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Abstract

We consider the problem of finding discrete clustering structures under Sub-Gaussian Mixture

Models. We establish a hidden integrality property of a semidefinite programming (SDP) relax-

ation for this problem: while the optimal solutions to the SDP are not integer-valued in general,

their estimation errors can be upper bounded by the error of an idealized integer program. The error

of the integer program, and hence that of the SDP, are further shown to decay exponentially in the

signal-to-noise ratio. To the best of our knowledge, this is the first exponentially decaying error

bound for convex relaxations of mixture models. A special case of this result shows that in cer-

tain regimes the SDP solutions are in fact integral and exact, improving on existing exact recovery

results for convex relaxations. More generally, our result establishes sufficient conditions for the

SDP to correctly recover the cluster memberships of at least (1 − δ) fraction of the points for any

δ ∈ (0, 1). Error bounds for estimating cluster centers can also be derived directly from our results.

Keywords: Sub-Gaussian Mixture Models, semidefinite programming, integer programming.

1. Introduction

We consider the Sub-Gaussian Mixture Models (SGMMs), where one is given n random points

drawn from a mixture of k sub-Gaussian distributions with different means. SGMMs, particularly

its special case Gaussian Mixture Models (GMMs), are widely used in a broad range of applications

including speaker identification, background modeling and online recommendations systems. In

these applications, one is typically interested in two inference problems under SGMMs:

• Clustering: (approximately) identify the cluster membership of each point, that is, which of

the k mixture components generates a given point;

• Center estimation: estimate the k centers of an mixture, that is, the means of the k compo-

nents.

Standard approaches to these problems, such as k-means clustering, typically lead to integer pro-

gramming problems that are non-convex and NP-hard to optimize (Aloise et al., 2009; Jain et al.,

2002; Mahajan et al., 2009). Consequently, much work has been done in developing computation-

ally tractable algorithms for SGMMs, including expectation maximization (Dempster et al., 1977),

Lloyd’s algorithm (Lloyd, 1982), spectral methods (Vempala and Wang, 2004), the method of mo-

ments (Pearson, 1936), and many more. Among them, convex relaxation, including those based

on linear programming (LP) and semidefinite programming (SDP), have emerged as an important

approach for clustering SGMMs. This approach has several attractive properties: (a) it is solvable in
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polynomial time, and does not require a good initial solution to be provided; (b) it has the flexibility

to incorporate different quality metrics and additional constraints; (c) it is not restricted to specific

forms of SGMMs (such as Gaussian distributions), and is robust against model misspecification

(Peng and Xia, 2005; Peng and Wei, 2007; Nellore and Ward, 2015).

Theoretical performance guarantees for convex relaxation methods have been studied in a body

of classical and recent work. As will be discussed in the related work section (Section 2), these

existing results often have one of the two forms:

1. How well the (rounded) solution of a relaxation optimizes a particular objective function (e.g.,

the k-means or k-medians objective) compared to the original integer program, as captured

by an approximation factor (Charikar et al., 1999; Kanungo et al., 2004; Peng and Wei, 2007;

Li and Svensson, 2016);

2. When the solution of a relaxation corresponds exactly to the ground-truth clustering, a phe-

nomenon known as exact recovery, which is considered in a more recent line of work (Nellore

and Ward, 2015; Awasthi et al., 2015; Mixon et al., 2017; Iguchi et al., 2017; Li et al., 2017).

In many practical scenarios, optimizing a particular objective function, and designing approxima-

tion algorithms for doing so, is often only a means to the true goal of the problem, namely learning

the true underlying model that generates the observed data. Establishing exact recovery guarantees

is more directly relevant to this goal. However, such results often require very stringent conditions

on the separation or signal-to-noise ratio (SNR) of the model. In practice, convex relaxation solu-

tions are rarely exact, even when the data are generated from the assumed model. On the other hand,

it is observed that the solutions, while not exact or integer-valued, are often a good approximation to

the desired solution that represents the ground truth. Such a phenomenon is not captured by results

on exact recovery.

In this paper, we aim to significantly strengthen our understanding of convex relaxation ap-

proaches to SGMMs. In particular, we study the regime where their solutions are not integral in

general, and seek to directly characterize the estimation errors of the solutions—namely, their dis-

tance to desired integer solution corresponding to the true underlying model. For a specific class

of SDP relaxations for SGMMs, our results reveal a perhaps surprising property of them: While

the SDP solutions are not integer-valued in general, their errors can be controlled by that of the

solutions of an idealized integer program (IP), in which one tries to estimate cluster memberships

when an oracle reveals the true centers of the SGMM. In particular, we show that, in a precise sense

to be formalized later, the estimation errors of the SDP and IP satisfy the following relationship

(Theorem 1):

error(SDP) . error(IP).

We refer to this property as hidden integrality of the SDP relaxations; its proof in fact involves

showing that the optimal solutions of certain intermediate linear optimization problems are integral.

We then further upper bound the error of the IP and show that it decays exponentially in terms of

the SNR (Theorem 2):

error(IP) . exp
[
−Ω(SNR2)

]
,

where the SNR is defined as the ratio of the separation and standard deviation of the sub-Gaussian

components. Combining these two results immediately leads to explicit bounds on the error of the

SDP solution (Corollary 1).
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When the SNR is sufficiently large, the above results imply that the SDP solution is integral

and exact up to numerical errors, hence recovering (sometimes improving) existing results on exact

recovery as a special case. Moreover, when the SNR is lower and the SDP solution is fractional, an

explicit clustering can be obtained from the SDP solution via a simple, optimization-free rounding

procedure. We show that the error of this explicit clustering (in terms of the fraction of points

misclassified) also decays exponentially in the SNR (Theorem 3). As a consequence, we obtain

sufficient conditions for misclassifying at most δ fraction of the points for any given δ ∈ [0, 1].
Finally, we show that the SDP solutions also lead to an efficient estimator of the cluster centers,

for which estimation error bounds are established (Theorem 4). Significantly, our results often

match and sometimes improve upon state-of-the-art performance guarantees in settings for which

known results exist, and lead to new guarantees in other less studied settings of SGMMs. Detailed

discussion of these implications of our results and comparison with existing ones will be provided

after we state our main theorems.

Paper Organization The remainder of the paper is organized as follows. In Section 2, we discuss

related work on SGMMs and its special cases. In Section 3, we describe the problem setup for

SGMMs and provide a summary of our clustering algorithms. In Section 4, we present our main

results, discuss some of their consequences and compare them with existing results.

2. Related work

The study of SGMMs has a long history and is still an active area of research. Here we review the

most relevant results with theoretical guarantees, with a focus on SDP relaxation methods.

Dasgupta (1999) is among the first to obtain performance guarantees for GMMs. Subsequent

work has obtained improved guarantees, achieved by various algorithms including spectral methods.

These results often establish sufficient conditions, in terms of the separation between the cluster

centers (or equivalently the SNR), for achieving (near)-exact recovery of the cluster memberships.

Vempala and Wang (2004) obtain one of the best results and require SNR & (k lnn)1/4, which

is later improved and extended by Achlioptas and McSherry (2005); Kumar and Kannan (2010);

Awasthi and Sheffet (2012). We compare these results with ours in Section 4.

Expectation-Maximization (EM) and Lloyd’s algorithms are among the most popular methods

for GMMs. Despite their empirical effectiveness, non-asymptotic statistical guarantees are estab-

lished only recently. In particular, convergence and center estimation error bounds for EM un-

der GMMs with two components are derived in Balakrishnan et al. (2017); Klusowski and Brinda

(2016), with extension to multiple components given in Yan et al. (2017). The work of Lu and Zhou

(2016) provides a general convergence analysis for Lloyd’s algorithm, which implies clustering and

center estimation guarantees for random models including SGMMs. All these results assume that

one has access to a sufficiently good initial solution, typically obtained by spectral methods. Re-

cent breakthrough has been made by Daskalakis et al. (2016); Xu et al. (2016), who establish global

convergence of randomly-initialized EM for GMMs with two symmetric components. Complemen-

tarily, Jin et al. (2016) show that EM may fail to converge under GMMs with k ≥ 3 components

due to the existence of bad local minima.

Most relevant to us are work on convex relaxation methods for GMMs and k-means/median

problems, with SDP relaxations first considered in Peng and Xia (2005); Peng and Wei (2007).

Thanks to convexity, these methods do not suffer from the issues of bad local minima faced by EM

and Lloyd’s, though it is far from trivial to round their (typically fractional) solutions into valid
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clustering solutions with provable and quality guarantees. In this direction, Awasthi et al. (2015);

Li et al. (2017) establish conditions for LP/SDP relaxations to achieve exact recovery. The work

of Mixon et al. (2017) consider SDP relaxations as a denoising method, and prove error bounds

for a form of approximate recovery. Robustness of SDP relaxations under a semi-random GMM

is studied in Awasthi and Vijayaraghavan (2017). Most of these results are directly comparable to

ours, and we discuss them in more details in Section 4 after presenting our main theorems.

Clustering problems under Stochastic Block Models (SBMs) have also witnessed fruitful progress

on convex relaxation methods; see Abbe (2017) for a survey. Much work has been done on exact

recovery guarantees for SDP relaxations of SBMs (Krivelevich and Vilenchik, 2006; Oymak and

Hassibi, 2011; Amini and Levina, 2014; Ames and Vavasis, 2014; Chen et al., 2014). A more re-

cent line of work establishes approximate recovery guarantees of the SDPs (Guédon and Vershynin,

2016; Montanari and Sen, 2016). Particularly relevant to us is the work by Fei and Chen (2017),

who also establish exponentially decaying error bounds. Despite the apparent similarity in the forms

of the error bounds, our results require very different analytical techniques, due to the fundamen-

tal difference between the geometric and probabilistic structures of SBMs and SGMMs; moreover,

our results reveal the more subtle hidden integrality property of SDP relaxations, which we believe

holds more broadly beyond specific models like SBMs and SGMMs.

3. Models and algorithms

In this section, we formally set up the clustering problem under SGMMs and describe our SDP

relaxation approach.

3.1. Notations

We first introduce some notations. Vectors and matrices are denoted by bold letters such as u and

M. For a vector u, we denote by ui its i-th entry. For a matrix M, Tr(M) denotes its trace, Mij

its (i, j)-th entry, diag (M) the vector of its diagonal entries, ‖M‖1 :=
∑

i,j Mij its entry-wise `1
norm, Mi• its i-th row and M•j its j-th column. We write M � 0 if M is symmetric positive

semidefinite. The trace inner product between two matrices M and Q of the same dimension is

denoted by 〈M,Q〉 := Tr(M>Q). For a number a, M ≥ a means Mij ≥ a, ∀i, j. We denote by

1m the all-one column vector of dimension m. For a positive integer i, let [i] := {1, 2, . . . , i}. For

two non-negative sequences {an} and {bn}, we write an . bn if there exists a universal constant

C > 0 such that an ≤ Cbn for all n, and write an � bn if an . bn and bn . an. Finally,

‖X‖ψ2
:= inf

{
t > 0 : E exp

(
X2/t2

)
≤ 2
}

denotes the sub-Gaussian norm of a random variable

X , and X is called sub-Gaussian if ‖X‖ψ2
<∞. Note that Normal and bounded random variables

are sub-Gaussian.

3.2. Sub-Gaussian Mixture Model

We focus on Sub-Gaussian Mixture Models (SGMMs) with balanced clusters and isotropic compo-

nents.

Model 1 (Sub-Gaussian Mixture Model) Let µ1, . . . ,µk ∈ R
d be k unknown cluster centers.

We observe n random points in R
d of the form

hi := µσ∗(i) + gi, i ∈ [n]
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where σ∗(i) ∈ [k] is the unknown cluster label of the i-th point, and {gi} are i.i.d. zero-mean

random vectors such that each gij are i.i.d. with ‖gij‖ψ2
= τ . We assume that the ground-truth

clusters have equal sizes, that is, |{i ∈ [n] : σ∗(i) = a}| = n
k for each a ∈ [k].

Throughout the paper we assume n ≥ 4 and k ≥ 2 to avoid degeneracy. Let σ∗ ∈ [k]n

be the vector of the true cluster labels, that is, its i-th coordinate is σ∗
i ≡ σ∗(i) (we use them

interchangeably throughout the paper.) This unknown true underlying clustering can be encoded by

cluster matrix Y∗ ∈ {0, 1}n×n such that for each i, j ∈ [n],

Y ∗
ij =

{
1 if σ∗(i) = σ∗(j), i.e., points i and j are in the same cluster,

0 if σ∗(i) = σ∗(j), i.e., points i and j are in different clusters,

with the convention Y ∗
ii = 1, ∀i ∈ [n]. The task is to estimate the underlying clustering Y∗ given

the observed data {hi : i ∈ [n]}. From the data one may compute the pairwise squared distance

matrix A ∈ R
n×n, defined as

Aij = ‖hi − hj‖22, (i, j) ∈ [n]× [n].

The separation of the centers of clusters a and b is denoted by ∆ab := ‖µa − µb‖2, and ∆ :=
mina 6=b∈[k] ‖µa − µb‖2 is the minimum separation of the centers. Playing a crucial role in our

results is the quantity

s :=
∆

τ
, (1)

which is a measure of the SNR of an SGMM.

3.3. Semidefinite programming relaxation

We now describe our SDP relaxation for clustering SGMMs. To begin, note that any candidate

clustering of n points into k clusters can be represented using an assignment matrix F ∈ {0, 1}n×k
where

Fia =

{
1 if point i is assigned to cluster a

0 otherwise.

Let F :=
{
F ∈ {0, 1}n×k : F1k = 1n

}
be the set of all possible assignment matrices. Given the

points {hi} to be clustered, a natural approach is to find a assignment F that minimizes the total

within-cluster pairwise distance. This objective can be expressed as

∑

i,j

Aij I{i and j are assigned to the same cluster} =
∑

i,j

Aij(FF
>)ij =

〈
FF>,A

〉
.

Therefore, the approach described above is equivalent to solving the integer program (2) below:

min
F

〈
FF>,A

〉

s.t. F ∈ F
1>nF =

n

k
1>k

(2)

min
Y

〈Y,A〉

s.t. Y1n =
n

k
1n

Y � 0

diag (Y) = 1n

Y ∈ {0, 1}n×n ; rank(Y) = k.

(3)
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In (2) the additional constraint 1>nF = n
k1

>
k enforces that all k clusters have the same size n

k , as

we are working with an SGMM whose true clusters are balanced. Under this balanced model, it is

not hard to see that the program (2) is equivalent to the classical k-means formulation. With a change

of variable Y = FF>, we may lift the program (2) to the space of n × n matrices and obtain the

equivalent formulation (3). Both programs (2) and (3) involve non-convex combinatorial constraints

and are computationally hard to solve. To obtain a tractable formulation, we drop the non-convex

rank constraint in (3) and replace the integer constraint with a linear constrain 0 ≤ Y ≤ 1 (the

constraint Y ≤ 1 is redundant). This leads to the following SDP relaxation:

Ŷ ∈ argmin
Y∈Rn×n

〈Y,A〉

s.t. Y1n =
n

k
1n

Y � 0

diag (Y) = 1n

Y ≥ 0.

(4)

It is not hard to see that the true cluster matrix Y∗ is feasible to program (4). We view any optimal

solution Ŷ to (4) as an estimate of the true clustering Y∗. Our goal is to characterize the cluster

recovery/estimation error ‖Ŷ−Y∗‖1 in terms of the number of points n, number of clusters k, data

dimension d and SNR s defined above. Note that here we measure the error of Ŷ in `1 metric; as we

shall see later, this metric is directly related to the clustering error (i.e., the fraction of misclassified

points).

We remark that the SDP (4) is somewhat different from the more classical and well-known SDP

relaxation of k-means proposed by Peng and Wei (2007). This SDP (4) is closely related to the one

considered by Amini and Levina (2014) in the context of the Stochastic Block Model, though it

seems to be much less studied under SGMMs with the notable exception of Li et al. (2017).

3.4. Explicit clustering

Our main results directly concern the SDP solution Ŷ, which is not integral in general and hence

does not directly correspond to an explicit clustering. In case an explicit clustering is desired, we

may easily extract cluster memberships from the solution Ŷ using a simple procedure.

The procedure consists of two steps given as Algorithms 1 and 2, respectively. In the first step,

we treat the rows of Ŷ as elements of Rn, and consider the `1 balls centered at each row with a

certain radius. The ball that contains the most rows is identified, and the indices of the rows in this

ball are output and removed. The process continues iteratively with the remaining rows of Ŷ. This

step outputs a number of sets whose sizes are no larger than n
k but may not equal to each other.
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Algorithm 1 First step

Input: data matrix Ŷ ∈ R
n×n, size of each cluster nk .

1. B0 ← ∅, t← 0, V ← [n]

2. While V \⋃t
i=0Bi 6= ∅:

(a) t← t+ 1

(b) Vt ← V \⋃t−1
i=0 Bi

(c) For each u ∈ Vt: B(u)←
{
w ∈ Vt : ‖Ŷu• − Ŷw•‖1 ≤ n

4k

}
.

(d) Bt ← argmaxB(u):u∈Vt |B(u)|
(e) If |Bt| > n

k , then remove arbitrary elements in Bt so that |Bt| = n
k

Output: sets {Bt}t≥1.

In the second step, we convert the sets output by Algorithm 1 above into k equal-size clusters.

This is done by picking the k largest sets among them, and distributing points in the remaining sets

across the chosen k sets so that each of the k sets contains exactly n
k points.

Algorithm 2 Second step

Input: approximate clustering sets {Bt}t≥1, number of points n, number of clusters to extract k.

1. k′ ←
∣∣∣{Bt}t≥1

∣∣∣

2. Choose k largest sets among {Bt}t≥1 and rename the chosen sets as {Ut}t∈[k]
3. Arbitrarily distribute elements of {Bt}t≥1 \ {Ut}t∈[k] among {Ut}t∈[k] so that each Ut has

exactly n
k elements

4. For each i ∈ [n]: σ̂i ← t, where t is the unique index in [k] such that i ∈ Ut

Output: clustering assignment vector σ̂ ∈ [k]n.

Our final clustering algorithm, cluster, is a combination of the above two algorithms.

Algorithm 3 cluster

Input: data matrix Ŷ ∈ R
n×n, number of points n, number of clusters to extract k.

1. Run Algorithm 1 with Ŷ and n
k as input and get {Bt}t≥1

2. Run Algorithm 2 with {Bt}t≥1, n and k as input and get σ̂

Output: clustering assignment σ̂ ∈ [k]n.

The output

σ̂ := cluster(Ŷ, n, k)
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is a vector in [k]n such that point i is assigned to the σ̂i-th cluster. We are interested in controlling

the clustering error of σ̂ relative to the ground-truth clustering σ
∗. Let Sk denote the symmetric

group consisting of all permutations of [k]. The clustering error is defined by

err(σ̂,σ∗) := min
π∈Sk

1

n
|{i ∈ [n] : σ̂i 6= π(σ∗

i )}| , (5)

which is the proportion of points that are misclassified, modulo permutations of the cluster labels.

Variants of the above cluster procedure have been considered before by Makarychev et al.

(2016) and Mixon et al. (2017). In our main results, we show that the clustering error err(σ̂,σ∗)
is always upper bounded by the `1 error ‖Ŷ −Y∗‖1 of the SDP solution Ŷ.

4. Main results

In this section, we establish the connection between the estimation error of the SDP relaxation (4)

and that of what we call the Oracle Integer Program. Using this connection, we derive explicit

bounds on the error of the SDP, and explore their implications for clustering and center estimation.

4.1. Oracle Integer Program

Consider an idealized setting where an oracle reveals the true cluster centers {µa}a∈[k]. Moreover,

we are given the data points
{
h̄i
}
i∈[n], where h̄i := µσ∗(i) + (2c)−1gi for c := 1

8 and {gi} are

the same (realizations of the) random variables in the original SGMM. In other words,
{
h̄i
}

are the

same as the original data points {hi} generated by the SGMM, except that the standard deviation (or

more generally, the sub-Gaussian norm) of noise {gi} is scaled by (2c)−1 = 4. To cluster
{
h̄i
}

in

this idealized setting, a natural approach is to simply assign each point to the closest cluster center,

so that the total distance of the points to their assigned centers are minimized. We may formulate

this procedure as an integer program, by representing each candidate clustering assignment using

an assignment matrix F ∈ F as before. Then, for each assignment matrix F, the quantity

η(F) :=
∑

j

∑

a

‖h̄j − µa‖22Fja

is exactly the sum of the distances of each point to its assigned cluster center. The clustering

procedure above thus amounts to solving the following “Oracle Integer Program (IP)”:

min
F

η(F), s.t. F ∈ F . (6)

Let F∗ ∈ F be the assignment matrix associated with the true underlying clustering of the SGMM;

that is, F ∗
ja = I {σ∗(j) = a} for each j ∈ [n], a ∈ [k]. For each assignment F ∈ F , it is easy to see

that the quantity 1
2‖F− F∗‖1 is exactly the number of nodes that are assigned differently in F and

F∗, and hence measures the clustering error of F with respect to the ground truth F∗.

A priori, there is no obvious connection between the estimation error of a solution to the above

Oracle IP and that of a solution to the SDP. In particular, the latter involves a continuous relaxation

whose solutions are fractional in general, and the true centers are unknown therein. Surprisingly,

we are able to establish a formal connection between the two, and in particular show that the error

of the SDP is bounded by the error of the IP in an appropriate sense.
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4.2. Errors of SDP relaxation and Oracle IP

To establish the connection, we begin with the following observation: for a solution F ∈ F to

potentially be an optimal solution of the Oracle IP (6), it must satisfy η(F) ≤ η(F∗) since F∗ is

feasible to (6). Consequently, the quantity

max

{
1

2
‖F− F∗‖1 : F ∈ F , η(F) ≤ η(F∗)

}
(7)

is the worst-case error of a potentially optimal solution to the Oracle IP. This quantity turns out to

be an upper bound of the error of any optimal solution Ŷ to the SDP relaxation, as is shown in the

theorem below.

Theorem 1 (IP bounds SDP) Under Model 1, there exist some universal constants Cs > 0, C ≥ 1
for which the following holds. If the SNR satisfies

s2 ≥ Cs

(√
kd

n
log n+ k

√
d

n
+ k

)
, (8)

then we have

‖Ŷ −Y∗‖1
‖Y∗‖1

≤ 2 ·max

{‖F− F∗‖1
‖F∗‖1

: η(F) ≤ η(F∗),F ∈ F
}

with probability at least 1− n−C − 2e−n.

The proof is given in Section B, and consists of two main steps: (i) showing that with high prob-

ability the SDP error is upper bounded by the objective value of a linear program (LP), and (ii)
showing that the LP admits an integral optimal solution and relating this solution to the quantity

(7). We note that the key step (ii), which involves establishing certain hidden integrality properties,

is completely deterministic. The SNR condition (8) is required only in the probabilistic step (i);
therefore, sharper analysis in step (i) will lead to potentially more relaxed conditions on the SNR.

To obtain an explicit bound on the SDP error, it suffices to upper bound the error of the Oracle

IP. This turns out to be a relatively easy task compared to directly controlling the error of the SDP.

The reason is that the Oracle IP has only finitely many feasible solutions, allowing one to use a

union-bound-like argument. In particular, our analysis establishes that the error of Oracle IP decays

exponentially in the SNR, as summarized in the theorem below.

Theorem 2 (Exponential rates of IP) Under Model 1, there exist universal constants Cs, Cg, Ce >
0 for which the following holds. If s2 ≥ Csk, then we have

max

{‖F− F∗‖1
‖F∗‖1

: η(F) ≤ η(F∗),F ∈ F
}
≤ Cg exp

[
− s2

Ce

]

with probability at least 1− 3
2n

−1.

The proof is given in Section C. An immediate consequence of Theorems 1 and 2 is that the SDP

(4) also achieves an exponentially decaying error rate.
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Corollary 1 (Exponential rates of SDP) Under the SNR condition (8), there exist universal con-

stants Cm, Ce > 0 such that

‖Ŷ −Y∗‖1
‖Y∗‖1

≤ Cm exp

[
− s2

Ce

]

with probability at least 1− 2n−1.

Our next result concerns the explicit clustering σ̂ extracted from Ŷ using the procedure described

in Section 3.4. In particular, we show that the number of misclassified points is upper bounded by

the error in Ŷ and hence also exhibits an exponential decay.

Theorem 3 (Clustering error) The error rate in σ̂ is always upper bounded by the error in Ŷ:

err(σ̂,σ∗) .
‖Ŷ −Y∗‖1
‖Y∗‖1

.

Consequently, under the SNR condition (8), there exist universal constants Cm, Ce > 0 such that

err (σ̂,σ∗) ≤ Cm exp

[
− s2

Ce

]

with probability at least 1− 2n−1.

The proof is given in Section E. Note that the above bound in terms of the clustering error is optimal

(up to a constant in the exponent) in view of the minimax results in Lu and Zhou (2016).

4.3. Consequences

We explore the consequences of our error bounds in Corollary 1 and Theorem 3.

• Exact recovery: If the SNR s2 satisfies the condition (8) and moreover s2 & log n, then

Theorem 3 guarantees that err (σ̂,σ∗) < 1
n , which means that err (σ̂,σ∗) = 0 and the

true underlying clustering is recovered exactly. Note that these conditions can be simplified

to s2 & k + log n when n & d. In fact, by Corollary 1 we know that the SDP solution

satisfies the bound ‖Ŷ−Y∗‖1 < 1
4 in this case, so simply rounding Ŷ element-wise produces

the ground-truth cluster matrix Y∗. Therefore, the SDP relaxation is able to achieve exact

recovery (sometimes called strong consistency in the literature on SBM (Abbe, 2017)) of the

underlying clusters when the SNR is sufficiently large.

In fact, our results apply even in regimes with a lower SNR, for which exact recovery of the clusters

is impossible due to potential overlap between points from different clusters. In such regimes,

Corollary 1 and Theorem 3 imply approximate recovery guarantees for the SDP relaxation:

• Almost exact recovery: If s2 satisfies the condition (8) and s2 = ω (1), then Theorem

3 implies that err (σ̂,σ∗) = o (1). That is, the SDP recovers asymptotically the cluster

memberships of almost all points, which is sometimes called weak consistency.

• Recovery with δ-error: More generally, for any number δ ∈ (0, 1), Theorem 3 implies the

following non-asymptotic recovery guarantee: If s2 satisfies the condition (8) and s2 & log 1
δ ,

then err (σ̂,σ∗) ≤ δ. That is, the SDP correctly recovers the cluster memberships of at least

(1− δ) fraction of the points.

We compare the above results with existing ones in Section 4.4 to follow.
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Cluster center estimation: We may obtain an estimate of the cluster centers using estimated

cluster labels σ̂ produced by the SDP relaxation. In particular, we simply compute the empirical

means of the points within each estimated clusters; that is,

µ̂a :=
k

n

∑

i:σ̂i=a

hi

for each a ∈ [k]. As a corollary of our bounds on clustering errors, we obtain the following guaran-

tee on center estimation.

Theorem 4 (Cluster center estimation error) Suppose that maxa,b∈[k]∆ab ≤ Cq∆ for some uni-

versal constant Cq > 0. Under the same conditions of Theorem 1, there exist universal constants

Cm, Ce > 0 such that

max
a∈[k]

min
π∈Sk

‖µ̂a − µπ(a)‖2 ≤ Cmτ

(√
kd+ log n

n
+
(√

d+ log n
)
· exp

[
− s2

Ce

])

with probability at least 1− 3n−1.

The proof is given in Section F. Note that the error is measured again up to permutation of the

cluster labels. Our error bound consists of two terms. The first term, τ
√

kd+logn
n , is the error of

estimating a d-dimensional cluster center vector using the n
k data points (with standard deviation τ )

from that cluster. This term is unavoidable even when the true cluster labels are known. On the other

hand, the second term captures the error due to incorrect cluster labels for some of the points. When

s2 & log n and d & log n, we achieve the minimax optimal rate τ
√

d
n/k for center estimation.

4.4. Comparison with existing results

Table 1 summarizes several most representative results in the literature on clustering SGMM/GMM.

Most of them are in terms of SNR conditions required to achieve exact recovery of the underlying

clusters. Note that our results imply sufficient conditions for both exact and approximate recovery.

Most relevant to us is the work of Li et al. (2017), which considers similar SDP relaxation

formulations. They show that exact recovery is achieved when s2 & k+ log n and n� d2k3 log k.

In comparison, a special case of our Corollary 1 guarantees exact recovery whenever s2 & k+log n
and n & d, which is milder then the condition in Li et al. (2017).

The work in Lu and Zhou (2016) also proves an exponentially decaying clustering error rate,

but for a different algorithm (Lloyd’s algorithm). To achieve non-trivial approximate recovery of

the clusters, they require s2 � k2 + k3 dn and k3 � n
logn as n → ∞. Our SNR condition in (8)

has milder dependency on k, though dependency on n and d are a bit more subtle. We do note that

under their more restricted SNR condition, Lu and Zhou (2016) are able to obtain tight constants in

the exponent of the error rate.

Finally, the work of Mixon et al. (2017) considers the SDP relaxation introduced by Peng and

Wei (2007) and provides bounds on center estimation when s2 & k2. An intermediate result of

theirs concerns errors of the SDP solutions; under the setting of balanced clusters, their error bound

can be compared with ours after appropriate rescaling. In particular, their result implies the error

11
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bound ‖Ŷ −Y∗‖2F . n2

s2
when n is sufficiently large. This bound is non-trivial when s2 & k since

‖Y∗‖2F = n2

k . Under the same conditions on s2 and n, our results imply the exponential error bound

‖Ŷ −Y∗‖2F ≤ ‖Ŷ −Y∗‖1 .
n2

k
e−s

2

,

which is strictly better.

To sum up, corollaries of our results provide more relaxed conditions for exact or approximate

recovery compared to most of the existing results listed in Table 1. Our results are weaker by a
√
k

factor than the one in Vempala and Wang (2004), which focuses on exact recovery under spherical

Gaussian mixtures; on the other hand, our results apply to the more general sub-Gaussian setting,

and imply approximate recovery guarantees under more general SNR conditions.

Paper Condition on SNR2 Recovery Type Algorithm

Vempala and Wang (2004) Ω
(√

k log n
)

Exact Spectral

Achlioptas and McSherry

(2005)
Ω
(
k log n+ k2

)
Exact Spectral

Kumar and Kannan (2010) Ω
(
k2 · polylog (n)

)
Exact Spectral

Awasthi and Sheffet (2012) Ω (k · polylog (n)) Exact Spectral

Lu and Zhou (2016)
Ω
(
k2
)

Approximate Spectral

+Lloyd’sΩ
(
k2 + log n

)
Exact

Mixon et al. (2017) Ω
(
k2
)

For center estimation SDP

Li et al. (2017) Ω (k + log n) Exact SDP

Ours
Ω (k) Approximate

SDP
Ω (k + log n) Exact

Table 1: Summary of existing results on cluster recovery for GMM. Here “approximate” means

correct recovery of the memberships of at least (1 − δ) fraction of the points for a fixed

constant δ ∈ (0, 1). Some of the results listed assume that n � poly(k, d); see Section

4.4 for details.

5. Conclusion

In this paper, we have considered clustering problems under SGMMs using an SDP relaxation. We

have shown that the SDP performs at least as well as an idealized IP, which achieves an exponentially

decaying error rate. As a by-product of our analysis, we have obtained an error bound for estimating

mixture centers via the SDP.

Our work points to several interesting future directions. An immediate problem is extending

our results to the case of imbalanced clusters and non-isotropic distributions. It is also of interest to

study the robustness of SDP relaxations for SGMMs by considering adversarial attacks or arbitrary

outliers in the generated data under various semi-random models (Awasthi and Vijayaraghavan,

2017). Other directions that are worth exploring include obtaining better constants in error bounds,

identifying sharp thresholds for different types of recovery, and obtaining tight localized proximity

conditions in the lines of Li et al. (2017).
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Appendix A. Additional notations

We define the shorthand γ := ‖Ŷ −Y∗‖1. For a matrix M, we write ‖M‖∞ := maxi,j |Mij | as

its entry-wise `∞ norm, and ‖M‖op as its spectral norm (maximum singular value). We let I and J

be the n × n identity matrix and all-one matrix, respectively. For a real number x, dxe denotes its

ceiling. We denote by C∗
a := {i ∈ [n] : σ∗(i) = a} the set of indices of points in cluster a, and we

define ` := |C∗
a | = n

k .

15



HIDDEN INTEGRALITY OF SDP RELAXATIONS FOR SUB-GAUSSIAN MIXTURE MODELS

Appendix B. Proof of Theorem 1

B.1. Initial steps

We assume γ > 0 since otherwise we are done. We can write A = C + C> − 2HH>, where

H is a matrix whose i-th row is the point hi and C is a matrix where the entries in the i-th row

are identical and equal to ‖hi‖22. Since the row-sum constraint in the program (4) ensures that the

matrix Ŷ −Y∗ has zero row sum, we have
〈
Ŷ −Y∗,C

〉
=
〈
Ŷ −Y∗,C>

〉
= 0 which implies

〈
Ŷ −Y∗,C+C>

〉
= 0.

Let G := H− EH be a matrix of entries in H with their means removed. We can compute

HH> = (G+ EH) (G+ EH)>

= GG> +G (EH)> + (EH)G> + (EH) (EH)>

and

EHH> = EGG> + (EH) (EH)>.

Therefore

HH> − EHH> =
(
GG> − EGG>

)
+G (EH)> + (EH)G>.

Let U ∈ R
n×k be the matrix of the left singular vectors of Y∗. For any M ∈ R

n×n, define

the projection PT (M) := UU>M + MUU> − UU>MUU> and its orthogonal complement

PT⊥ (M) := M−PT (M). The fact that Ŷ is optimal and Y∗ is feasible to the program (4) implies

0 ≤ −1

2

〈
Ŷ −Y∗,A

〉

=
〈
Ŷ −Y∗,HH> − EHH>

〉
+
〈
Ŷ −Y∗,EHH>

〉

=
〈
Ŷ −Y∗,GG> − EGG> +G (EH)> + (EH)G>

〉
+
〈
Ŷ −Y∗,EHH>

〉

=
〈
Ŷ −Y∗,PT

(
GG> − EGG>

)〉
+
〈
Ŷ −Y∗,PT⊥

(
GG> − EGG>

)〉

+ 2
〈
Ŷ −Y∗,G (EH)>

〉
+
〈
Ŷ −Y∗,EHH>

〉

=: S1 + S2 + 2S3 + S4.

We may control S1, S2 and S4 using the following.

Proposition 1 If s2 ≥ C

(√
kd
n log (nk) +

√
k
n log (nk)

)
for some universal constant C > 0,

then S1 ≤ 1
100∆

2γ with probability at least 1− (2n)−2
.

Proposition 2 If s2 ≥ Ck

(√
d
n + 1

)
for some universal constant C > 0, then S2 ≤ 1

100∆
2γ

with probability at least 1− 2e−n.

Proposition 3 We have S4 = −1
2

∑
a 6=b Tab∆

2
ab ≤ −1

4∆
2γ where Tab :=

∑
i∈C∗

a ,j∈C∗

b

(
Ŷ −Y∗

)
ij

.
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The proofs are given in Sections B.4, B.5 and B.6, respectively. Combining the above propositions,

we have S1 + S2 ≤ −1
2S4 and therefore

0 ≤ S3 +
1

4
S4 =: S0 (9)

with probability at least 1− (2n)−C
′ − 2e−n for some universal constant C ′ > 0.

Let B := Ŷ −Y∗. We have

S3 =
∑

j

∑

a

∑

i∈Ca

Bji 〈µa,gj〉

= `
∑

j

∑

a

〈µa,gj〉


1

`

∑

i∈C∗
a

Bji




= `
∑

j

∑

a 6=σ∗(j)

〈
µa − µσ∗(j),gj

〉

1

`

∑

i∈C∗
a

Bji




where the last step holds since
∑

a 6=σ∗(j)

(∑
i∈C∗

a
Bji

)
= −∑i∈C∗

a :a=σ
∗(j)Bji for each j ∈ [n]

which follows from the row-sum constraint of program (4). By Proposition 3, we have

S4 = −`
∑

j

∑

a 6=σ∗(j)

1

2
∆2
σ∗(j),a


1

`

∑

i∈C∗
a

Bji


 .

Therefore, we have

S0 = `
∑

j

∑

a 6=σ∗(j)

(〈
µa − µσ∗(j),gj

〉
− c∆2

σ∗(j),a

)

1

`

∑

i∈C∗
a

Bji




where c = 1
8 .

To control S0, we define βja :=
〈
µa − µσ∗(j),gj

〉
− c∆2

σ∗(j),a and consider the program

max
X

∑

j

∑

a 6=σ∗(j)

βjaXja

s.t. 0 ≤ Xja ≤ 1, ∀a 6= σ∗(j), j ∈ [n]
∑

a 6=σ∗(j)

Xja ≤ 1, ∀j ∈ [n] (10)

∑

j

∑

a 6=σ∗(j)

Xja = R,

where R ∈ (0, n]. Let us denote by V (R) the optimal value of the above program and we let

V (R) = −∞ if the program is infeasible. The constraints of program (4) implies that γ
2` ∈ (0, n]

and

∑

j∈[n]

∑

a 6=σ∗(j)


∑

i∈C∗
a

Bji


 =

γ

2
.
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Hence, by Equation (9), we have

0 ≤ S0 ≤ ` · V
( γ

2`

)
. (11)

B.2. Controlling γ by LP

We show that γ is upper bounded by the objective value of an LP that is related to program (10). If

γ = 0 then the conclusion of Theorem 1 holds trivially. For γ > 0, we have the following cases:

1. If γ
2` ∈ (0, 1], it follows from Equation (11) that the error γ must satisfy

0 ≤ V
( γ

2`

)
= β∗ γ

2`
≤ β∗

⌈ γ
2`

⌉
= V

(⌈ γ
2`

⌉)

where β∗ := maxj∈[n],a 6=σ∗(j) βja. This implies

γ

2`
≤
⌈ γ
2`

⌉
≤ max {R ∈ {0, 1, . . . .} : V (R) ≥ 0} .

2. If γ
2` > 1, it follows from Equation (11) that the error γ must satisfy

0 ≤ V
( γ

2`

)
≤ max

{
V
(⌈ γ

2`

⌉)
, V
(⌊ γ

2`

⌋)}
= max

{
V
(⌈ γ

2`

⌉)
, V
(⌈ γ

2`

⌉
− 1
)}

.

In other words, we have

γ

2`
≤
⌈ γ
2`

⌉
≤ max {R ∈ {0, 1, . . . .} : V (R) ∨ V (R− 1) ≥ 0}
= 1 +max {R ∈ {0, 1, . . . .} : V (R) ≥ 0} .

Note that
⌈ γ
2`

⌉
≥ 2, and therefore we must have 1 ≤ max {R ∈ {0, 1, . . . .} : V (R) ≥ 0}.

This implies
γ

2`
≤ 2max {R ∈ {0, 1, . . . .} : V (R) ≥ 0} .

Consequently, we have

γ

2`
≤ 2max {R ∈ {0, 1, . . . .} : V (R) ≥ 0} .

B.3. Converting LP to IP

We are now ready to formally establish a connection between the error of the SDP (4) and that of the

Oracle IP (6), by relating max {R ∈ {0, 1, . . . .} : V (R) ≥ 0} to the quantity (7). Note that if R ≥ 0
is an integer, then there exists an optimal solution {wja} of program (10) such that wja ∈ {0, 1} for

all j ∈ [n], a ∈ [k]. Therefore, if R ∈ {0, 1, . . .} is an integer, then

V (R) = IP1(R) :=





max
X

∑

j

∑

a 6=σ∗(j)

βjaXja

s.t. Xja ∈ {0, 1}, ∀a 6= σ∗(j), j ∈ [n]
∑

a 6=σ∗(j)

Xja ≤ 1, ∀j ∈ [n]

∑

j

∑

a 6=σ∗(j)

Xja = R





. (12)
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Combining the last two display equations we obtain that

γ

2`
≤ 2max {R ∈ {0, 1, . . . .} : IP1(R) ≥ 0}

= 2 ·





max
R,X

R

s.t. R ∈ {0, 1, . . .}
∑

j

∑

a 6=σ∗(j)

βjaXja ≥ 0

Xja ∈ {0, 1}, ∀a 6= σ∗(j), j ∈ [n]
∑

a 6=σ∗(j)

Xja ≤ 1, ∀j ∈ [n]

∑

j

∑

a 6=σ∗(j)

Xja = R,





= 2 · IP2 := 2 ·





max
X

∑

j

∑

a 6=σ∗(j)

Xja

s.t.
∑

j

∑

a 6=σ∗(j)

βjaXja ≥ 0

Xja ∈ {0, 1}, ∀a 6= σ∗(j), j ∈ [n]
∑

a 6=σ∗(j)

Xja ≤ 1, ∀j ∈ [n]





. (13)

Let us reparameterize the integer program IP2 by a change of variable. Recall that

F :=
{
F ∈ {0, 1}n×k : F1k = 1n

}

is the set of all possible assignment matrices and F∗ ∈ F is the true assignment matrix; that is,

F ∗
ja = I {a = σ∗(j)} for all j ∈ [n], a ∈ [k]. Consider any feasible solution X of IP2; here for

each j ∈ [n], we may fix Xj,σ∗(j) = −
∑

a 6=σ∗(j)Xja — doing so does not affect the feasibility and

objective value of X w.r.t. IP2. Define the new variable F := F∗ +X ∈ F . The objective value

and constraints of the old variable X can be mapped to those of F; in particular, we have

∑

j

∑

a 6=σ∗(j)

Xja =
∑

j

∑

a 6=σ∗(j)

(Fja − F ∗
ja) =

1

2
‖F− F∗‖1

and

Xja ∈ {0, 1}, ∀a 6= σ∗(j), j ∈ [n]∑
a 6=σ∗(j)Xja ≤ 1, ∀j ∈ [n]

Xj,σ∗(j) = −
∑

a 6=σ∗(j)Xja, ∀j ∈ [n]



⇐⇒ F ∈ F

and

∑

j

∑

a 6=σ∗(j)

βjaXja
(i)
=
∑

j

∑

a

βjaXja =
∑

j

∑

a

βjaFja −
∑

j

∑

a

βjaF
∗
ja

(ii)
=
∑

j

∑

a

βjaFja,
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where steps (i) and (ii) both follow from the fact that βj,σ∗(j) = 0, ∀j. It follows that IP2 has the

same optimal value as a corresponding integer program in terms of X; in particular, we have

IP2 = IP3 :=





max
F

1

2
‖F− F∗‖1

s.t.
∑

j

∑

a

βjaFja ≥ 0

F ∈ F





.

Combining with equation (13), we see that the error γ satisfies

γ

2`
≤ 2 · IP3. (14)

We further simplify the first constraint in IP3. Recall that h̄i := µσ∗(i) + (2c)−1gi for each

i ∈ [n]. Note that
{
h̄i
}

can be viewed as data points generated from the Sub-Gaussian Mixture

Model but with (2c)−1 times the standard deviation. By definition of βja, we have

βja =
〈
µa − µσ∗(j),gj

〉
− c∆2

σ∗(j),a

= c
(
2
〈
µa − µσ∗(j), (2c)

−1gj

〉
−∆2

σ∗(j),a

)

= c
(
2
〈
µa − µσ∗(j), (2c)

−1gj

〉
− ‖µa − µσ∗(j)‖22

)

= c
(
2
〈
µa − µσ∗(j), (2c)

−1gj

〉
− ‖µa − µσ∗(j)‖22 − ‖(2c)−1gj‖22 + ‖(2c)−1gj‖22

)

= c
(
−‖µσ∗(j) − µa + (2c)−1gj‖22 + ‖(2c)−1gj‖22

)

= c
(
−‖h̄j − µa‖22 + ‖(2c)−1gj‖22

)
.

For any F ∈ F , we then have

∑

j

∑

a

βjaFja = c
∑

j

∑

a

(
−‖h̄j − µa‖22 + ‖(2c)−1gj‖22

)
Fja

= c


−

∑

j

∑

a

‖h̄j − µa‖22Fja +
∑

j

‖(2c)−1gj‖22
∑

a

Fja




(i)
= c


−

∑

j

∑

a

‖h̄j − µa‖22Fja +
∑

j

‖(2c)−1gj‖22
∑

a

F ∗
ja




= c


−

∑

j

∑

a

‖h̄j − µa‖22Fja +
∑

j

∑

a

‖(2c)−1gj‖22F ∗
ja




= c


−

∑

j

∑

a

‖h̄j − µa‖22Fja +
∑

j

∑

a

‖h̄j − µσ∗(j)‖22F ∗
ja




(ii)
= c


−

∑

j

∑

a

‖h̄j − µa‖22Fja +
∑

j

∑

a

‖h̄j − µa‖22F ∗
ja


 ,
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where step (i) holds because
∑

a Fja = 1 =
∑

a F
∗
ja, ∀j, and step (ii) holds because F ∗

ja = 1 only

if a = σ∗(j). Again recall the shorthand

η(F) :=
∑

j

∑

a

‖h̄j − µa‖22Fja.

We have the more compact expression

∑

j

∑

a

βjaFja = c (η(F∗)− η(F)) (15)

It follows that for any F ∈ F , the first constraint in IP3 is satisfied if and only if

η(F) ≤ η(F∗).

Combining with the (14), we obtain that

γ

2`
≤ 2 · IP3 = 2 ·





max
F

1

2
‖F− F∗‖1

s.t. η(F) ≤ η(F∗)

F ∈ F





.

Rearranging terms, we have the bound

γ ≤ 2` ·max {‖F− F∗‖1 : η(F) ≤ η(F∗),F ∈ F} . (16)

The result follows from the fact that ‖Y∗‖1 = n` and ‖F∗‖1 = n.

B.4. Proof of Proposition 1

In this section we control S1. We can further decompose S1 as

S1 =
〈
Ŷ −Y∗,UU>

(
GG> − EGG>

)〉
+
〈
Ŷ −Y∗,

(
GG> − EGG>

)
UU>

〉

−
〈
Ŷ −Y∗,UU>

(
GG> − EGG>

)
UU>

〉

≤ 2
∣∣∣
〈
Ŷ −Y∗,UU>

(
GG> − EGG>

)〉∣∣∣+
∣∣∣
〈
Ŷ −Y∗,UU>

(
GG> − EGG>

)
UU>

〉∣∣∣
=: 2T1 + T2

By the generalized Holder’s inequality, we have

T1 ≤ γ · ‖UU>
(
GG> − EGG>

)
‖∞

and

T2 =
∣∣∣
〈
Ŷ −Y∗,UU>

(
GG> − EGG>

)
UU>

〉∣∣∣

=
∣∣∣
〈(

Ŷ −Y∗
)
UU>,UU>

(
GG> − EGG>

)〉∣∣∣
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≤ γ · ‖UU>
(
GG> − EGG>

)
‖∞

where the last inequality holds since

‖
(
Ŷ −Y∗

)
UU>‖1 ≤ ‖Ŷ −Y∗‖1 = γ.

Combining the above, we have

S1 ≤ 3γ · ‖UU>
(
GG> − EGG>

)
‖∞.

Note that there are m = nk distinct random variables in UU>
(
GG> − EGG>

)
and let us

call them X1, . . . , Xm. For each i, we can see that Xi is the average of ` entries in GG>−EGG>

and we let Bi be an n × n matrix with ` entries equal to 1 and the others equal to 0 such that

`Xi =
〈
Bi,GG> − EGG>

〉
. To proceed, we need the Hanson-Wright inequality (an extension

of Exercise 6.2.7 on pp. 140 in Vershynin (2017)).

Lemma 1 (Higher-dimensional Hanson-Wright inequality) Let x1, . . . ,xN be independent, mean

zero, sub-Gaussian random vectors in R
M . Let B be an N ×N matrix. For every t ≥ 0 and some

universal constant c > 0, we have

P



∣∣∣∣∣∣

∑

i,j

Bij 〈xi,xj〉 − E

∑

i,j

Bij 〈xi,xj〉

∣∣∣∣∣∣
≥ t


 ≤ 4 exp

[
−cmin

(
t2

K4M‖B‖2F
,

t

K2‖B‖

)]

where K := maxi ‖xi‖ψ2
.

The proof is given in Section D.1. Using Lemma 1, we see that for any t ≥ 0

P {`Xi ≥ t} = P

{〈
Bi,GG> − EGG>

〉
≥ t
}
≤ 4 exp

[
−cmin

(
t2

K4d`
,

t

K2
√
`

)]
.

We can choose t∗ = DK2
√
`
(√

d logm+ logm
)

with K = τ and D > 0 a universal constant.

Apply the union bound, we have

S1 ≤ 3γ · 1
`
· t∗

with probability at least 1−m · P {`X ≥ t} ≥ 1− exp (−C ′ logm) = 1−m−C′

where C ′ > 0 is

a universal constant. The result follows from the condition of the proposition.

B.5. Proof of Proposition 2

In this section we control S2. We have

S2 =
〈
PT⊥

(
Ŷ −Y∗

)
,GG> − EGG>

〉

≤ Tr
[
PT⊥

(
Ŷ −Y∗

)]
· ‖GG> − EGG>‖op

≤ γ

`
· ‖GG> − EGG>‖op.

Let Var (gij) = ν2. We record a fact about the sub-Gaussian property of columns of G.

22



HIDDEN INTEGRALITY OF SDP RELAXATIONS FOR SUB-GAUSSIAN MIXTURE MODELS

Fact 1 Let x ∈ R
n be an arbitrary column of G. We have

‖ 〈x,w〉 ‖ψ2
≤ C

τ

ν

√
E 〈x,w〉2 for any w ∈ R

n,

where C > 0 is a universal constant and C τ
ν ≥ 1.

The proof is given in Section D.2. Applying Lemma 8 with ρ0 =
τ
ν , we have

‖1
d
GG> − 1

d
EGG>‖op ≤ C1ρ

2
0

(√
2n

d
+

2n

d

)
‖1
d
EGG>‖op

with probability at least 1 − 2e−n. Here we let m = d, u = n and define xi to be the i-th column

of G and x to be a vector independent of but identically distributed as each column of G (note that

columns of G are identically distributed). We also use the fact that Exx> = 1
dEGG> = ν2I.

Multiplying d on both sides of the above equation yields

‖GG> − EGG>‖op ≤ C1

(√
2n

d
+

2n

d

)
dτ2.

Hence, we have

S2 ≤
γ

`
· C1

(√
2n

d
+

2n

d

)
dτ2 = 2C1γk

(√
d

n
+ 1

)
∆2

s2

The result follows from the condition of the proposition.

B.6. Proof of Proposition 3

We can compute

(
EHH>

)
ij
=





dν2 + ‖µσ∗(i)‖22 if i = j

‖µσ∗(i)‖22 if i 6= j and σ∗(i) = σ∗(j)〈
µσ∗(i),µσ∗(j)

〉
otherwise.

We partition the matrix Ŷ−Y∗ into k2 of `× ` blocks, and note that Tab denotes the sum of entries

within the (a, b)-th block. The constraints of program (4) implies that

1. Taa ≤ 0 for each a ∈ [k] and Tab ≥ 0 for each a 6= b ∈ [k];

2. Tab = Tba for each a, b ∈ [k];

3. −Taa =
∑

b∈[k]:b 6=a Tab for each a ∈ [k];

4. −∑a∈[k] Taa +
∑

a,b∈[k]:a 6=b Tab = γ and thus −∑a∈[k] Taa =
∑

a,b∈[k]:a 6=b Tab =
γ
2 .
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Since Ŷ −Y∗ has zero diagonal, we can write

S4 =
∑

a∈[k]
Taa‖µa‖22 + 2

∑

a,b∈[k]:a<b
Tab 〈µa,µb〉

= −
∑

a,b∈[k]:a<b
Tab∆

2
ab

= −1

2

∑

a,b∈[k]:a 6=b
Tab∆

2
ab

≤ −1

2

∑

a,b∈[k]:a 6=b
Tab∆

2

= −1

4
∆2γ.

Appendix C. Proof of Theorem 2

We define the shorthand

γIP := max

{
1

2
‖F− F∗‖1 : η(F) ≤ η(F∗),F ∈ F

}
.

It is not hard to see that γIP takes integer values in [0, n]. If γIP = 0 then we are done. We therefore

focus on the case γIP ∈ [n].
Suppose γIP > 3nke−s

2/C2

0 for a fixed C0 > D/c. Note that

3nke−s
2/C2

0

(i)

≤ nk · 1
k
· e−s2/(2C2

0) ≤ ne−s
2/(2C2

0) < n

where step (i) holds since we have assumed s2 ≥ Csk for some universal constant Cs > 0. We

record an important result for our proof.

Lemma 2 Let m ≥ 4 and g ≥ 1 be integers. Let X ∈ R
m×g be a matrix such that each Xja is

a sub-Gaussian random variable with its mean equal to λja and its sub-Gaussian norm no larger

than ρja, and each pair Xja and Xib are independent for j 6= i and a, b ∈ [g]. Then for some

universal constant D > 0 and for any β ∈ (0,m], we have

∑

j,a

XjaMja ≤ D

√√√√√dβe


∑

j,a

ρ2jaMja


 log (3mg/β) +

∑

j,a

λjaMja,

∀M ∈ {0, 1}m×g : M1g ≤ 1m, ‖M‖1 = dβe ,

with probability at least 1− 1.5
m .

The proof is given in Section D.3. Define the set

M :=
{
M ∈ {0, 1}n×k : M1k ≤ 1n, ‖M‖1 = γIP,Mj,σ∗(j) = 0 ∀j ∈ [n]

}
.
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For any F feasible to IP3, we have

0 ≤ 1

c
(η(F∗)− η(F))

(i)
=
∑

j∈[n]

∑

a∈[k]
βjaFja

=
∑

(j,a):Fja=1,a 6=σ∗(j)

βja

≤ max
M∈M

∑

j

∑

a 6=σ∗(j)

βjaMja

(ii)

≤ max
M∈M


D

√√√√√γIPτ2


∑

j

∑

a 6=σ∗(j)

∆2
σ∗(j),aMja


 log (3n (k − 1) /γIP)− c

∑

j

∑

a 6=σ∗(j)

∆2
σ∗(j),aMja




≤ max
M∈M


D

√√√√√γIPτ2


∑

j

∑

a 6=σ∗(j)

∆2
σ∗(j),aMja


 s2

C2
0

− c
∑

j

∑

a 6=σ∗(j)

∆2
σ∗(j),aMja




≤
(
D

C0
− c

)
· max
M∈M

∑

j

∑

a 6=σ∗(j)

∆2
σ∗(j),aMja

where step (i) holds by Equation (15), step (ii) holds by Lemma 2 with g = k − 1 since only

k − 1 entries of {βja} are considered for each j in the sum above (ii), and the last step holds

since γIP∆
2 ≤∑j

∑
a 6=σ∗(j)∆

2
σ∗(j),aMja. Since C0 > D/c and

∑
j

∑
a 6=σ∗(j)∆

2
σ∗(j),aMja > 0,

the RHS above is negative, which is a contradiction. Hence, we must have γIP ≤ 3nke−s
2/C2

0 ≤
ne−s

2/(2C2

0) and the result follows from the fact that ‖F∗‖1 = n.

Appendix D. Proof of technical results

In this section we provide the proofs of the technical results used in the proofs of our main theorems.

D.1. Proof of Lemma 1

We record the following lemma (Exercise 6.2.7 on pp. 140 in Vershynin (2017)).

Lemma 3 (Higher-dimensional Hanson-Wright inequality) Let x1, . . . ,xN be independent, mean

zero, sub-Gaussian random vectors in R
M . Let B = {Bij} be an N ×N matrix. There exists some

universal constant c > 0 such that for every t ≥ 0

P



∣∣∣∣∣∣

N∑

i,j:i 6=j
Bij 〈xi,xj〉

∣∣∣∣∣∣
≥ t


 ≤ 2 exp

[
−cmin

(
t2

K4M‖B‖2F
,

t

K2‖B‖op

)]

where K := maxi ‖xi‖ψ2
.

With this result, we only need to prove the same tail bound for P
[∣∣∣
∑N

i=1Bii
(
‖xi‖22 − E‖xi‖22

)∣∣∣ ≥ t
]
.

To prove that, we cite another useful lemma (Theorem 2.8.2 on pp. 36 in Vershynin (2017)).
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Lemma 4 (Bernstein’s inequality for sub-exponential random variables) Let X1, . . . , XN be

independent, mean zero, sub-exponential random variables, and a ∈ R
N . Then for every t ≥ 0, we

have

P

[∣∣∣∣∣

N∑

i=1

aiXi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

[
−cmin

(
t2

K2
1‖a‖22

,
t

K1‖a‖∞

)]

where K1 := maxi ‖Xi‖ψ1
.

Here, ‖ · ‖ψ1
denotes the sub-exponential norm; see Vershynin (2017) for more details. We work

under the premise of Lemma 3. Since xi are independent sub-Gaussian random vectors, each

‖xi‖22 − E‖xi‖22 is the sum of M independent, mean zero, sub-exponential random variables with

sub-exponential norm equal to K2. Then Lemma 4 implies

P

[∣∣∣∣∣

N∑

i=1

Bii
(
‖xi‖22 − E‖xi‖22

)
∣∣∣∣∣ ≥ t

]
≤ 2 exp

[
−cmin

(
t2

K4M‖B‖2F
,

t

K2‖B‖op

)]

as required.

D.2. Proof of Fact 1

We prove the following equivalent statement

‖ 〈x,w〉 ‖2ψ2
≤ C

τ2

ν2
E 〈x,w〉2 for any w ∈ R

n,

where C > 0 is a universal constant and C τ2

ν ≥ 1. We first establish a relationship between τ2 and

Var (x1): Proposition 2.5.2 on pp. 24 of Vershynin (2017) implies that C
′τ2

ν2
≥ 1

2 for some universal

constant C ′ > 0. Hence, we have

‖ 〈x,w〉 ‖2ψ2

(i)

≤ 2C ′ ∑

i∈[n]
w2
i ‖xi‖2ψ2

= 2C ′ τ
2

ν2

∑

i∈[n]
w2
i ν

2

(ii)
= 2C ′ τ

2

ν2
E 〈x,w〉2 ,

where (i) holds according to Proposition 2.6.1 on pp. 28 of Vershynin (2017), and (ii) holds since

xi are i.i.d. and Exi = 0. Letting C = 2C ′ completes the proof.

D.3. Proof of Lemma 2

We define

LM :=
∑

j,a

(Xja − λja)Mja,

Rβ,M := D

√√√√√dβe


∑

j,a

ρ2jaMja


 log (3mg/β),
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Mβ :=
{
M ∈ {0, 1}m×g : M1g ≤ 1m, ‖M‖1 = dβe

}
.

To establish a uniform bound in β, we apply a discretization argument to the possible values of β.

Define the shorthand E := (0,m]. We can cover E by the sub-intervals Et := (t− 1, t] for t ∈ [m].
For each t ∈ [m] we define the probability

αt := P {∃β ∈ Et, ∃M ∈Mβ : LM > Rβ,M} .

We bound each of these probabilities:

αt
(i)

≤ P {∃M ∈Mt : LM > Rt,M}

≤ P

{
⋃

M∈Mt

{LM > Rt,M}
}

≤
∑

M∈Mt

P {LM > Rt,M} , (17)

where step (i) holds since β ∈ Et implies β ≤ dβe = t.
Note that each Xja − λja is an independent zero-mean sub-Gaussian random variable and the

squared sub-Gaussian norm of LM is at most Cψ2

∑
j,a ρ

2
jaMja where Cψ2

> 0 is a universal

constant. We apply Hoeffding inequality (Lemma 7) to bound the probability on the RHS of (17):

P {LM > Rt,M} ≤ exp



−

cD2t
(∑

j,a ρ
2
jaMja

)
log(3mg/t)

Cψ2

∑
j,a ρ

2
jaMja





≤ exp {−4t log(3mg/t)}

where c > 0 is a universal constant. Plugging this back to (17), we have for each t ∈ [m],

αt ≤
∑

M∈Mt

exp {−4t log(3mg/t)}

=

(
m

t

)
gt exp {−4t log(3mg/t)}

≤
(me

t

)t
gt exp {−4t log(3mg/t)}

≤ exp {t log(3mg/t) + t− 4t log(3mg/t)}

≤ exp {−t log(3mg/t)} =
(

t

3mg

)t
, (18)

where the last inequality follows from t ≤ t log(3mg/t) for t ∈ [m]. It follows that

P {∃β ∈ E, ∃M ∈Mβ : LM > Rβ,M}

≤ P

{
m⋃

t=1

{∃β ∈ Et, ∃M ∈Mβ : LM > Rβ,M}
}
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≤
m∑

t=1

αt

≤
m∑

t=1

(
t

3mg

)t
=: P1(m).

It remains to show that P1(m) ≤ 1.5
m . Since

P1(m) ≤
m∑

t=1

(
t

3m

)t

≤ 1

3m
+

m∑

t=2

(
t

3m

)t

≤ 1

3m
+m · max

t=2,3,...,m

(
t

3m

)t
,

the proof is completed if for each integer t = 2, 3, . . . ,m, we can show the bound
(
t

3m

)t ≤ 1
m2 , or

equivalently f(t) := t(log 3m− log t) ≥ 2 logm. Since t ≤ m, f(t) has derivative

f ′(t) = log 3m− log t− 1 ≥ log 3m− log

(
3m

3

)
− 1 = log 3− 1 ≥ 0.

Therefore, f(t) is non-decreasing for 2 ≤ t ≤ m and therefore f(t) ≥ f(2) = 2 log 3m−2 log 2 ≥
2 logm. Hence, P1(m) ≤ 1.5

m .

Appendix E. Proof of Theorem 3

We only need to prove the first part of the theorem. The second part follows immediately from the

first part and Theorem 1.

The proof follows similar lines as those of Theorem 17 and Lemma 18 in Makarychev et al.

(2016). In the rest of the section, we work under the context of Algorithms 1 and 2. Recall that

k′ =
∣∣∣{Bt}t≥1

∣∣∣ and we let ε := ‖Ŷ −Y∗‖1/‖Y∗‖1. We have the following lemma.

Lemma 5 There exists a partial matching π′ between [k] and [k′] and a universal constant C > 0
such that ∣∣∣∣∣∣

⋃

t=π′(a)

C∗
a ∩Bt

∣∣∣∣∣∣
≥ (1− Cε)n.

The proof is given in Section E.1. The next lemma concerns the quality of clustering by Algorithm

3.

Lemma 6 There exists a permutation π on [k] and a universal constant C > 0 such that

∣∣∣∣∣∣

⋃

t=π(a)

C∗
a ∩ Ut

∣∣∣∣∣∣
≥ (1− Cε)n.
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The proof is given in Section E.2. The result follows from combining the above lemmas and the

fact that

err(σ̂,σ∗) = 1− 1

n
max
π∈Sk

∣∣∣∣∣∣

⋃

t=π(a)

C∗
a ∩ Ut

∣∣∣∣∣∣
.

E.1. Proof of Lemma 5

We define ya to be an arbitrary row of Y∗ whose index is in C∗
a .

Ga :=

{
i ∈ C∗

a : ‖Ŷi• − ya‖1 ≤
`

8

}
, ∀a ∈ [k]

G :=
⋃

a∈[k]
Ga,

H := V \G.

We construct a partial matching π′ between sets C∗
a and Bt by matching every cluster C∗

a with

the first Bt that intersects Ga, and we let π′(a) = t. Since each i ∈ [n] belongs to some Bt, we are

able to match every C∗
a with some Bt. The fact that we cannot match two distinct clusters C∗

a and

C∗
b with the same Bt as well as the rest of the proof are given by the following fact.

Fact 2 We have

1. For each a ∈ [k] and t ∈ [k′] such that t = π′(a), we have Bt ∩Gb = ∅ for any b ∈ [k] \ {a}
and Bt ⊂ Ga ∪H;

2. For each a ∈ [k] and t ∈ [k′] such that t = π′(a), we have

|Bt ∩ C∗
a | ≥ |Ga| − |Bt ∩H| .

3. We have ∑

t=π′(a)

|Bt ∩ C∗
a | ≥ |V | − 2 |H| .

4. There exists a universal constant C > 0 such that |H| ≤ Cεn.

The proof is given below.

E.1.1. PROOF OF FACT 2

1. Suppose that there exist Bt and b ∈ [k] such that b 6= a and Bt ∩ Gb 6= ∅. Let u ∈ Bt ∩ Ga

and v ∈ Bt ∩Gb. Since Ga and Gb are disjoint, we know that u 6= v. Let w ∈ Bt. Then we

have

‖Ŷu• − Ŷw•‖1 ≤
`

4

‖Ŷv• − Ŷw•‖1 ≤
`

4
.
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Therefore

‖Ŷu• − Ŷv•‖1 ≤ ‖Ŷu• − Ŷw•‖1 + ‖Ŷv• − Ŷw•‖1 ≤
`

2
.

This implies

‖ya − yb‖1 ≤ ‖ya − Ŷu•‖1 + ‖Ŷu• − Ŷv•‖1 + ‖yb − Ŷv•‖1

≤ `

8
+

`

2
+

`

8
< `,

which is a contradiction to the fact that ‖ya−yb‖1 = 2`. To complete the proof, we note that

for any i ∈ Bt we have either i ∈ Ga or i ∈ H .

2. Fix i ∈ Ga for some a ∈ [k]. For any j ∈ Ga we have j ∈ B(i) since

‖Ŷi• − Ŷj•‖1 ≤ ‖ya − Ŷi•‖1 + ‖ya − Ŷj•‖1 ≤
`

4
.

Therefore, by definition

|Bt| ≥ |B(i)| ≥ |Ga| .
We have

|Bt ∩ C∗
a |

(i)

≥ |Bt ∩Ga|
= |Bt| − |Bt\Ga|
(ii)
= |Bt| − |Bt ∩H|
≥ |Ga| − |Bt ∩H| ,

where step (i) holds since Ga ⊂ C∗
a and step (ii) holds since Bt ⊂ Ga ∪H .

3. Summing the LHS of the above equation over t = π′(a) gives

∑

t=π′(a)

|Bt ∩ C∗
a | =

∑

a∈[k]
|Ga| −

∑

t=π′(a)

|Bt ∩H|

≥
∑

a∈[k]
|Ga| −

∑

t≥1

|Bt ∩H|

(i)
= |G| − |V ∩H|
= |V | − 2 |H| ,

where step (i) holds since Bt ∩H are disjoint and
⋃
t≥1Bt = V .

4. We have

|H| · `
8
≤
∑

i∈H
‖Ŷi• − yσ∗(i)‖1 ≤ ‖Ŷ −Y∗‖1 ≤ ε‖Y∗‖1 = ε · n`

where the last step follows from the fact that ‖Y∗‖1 = n`. The result follows.
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E.2. Proof of Lemma 6

Let π′ be the partial matching between C∗
a and Bt from Lemma 5. Define π(a) = π′(a) for

π′(a) ≤ k. If the resulting π is a partial permutation, we extend π to a permutation defined on [k]
in an arbitrary way. We may assume that {Ut}t∈[k] are {Bt}t∈[k] WLOG, and that Ut consists of Bt
and some elements from sets Bu with u > k. We have

∣∣∣∣∣∣

⋃

t=π(a)

C∗
a ∩ Ut

∣∣∣∣∣∣
≥

∣∣∣∣∣∣

⋃

t=π′(a)≤k
C∗
a ∩Bt

∣∣∣∣∣∣

=

∣∣∣∣∣∣

⋃

t=π′(a)

C∗
a ∩Bt

∣∣∣∣∣∣
−

∣∣∣∣∣∣

⋃

t=π′(a)>k

C∗
a ∩Bt

∣∣∣∣∣∣

≥
(
1− C ′ε

)
n−

∣∣∣∣∣∣

⋃

t=π′(a)>k

C∗
a ∩Bt

∣∣∣∣∣∣

where C ′ > 0 is a universal constant. Define

T1 :=
{
t > k : t = π′(a) for some a ∈ [k]

}
,

T2 :=
{
t ∈ [k] : t 6= π′(a) for any a ∈ [k]

}
.

Note that |T1| = |T2| and for any t1 ∈ T1 and t2 ∈ T2 we have |Bt1 | ≤ |Bt2 |. Therefore,

∣∣∣∣∣∣

⋃

t=π′(a)>k

C∗
a ∩Bt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

⋃

t∈T1
Bt

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

⋃

t∈T2
Bt

∣∣∣∣∣∣

≤ |V | −

∣∣∣∣∣∣

⋃

t=π′(a)

C∗
a ∩Bt

∣∣∣∣∣∣
= C ′εn.

The result follows by setting C := 2C ′.

Appendix F. Proof of Theorem 4

Let Var (gij) = ν2. For a ∈ [k], define Ĉa := {i ∈ [n] : σ̂i = a} the estimated clusters encoded

in σ̂, and recall that our cluster center estimators are defined by µ̂a := `−1
∑

i∈Ĉa
hi. We assume{

Ĉa

}
achieves the lowest clustering error as given in Theorem 3 WLOG. For each a ∈ [k], we have

‖µ̂a − µa‖2 ≤ ‖
1

`

∑

i∈Ĉa

hi −
1

`

∑

j∈C∗
a

hj‖2 + ‖
1

`

∑

j∈C∗
a

hj − µa‖2

=: Q1 +Q2.
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F.1. Controlling Q1

Define ε := err(σ̂,σ∗). We work on the event that the result Theorem 3 is true. We have

Q1 =
1

`
‖
∑

i∈Ĉa\C∗
a

hi −
∑

j∈C∗
a\Ĉa

hj‖2

Note that

∣∣∣Ĉa\C∗
a

∣∣∣ =
∣∣∣C∗

a\Ĉa
∣∣∣ so we can pair each point in Ĉa\C∗

a with a point in C∗
a\Ĉa. Let

us pair ith point in Ĉa\C∗
a with j(i)th point in C∗

a\Ĉa, and define M := {(i, j(i))}. We have

|M| ≤ nε and we can write

Q1 =
1

`
‖

∑

(i,j(i))∈M

(
hi − hj(i)

)
‖2

≤ 1

`

∑

(i,j(i))∈M
‖hi − hj(i)‖2

≤ 1

`

∑

(i,j(i))∈M

(
∆σ∗(i),σ∗(j(i)) + ‖gi − gj(i)‖2

)

≤ 1

`

∑

(i,j(i))∈M

(
Cq∆+ ‖gi − gj(i)‖2

)
,

where the last step holds for some universal constant Cq > 0 given that maxa,b∈[k]∆ab ≤ Cq∆. By

Theorem 3.1.1 on pp. 41 of Vershynin (2017), 1√
2ν
‖gi − gj(i)‖2 −

√
d is a sub-Gaussian random

variable with sub-Gaussian norm at most Cψ2

τ2

ν2
where Cψ2

> 0 is a universal constant. Then

Lemma 7 implies that

P

[
1√
2ν
‖gi − gj(i)‖2 −

√
d ≥ C

τ2

ν2

√
log n

]
≤ n−C′

for some universal constants C,C ′ > 2. By the union bound and the facts that |M| ≤ n and ν . τ ,

we have

max
(i,j)∈M

‖gi − gj(i)‖2 ≤ Cg

(
τ
√
2d+ Cτ

√
2 log n

)

with probability at least 1− n−C1 where Cg, C1 > 0 are universal constants.

Therefore, we have

Q1 ≤ C0

(
∆+ τ

√
d+ τ

√
log n

)
· k exp

[
− s2

Ce

]

≤ C0

(
∆+ τ

√
d+ τ

√
log n

)
· exp

[
− s2

2Ce

]

for some universal constant C0, Ce > 0 with probability at least 1−n−C1 , where the last step holds

since s2 ≥ k. The fact that ex ≥ 1 + x > x for any x implies

exp

[
− s2

4Ce

]
≤ 4Ce

s2
=

τ

∆
· 4Ce

s
≤ 4Ce

τ

∆

32



HIDDEN INTEGRALITY OF SDP RELAXATIONS FOR SUB-GAUSSIAN MIXTURE MODELS

where the last step holds since we have s ≥ 1 by the conditions of Theorem 3. Hence, we have

Q1 ≤ C0τ
(
4Ce +

√
d+

√
log n

)
· exp

[
− s2

4Ce

]

≤ C1τ
(
1 +
√
d+

√
log n

)
· exp

[
− s2

4Ce

]

≤ 2C1τ
(√

d+
√

log n
)
· exp

[
− s2

4Ce

]

where C1 > 0 is a universal constant.

F.2. Controlling Q2

We have

Q2 = ‖
1

`

∑

j∈C∗
a

gj‖2.

We see that 1
`

∑
j∈C∗

a
gji has variance 1

`ν
2. By Proposition 2.6.1 on pp. 28 and Theorem 3.1.1

on pp. 41 of Vershynin (2017),
√
`
ν ‖1`

∑
j∈C∗

a
gj‖2 −

√
d is a sub-Gaussian random variable with

sub-Gaussian norm at most Cψ2

τ2

ν2
where Cψ2

> 0 is a universal constant. Then Lemma 7 implies

that

P



√
`

ν
‖1
`

∑

j∈C∗
a

gj‖2 −
√
d ≥ C

τ2

ν2

√
log n


 ≤ n−C′

for some universal constants C,C ′ > 0. Since ν . τ , there exists a universal constant C0 > 0 such

that

Q2 ≤ C0τ

(√
kd

n
+

√
k log n

n

)

with probability at least 1− n−C′

.

Appendix G. Technical lemmas

The following lemma is Theorem 2.6.2 on pp. 28 in Vershynin (2017).

Lemma 7 (General Hoeffding’s inequality) Let X1, . . . , XN be independent, mean zero, sub-

Gaussian random variables. Then, for every t ≥ 0 we have

P

[∣∣∣∣∣

N∑

i=1

Xi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

[
− ct2
∑N

i=1 ‖Xi‖2ψ2

]
,

where c > 0 is a universal constant.

The following lemma is Exercise 4.7.3 in Vershynin (2017).
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Lemma 8 (Tail bound of covariance matrix of sub-Gaussians) Let x be a sub-Gaussian vector

and let x1, . . . ,xm be independent samples of x. Let m be a positive integer and define

Σ := Exx>,

Σm :=
1

m

m∑

i=1

xixi
>.

Let ρ0 ≥ 1 be such that

‖ 〈x,w〉 ‖ψ2
≤ ρ0

√
E 〈x,w〉2 for any w ∈ R

N .

For any u ≥ 0, we have for a universal constant C > 0,

‖Σm −Σ‖op ≤ Cρ20

(√
N + u

m
+

N + u

m

)
‖Σ‖op

with probability at least 1− 2e−u.
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