1)
l

∂w
(t)
uv

=


p
(t)
v if u = l

p
(t)
u if v = l

0 otherwise
(14)

For LBP on directed graphs, the function f is described in
Equation 4. Therefore, we have:

LBP for directed graphs:

∂p
(t+1)
l

∂w
(t)
uv

=

{
Ab,uvp

(t)
v +Ai,uvI(p(t)v ) +Ao,uvJ (p(t)v ) if u = l

0 otherwise
(15)

Note that, in gradient descent, we can repeat multiple iterations
to compute the weight matrix W(t). However, we find that our
methods already work well using only one iteration. Moreover,
one iteration makes our methods more efficient. Therefore, we
will apply one iteration to compute W(t).

We alternately propagate posterior reputation scores and
learn edge weights until the posterior reputation scores in
two consecutive alternations are small enough (e.g., ‖p(t+1)−
p(t)‖1/‖p(t+1)‖1 < 10−3) or we have reached the allowed
maximum number of alternations (e.g., 15 in our experiments).

Computational complexity: In both propagating posterior
reputation scores and learning edge weights, our framework
traverses all edges. The time complexity of our framework is
O(|E|·T ), where T is the number of alternations. State-of-the-
art LBP-based methods [2], [15], [17], [20], [29], [35] have
the same asymptotic time complexity. As we will demonstrate
in our experiments, our framework will be 2-3 times slower
than state-of-the-art LBP-based methods in practice. This is
because our framework learns edge weights in each iteration.
However, this time overhead is tolerable in practice, especially
the targeted security and privacy applications are not time-
critical. For instance, on a Twitter dataset with 1.5 billion
edges, our method finishes within 3 hours on a server with
512GB memory and 32 cores. Moreover, our method can be
easily parallelized and should be scalable to graphs with tens
of billions of edges on a modern data center.

V. EVALUATION

We evaluate our framework on two security applications
(Sybil detection, fake review detection) and one privacy ap-
plication (attribute inference attacks in social networks). We
compare our framework with state-of-the-art RW-based meth-
ods and LBP-based methods in terms of AUC, scalability, and
robustness to label noise.

A. Experimental Setup

1) Dataset Description: We use a Twitter dataset and a
Sina Weibo dataset for Sybil detection, a Yelp dataset for fake
review detection, and a Google+ dataset for attribute inference
attacks. Table III summarizes the basic dataset statistics.

Twitter: We obtained a Twitter dataset with real Sybils from
Wang et al. [17]. Specifically, the directed Twitter follower-
followee graph was collected by Kwak et al. [52]. A directed
edge (u, v) means that u follows v. This graph contains around
42M users and 1.5B edges. A user that was suspended by
Twitter is treated as a Sybil (positive), while an active user
is treated as benign (negative). In total, 205,355 nodes are
Sybils, 36,156,909 nodes are benign, and the remaining nodes
are unlabeled.

Sina Weibo: We obtained a Sina Weibo dataset with around
3.5M users and 653M directed edges from Fu et al. [16]. Like
Twitter, a directed edge (u, v) means that u follows v. Fu
et al. also manually labeled 2000 users sampled uniformly at
random. Among them, 482 were Sybil users, 1498 were benign
users, and 20 were unknown.

Yelp: We obtained a Yelp dataset from [25], which contains
Yelp reviews for restaurants located in New York City. The
dataset has 160,225 users, 923 products, and 359,052 reviews.
By constructing an undirected User-Review-Product graph, we
have 520,230 nodes and 718,144 edges. A review is treated as
fake if the review is filtered or not recommended by Yelp,
otherwise the review is treated as genuine. Around 10% of the
reviews are fake in the dataset. In the User-Review-Product
graph, we only concern the labels of the review nodes, where
a fake review is treated as a positive node and a genuine review
is treated as a negative node.

Google+: We obtained an undirected Google+ social network
with user attributes from [35], [53]. The dataset has around
5.7M users and 31M edges. The user attribute is cities lived
and the dataset has 50 most popular cities. 3.25% of users
disclosed at least one of these cities as their cities lived. We
treat each city as a binary attribute and perform attribute
inference for each binary attribute separately. Specifically,
given a city, a user is treated as positive if the user lives/lived
in the city, while treated as negative if the user does not.

2) Training and testing: On Twitter, we sample 3,000
positive nodes and 3,000 negative nodes uniformly at random
as the training set; and we treat the remaining positive and
negative nodes as the testing set. On Sina Weibo, we split
the 1980 labeled users into two halves; one is treated as
the training set and the other as the testing set. On Yelp,
we randomly sample 1,000 fake reviews and 1,000 genuine
reviews as the training set; and we treat the remaining reviews
as the testing set. On Google+, we select 75% of the users who
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TABLE III: Dataset statistics.

Dataset #Nodes #Edges Ave. degree

Twitter 41,652,230 1,468,364,884 71

Sina Weibo 3,538,487 652,889,971 369

Yelp 520,230 718,144 3

Google+ 5,735,175 30,644,909 11

TABLE IV: AUCs of undirected methods.

Methods Twitter Sina Weibo Yelp Google+

RW

RW-N-U 0.57 0.61 0.55 0.59

RW-P-U 0.58 0.61 0.57 0.58

RW-LFW-U 0.53 0.54 0.48 0.57

RW-B-U 0.63 0.68 0.58 0.63

LBP
LBP-U 0.64 0.68 0.58 0.66

LBP-FLW-U 0.62 0.66 0.58 0.66

Ours

LBP-JWP-w/o-U 0.69 0.74 0.60 0.69

LBP-JWP-L1-U 0.65 0.70 0.59 0.66

LBP-JWP-L2-U 0.68 0.72 0.60 0.68

LBP-JWP-U 0.73 0.77 0.62 0.72

have at least one city as training set and treat the remaining
users who have at least one city as testing set. Recall that
we have 50 cities in the Google+ dataset, where each city is
treated as a binary attribute independently. The AUC of one
method for the Google+ dataset is averaged over the 50 cities.

3) Compared methods: We compare our framework with
state-of-the-art RW-based methods and LBP-based methods on
undirected graphs and directed graphs.

RW-based methods for undirected graphs (RW-N-U, RW-
P-U, RW-B-U, and RW-FLW-U): We consider the RW-
based methods RW-N [13], RW-P [27], RW-B [19], and RW-
FLW [14]. Please refer to Section II for details about these
methods. Note that the method developed by Wu et al. [27] is
originally for directed graphs. We apply it to undirected graphs
via ignoring the edge directions. RW-FLW requires a classifier
to predict the probability that a node is a victim. We consider
the classifier is optimal, i.e., it correctly predicts all victims,
which gives advantages to RW-FLW. More specifically, we set
such probability of each victim to be 0.9 and such probability
of each non-victim to be 0.1. We add a suffix “-U” to each
method to indicate that they are for undirected graphs.

We note that Twitter and Sina Weibo are directed graphs.
When applying these methods on the two datasets, we trans-
form them to undirected graphs. Specifically, we keep an edge
between two nodes only if they are connected by directed
edges in both directions. Moreover, these methods only work
for connected graphs, so we extract the largest connected
component from the transformed undirected graph.

TABLE V: AUCs of directed methods.

Methods Twitter Sina Weibo

RW
RW-N-D 0.60 0.66

RW-P-D 0.63 0.64

LBP LBP-D 0.72 0.80

Ours

LBP-JWP-w/o-D 0.75 0.82

LBP-JWP-L1-D 0.72 0.79

LBP-JWP-L2-D 0.73 0.80

LBP-JWP-D 0.78 0.85

RW-based methods for directed graphs (RW-N-D and
RW-P-D): We use TrustRank [26] as RW-N-D and Dis-
trustRank [27] as RW-P-D. We add a suffix “-D” to indicate
that these methods are for directed graphs.

LBP-based methods for undirected graphs (LBP-U, LBP-
FLW-U): We consider the LBP method with the optimized
LBP [35] and LBP-FLW [22] that learns edge weights. Like
RW-based methods for undirected graphs, we transform the
directed Twitter and Sina Weibo graphs into undirected ones.
In LBP-FLW, we extract structure features for nodes and learn
an SVM classifier to predict the prior reputation score for each
unlabeled node. Then, following the setting in [22], we assign
a weight 0.4 to an edge if the two corresponding nodes are
predicted to have the same label and a weight −0.4 otherwise.
For the undirected Twitter and Sina Weibo graphs, the features
are extracted from the original directed graph and include
local clustering coefficient, incoming edges accepted ratio, and
outgoing edges accepted ratio [22]. For the undirected Yelp and
Google+ graphs, only the local clustering coefficient is used.

LBP-based methods for directed graphs (LBP-D): Only
one LBP-based method [20] for directed graphs was developed
and we compare with it.

Our LBP-based methods (LBP-JWP-w/o, LBP-JWP-L1,
LBP-JWP-L2, and LBP-JWP): LBP-JWP-w/o is the variant
of our LBP-based method that does not use the consistency
term in the optimization problem in Equation 12 when learning
edge weights. From the machine learning perspective, the first
term in the objective function of the optimization problem
in Equation 12 is a loss function over the training dataset,
and the second term is a regularization term about the edge
weights, which we call consistency regularization. In machine
learning, L1 and L2 regularizations are widely used, which are
−∑

(u,v)∈E |wuv|1 and −∑
(u,v)∈E w

2
uv , respectively. LBP-

JWP-L1 and LBP-JWP-L2 respectively are the variants that
use the conventional L1 and L2 regularizations instead of our
consistency regularization when learning edge weights. LBP-
JWP is our method with the consistency regularization. We
add the suffix “-U” and “-D” to indicate the versions that are
used for undirected and directed graphs, respectively.

4) Implementation and parameter setting: We implement
the RW-based methods and our methods in C++. The authors
of the existing LBP-based methods [17], [20] made their
C++ source code publicly available, and we use them to
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(a) LBP-JWP-U
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Fig. 3: Average weight learnt by (a) LBP-JWP-U and (b) LBP-JWP-D of edges between positive nodes and negative
nodes, edges between positive nodes, and edges between negative nodes on Twitter, as the number of iterations increases.
We observe that on both methods, the average weights of edges between positive nodes and negative nodes decrease,
while the average weights of edges between negative (or positive) nodes increase as t increases.

evaluate existing LBP-based methods. We performed all our
experiments on a Linux machine with 512GB memory and 32
cores. For our methods, we assign prior reputation scores 1,
-1, and 0 to labeled positive nodes, labeled negative nodes,
and unlabeled nodes, respectively. Following [17] and [20],
we initialize all edge weights to be the inverse of the average

node degree in a graph, i.e., w
(0)
uv = 1

Ave. degree
. Moreover,

we normalize edge weights to be in the range [-0.5,0.5] in
each iteration. We set the learning rate γ in Equation 9 to be
1.0. Moreover, we set the regularization parameter λ = 0.1
on the Twitter and Sina Weibo datasets and λ = 1.0 on the
Google+ and Yelp datasets considering their different average
node degrees. Note that we also explore the impact of γ and
λ and show the results in Figure 4. For all other compared
methods, we set the parameters according to their authors.

B. Accuracy (AUC)

Table IV and Table V respectively show the AUCs of the
compared undirected graph and directed graph based methods.

Our methods outperform existing ones: Our methods LBP-
JWP-U and LBP-JWP-D achieve the best AUCs consistently
on different datasets. For instance, on undirected graphs, LBP-
JWP-U improves upon the best existing method by 0.04
to 0.09 on the four datasets. This means that our strategy
of jointly learning edge weights and propagating reputation
scores is effective. Moreover, LBP-JWP outperforms LBP-
JWP-w/o, LBP-JWP-L1, and LBP-JWP-L2 on both undirected
and directed graphs. This means that our consistency regu-
larization does improve AUC and outperforms conventional
L1 and L2 regularizations. In fact, L1 and L2 regularizations
decrease AUCs, compared to LBP-JWP-w/o that does not use
regularization.

Note that all compared methods have relatively low AUCs
on Yelp. This is because the Yelp graph is very sparse, i.e.,
Ave. degree=3, and thus its graph structure has less information
that can be exploited by graph-based methods.

To further understand why our framework outperforms
existing methods, we visualize the learnt edge weights. Specifi-
cally, we classify edges into three categories: 1) edges between
positive nodes and negative nodes, 2) edges between positive
nodes, and 3) edges between negative nodes. The edges
in the first category are heterogeneous, while the edges in
the second and third categories are homogeneous. Figure 3
shows the average weights of the three categories of edges
as a function of the number of iterations t on the Twitter
dataset. As we can see, for both LBP-JWP-U and LBP-JWP-
D, the average weights of edges between positive nodes and
negative nodes decrease, while the average weights of edges
between negative (or positive) nodes increase as the number of
iterations increases. This is because we enforce the consistency
regularization when learning the edge weights.

However, for most existing methods, the edge weights are
constant, which ignore the differences between heterogeneous
and homogeneous edges. RW-FLW learns edge weights. How-
ever, we find that the average weights of all three types of
edges are close to -0.3 (after normalizing edge weights to
be [-0.5, 0.5]). This is because a large number of nodes are
victims. Moreover, for LBP-FLW, the average weights of all
three types of edges are close to 0.2. This means that LBP-
FLW can not learn small weights for heterogeneous edges.
Note that all these methods fix the edge weights and propagate
reputation scores using the fixed edge weights.

LBP-based methods outperform RW-based methods: We
find that LBP-based methods achieve at least the same AUCs
as RW-based methods, and LBP-based methods achieve higher
AUCs in most cases. In particular, for methods on undirected
graphs, the best existing LBP-based method achieves the same
AUCs as the best existing RW-based method on Sina Weibo
and Yelp, while the best existing LBP-based method achieves
slightly higher AUCs on Twitter and Google+. For methods on
directed graphs, the existing LBP-based method significantly
outperforms the existing RW-based methods. For instance, on
Sina Weibo, LBP-D outperforms RW-N-D by 0.14. A possible
reason is that LBP-D leverages both labeled positive nodes and
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(b) Impact of γ

Fig. 4: Impact of (a) the regularization parameter λ and (b) the learning rate γ. We observe that, as λ and γ increase,
AUCs of our methods first increase, then stabilize, and finally decrease.
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Fig. 5: Impact of the number of iterations on the AUCs
of our methods. We observe that AUCs first gradually
increase as we perform more iterations and then stabilize.

labeled negative nodes in the training dataset, while RW-N-D
only considers labeled negative nodes.

Different variants of RW-based methods: We observe that
RW-B-U consistently outperforms other RW-based methods for
undirected graphs. One reason could be that RW-B-U incor-
porates both labeled positive nodes and labeled negative nodes
in the training dataset, while the other RW-based methods
incorporate either of them. Performance of RW-N and RW-P
is dataset-dependent, i.e., RW-N outperforms RW-P on some
datasets while RW-P outperforms RW-N on other datasets.

Impact of the regularization parameter λ and the learning
rate γ: Figure 4a shows AUCs of our methods vs. the
regularization parameter λ on the Twitter dataset (we have
similar tendencies on the other datasets and thus choose Twitter
for simplicity). λ = 0 means that we do not use the consistency
term. We observe that AUCs first increase, then stabilize, and
finally decrease as λ increases. For instance, AUC of LBP-
JWP-U increases until λ is around 0.08, then stabilizes until λ
is around 0.15, and finally decreases after that. Figure 4b shows
AUCs of our methods vs. the learning rate γ on the Twitter

dataset. γ = 0 means that we do not learn edge weights, and
our methods reduce to existing methods. Likewise, we observe
that AUCs first increase, then stabilize, and finally decrease.

Impact of the number of iterations t: Figure 5 shows the
AUCs of our methods on Twitter vs. iteration number t. We
observe that AUCs first gradually increase as our methods run
more iterations and then stabilize after around 10 iterations.

C. Scalability

We measure scalability of the compared methods with
respect to the number of edges in the graph. Since we need
graphs with different number of edges, we synthesize graphs
using a network generation model. In particular, we use the
popular Preferential Attachment model [54] developed by the
network science community to generate graphs. Specifically,
we first use the Preferential Attachment model to synthesize an
undirected graph G. Then, we treat each undirected edge (u, v)
in G as two directional edges (u, v) and (v, u). Finally, we
sample 50% of directed edges and remove them to construct
a directed graph G′.

We run methods for undirected graphs on G and methods
for directed graphs on G′. We note that all the compared
methods iteratively solve the posterior reputation scores. For
fair comparison, we run the iterative processes with the same
number of iterations (e.g., 10 in our experiments). Figure 6a
and Figure 6b respectively show the running time of these
methods on undirected graphs and directed graphs as the
number of (undirected and directed) edges increases. Note that
RW-N-U, RW-P-U, and RW-FLW-U have the same running
time and thus we only show RW-P-U for simplicity. Similarly,
RW-N-D and RW-P-D have the same running time and thus
we only show RW-P-D for simplicity.

Our methods have an acceptable computational over-
head: We observe that our methods LBP-JWP-U and LBP-
JWP-D are less efficient than existing methods. This is because
our methods jointly learn edge weights and propagate reputa-
tion scores, while existing methods only propagate reputation
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Fig. 6: Running time on synthesized graphs with increasing number of edges. (a) Methods for undirected graphs. (b)
Methods for directed graphs.
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Fig. 7: Impact of label noise on Twitter. (a) RW-based methods for undirected graphs; (b) LBP-based methods for
undirected graphs; (c) Methods for directed graphs.

scores. However, the computational overhead of our methods
is acceptable. In particular, our methods are 2-3 times slower
than state-of-the-art methods.

Undirected graphs vs. directed graphs: When an undirected
graph and a directed graph have the same number of edges,
a method for the directed graph is more efficient than its
variant for the undirected graph. For instance, RW-P-D is more
efficient than RW-P-U, LBP-D is more efficient than LBP-U,
LBP-JWP-D is more efficient than LBP-JWP-U. The reason
is that RW-P-D traverses each directed edge once, while RW-
P-U traverses each undirected edge twice in each iteration of
propagating reputation scores; LBP-D (or LBP-JWP-D) only
traverses an edge (u, v) twice when the directed edge (v, u)
does not exist, while LBP-U (or LBP-JWP-U) traverses each
undirected edge twice in each iteration.

LBP-based methods vs. RW-based methods: For undirected
graphs, LBP-U and RW-P-U have the same running time. This
is because both methods traverse each undirected edge twice
in each iteration of propagating reputation scores. However, on
directed graphs, LBP-D is slightly slower than RW-P-D. This
is because RW-P-D traverses each directed edge once in each
iteration, while LBP-D traverses an edge (u, v) twice when the
directed edge (v, u) does not exist. These results are consistent
with previous studies [17], [20].

D. Robustness to Label Noise

We randomly sample α% of labeled positive nodes and
labeled negative nodes in the training dataset, and change their
labels to be negative and positive, respectively. Therefore, the
label noise level in the training dataset is α%. We repeat
the sampling process 5 times. Figure 7a, Figure 7b, and
Figure 7c respectively show the average AUCs on Twitter for
undirected graph based methods using RW, undirected graph
based methods using LBP, and directed graph based methods,
as we increase α% from 0% to 50%. We cut off at the 50%
because no methods are effective for a label noise level that
is higher than 50%.

First, LBP-JWP consistently performs the best and can
tolerate label noise up to 20% on the undirected graph and
30% on the directed graph. For instance, LBP-JWP-D’s AUC
only slightly decreases when the label noise is 30%. Moreover,
LBP-JWP has higher AUCs than LBP-JWP-w/o, which shows
the effectiveness of our consistency regularization. Second,
LBP-based methods and RW-B-U can tolerate relatively larger
label noise than RW-N and RW-P. A possible reason is that
LBP-based methods and RW-B-U leverage both labeled posi-
tive nodes and labeled negative nodes in the training dataset,
while RW-N and RW-P only use labeled negative nodes or
labeled positive nodes.
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TABLE VI: Composition of the manually labeled 1,000
randomly sampled users.

Category LBP-D LBP-JWP-D

Sybil

Suspended Users 41.5%

92.0%

41.9%

94.9%Spammers 42.5% 44.3%

Compromised Users 8.0% 8.7%

Benign 6.8% 4.3%

Unknown 1.2% 0.8%

E. Case Study on Sina Weibo

We apply our LBP-JWP-D to detect Sybils on Sina Weibo.
Specifically, we use the 1,980 labeled users as a training
dataset, leverage LBP-JWP-D to compute a posterior repu-
tation score for every node, and rank all unlabeled nodes in
a descending order with respect to their posterior reputation
scores. Therefore, the nodes that are ranked higher could be
more likely to be Sybils. In practice, social network providers
often rely on human workers to manually inspect users and
detect Sybils [13]. The ranking list produced by our method
can be used as a priority list for the human workers, i.e., the
human workers can inspect users according to the ranking list.
Within the same amount of time, the human workers could find
more Sybils when inspecting users according to the ranking list
than inspecting users that are randomly picked.

We follow the same strategy of [20] to evaluate the top-
ranked 100K users produced by our method. In particular,
via manual inspection, Wang et al. [20] classified users on
Sina Weibo into five categories: Suspended users, Spammers,
Compromised users, Normal users, and Unknown users. The
first three categories (i.e., suspended users, spammers, and
compromised users) are treated as Sybils, and the normal users
are treated as benign. We divide the top-ranked 100K users
into 10 10K-user intervals. We randomly sample 100 users
from each interval, and thus we have 1,000 sampled users
in total. We manually inspected the Sina Weibo pages of the
1,000 sampled users and labeled them to be one of the five
categories following the same strategy in [20].

Table VI shows the manual labeling results of the 1,000
sampled users. For comparison, we also include the results for
LBP-D, which are from [20] instead of being labeled by us.
We note that LBP-D produces a different ranking list from
our method, and the sampled 1,000 users are also different
for them. We observe that 94.9% of the nodes ranked by our
method are Sybils, around 3% higher than those ranked by
LBP-D [20]. We note that Íntegro [14] has a similar accuracy
at detecting Sybils in Tuenti. Moreover, our method detects a
large number of Sybils that evaded Sina Weibo’s detector. In
particular, if a Sybil was detected by Sina Weibo, then the Sybil
should have been suspended or deleted. However, 44.3% of our
top-ranked 100K nodes are spammers and 8.7% of them are
compromised users, all of which evaded Sina Weibo’s detector.
Figure 8 shows the fraction of Sybils in the sampled 100 users
in each 10K-user interval. We observe that even if the training
dataset is small (around 0.05% of all users in the dataset),
above 90% of nodes are Sybils in each of the top-10 10K-user
interval ranked by our method.
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Fig. 8: Fraction of Sybils in the sampled 100 users in each
of the top-10 10K-user intervals for LBP-JWP-D on the
Sina Weibo dataset.

TABLE VII: AUCs of our framework for RW-based
methods.

Methods Twitter Sina Weibo Yelp Google+

RW-B-U 0.63 0.68 0.58 0.63

RW-JWP-w/o-U 0.66 0.72 0.58 0.65

RW-JWP-U 0.69 0.74 0.60 0.68

VI. DISCUSSION AND LIMITATION

Applying our framework to RW-based methods: For con-
ciseness, we focus on applying our framework to LBP-based
collective classification methods for graph-based security and
privacy analytics. However, our framework is also applicable to
RW-based methods. In particular, RW-based methods can also
be viewed as iteratively solving system of equations, though
the function f(q,W,p) is different for RW-based methods.
Therefore, our framework can also learn edge weights for
RW-based methods. We implemented our framework to learn
edge weights for RW-B-U [19], a RW-based method for
undirected graphs that incorporates both labeled positive nodes
and labeled negative nodes in the training dataset. The function
f for RW-B-U is f(q,W,p) = Wp, where wuv is the edge
weight of (u, v) divided by the weighted degree of u. Table VII
shows the AUCs of RW-B-U, RW-JWP-w/o-U, and RW-JWP-
U for the four datasets. RW-JWP-U uses our framework
to learn edge weights for RW-B-U, while RW-JWP-w/o-U
uses our framework without the consistency regularization to
learn edge weights for RW-B-U. Our results show that our
framework improves AUCs for RW-B-U and the consistency
regularization helps improve AUCs.

Incorporating problem-specific characteristics: In this
work, our framework only uses the graph structure and can be
applied to various security and privacy problems. For a specific
security or privacy problem, nodes and edges in the graph
could have problem-specific rich features. Our framework can
be extended to incorporate such problem-specific features to
further enhance detection accuracy. For instance, for Sybil
detection in social networks, each node could have rich content
and behavior features. Our framework can use these node
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features to learn the prior reputation scores of nodes. Moreover,
an edge could have features such as interaction frequency
between the two users. We can model the weight of an edge
as a function of the edge’s features, e.g., a logistic function.
Then, our framework can be used to learn the parameters in
the function. Specifically, we solve the optimization problem in
Equation 12 with respect to such parameters, i.e., we compute
the gradient of the objective function with respect to such
parameters and then use gradient descent to optimize them.

Security of collective classification methods under adver-
sarial settings: In this work, we evaluate the collective
classification methods with respect to accuracy, scalability,
and robustness to random label noise. It is an interesting
future work to study the security of collective classification
methods under adversarial settings. For instance, how can an
attacker inject carefully crafted label noise to reduce detection
accuracy?

Computational overhead: Theoretically, our method has the
same asymptotic time complexity as state-of-the-art random
walk based and belief propagation based methods: linear to
the number of edges in the graph. Empirically, our method is
2-3 times slower. However, this time overhead is tolerable in
practice, especially the targeted security and privacy applica-
tions are not time-critical. For instance, on the Twitter dataset
with 1.5 billion edges, our method finishes within 3 hours on
a server with 512GB memory and 32 cores. Our method can
be easily parallelized and should be scalable to graphs with
billions of edges on a modern data center.

No manual labels: Like existing methods, our framework
relies on a manually labeled training dataset. When there are no
such training dataset, our framework may also be applicable.
Specifically, Wang et al. [55] recently proposed SybilBlind,
which generalizes LBP-based collective classification methods
to the scenarios where no training dataset is available. Their
key idea is to randomly sample some nodes from the graph and
treat them as labeled nodes (some of them would be labeled
incorrectly, i.e., the training data has noise). Then, they apply a
LBP-based method with the sampled training data. Since LBP-
based methods are robust to some noise in training data, they
repeat the sampling process multiple times and design some
method to select the sampling trials that have small label noise.
We believe such idea can also be applied to our framework
when no manual labels are available, because our framework
is also robust to some noise in training data.

Comparing with other graph-based classification meth-
ods: A graph-based classification problem can also be solved
via graph embedding methods and Graph Convolutional Net-
works (GCN) [56]. In particular, a graph embedding method
first learns feature vectors for nodes via unsupervised learning,
and then learns a classifier (logistic regression classifier in
our experiments) based on the feature vectors and the training
dataset. We compare with three state-of-the-art graph embed-
ding methods (DeepWalk [57], LINE [58], and node2vec [59])
as well as GCN for Sybil detection. We obtained the pub-
lic source code of these methods from their authors. As
DeepWalk, node2vec, and GCN are not scalable to the large
graphs used in our experiments, we perform experiments on
an undirected Facebook graph with synthetic Sybils. The
Facebook graph contains 4,039 negative nodes and 88,234

edges. Following prior work [18], we replicate the nodes and
their edges as positive nodes and edges. Moreover, we add 10k
edges between the positive nodes and negative nodes uniformly
at random. We randomly select 100 positive nodes and 100
negative nodes as the training dataset. A graph embedding
method learns a 128-dimension feature vector for each node.
We set the number of hidden units of GCN to be 64 and set
the dropout rate as 0.5. We observe that our method is more
accurate than the compared methods. Specifically, DeepWalk,
LINE, node2vec, and GCN achieve AUCs of 0.62, 0.94, 0.74,
and 0.88, respectively, while our LBP-JWP-U achieves an
AUC of 1. We speculate the reason is that graph embedding
aims to learn general feature representations that could be used
for various purposes (classification is just one of the purposes)
and GCN is not able to learn discriminative hidden features
for classification.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a new framework to learn edge
weights for graph-based security and privacy analytics. Our
framework can be applied to various security and privacy
problems including, but not limited to, Sybil detection in
social networks, malware detection, fake review detection, and
attribute inference attacks. Our framework can be incorporated
into a state-of-the-art collective classification method (both
RW-based methods and LBP-based methods) to further en-
hance its classification accuracy with an acceptable computa-
tional overhead. Our results demonstrate that jointly learning
edge weights and propagating reputation scores is effective for
graph-based security and privacy analytics.

Interesting future work includes 1) incorporating problem-
specific characteristics into our framework to further enhance
accuracy for a specific security or privacy problem, and 2)
studying security of collective classification methods under
adversarial settings.
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