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Abstract. Given a finite collection of O vector fields on a C? manifold which span
the tangent space at every point, we consider the question of when there is locally a
coordinate system in which these vector fields have a higher level of smoothness. For
example, when is there a coordinate system in which the vector fields are smooth,
or real analytic, or have Zygmund regularity of some finite order? We address this
question in a quantitative way, which strengthens and generalizes previous works
on the quantitative theory of sub-Riemannian (aka Carnot—Carathéodory) geometry
due to Nagel, Stein, and Wainger, Tao and Wright, the second author, and others.
Furthermore, we provide a diffeomorphism invariant version of these theories. This
is the first part in a three part series of papers. In this paper, we study a partic-
ular coordinate system adapted to a collection of vector fields (sometimes called
canonical coordinates) and present results related to the above questions which are
not quite sharp; these results form the backbone of the series. The methods of this
paper are based on techniques from ODEs. In the second paper, we use additional
methods from PDEs to obtain the sharp results. In the third paper, we prove results
concerning real analyticity and use methods from ODEs.
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1 Introduction

Let Xi,...,X, be C' vector fields on a C? manifold M, which span the tangent
space at every point of M. For s > 0 let ¥ denote the Zygmund space of order s
(see Section 2.1), let ¥ denote the space of smooth functions, and let ¥ denote
the space of real analytic functions. In this three part series of papers, we investigate
the following closely related questions for s € (1, 00] U {w}:!

(i) When is there a coordinate system near a fixed point xg € M such that the

vector fields X7,..., X, are €**! in this coordinate system?

(ii) When is there a €**2? manifold structure on M, compatible with its C? struc-
ture, such that Xq,..., X, are ¢*t! with respect to this structure? When such
a structure exists, we will see it is unique.

(iii) When there is a coordinate system as in (i), how can we pick it so that X1, ..., X,
are “normalized” in this coordinate system in a quantitative way which is useful
for applying techniques from analysis?

We present necessary and sufficient, coordinate free, conditions for (i) and (ii) and,
under these conditions, give a quantitative answer to (iii). See Section 3 for an
overview of the results of this series. The outline of this series is as follows:

(I) In this paper, we study a particular explicit coordinate system adapted to
a collection of vector fields. This coordinate system is sometimes known (at
least in the setting of Lie groups) as canonical coordinates of the first kind.

' Wedefineco+1l=c0+2=candw+1=w+2=w.
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This builds on previous work of Nagel, Stein, and Wainger [NSW85], Tao
and Wright [TWO03, Section 4], and the second author [Str11]. To study these
canonical coordinates, we use methods from ODEs. Unfortunately, the re-
sults given by these methods are one derivative short of being optimal (see
Remark 4.8).

(IT) In the second paper [Str18a], we obtain the optimal results (in terms of Zyg-
mund spaces) by introducing a new (implicitly defined) coordinate system.
The second paper takes as a starting point the main result of this paper, and
then uses methods from PDEs to obtain the sharp results. These PDE meth-
ods were inspired by, and are closely related to, Malgrange’s celebrated proof
of the Newlander—Nirenberg theorem [Mal69].

(ITIT) While the second paper obtains optimal regularity in terms of Zgymund
spaces, the methods there are not applicable to the real analytic setting. In
the third paper [Str18b], we return to canonical coordinates and methods from
ODEs to obtain results regarding real analyticity. The third paper takes the
main results of this paper as its starting point.

To help explain the sorts of questions we investigate, we consider a trivial exam-
ple.

EXAMPLE 1.1. Let X be a C! vector field on a C? manifold 9T with X (z¢) # 0
for some xg € M. Let M be the integral curve of X passing through zq. It is well
known that there is a unique C? manifold structure on M which sees M < 9 as
a C? injective immersion (see Proposition 3.1); X spans the tangent space to M at
every point. Set ®(t) := e!*xy and let I C R be a maximal open interval containing
0 such that ® is defined on I and ® : I — M is injective. It is easy to see that @‘I
is a C? diffeomorphism onto its image, and therefore ® defines a coordinate chart
on M near zg. In this coordinate system X equals %; more precisely, ®*X = %.
Thus, we have not only picked a coordinate chart on M in which X is smooth, but
we have also chosen it so that X is “normalized” to be %.

It is straightforward to generalize Example 1.1 to a finite collection of vector
fields, so long as the vector fields are assumed to commute. The purpose of this
series of papers is to consider similar results when the vector fields are not assumed
to commute; in which case it is not always possible to pick a coordinate system
in which the vector fields are smooth. Indeed, we present necessary and sufficient
conditions for when one can pick a coordinate system giving the vector fields a
desired level of regularity.

The coordinate charts developed in this series can be viewed as scaling maps in
a wide variety of problems; this is described in more detail in Section 7. Seen in
this perspective, these results are the latest, most general, and sharpest in a series
of papers on the quantitative theory of sub-Riemannian (or Carnot—Carathéodory)
geometry. This started with the foundational work of Nagel, Stein, and Wainger
[NSW85] and the closely related work of C. Fefferman and Sanchez-Calle [FSC86].
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Tao and Wright [TWO03, Section 4] furthered the results of Nagel, Stein, and Wainger
and offered a new proof based on methods from ODEs (see Section 9.1 for a detailed
discussion of the primary ODE they studied). The second author unified these two
approaches to prove more general results in [Strll]. This series of papers can be
seen as strengthening and generalizing these theories and casting them in a way
which is completely “coordinate free” in the sense that all of our assumptions and
estimates are invariant under arbitrary C? diffeomorpisms. The most basic version
of this scaling perspective can be seen in Example 1.1, as the next example shows.

ExAMPLE 1.2. We take the setting of Example 1.1 with M =R, 2o =0, X = 5%,
for some fixed 6 > 0. In this case ®(¢) = dt; thus the pullback via ® is the usual
Euclidean dilation of vector fields. We can therefore think of Example 1.1 as a
generalization of the usual dilation maps on R.

As described above, the main results of this series have two facets:

e They provide a coordinate system in which given C! vector fields have an
optimal degree of smoothness.

e They provide a coordinate system in which given vector fields are normalized
in a way which is useful for applying techniques from analysis.

These two facets, along with some applications, are described in more detail in
Section 7.

Despite the fact that the results in the second paper of this series are sharp in
terms of regularity, and the results in this paper are one-derivative off from being
optimal, we believe the methods and results of this paper have several advantages
over those in the second paper. Some of these advantages are:

(a) The coordinate system defined in this paper is explicit, while it is only defined
implicitly in the second paper.

(b) The proofs in this paper are simpler. Indeed, the second paper requires all of
the results of this paper, plus additional methods from PDEs.

(c) Despite having a simpler proof, the main results of this paper are still useful
in many applications. Indeed, they are stronger, sharper, and more general
than the previous works on this subject [NSW85, TWO03,Str11] which have
had many applications; see Section 7 for further details. However, they are
not strong enough to obtain some of the most interesting consequences of the
results in the second paper; for example, the results stated in Section 3.2. The
PDE methods will also be necessary for future work of the second author in
the complex setting; see Section 7.5.

(d) Because the methods of this paper are based on ODEs, as opposed to the
PDEs in the second paper, they are in some ways more robust, and will likely
be easier to adapt to other settings. For example, in the third paper of the
series we see that these ODE methods can be used to study the real analytic
setting.
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2 Function Spaces

Before we can state any results, we need to introduce the function spaces we use. We
make a distinction between function spaces on subsets of R™ and function spaces on
a C? manifold M. On R™, we have access to the standard coordinate system (and
its induced smooth structure) and we can define all of the usual function spaces and
their norms in terms of this coordinate system. On M, we do not have access to any
such natural coordinates, and it does not make sense to talk about, for example, C'*°
functions on M as this would depend on a choice of coordinate system or smooth
structure. However, if we are given a finite collection of vector fields on M, it does
make sense to talk about functions which are C*° with respect to these vector fields,
and this is how we shall proceed.

2.1 Function spaces on Euclidean space. Let 2 C R" be a bounded, con-
nected, open set (we will almost always be considering the case when (2 is a ball in
R™). We have the following classical Banach spaces of functions on :

C(Q) =C%Q) :={f:Q— C| f is continuous and bounded},
1 fllcw) = I fllco@) = Sup |f(2)].

For m € N (throughout the paper we take the convention 0 € N),
C™(Q) == {f € C°(Q) |03 f € C°(Q),¥]al <m}, Ifllem@) == D 105 flleo):
|a|<m

Next we define the classical Lipschitz—Holder spaces. For s € [0, 1],
[fllcoe(@) = Ifllco@) + sup |z —y[7°|f(z) = f(y)],

z,y€)
TFy

C%*(Q) == {f € C°Q) : || fllcos (@) < 00} (2.1)
For m € N, s € [0,1],

1fllgme@y == D 1105 flloos@),  C™(Q):={f € C™(Q): [If]

|| <m

C7n,s(Q) < OO}.

Next, we turn to the Zygmund-Hoélder spaces. Given h € R™ define Q, := {z € R™:
x,x + h,x + 2h € Q}. For s € (0, 1] set

[flle= ) = [fllcor2) + sup [h[7*[f(z 4 2h) = 2f(z + h) + f(z)],
0£heRr"
e,
@) = {f € Q)+ | flle-y < oo
For m € N, s € (0,1], set
[ fllgmes () = Z 9z f

|| <m

e, CTQ) ={feC™(Q):|If

(gs+nL(Q) < OO}.
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We set,
E2(Q) =€), C®(Q):= () Cm™)
s>0 meN

When € is a ball, €°(02) = C>(9).

REMARK 2.1. The term || f||co.s/2(q) in the definition of [|f[l4-(q) is somewhat un-
usual, and in the literature is usually replaced by || f|lco(q). As is well-known, if Q
is a bounded Lipschitz domain, these two options yield equivalent? (but not equal)
norms—and therefore the space €*(2) is the usual Zygmund—Hélder space of order
s. However, the constants involved in this equivalence of norms depend on the size
of 2, and the above choice is more convenient for our purposes. For an example of
the convenience offered by this choice of norm, see Remark 8.4.

Finally, we turn to spaces of real analytic functions. Given r > 0 we define:

ooy = 3 TN ot cun) = 1 € (@) ¢l cmniay < o0,
aeN™
We set C*(€2) := (J, o C*""(€2). For notational convenience, we set ¢ (Q) := C*(2).

Throughout the paper, if we say || f||cm(q) < oo, it means that f € C™ (), and
similarly for any other function space.

For a Banach space V we define the same spaces taking values in V by the
obvious modifications and write C™(Q; V), C™5(Q; V), €™ 5(Q; V), C¥T(Q; V),
and C¥(Q;V) to denote these spaces. When we have a vector field X on 2, we
identify X with a function X : Q — R" by writing X = Z?:l a; (:L‘)a%j and treating
X as the function X (z) = (a1(x), ..., an(x)). Thus, it makes sense to consider norms
like || X||g:(;rn) and [ X[gm.-@mn)-

2.2 Function spaces on manifolds. Let Xi,..., X, be C! vector fields on
a connected C? manifold M. Define the Carnot-Carathéodory ball associated to
X1,..., Xy, centered at x € M, of radius § > 0, by

Bx(z,6) == {y €M ‘ Iy :[0,1] = M,4(0) = 2,v(1) = 4,7 (t) = >_ a;(1)5X;(v(1)),
j=1

a; € L*=([0,1]), zq:|aj|2 < 1}, (2.2)
j=1

Loo
and for y € M, set
p(z,y) :=inf{d > 0:y € Bx(z,0)}. (2.3)
When Xy,..., X, are smooth vector fields on a smooth connected manifold M,

if the Lie algebra generated by X, ..., X, spans the tangent space at every point of

2 This equivalence follows easily from [Tri06, Theorem 1.118 (i)]. We will usually use these norms
in the case when 2 is a ball in Euclidean space, and is therefore a bounded Lipschitz domain.
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M, pis a metric on M—sometimes known as a sub-Riemannian metric or a Carnot—
Carathéodory metric. In this case, the metric toplogy induced by p is the same as
the topology on M. If the Lie algebra generated by Xji,..., X, does not span the
tangent space at some point, then p may or may not be a metric: it is possible that
p(x,y) = oo for some x,y. If p(z,y) = oo, we make the convention that p(x,y)™° =0
for s > 0 and p(z,y)? = 1. In the nonsmooth setting, we will usually be considering
the special case when X1,..., X, span the tangent space at every point of M, and
in this case p is a metric, and the metric topology induced by p is the same as the
topology on M.

We use ordered multi-index notation: X . Here, o denotes a list of elements of
{1,...,q} and |a| denotes the length of the list. For example, X (131 = X, X| X3X;
and |(2,1,3,1)| = 4.

Associated to the vector fields X7, ..., X, we have the following Banach spaces
of functions on M.

C(M)=C%M):={f: M —C | f is continuous and bounded},
I flleary = 1fllce (ary := sup | f(z)].
zeM

For m € N, we define
CY¥(M):={feC(M ‘Xo‘feXlstsandXo‘feC( ), V]a] < m},
| fllew oy = Z 1X* flleon

laj<m

For s € [0, 1], we define the Lipschitz—Holder space associated to X by

[ lcosany = I flloor + su;;wp(fr ) () = fW)l,
gj#y
O (M) = {f € C(M) : [|f]| g ary < o0}
For m € N and s € [0, 1], set
I fllcme ary 2= Z X flleosary:  Cx°(M) = {f € CX(M) || fllege(ar) < oo}

laj<m

We turn to the Zygmund-Ho6lder spaces. For this, we use the Holder spaces
C%#([a,b]) for a closed interval [a,b] C R; | - o (ja,p)) is defined via the formula
(2.1). Given h > 0, s € (0,1) define

q
PY(h) == v:[0,2h] —>M’fy Zdj ),d; € C%%([0,2h]),
7=1

q
> N0 qo.ony < 1
=1
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For s € (0,1] set

£ hezcan =1 F g+ sup B LF(/2R) = 2£((8) + SO,

767);\(/{5/2(’1)

and for m € N,

I Gt (M) T Z X flleg ()
|| <m
and we set
CxT (M) = {f € CR(M) : || fllgm+s (ary < 00}
Set

CX (M) = (| €%(M) and CF(M) := | CR(M).
>0 meN
It is a consequence of Lemma 8.1 that € (M) = CF(M); indeed, € (M) C
C¥ (M) is clear while the reverse containment follows from Lemma 8.1.
We introduce the following counter-intuitive, but convenient, definitions.

DEFINITION 2.2. Form < 0, s € [0, 1], we define C'y"*(M) := C (M) with equality of

norms. For s € (—1,0], we define €5 (M) := C?(’(S+1)/2(M), with equality of norms.
For s € (—o0, —1], we define €% (M) := C(M) with equality of norms.

Finally, for » > 0 we introduce a space of functions which are “real analytic with
respect to X7.

Iflegran =D = > IXllen, CX"(M)={f € CEOD) : |flogra) < oo}
m=0 la]=m

This definition was introduced in greater generality by Nelson [Nel59].
We set CY(M) = (J,-,C¥ (M), and for notational convenience set €% (M) :=
CY(M). We refer the reader to the third paper in the series for a more detailed
discussion of the spaces C*"(Q) and Cy" (M).

Importantly, all of the above spaces are invariant under diffeomorphisms. In fact,
we have the following result.

PROPOSITION 2.3. Let N be another C? manifold, let ® : M — N be a C? dif-
feomorphism, and let ®,X denote the list of vector fields ®,X1,...,®,X,. Then
the map f — f o ® is an isometric isomorphism between the following Banach
spaces: Cg' x(N) — C(M), Cg"%(N) — C{*(M), €5 x(N) — €3%(M), and
C7e () = 037 (M),

Proof. This is immediate from the definitions. O
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REMARK 2.4. Some of the above definitions deserve some additional remarks.

e In (2.2), /(t) is defined as follows. In the case that M is an open subset
Q CR"”and v : [a,b] — Q, 4 (t) = ;1-:1 a;(t)X;(y(t)) is defined to mean
v(t) = v(a)+ fj > @j(8)X;(7(s)) ds; note that this definition is local in ¢. For
an abstract C2 manifold M, this is interpreted locally. Le., if v : [a,b] — M, we
say 7'(t) = >, a;(t)X;(y(t)) if Yty € [a,b], there is an open neighborhood
N of 7(to) and a C? diffeomorphism ¥ : N — Q, where Q C R" is open, such
that (W o) () = 35, a;(t)(W.X;) (W 0 y(t)) for ¢ near to (t € [a,b]).

e When we write V f for a C! vector field V and f : M — R, we define this as
Vf(z):= %’tzof(etvx). When we say V f exists, it means that this derivative
exists in the classical sense, Vz. If we have several C! vector fields Vi, Va, ..., Vr,
we define ViVa--- Vi f := Vi(Va(---VLL(f))) and to say that this exists means
that at each stage the derivatives exist.

2.2.1 Beyond manifolds.  For certain subsets of M which are not themselves man-
ifolds, we can still define the above norms. Indeed, let Xi,...,X, be C! vector
fields on a C? manifold M and fix ¢ > 0. In this setting, By(zo,&) might not
be a manifold (though it sometimes is-see Proposition 3.1). Bx(zo,§) is a metric
space, with the metric p. For a function f : Bx(z¢,§{) — C and = € Bx(xo,¢), it
makes sense to consider X;f(z) := & tzof(etxjx). Using this, we can define the
spaces Cy"*(Bx (20,£)), €% (Bx(x0,§)), and CY" (Bx (z0,&)) and their correspond-
ing norms, with the same formulas as above.

3 Overview of the Series

In this section, we present the main results of this three part series of papers; though
we will offer a more detailed presentation of these results in the later papers. We
separate the results into two parts: the qualitative results (i.e., (i) and (ii) from the
introduction) and the quantitative results (i.e., (iii)). The quantitative results are
the most useful for applications, and the qualitative results are simple consequences
of the quantitative ones. The proofs will not be completed until the later papers—
though in this paper we prove a slightly weaker version of the quantitative results
(see Section 4). We begin by stating the qualitative results, as they are easier to
understand.

3.1 Qualitative results. Let X1,..., X, be C! vector fields on a C? manifold
M. For z,y € M, define p(x,y) as in (2.3). Fix g € M and let Z := {y € M :
p(xo,y) < oo}. pis a metric on Z, and we give Z the topology induced by p (this is
finer® than the topology as a subspace of 9, and may be strictly finer). Let M C Z
be a connected open subset of Z containing xy. We give M the topology of a subspace
of Z. We begin with a classical result to set the stage.

3 See Lemma A.1 for a proof that this topology is finer than the subspace topology.
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PROPOSITION 3.1. Suppose [X;, X;] = >1_; cﬁij, where cﬁj : M — R are locally

bounded. Then, there is a C? manifold structure on M (compatible with its topology)
such that:

e The inclusion M — 9 is a C? injective immersion.
e Xq,..., X, are C' vector fields tangent to M.
e Xi,..., X, span the tangent space at every point of M.

Furthermore, this C? structure is unique in the sense that if M is given another C?
structure (compatible with its topology) such that the inclusion map M — I is a
C? injective immersion, then the identity map M — M is a C? diffeomorphmism
between these two structures.

For a proof of Proposition 3.1 see Appendix A. Henceforth, we assume the
conditions of Proposition 3.1 so that M is a C? manifold and X7, ... , Xg are Cct
vector fields on M which span the tangent space at every point. We write n =
dim span{ X (zo), ..., X4(x0)}, so that dim M = n.

REMARK 3.2. If X1 (xo),..., Xq(x0) span Ty, 91, then M is an open submanifold of
M. If Xq,..., X, span the tangent space at every point of 9T and 91 is connected,
one may take M = 9.

Theorem 3.3 (The Local Theorem). For s € (1,00] U {w}, the following three
conditions are equivalent:

(i) There is an open neighborhood V. C M of xy and a C? diffeomorphism ® :

U — V where U C R" is open, such that ®*X.,...,®*X, € CSTHU;RM).

(ii) Re-order the vector fields so that X1(xo), ..., Xn(zg) are linearly independent.
There is an open neighborhood V- C M of xq such that:
o [Xi, Xj] = >0 1 & Xk, 1< i,j <n, where & ; € €5 (V).
o Forn+1<j<gq, X; =5, b5Xy, where bi € €37 (V).

(iii) There exists an open neighborhood V. C M of xy such that [X;, X;] =
i cifink, 1<1i,5 <q, where cf’j e Ey(V).

REMARK 3.4. (ii) and (iii) of Theorem 3.3 are similar but have slightly different
advantages. In (ii), because Xi,...,X,, form a basis for the tangent space of M
near xg, the functions éf and bé? are uniquely determined (so long as V' is chosen
sufficiently small), and one can directly check to see if (ii) holds by computing these
functions.® If ¢ > n, X1,... , Xg are linearly dependent, so the cf’ ; in (iii) are not
unique—and (iii) only asks that there exists a choice of cﬁ ; satisfying the conditions
in (iii). Despite this lack of uniqueness, (iii) is the setting which usually arises in

applications.

4 The computation can be done in any coordinate system, as the conditions are invariant under
a change of coordinate system—see Proposition 2.3.
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REMARK 3.5. Theorem 3.3 is stated for s € (1,00]. It is reasonable to expect the
same result for s € (0, 0c], however our proof runs into some technical issues when

€ (0, 1]. We refer the reader to the second paper for a further discussion of this. A
similar remark holds for Theorem 3.6, below.

Theorem 3.6 (The Global Theorem). For s € (1,00], the following three condi-
tions are equivalent:

(i) There exists a €2 atlas on M, compatible with its C? structure, such that
X1,...,X, are €°! with respect to this atlas.

(ii) For each xy € M, any of the three equivalent conditions (i), (ii), or (iii) from
Theorem 3.3 holds for this choice of .

(i) [X;, X;] = >0, cﬁij, 1 <i,j < gq, where Voo € M, 3V C M open with
xo € V such that cﬁj vECR(V), 1<i,5,k<gq

Furthermore, under these conditions, the ¢*t? manifold structure on M induced
by the atlas in (i) is unique, in the sense that if there is another €**? atlas on M,
compatible with its C? structure, and such that X1, ... , Xq are €**! with respect to
this second atlas, then the identity map M — M is a €°? diffeomorphism between
these two €12 manifold structures on M.

Also, the following two conditions are equivalent:

(a) There is a real analytic atlas on M, compatible with its C? structure, such
that X1,..., X, are real analytic with respect to this atlas.

(b) For each xog € M, any of the three equivalent conditions (i), (ii), or (iii) from
Theorem 3.3 hold for this choice of xg (with s = w).

Furthermore, under these conditions, the real analytic manifold structure on M
induced by the atlas in (a) is unique, in the sense that if there is another real
analytic atlas on M, compatible with its C? structure and such that X1, ..., Xq are
real analytic with respect to this second atlas, then the identity map M — M is a
real analytic diffeomorphism between these two real analytic structures on M.

3.2 Quantitative results. Theorem 3.3 gives necessary and sufficient condi-
tions for a certain type of coordinate chart to exist. For applications in analysis, it is
essential to have quantitative control of this coordinate chart. In the second part to
this series, these quantitative charts are studied in the setting of Zygmund spaces,
while in the third part they are studied in the real analytic setting. In this section,
we present the results on Zygmund spaces, and refer the reader to the third paper
for the corresponding real analytic results.

Because we need to keep track of what each constant depends on for applications
in analysis (see Section 7), the statements of the results in this section, later in
the paper, and in the subsequent papers in this series, are quite technical. To help
simplify matters, we define various notions of “admissible constants”. These will be
constants that can only depend on certain parameters. While these definitions are
somewhat unwieldy, they greatly simplify the statements of the results in the rest
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of this series. In each instance, it will be clear what notion of admissible constants
we are using.

First we need some new notation. B"(n) denotes the Euclidean ball of radius
1 > 0 centered at 0 € R". Let Xy,..., X, be C'! vector fields on a C? manifold O.

DEFINITION 3.7. For zg € M, n > 0, and U C M, we say the list X = Xq,..., X,
satisfies C(xg,n,U) if for every a € B%(n) the expression

ea1X1+---+aqul,0

exists in U. More precisely, consider the differential equation
0
gE(T) =n X1(E(r))+ -+ a,X4(E(r)), E(0)=x.

We assume that a solution to this differential equation exists up tor = 1, E : [0,1] —
U. We have E(r) = eraXit+raaXag,

For 1 <n <q, we let
I(n,q) = {(i1,12,...,in) 135 € {1,...,q}},
I()(?’L,(]) = {ZGI(?’L,(]) : 1§Z1 <i2< <2n§Q}

For J = (j1,...,Jn) € Z(n,q) we write X ; for the list of vector fields Xj,,..., X;
We write /\XJ :le /\ij2 /\"'/\Xjn‘

Fix g € M, let n = dimspan{X;(xo),..., Xq(xo)}. Fix &, ¢ € (0,1]. We assume
that on Bx(xo,&), the X;’s satisfy

"t

q
[Xjan] - Zcé‘kah C‘ly"k S C(BX(II?O,&)),
=1

where Bx (x9, ) is given the metric topology induced by p from (2.3). Proposition 3.1

applies to show that By (zo,¢) is an n-dimensional, C2, injectively immersed sub-

manifold of M. X1,..., X, are C! vector fields on Bx(z0,£) and span the tangent

space at every point. Henceforth, we treat Xi,..., X, as vector fields on Bx(zo,¢).
Let Jy € Z(n, q) be such that A X, (zo) # 0 and moreover

N X (o)
/\ XJO (1'0)
see Section 5 for the definition of this quotient. Note that such a Jy € Z(n, q) always

exists-indeed, we may choose Jy so that the left hand side of (3.1) equals 1. Without
loss of generality, reorder the vector fields so that Jy = (1,...,n).

e Let 7 > 0 be such that X, satisfies C(xg,n, ).

e Let dp > 0 be such that for § € (0,4o] the following holds: if » € Bx, (zo,§)
is such that X, satisfies C(2,d, Bx,, (70,€)) and if t € B"(d) is such that
ehXitttnXny — 2 and if Xi(2),...,Xn(2) are linearly independent, then
t=0.

< (3.1)

1.
JEI(n,q)
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REMARK 3.8. Using that the vector fields Xi,..., X, are C', it follows that there
exist 17 and &y as above (which are small depending on, among other things, the C'*
norms of X, ..., X, in a fixed coordinate system); see Proposition 4.14. However, it
is possible that the C1 norms of Xj, ..., X, can be very large while  and & are not
small. Furthermore, the quantities n and &y are invariant under C? diffeomorphisms,
while the C' norms of X7, ..., X,, depend on the choice of coordinate system. Thus,
we present our results in terms of 7 and dg.

REMARK 3.9. For a more detailed discussion of 1 and dp see Section 4.1.
Fix sp > 1.

DEFINITION 3.10. For s > sg if we say C is an {s}-admissible constant, it means
that we assume cé.’k € CK)S(JO(BXJO (z0,&)) for 1 < j,k,1 < q. C is then allowed to
depend on s, sg, lower bounds > 0 for (, &, n, and &g, and upper bounds for q and
||Cé-7k”<g)s(l]0 (Bx,, (@0:6))1 1 <j,k, 1 <q. Wewrite A Srgy B for A < CB where C' is a

positive {s}-admissible constant. We write A ~, B for A Sy B and B Sy A.

Theorem 3.11 (The Quantitative Theorem). Suppose cf?j € €Y (Bx,, (20,¢)),
1 < i,j,k < q. Then, there exists a map ® : B"(1) — By, (v0,§) and {so}-
admissible constants £1,&2 > 0 such that the following hold:
(i) ®(B™(1)) C Bx/(wo,&) is an open subset of the C* manifold Bx (o, £).
(ii) ® : B"(1) — ®(B™(1)) is a C? diffeomorphism.
(ili) Bx(wo,&2) € Bx,, (z0,&1) € ®(B"(1)) € Bx (20, ).
Let Y; = ®*X;. There exists an {so}-admissible constant K =, 1 and a matrix
A € €% (B"(1); M™ ") such that:
(iv) Yy, = K(I + A)V, where V denotes the gradient in R"™ (thought of as a
column vector) and we are identifying Y, with the column vector of vector
fields [Y1,Ya, ..., Yn]

(V) A(0) =0, SUP¢epn (1) |A(t) || pgnn < %
(vi) For all s > s0, 1 < j < q, |[Yjllgwr(Bra)rr) Sty 1-

REMARK 3.12. In the second paper, we discuss further details of the map ® from
Theorem 3.11. For example, we describe how to understand ®*v where v is a density

on BX (.CU(], ‘f)

3.2.1 Diffeomorphism invariance.  The results in this series are invariant under
arbitrary C? diffeomorphisms. In light of Proposition 2.3 this is obvious for the
qualitative results (Theorems 3.3 and 3.6). It is true for the quantitative results as
well (e.g., Theorem 3.11).

Indeed, let Xq,...,X, be C' vector fields on a C? manifold 9, as in Theo-
rem 3.11, and fix zg € M. Let ¥ : M — 9N be a C? diffeomorphism. Then, X1, ... , Xy

5 Here, and in the rest of the paper, M™*™ denotes the space of n x n real matrices endowed with
the usual operator norm of a matrix.
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satisfy the conditions of Theorem 3.11 at the point x¢ if and only if ¥, X,..., U, X,
satisfy the conditions at W(z(). Moreover, {s}-admissible constants as defined in
terms of X1,..., X, are the same as {s}-admissible constants when defined in terms
of U, X1,..., ¥, X,. Finally, if ® is the map guaranteed by Theorem 3.11 when ap-
plied to X7,..., Xy, then Wo® is the map guaranteed by Theorem 3.11 when applied
to U, X1,..., ¥, X, (as can be seen by tracing through the proof). The same remarks
hold for Theorem 4.7, below.

4 Main Results of this Paper

We now turn to the results of this paper, which amount to a slightly weaker ver-
sion of Theorem 3.11. We take the same setup as Theorem 3.11; so that we have
X1,...,Xq, C! vector fields on a C? manifold M. Fix z9p € M and set n =
dim span{Xi(xo), ..., Xq(x0)}. As before, we assume that on Bx(zo,§), the X;’s
satisfy

q
(X5, Xe] =Y X, &y € C(Bx(o,€)),
=1

where By (z9, &) is given the metric topology induced by p from (2.3). Proposition 3.1
applies to show that By (xo,€) is an n-dimensional, C?, injectively immersed sub-
manifold of M. Xy,..., X, are C? vector fields on Bx(z0,&) and span the tangent
space at every point. Henceforth, we treat Xi,..., X, as vector fields on Bx(zo,¢).
Let Jo € Z(n,q) be such that A X, (zo) # 0 and moreover

N X (o)
A X, (20)

see Section 5 for the definition of this quotient. Without loss of generality, reorder
the vector fields so that Jy = (1,...,n). Let n,dp > 0 be as in Section 3.2.

max < (¢t

JEI(n,q)

DEFINITION 4.1. We say C' is a 0-admissible constant if C' can be chosen to depend
only on upper bounds for ¢, (™', €', and Hcé'kHC(BxJ (z0,6)) L < J, k1 < q.
) 0 7

DEFINITION 4.2. If we say C' is a 1-admissible constant, it means that we assume
cék € C')l((BXJO (x0,§)) for 1 < j,k <mn,1<1<gq.C is then allowed to depend on
anything a 0-admissible constant can depend on, lower bounds > 0 for n and &y, and
upper bounds for ||C§'kHC§((BXJ (@,8)) L < gk <n, 1<1<q.

) 0 9

DEFINITION 4.3. For my,mg € Z and s € [0,1] if we say C is an (my,ma,s)-
admissible constant, it means that we assume:

5 One may always choose Jy so that ¢ = 1. However, the flexibility to take ¢ < 1 is essential for
some applications. It will prove to be particularly important when we turn to analogous results in
the complex setting in a future paper.
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o€ O (Bx,, (20,€)), 1 < j,k <mn, 1<1<q.

o by € O (Bx, (20,6)), 1 <Gkl <.

1

C can then be chosen to depend only on upper bounds for my, ma, q, (™%, €71,
1 <

l : l
Iejillogs By, @og: 1 < 4k < m 1 <1 < g, and [lejullogz= By, @6
Ji k.l <q.

DEFINITION 4.4. For s1,s9 € R if we say C is an {s1, s2}-admissible constant, it
means that we assume:

o by €CY, (Bx, (0,€)), 1<j,k<n 1<I<q
oy €CY (Bx, (0,€)), 1< j, k1< q.

C can then be chosen to depend only on sy, sy and upper bounds for ¢, (=%, n~!

& Iallep, By, @y L < 3k < my 1 <1< g, and |[c] |

Gklle (B, @) 1S
J k.l <gq

REMARK 4.5. 0 and 1-admissible constants are the most basic type of admissible
constants, and nearly all of our estimates depend on those quantities used in 0-
admissible constants, while many depend on the stronger 1-admissible constants.
Admissible constants using the braces () are used when working with estimates
relating to Holder norms, while those using {-} are used for estimates relating to
Zygmund norms. In Section 6, we introduce a density v and admissible constants that
take into account this density. To indicate this, we will decorate the notions of admis-
sible constants by writing, e.g., (mq,ma, s;v)-admissible constants and {si, s1;v}-
admissible constants. Finally, in Section 8.1 we will prove some technical results for
vector fields which are defined on Euclidean space. To indicate the corresponding
admissible constants, we will use notation like (mq, s: E) and {s: E}, where E stands
for “Fuclidean”.

REMARK 4.6. In the various definitions of admissible constants in this section, we
treat cik differently depending on whether 1 < j.k <nor 1 < j, k < q. This is likely
an artifact of the proof. Indeed, this lack of symmetry disappears when we move to
the sharp results in the second paper in the series; see Theorem 3.11.

We write A <o B for A < C'B where C' is a positive 0-admissible constant. We
write A ~9 B for A S0 B and B 5o A. We similarly define <1, ~1, <¢
%<m1,m2,s>7 5{81,82}7 and %{51732}'

Because X, satisfies C(zg,n,9), by hypothesis, we may define the map, for
t e B"(n),

mq,ms,s)s

B(t) == el Xttt Xog (4.1)

Let no := min{n, £} so that ® : B" (1) — Bx,_ (20,€). Note that, a priori, ® is C",
since X1,..., X, are CL.
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Theorem 4.7.  There exists a 0-admissible constant x € (0,£] such that:

(a) Vy € BXJO ($0>X)7 /\on(y) # 0.
(b) Vy € Bx,, (%0, X),

ma /\XJ(y)‘ ~o 1.
Jex(na) |\ Xg (y)
(c) VX" € (0,x], Bx,, (xo,X’) is an open subset of Bx(xo,§) and is therefore a

submanifold.

For the rest of the theorem, we assume c&k € C’)l(JO (Bx,, (%0,&)) for 1 < j,k < n,
1 <1 < q. There exist 1-admissible constants n1,&1,&2 > 0 such that:

(d) ®(B™(m)) is an open subset of Bx, (wo,X), and is therefore a submanifold
of BX (wo, 5)

(e) ®: B"(n1) — ®(B"(n1)) is a C? diffeomorphism.

(f) Bx(wo,&2) € Bx,, (0,&1) € ®(B"(m)) € Bx,, (0, Xx) € Bx(20,¢)-

Let Y; = ®*X; and write Y, = (I + A)V, where Y, denotes the column vector of

vector fields Yj, = [Yl, Yo, ..., Yn]T, V denotes the gradient in R™ thought of as a
column vector, and A € C(B"(ny); M"™*").

(2) A(0) = 0 and supyegn(y,) | A®) [l < 3.

(h) We have the following regularity on Y;, 1 < j < g:
o [YillemeBrmymn) Stmm-1,6) 1, form € N, s € [0, 1].
° H}/J &= (B"(m1);R™) S{s,s—l} 1, for s > 0.

(i) There exist b, € CY(B"(m)), n+1 < k < g, 1 <1 < n, such that Y =
S0, Y and

||b§c”CT"’S(B"(m)) S(m—l,m—l,s} 1, meN;se [07 1]a

16k [l (B Sqs-1,5-13 1, 5> 0.

(§) For 1 <j,k <n, [V, Y] = >3-, & Y1, where

Hél,k‘ C”L’S(Bn(nl)) S(m,m—l,s) 17 m € N7S € [0, ].]7

(k) We have the following equivalence of norms, for f € C(B"(n1)),
o [Ifllememnm) Rm-1m-2s [flleg: @) Rm-1m-2s Iflcpe@ @)
form e N, s € [0,1].
o [1Fllig(Brom)) Rgs—1.5-2) fllesz, (o)) Rps—1,5-2) | Flligg (), for s > 2.
(1) We have, for f € C(Bx, (wo,X)),
o [If o @llcmesnim)) Stm-1m-2.) Iflleg; (Bx,, @), m €N, s €[0,1].
o [If 0 @lleerm)) Sts-1.5-23 Iflleg, (Bx,, o)) 8 € (0,00).

-
Grlles(sran) Sgss—1y 1, 8> 0.
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REMARK 4.8. The lack of optimality of Theorem 4.7 can be seen by comparing The-
orem 4.7 (h) and Theorem 3.11 (vi); in the later one can estimate ||Yj||«+1 in terms
of an {s}-admissible constant, while in the former, one can only estimate ||Y;
terms of the similar {s,s — 1}-admissible constants. Because of this, Theorem 4.7
“loses one derivative” and is not powerful enough to conclude necessary and sufficient
results like Theorems 3.3 and 3.6.

€5 in

REMARK 4.9. By comparing (h) and (j), we see that the functions 6§7k have the same
regularity as Y71,...,Y,. If one only knew the regularity of Yi,...,Y,,, one could only
conclude the regularity of Eé-’k for one fewer derivative. Similarly, (i) gives one more
derivative regularity on bf,C than we get from merely considering the regularity of
Y1,...,Y,. In the second paper of this series, we will leverage this extra regularity
to prove Theorem 3.11.

REMARK 4.10. Because the methods in this paper are based on ODEs, it is possible
to prove versions of Theorem 4.7 for some function spaces other than C™* or €*,
with the same methods as in this paper. However, once we turn to the second paper
in the series, where PDEs are used, we are forced to work with more specialized
spaces—and that is the main motivation for using Zygmund spaces in this context.

REMARK 4.11. In the context of Lie groups, the coordinates given by ® are some-
times called canonical coordinates of the first kind.

4.1 More on the assumptions. = We further consider the constants > 0 and
do > 0 which were introduced in Section 3.2. First we present two examples which
show why these constants cannot be dispensed with in our results, and then we state
a result which shows such constants always exist.

ExaMPLE 4.12. This example demonstrates the importance of . Let M =R, ¢ = 1,
xog > 0, and let X; = :172%. In this case,  can be taken no larger than 1/xg-i.e.,
X satisfies C(zq, 7', R) but does not satisfy C(xo, 7', R) for any i’ > 25" (because
the ODE #(t) = ~(t)%, 4(0) = z¢ exists only for ¢ < ?10) If Theorem 4.7 held
with constants independent of 1 (and therefore independent of z), then we could
conclude that X; satisfied C(zg, 7', R) for some " independent of xy. This is because
the condition C is invariant under a change of coordinates, and we can therefore
check it in the coordinate system given by ® in Theorem 4.7. This is a contradiction,
showing 1 must play a role in Theorem 4.7.7

ExaMpPLE 4.13. This example demonstrates the importance of dg—and also shows
its topological nature. The point of Jp is to ensure the map ® in Theorem 4.7 is
injective.® Let M = St, g =1, 29 € S', and let X; = K% for some large constant

" For a similar example, one could take M = (—¢,¢), ¢ = 1, 20 = 0, and X; = 8%. Then, X
satisfies C(0, €, (—¢, €)), but does not satisfy C(0,7’, (—¢, €)) for any ' > e.

8 In fact, by inspecting the proof of Theorem 4.7, it is easy to see that one can prove similar
results, independent of dg, so long as one allows ® to not be injective.
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K. For this example, we must take &y < 27/K. If the constants in Theorem 4.7
did not depend on §p, they would also not depend on K. We could then conclude
that dg could be taken independent of K-this is because dy is invariant under a
change of coordinates and we can check it in the coordinate system given by ®
in Theorem 4.7—see also Proposition 4.14. This shows that J; must play a role in
Theorem 4.7.

Now we state a result which shows that such a dy and 7 always exist for C'! vector
fields. Let X1, ..., X, be C! vector fields on a C? manifold 901, and let X denote the
list X1q,...,X,.

PROPOSITION 4.14. e Vo € M, In > 0, such that X satisfies C(xg,n, M).
e Let K € M be a compact set. Then, 36y > 0 such that V8 € S~ ! ifx € K is
such that 01X (z) + - - + 0, Xq(z) # 0, then Vr € (0, do),

€T91X1+“‘+T‘6qux % xT.

For the proof, see Section 9.5. Proposition 4.14 shows that there always exist
n and &g as in Section 3.2. However, the 1 and dg guaranteed by Proposition 4.14
depend on the C' norms of Xj, ... , X4 in some fixed coordinate system, and this
is not invariant under diffeomorphisms. It is important for some applications that
n and &y can be taken to be large in some settings even when the C' norms of
X1,..., X, are large. The next example gives a simple setting where this is the case.

EXAMPLE 4.15. Take ¢ =1, M =R, X; = Ka%, for any K € R\ {0} (we think of
K as large). Then one can take n = §y = oo in the assumptions in Section 3.2.

5 Wedge Products

Let Z be a one dimensional real vector space. For z,y € Z, v # 0 we define £ € R

by ¥ := 2 where A : Z — R is any nonzero linear functional. It is easy to see that
x A(z)
Y

> is independent of the choice of A.

This allows us to formulate a “coordinate free” version of Cramer’s rule. Let V'
be an n-dimensional vector space, so that A"V is a one dimensional vector space.
Let x1,...,x, € V be a basis for V. For any y € V, we have

YNTa N3 N\ -+ NTn T ANYNT3 N NTn I ANT2 N NTpn_1NY
= x1 To + -+ T
x1 ANx2 A~ Axp L1 ANx2 AN Ay TLAT2 A AZn

n-

(5.1)

Let M be a C? manifold of dimension n. Let Y;,...,Y,, be C! vector fields in
on M. For another C! vector field Z, the Lie derivative of Y A Yo A --- A'Y,, with
respect Z is given by
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LzYTAYoN--AY,)=[ZYI|AYaANY3A - AY,+YVIA[Z, Y2 AY3A---AY,
+o A+ VIAYOA - AY A [Z,Y).
Let X1,...,X, be C! vector fields on M which span the tangent space near a point
xg. Thus, near zy, we may define a real valued function by
YIANYoN---NY,
XiNXoN-NXy,

The derivative of this function with respect to Z is exactly what one would expect
as the next lemma shows.

LEMMA 5.1.
YIANYoN---AY, 7£2(Y1/\Y2/\~~/\Yn)
XiAXoA--AXn XiAXoA---AXn
7Y1/\Y2/\-~/\Yn ﬁz(Xl/\Xg/\“-/\Xn)
XiANXoAN-ANXn XiAXoA---ANXp

Proof. Let X = X1 A XoA---AX,and Y =Y AYo A---AY,. Let v be any C!
n-form which is nonzero near xg, so that by definition

Y _ )
X vXx)

Because v is nonzero near xg (and the space of n-forms is one dimensional at each

point), we may write Lzv = fr for some continuous function f (near zg); where

here and in the rest of the paper £ denotes the Lie derivative with respect to Z.

Using [Lee03, Proposition 18.9], we have

Zv(Y) = (Lzv)(Y) +v(L2Y) = fr(D) +v(LzD).
and similarly with ) replaced by X. We conclude

v(X) v(X) v(X)
_v(LzY) v v(LzX)  LzD  DLzX
v(®  v(® v(E  x x x
completing the proof. 0

6 Densities

Let x € (0,€] be as in Theorem 4.7. In many applications, one is given a density on
Bx,, (x0, x) and it is of interest to measure certain sets with respect to this density.
For a quick introduction to the basics of densities, we refer the reader to Guillemin’s
lecture notes [Gui08].



GAFA COORDINATES ADAPTED TO VECTOR FIELDS: CANONICAL COORDINATES 1799

Let v be a C! density on Bx, (%o, X)- Suppose

Lxv=fiv, 1<j<n, f;j€C(Bx, (0, X)) (6.1)

Our goal is to understand ®*v and v(Bx(zg,&2)) where ® and & are as in Theo-
rem 4.7.

DEFINITION 6.1. We say C is a 0;v-admissible constant if C' is a 0-admissible
constant which is also allowed to depend on upper bounds for HfjHC(BXJ (zox))?

0
1<j<n.

DEFINITION 6.2. We say C is a 1;v-admissible constant if C' is a l-admissible
constant which is also allowed to depend on upper bounds for || f;l|c(
I1<j<n

BXJO (r0,x))?

DEFINITION 6.3. Formy,mg € Z, s € [0, 1] if we say C is an (m1, ma, s; v)-admissible

constant, it means that we assume f; € C**(Bx, (20, X)), and C' is an (my,ma, s)-
0

admissible constant which is also allowed to depend on upper bounds for

1 £5 O (Bic, (30,X)) 1<j<n.

DEFINITION 6.4. Fors; > 0, s9 € R, if we say C' is an {s1, so; v }-admissible constant,
it means that we assume f; € €5 (Bx, (20,X)), and C is an {s1, sz }-admissible
<0

constant which is also allowed to depend on upper bounds for || f;| Exy, (B (w0,x))7

1 <j<n.Fors; <0, se €R, if wesay C is an {s1, se; v}-admissible constant, it
means C' is an {s1, s }-admissible constant which is also allowed to depend on upper
bounds for || fillc (B, (@), 1 <9 <n

We write A So., B for A < CB where C' is a positive 0; v-admissible constant,
and write A ~,, B for A So,y B and B So, A. We define Sty X1, Simy ma,siv) s
%<m1,m273;,j>, S{Sth;y}, and %{51,82;,/} similarly.

To help understand v, we use a distinguished density 19 on Bx, (o, X):
B ZiINZas N N2y
a XiANXoN---NX, ’

vo(Zi,...,2y): (6.2)
note that 1 is defined since X1 A Xo A --- A X, is never zero on Bx, (zo,x) by
Theorem 4.7 (a); v is clearly a density.

Theorem 6.5.  There exists g € C(Bx,, (o, X)) such that v = gy and

(i) g(x) =o0u g(wo) = v(X1,...,Xy)(w0), Vo € Bx, (wo,X). In particular, g
always has the same sign, and is either never zero or always zero.
(ii) We have the following regularity on g:
e Form € N, s € [0, 1], we have ”9”0;}0 (Bx, (%0:X)) Sim—1,m—1,s)
|V(X17 s 7XTL)($0)|
e For s>0, we have ||g

‘@”}Jo (BXJD (z0,X)) 5{3—1,5—1;1/} |V(X17 oo >Xn)(1"0)|'
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Define h € CY(B™(n1)) by ®*v = horen, where op, denotes the usual Lebesgue
density on R".

(iii) h(t) ~ow v(X1,...,Xn)(x0), ¥t € B™(n1). In particular, h always has the
same sign and is either never zero or always zero.
(iv) We have the following regularity on h:
e formeN, se [0, 1], ”h”cm,s(Bn(m)) §<m’m,17s;y> |V(X1, e ,Xn)(xo)’
e For s > 0, Hh €s(B™(m)) 5{57871;,,} ’V(Xl, .. ,Xn)(xo)’

COROLLARY 6.6. Let & be as in Theorem 4.7. Then,

V(BXJO (1507 52)) ~lw V(BX(xO) 52)) Nl V(X17 s 7Xn)(x0)7 (63)

and therefore,

[v(Bx,, (w0, &2))| =1 [v(Bx (w0, &2))| =1 [v(X1, ..., Xn)(@0)| =0

max v(Xj, .. X5 ) (z0) »
(-jl“"’jn)el—(n,Q)‘ ( n ]>( 0)‘ ( )

7 Scaling and Other Consequences

The main results of this series have two facets:

e (Smoothness) They provide a coordinate system in which given C'* vector fields
have an optimal degree of smoothness.

e (Scaling) They provide a coordinate system in which given vector fields are
normalized in a way which is useful for applying techniques from analysis.

In both cases, the results are in many ways optimal: they provide necessary and suffi-
cient, diffeomorphic invariant conditions under which one can obtain such coordinate
charts. In this section, we describe these two facets.

When viewed as providing a coordinate system in which vector fields have an
optimal level of smoothness, these results seem to be of a new type. When viewed
as scaling maps, these results take their roots in the quantitative study of sub-
Riemannian (aka Carnot—Carathéodory) geometry initiated by Nagel, Stein, and
Wainger [NSW85]. Since Nagel, Stein, and Wainger’s original work, these ideas have
had a significant impact on various questions in harmonic analysis (see the discussion
at the end of Chapter 2 of [Str14] for a detailed history of these ideas). Following
Nagel, Stein, and Wainger’s work, Tao and Wright [TW03] generalized Nagel, Stein,
and Wainger’s ideas and provided a new approach to proving their results. In [Str11],
the second author combined these two approaches to prove results in more general
settings; these more general results have already had several applications, for exam-
ple [SS11,Str12,SS13,SS12,Str17,Str14, Grel5, Stol4].
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7.1 Classical sub-Riemmanian geometries and the work of Nagel, Stein,
and Wainger. In this section, we describe the foundational work of Nagel, Stein,
and Wainger [NSW85], and see how it is a special case of Theorem 4.7. This pro-
vides the simplest non-trivial setting where the results in this paper can be seen as
providing scaling maps adapted to a sub-Riemannian geometry. In Section 7.3, we
generalize these results to more general geometries.

Let X1,..., X, be C> vector fields on an open set {2 C R"; we assume X1, ..., X,
span the tangent space at every point of 2. To each X; assign a formal degree
d; € [1,00). We assume

X5, Xl = > duxi, dypec @) (7.1)
di<d;+dy

We write (X, d) for the list (X1,d1), ..., (X, d,) and for § > 0 write 69X for the
list of vector fields §% X1, ..., 6% X,. The sub-Riemannian ball associated to (X, d)
centered at zg € €2 of radius é > 0 is defined by

B(x,a)(®0,0) := Bsax (zo,1),

where the later ball is defined by (2.2). B(x 4)(%0,0) is an open subset of . It is
easy to see that the balls B(x g) (x,0) are metric balls.
Define, for z € Q, 6 € (0, 1],

A6y = max ‘det (5%)(]-1 (@)] - - [6% X;, (x)) ‘ .

For each z € Q, ¢ € (0,1], pick j1 = ji(z,0),...,Jn = jn(z,d) so that
)det (5% X, ()] - 6% X, (x)) ‘ — Az, ).
For this choice of j; = j1(x,0),...,Jn = jn(x,9), set
Dy5(te,. .. tn) = exp (tlédhXﬁ +o 4 tnédf‘nX;n) .

Theorem 7.1 ([NSWS85]). Fix a compact set K € Q.2 In what follows, we write
A < B for A < CB where C is a positive constant which may depend on K, but
does not depend on the particular point x € K or the scale 6 € (0,1]. There exist
m, & ~ 1, such that Vzr € K,

(l) O-Leb(B(X,d) (:L'v 5)) ~ A(l‘75)7 Vo € (0750]
(11) GLeb(B(X,d) (:L‘v 25)) 5 ULeb(B(X,d) (ZE,(S)), Vo € (0750/2]
(iii) Vo € (0,1], @, 5(B"™(n1)) € Q is open and ®, 5 : B"(m) — P, 5(B"(m)) is a
C* diffeomorphism.
(iV) |d€t dq):c,5(t)| ~ A($, (5)’ Vit € Bn(nl)

9 Here, and in the rest of the paper, we write K € Q to mean that K is a relatively compact
subset of 2.
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(v) Bixa)(@,£06) € ©06(B"(m)) € Bxa)(x,0), ¥6 € (0,1].
(vi) Let sz"s = @;’55% X, so that sz"s is a C*° vector field on B™(n;). We have

z,0
v,

<1, VmeN,

~

‘Cm(B"(m);R")
where the implicit constant depends on m, by not on x € K or 6 € (0,1].
Finally, le’é(u), e ,qu’é(u) span T,,B"™ (1), uniformly in x, §, and u, in the
sense that

. max inf
J1seesdn€{1,e,q} w€B™ (1)

,0 z,0 ~
det (le (u)] -+ V7 (u))‘ ~ 1.

Proof. This result is a special case of Theorem 7.6, below. To see this, for § € (0, 1]
we multiply both sides of (7.1) by §% %% to obtain

64X, 00Xy = Y gt shx,
di<d;j+d

so that if we set

g,k dlgd_y_‘_dkv

0, otherwise,

{6dj+dk—dl J i

then we have
) 1 1,0 &
[X]?Xk] = Cj7le.
l

Furthermore, cé.’(; € C*®and X la € C* uniformly in §. From here it is straightforward

to verify that X f sy X g satisfy all the hypotheses of Theorem 7.6; in the application
of Theorem 7.6, we replace Q with Q' where K € Q' & Q. O

REMARK 7.2. It is easy to see that the balls B(x 4)(v,d) are metric balls.'® The-
orem 7.1 (ii) is the main estimate needed to show these balls (when paired with
oLeb) form a space of homogeneous type. Thus, one can obtain a theory of singular
integrals associated with these balls. Such singular integrals have a long history and
have proven to be quite useful in a variety of contexts. The history of these ideas is
detailed at the end of [Str14, Chapter 2].

7.1.1 Hormander’s condition.  The main way that Theorem 7.1 arises is via vec-
tor fields which satisfy Hormander’s condition. Suppose Vi, ..., V, are C* vector
fields on an open set 2 C R™. We assume that V7, ..., V, satisfy Hormander’s con-
dition of order m on €). I.e., we assume that the finite list of vector fields

Vieoo s Vi oo IV V)L Vi [V, V] - -, -+, commutators of order m,

span the tangent space at every point of €.

10 This uses that d; > 1, V4. If d; € (0, 00), they are quasi-metric balls.
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To each Vip,...,V,, we assign the formal degree 1. If Z has formal degree e,
we assign to [V}, Z] the formal degree e + 1. Let (X1,d1),..., (X4, dy) denote the
finite list of vector fields with formal degree d; < m. Hérmander’s condition implies
X1,...,X, span the tangent space at every point of (2.

We claim that (7.1) holds, and therefore Theorem 7.1 applies to (X1,d1),...,
(X¢,dgq). Indeed, if d; + d, < m we have

(X5, Xkl = > X,

di=d;+dy,
where cé-ﬂk are constants by the Jacobi identity. If d; 4-dj, > m then, since X1, ..., X,
span the tangent space at every point, we have
q
[Xj,Xk] = Zcile = Z Cé-’le, Cé‘,k S COO(Q)
I=1 di<d;+dy,

Thus, (7.1) holds and Theorem 7.1 applies.

Let £ € Q be a compact set. Applying Theorem 7.1, for § € (0,1], z € K, we
obtain 71 > 0 and ®, 5 : B"(m) — B(x,q)(7,6) as in that theorem. Set ij’& =
@;7651/}, 1<5<r.

If di, = [, then

Xi = [‘/}1,[‘/3‘2,'-' ?[V}z—l?‘/}l] Ha

and so

B 5% Xy = B8 510V, [0V, [0V 0V ] )] = V20, [VES, L V8 w9 ),

Ji L g2 0 Ji—1? "

297 °

Theorem 7.1 implies that the vector fields @7 5(5de i are smooth and span the tan-
gent space, uniformly for z € K, 6 € (0, 1]7. We conclude that the vector fields
Vf’a, ey V,«I’S are smooth and satisfy Hoérmander’s condition, uniformly for x € IC,
§ € (0,1]. In short, the map ®* ; takes 6V1,...,d0V, to le’(s, ..., V% which satisfy
Hoérmander’s condition “unifornﬂy”; i.e., it takes the case of  small and “rescales”
it to the case 6 = 1.

REMARK 7.3. In the above, we multiplied V1,...,V, all by the same small number
. Similar results hold (with the same proofs) for §,V4,...,6,V, where d1,...,0,
are small, provided they are “weakly-comparable.” I.e., provided 4N, x such that
(5§V < KOy, for all j, k. This was first noted and used by Tao and Wright [TWO03]. See
[Strll, Section 5.2.1] for further details.

REMARK 7.4. It is possible for (7.1) to hold (for a sufficiently large m) even if
Vi,...,V, do not satisfy Hormander’s condition. In this case, with the same proof
one can obtain similar results; however, now the ball B x q)(z, 0) lies on an injectively
immersed submanifold of R™ as discussed in Proposition 3.1. An important setting
where this arises is when Vi,...,V, are real analytic; see [Strl4, Section 2.15.5] for
details.



1804 B. STOVALL AND B. STREET GAFA

7.2 Multi-parameter balls. In a generalization of the work of Nagel, Stein,
and Wainger, the second author studied multi-parameter sub-Riemannian balls in
[Str11]. The main result of [Strll] is a special case of Theorems 4.7 and 6.5 and
Corollary 6.6. We refer the reader to [Strll] for the detailed assumptions used in
that paper, which are very similar to the assumptions of Theorem 4.7. We give a
few comments here to help the reader understand how the main result of [Strll]
(namely [Strl1l, Theorem 4.1]) is a special case of the results in this paper.

The main differences between [Str11l, Theorem 4.1] and the setting of this paper
are:

90 is taken to be an open subset of RY in [Str11].

e In [Strll], the various kinds of admissible constants are allowed to depend
on upper bounds for quantities like ||X;||cm. This quantity is not invariant
under diffeomorphisms, and the norm is defined in terms of the fixed standard
coordinate system on RY.

e Instead of an abstract density as is used in Theorem 6.5 and Corollary 6.6,
[Str11] uses the usual Lebesgue measure on submanifolds of R,

e In [Strll], the existence of dp is not assumed. Instead, one uses bounds on
| X;]|ct to prove that such a g exists (as in Proposition 4.14). This process is
not invariant under diffeomorphisms.

e The constants in Theorem 4.7 have better dependence on various quantities
than they do in [Strll, Theorem 4.1]. For example, the methods in [Str11] do
not imply that 7; is a 1-admissible constant.

e In [Strl1], only the spaces C (and not Cy"* or €y) were used.

We include a lemma, whose straightforward proof we omit, which will allow the
reader to more easily translate the results of [Strll] into the language of this paper.
For an N X n matrix we write det,,x,, B to be the vector consisting of determinants
of n X n submatricies of B.

LEMMA 7.5. Let L be an n-dimensional injectively immersed submanifold of R,
and give L the induced Riemannian metric. Let v denote the Riemannian volume
density on L. For vector fields Z1, ..., Z, on RV which are tangent to L, let Z denote

the N X n matrix whose columns are Z,...,Zy,. Then,
det Z| =v(Z1,...,Zyp).
nxn

Furthermore, if ® : B"(n) — L C RY, and if ®*v = h(t)oLe,, then we have

h(t) = |det d®(t)

nxn

I

where d®(t) is computed by thinking of ® as a map B"(n) — RY.

Using this lemma and the above remarks, [Strll, Theorem 4.1] follows easily
from the results in this paper. We refer the reader to [Str11,Str14,SS11,Str12,SS13,
SS12,Str17] for examples of how these ideas can be used as scaling maps.
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7.3 Generalized sub-Riemannian geometries.  The results described in Sec-
tion 7.1 concern the classical setting of sub-Riemannian geometry. When applied to
partial differential equations defined by vector fields, this is the geometry which arises
in the important case of maximally hypoelliptic operators. Maximal hypoellipticity
is a far reaching generalization of ellipticity, which was first introduced (implicitly)
by Folland and Stein [FS74]; see [Str14, Chapter 2] for a discussion of these ideas as
well as a detailed history. When one moves beyond the setting of maximal hypoel-
lipticity, other more general sub-Riemannian geometries can arise. These are defined
by choosing different vector fields at each scale. A particularly transparent setting
where this arises is in the work of Charpentier and Dupain on the Bergman and
Szegd projections [CD14]. The theory in this paper allows us to easily understand
what properties one requires on these vector fields so that the induced quasi-metrics
give rise to a space of homogeneous type; furthermore, our theory provides gener-
alized scaling maps adapted to these geometries. See Section 7.5 for some further
comments on the relationship between the results in this paper and several complex
variables.

Fix an open set Q C R™, and for each 6 € (0,1], let X° = X¢ ... ,Xg be a list
of C' vector fields on €, which span the tangent space at every point. For z € ©,
5 € (0,1] set B(x,d) := Bxs(z, 1), where Bxs(z, 1) is defined by (2.2). Our goal is to
give conditions on X so that the balls B(z,d), when paired with Lebesgue measure
on  (denoted o), locally form a space of homogeneous type (see [Ste93] for the
definition we are using of a space of homogeneous type). The conditions we give can
be thought of as infinitesimal versions of the axioms of a space of homogeneous type.
In what follows, we write X° for the column vector of vector fields [X?,... ,Xg]T.
Because of this, if we are given a matrix A : Q — M9%%9 it makes sense to consider
A(x)X°(z) which again gives a column vector of vector fields on .

We assume:

(I) ¥6 € (0,1], « € ©, we have span{X?{(z),...,X2(x)} = T,
(II) supse(o,1 HX]('S”Cl(Q;R”) < 0.
(I11) X]‘-S — 0, as 6 — 0, uniformly on compact subsets of (2.
(IV) Y0 < 61 < 0y < 1, X0 = Ty, 5,X%, where Ty, 5, € L®(Q;MI%%), and

”T51752HL°°(Q;M‘1X‘1) <L
(V) 3By, By € (1,00), by,by € (0,1), such that V5 € (0,1/By], 3S5 € L>®(%;
M9%9) and V6 € (0,1/Bs], 3Rs € L=®(Q; M%) with S; X519 = X% RsX° =

XB20 and
sup  [|Ss Lo (@imoxa) < b1, sup || Rs|lpoe (qmaxay < b2_1.
0<6<1/B, 0<6<1/B;

(VI) Vo € (0,1], [Xj‘-;, X =37, cé.”in‘s, where C?,i € C(Q) and Vm € N

1,6
sup [|ej|

Cmy (B(,6)) < O0-
5€(0,1],z€Q xs(B(@:0))
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Define, for z € Q, 6 € (0, 1],

Aw,o)=  max )det (X;{ ()] X2, (a;))( .

For each z € Q, ¢ € (0,1], pick j1 = ji(x,0),...,jn = jn(z,9) € {1,..., ¢} so that

det (X2, (@)]-++1X] (@) | = A, 0),

and set (for this choice of j1 = ji(x,d),...,jn = jn(x,9)),

Dpgltry ootn) = exp (XD + o+ 1, X0 ) @

Theorem 7.6.

(i) B(m,él) - B(:C,ég), VeeQ,0<0; < <1.
() Noego) B,0) = {z}, ¥o € 0.
(iii) B(x,0) N B(y,8) # 0 = B(y,d) C B(x,Cd), V6 € (0,1/C], where C = B¥
and k is chosen so that bf < 1.
(iv) For each U € ) with U open, § € (0,1], the map x — opep(U N B(x,0)) is
continuous.

Fix a compact set K € €. In what follows we write A < B for A < CB where C
is a positive constant which may depend on IC, but does not depend on the particular
point € K or the scale § € (0,1]. We write A ~ B for A < B and B < A. There
exist n1,& ~ 1 such that Vx € K:

(V) O-Leb(B(ivv 5)) ~ A($75)7 Vo € (0750]
(Vi) O-Leb(B(:L'v 25)) 5 O-Leb(B(x7 5))7 Vo € (0350/2]
(vii) V6 € (0,1], @, 5(B"(m)) € Q is open and @, 5 : B" (1) — Py 5(B"(m)) is a
C? diffeomorphism.
(viil) |det d®, 5(t)| = A(x,6), YVt € B*(m), 6 € (0,1].
(iX) B(.I',fo(S) - (I)x,é(Bn(nl)) - B(ZL‘,(S), Vo € (07 1]
(x) Let ij’é = ®F ;X?, 50 that Yf’é is a vector field on B"(m1). Then ij’é €

2

(B () B and
§
HY'f’ HCm(Bn(nl);Rn) 5 1, VmeN,

where the implicit constant may depend on m, but does not depend on x € KC
or & € (0,1). Furthermore, Y{"°(u), ..., Y™ (u) span T, B"(n), uniformly in
x, 0, and u in the sense that

max inf

Jrseoesfin€41,00sq} uEB™ (1) In

det (ij’é(u)] . \Y“(u)) ‘ ~ 1.
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Proof. To facilitate the proof, we introduce some new notation. For y € Q, y €
B(z,0) = Bxs(z,1) if and only if 3y : [0,1] — Q, v(0) = z, v(1) = y, /'(¢t) =
{a(t), X°(7(t))), where a € L>([0,1]; RY) with llall Lo (fo,1);re) < 1, we have identified
X% with the vector of vector fields X% = (X?¢, ... ,Xg), and (-, -) denotes the usual
inner product on RY.

(i): Let 0 < 01 < 02 < 1. Take y € B(x,6;1) so that 3y : [0,1] — Q, v(0) = =,
(1) =, 7'(8) = {a(t), X2 (4(8))), llallp= (o ysme) < 1. We have

7 () = (a(t), X" (1(8)) ) = (a(t), T, 5, (1) X (1(1)))
= (Th.5 () Talt), X (1(1)))

Since HT61,52(’Y(t))TaHLoo([o,l];Rq) < llallz=(o1yrey < 1, this proves y € B(z,d2),
completing the proof of (i).

(ii) follows from the hypothesis (III).

(iii): Suppose B(x,d) N B(y,d) # 0. This is equivalent to Bys(z,1) N Bxs(y, 1) #
(). Since the balls Bxs(z,-) are metric balls, this implies B(y,0) = Bxs(y,1) C
Bxs(x,3). Thus it suffices to show Bys(z,3) C B(xz,CJ). Suppose z € Bxs(x,3),
so that 3y : [0,1] — Q, v(0) = =, v(1) = z, v'(t) = <a(t),3X‘5(’y(t))>, where
llall L~ (o0,1me) < 1.

Take k so large that b’f < % Then, for ¢ € (0, Bl_k],

7 (8) = (alt), ABX P (5(8)) ) = (AW®) Talt), X7 (1(1)),

where
A(t) = 3S5(7(t))SBs(v(t) - - - Spr-15(7(1))-

Since ||A||Loo([0,1];Mq><q) < 3be < 1, it follows that HATCLHLOC([O’H;RL;) < ||a||Loc([0’1};]Rq) <
1, and therefore z = (1) € B(x, BF§) = B(z,C9), completing the proof of (iii).

(iv) follows from standard ODE results.

For the remaining parts, the goal is to apply Theorems 4.7 and 6.5 and Corol-
lary 6.6 to the list of vector fields X? (with v = opq, and ¢ = 1). Take n € (0, 1],
depending on K and upper bounds for HX;?HCI(Q), so that Vo € K, X9, ..., Xg sat-
isfy C(x,n,). Note that 1 can be chosen independent of z € K and § € (0,1]. Take
o > 0 as in Proposition 4.14 when applied to X9, ..., Xg, with 9T = Q. It can be seen
from the proof of Proposition 4.14 that dp can be chosen independent of ¢ € (0, 1].
Finally, note that Lysv = d1v(X5)u = f5y where supse (o,1] Hf o) < oo

Using the above ch01ces all of the hypotheses of Theorems 4.7, 6 5 and Corol-
lary 6.6 hold for o € K with Xy,..., X, replaced by X ,...,Xg, uniformly for
5 € (0,1], zop € K. In particular, any constant which is admissible (of any kind)
in the sense of those results is ~ 1 in the sense of this theorem (when working
with v, we only use 1;v-admissible constants—see Definition 6.2 for the definition of
1; v-admissible constants).

(vii) is contained in Theorem 4.7.
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(ix): Theorem 4.7 gives & ~ 1 ({2 < 1) such that
B (,62) € ®,5(B"(m)) € Bxo(w,1) = B(x,5).
Thus, to prove (ix), we wish to show 3¢y ~ 1 with
B(z,&0) C Bxa(z,&2). (7.2)

Take k =~ 1 so large that bf < & and set & = Bfk. Let y € B(x,&y0), so that there
exists 71 [0,1] — Q, 7(0) = 2, 7(1) = y, ¥/ (t) = (a(t), X ((1))), with [|a]|~ < 1.
Then,

7 (t) = (al®), AN X (4(8) ) = (AW®) Talt), &X°(1(1)))

where A() = &5 Se,5(1(8))Se,5.5(1 (1)) - S, s (1(£)); mote that || 4]l o a0
< 1, and therefore, AT al| e (jo,1);re) < llallL=(0,1;re) < 1. It follows that y = (1) €
Bxs(x,&), completing the proof of (ix).

We claim, for d; < ds,

~—

A(z,61) < Az, 62), (7.3)
where the implicit constant can be chosen to depend only on ¢. Indeed,
Az, 1) = max ‘det(X‘.slx ~--X‘.51$>‘
(2,061) oo fax i @) 1 X5 ()

= max ‘det <(T51,52X62)j1 (l‘)’ e |(T(51,52X52)jn (CL')) ‘ ’
]1,..~7J7LE{1,...,Q}

Since ||T5, 5,(x)|| < 1, the right hand side is the determinant of a matrix whose
columns are linear combinations (with coefficients bounded by 1) of the vectors
XfQ (x),... ,ng (x). (7.3) follows.

Next we claim, for ¢ > 0 fixed,
A(z,cd) = A(z,0), 6,c6 € (0,1], (7.4)

where the implicit constant depends on c. It suffices to prove (7.4) for ¢ < 1. By
(7.3), it suffices to prove (7.4) for ¢ = By " for some k. We have

Aw.o)=  max ’det (X;{ ()] X2 (m)) ‘
= mafdet (AX);, ()] [(AX), (@) |, (79)

where A(z) = Rp_15(2)Rp 25(x) - Rprs(x). Since sup,eq [|A(2)]|[maxs < b" <1,
it follows that the right hand side of (7.5) is the determinant of a matrix whose
columns are linear combinations (with coefficients whose magnitudes are < 1) of the
vectors X{0(x),. .. ,Xgé(m). It follows that A(z,d) < A(x,cd). Combining this with
(7.3), (7.4) follows.
Corollary 6.6 shows
O'Leb(BXd(.'IZ‘7§2)) ~ A(a:,é), (76)
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where we have used that (thinking of orep as a density) open(Vi(z),..., Va(z)) =
|det(Vi(x)|---|Vn(z))|. Combining this with (7.4) and (7.2), we have

o1en (B2, €09)) < onen(Bvs (2,62)) = A2, 8) ~ Az, £06). &
Conversely, using (7.6) again we have,
A(x, 5) ~ ULeb(BX5 (l’, 62)) S ULeb(BX5 (l’, 1)) = O'Leb(B(CL‘, (S)) (78)

Combining (7.7) and (7.8) proves (v). (vi) follows from (v) and (7.4).
Since @} s01.eb = | det d®,, 5|01.ep, (viil) follows from Theorem 6.5 (iii) and Corol-
lary 6.6. (x) follows directly from Theorem 4.7. 0

REMARK 7.7. One can generalize the multi-parameter geometries from Section 7.2
in a similar way by changing the above variable ¢ € (0, 1] to a vector, ¢ € [0,1]” for
some v € N, and proceeding in a a similar way.

REMARK 7.8. The most artificial hypothesis in this section is (II). Indeed, it is not
directly related to any of the hypotheses of a space of homogeneous type. This
hypothesis can be replaced with weaker hypotheses and we can still achieve the
same result. In fact, the main purposes of (II) are to ensure the existence of 7
and dp (independent of z € IC, § € (0, 1]) in our application of Theorem 4.7, and to
estimate £ X2 0Leb- One could just directly assume the existence of such constants and
estimates, or assume any number of other hypotheses which imply their existence,
depending on the application at hand.

7.4 Diffeomorphism invariance and nonsmooth vector fields. = An impor-
tant way in which the results in this paper are stronger than previously mentioned
works is that the statements of the main thoerems are completely invariant under
C? diffeomorphisms (see Section 3.2.1). This is true quantitatively: all of the esti-
mates depend on quantities which are invariant under arbitrary C? diffeomorphisms.
In previous works like [NSW85, TW03,Str11,MM12] the estimates were in terms of
C™ type norms of the vector fields in some fixed coordinate system.'! Thus, the
vector fields had to be a priori “smooth” and “not large” in some fixed coordinate
system. The concepts of “smooth” and “not large” are not invariant under C? dif-
feomorphisms. Under the assumptions of Theorem 4.7, we conclude the existence
of a coordinate system in which the vector fields are smooth and not large, but we
need not assume it. This allows us to address some settings where the vector fields
are given in a coordinate system in which they are large and/or are merely C';
in particular, unlike previous works, we only use the qualitative assumption that
the vector fields are C', and our estimates do not depend on the C' norms of the
coefficients in a coordinate system.

1 [MM12] works with Lipschitz vector fields to obtain some results with less regularity than the
other mentioned works. It is possible that the ideas from that paper could be combined with the
ideas from this paper to prove results like the ones in this paper, but with Lipschitz vector fields
instead of C! vector fields; though we do not pursue this here.
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When considering only the smoothness (and not the size) aspect of this diffeo-
morphism invariance, these results can be rephrased as the qualitative results in
Section 3.1; the methods from previous works on this subject cannot yield such the-
orems, since they require the vector fields to be smooth in the first place. In fact,
the qualitative results in this series seem to be of a new type; though there may be
some connection to Hilbert’s fifth problem.

In the series of papers [SS11,Str12,SS13,SS12,Str17], the second author and
Stein used the scaling techniques from [Str1l] to study singular Radon transforms
of the form

Tf(x) = () / F Ot 2) K (8) dt,

where (¢, r) is a germ of a smooth function defined near (0,0), v(¢,z) : RY x R} —
R™ with v(0,2) = « (we have used R{j* to denote a small neighborhood of 0 € R™),
and K (t) is a “multi-parameter singular kernel” supported near 0 € R". Conditions
were given so that the above operator was bounded on L”. Because the theory was
based on [Strll], it was required that ~y(¢,x) be smooth and supported very near
(0,0). One could replace every application of the results from [Str11] in these papers
with Theorem 4.7 to obtain more general results where ~ is not necessarily required
to be smooth or supported very close to 0. In fact, the results can be made completely
invariant under arbitrary C? diffeomorphisms, and so the concepts of smooth and
small do not have intrinsic meaning. Similar remarks hold for many other settings
where methods from [NSW85, TW03,Strl1] are used.

Large sub-Riemannian balls have been studied in some special cases before. See,
for example, the discussion of model pseudoconvex boundaries in [NS01, Section 4]
as well as [Pet14,DP18]. The approach in this paper allows us to unify the ideas
behind these large sub-Riemannian balls with the more robust theory of small sub-
Riemannian balls.

7.5 Several complex variables. As described in Section 7.3, the results in
this paper can be used to study generalized versions of sub-Riemannian geometries,
and as elucidated by Charpentier and Dupain [CD14], these geometries arise when
studying J-problems. When applying the results from this series to such questions,
a difficulty arises. We turn to describing this issue, and how it will be addressed in
a future work of the second author.

Let M be a complex manifold of dimension n, and for each 6 € (0,1], let
L‘ls, e ,Lg be C! complex vector fields on M such that V¢ € M, span{L‘ls(C), e

Lg(g‘)} = Tg’lM. Let X¢,... ,ng denote the list of real vector fields Re(L),...,

Re(Lg), Im(L3), ... ,Im(Lg). We assume that the list X¢, ... ,ng locally satisfies the

hypotheses of Section 7.3. Then, Theorem 7.6 applies to show that the balls B(z, ¢)

defined in that section locally give M the structure of a space of homogeneous type!'?,

12" Since M is an abstract manifold, we do not have a natural choice of density ore, on M. However,
one may instead use any strictly positive C* density on M and obtain the same results. All such
choices of density are equivalent for our purposes.
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and we obtain scaling maps ®, s : B*"(n;) — B(z,0) as in that theorem. In partic-
ular, by Theorem 7.6 (x), the maps ®, 5 “rescale” the vector fields Xf, .. ,ng o)
that they are smooth and span the tangent space, uniformly for x in compact sets
and 0 € (0,1].

In other words, @;véL‘ls, .. ,@;yéLg, <I>;(SL§, ceey @;51173 are smooth and span the
complexified tangent space, uniformly for x in compact sets and 6 € (0,1]. The
hope is to apply techniques from several complex variables at the unit scale to these
rescaled vector fields, to be able to conclude results at every scale § € (0, 1]. However,
there is one key component that is missing in the complex setting. We identify R?"
with C" via the map (x1,...,2z2,) — (£1+iTp41, ..., Ty +ixe,). To be able to apply
results from complex analysis, we would need that <I>; 5L‘f, ceey @;7 5Lg (thought of
as vector fields on the ball of radius 7y in C") are still T%! vector fields. It is easy
to see that this is equivalent to the map ®, s being holomorphic. However, the best
one can say about the maps constructed in this series is that they are C?.

One therefore wishes to obtain the same results as this paper, but with a different
map @, where we can also conclude that ® is holomorphic. In the past, this has been
achieved in special cases by using ad hoc methods for the particular problem at
hand (e.g., by using non-isotropic dilations determined by the Taylor series of some
ingredients in the problem)-see, for example, [NRSW89, Section 3], [CD14, Section
3.3.2], and [CDO06, Section 2.1]. However, using such ad hoc methods does not allow
one to proceed in the generality of this paper, and can obfuscate the underlying
mechanism of the problem.

In a forthcoming paper, the second author will address this issue, and obtain
appropriate analogs of results in this series in the complex setting; which can be
seen as a quantitatively diffeomorphic invariant version of the classical Newlander—
Nirenberg theorem [NN57]. The results and methods of this series are the first step
in addressing this complex setting.

When we move to the complex setting (and more general settings which will be
discussed in a future paper), the ODE methods of this paper are no longer sufficient
to obtain even non-sharp results, and one must move to PDE methods. In particular,
Zygmund spaces are the right scale of spaces to discuss any of the results in the
complex setting.

8 Function Spaces, Revisited

In this section, we state and prove the basic results we need concerning the function
spaces introduced in Section 2. We begin with several straightforward inclusions of
these spaces, which we state in the next lemma. For the rest of this section, we take
the setting of Section 2.2.

LEMMA 8.1. (1) For 0 <s; <s9 < 1,me N, ||f||C;?§1(M) < 3”!}0”0;?*2(]\4)

() 1 fllemr oy < W legsran-
(ili) For s € (0,1], m € N, || fllgzemary < 5l f ez -
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(iv) For 0 < s1 S s < 00, [|fllgzary < 15[ fllesz (ary-
(v) If U € M is an open set, then | f|cmewy < [[fllcme o and ||flles @) <
I fllzs (am)

Proof. For (i), it suffices to prove the case m = 0. We have,
[fllcosr = I fllen +iigp(x,y)fsllf($) —fW)l

< Ifllen + il;l;min{p(w,y)» 17 f (=) = f(y)l

< flleon + il;gmin{p(%y)? 172 f(z) = f(y)|

< 3l flleqn + Sipﬂ(%y)_S?If(fﬂ) —fWI <3l fllgos,
Y

proving (i).

For (ii), it suffices to prove the case m = 0. Let x # y € M with p(x,y) < oo,
fix e > 0, and let § = p(x,y) + €. Pick v : [0,1] — M with v(0) = z, v(1) = y,
V(1) = 31 ai(0)6X;(v(1)), [ 2 laj [l (0,11y < 1. Then we have,

p(z,y) " f(x) — fy)|
1
S a5 6) dt\

5 q

< max |a X, f
p(x,y) e la; (¢)] Lw([m])jzl‘ iflloor
(1’ y +6 e—>0
S p(z,y ZHX flleo ZHX Flews

If p(z,y) = oo, then p(z,y)'|f(z) — f(y) = 0 < 32, ”XijC(M)- It follows that
[fllcorary < Iflley (ar), completing the proof of (ii).

For (iii), it suffices to prove the case m = 0. Let v € P%S/Q(h). Then
p(v(2h),~v(h)), p(7(h),¥(0)) < h, and so

h=51f(v(2R)) = 2f(v(h)) + f(7(0))| < 2 (Su§3 hh’s\f(l‘) — f(y)]
plx,y)<
<2 sup p(z,y)"°|f(z) = f(y)l-
z,yeM,x#y

Combining this with Hf”c‘;f”(M) < 3[Ifllcos(ary (by (i), (iii) follows.

For (iv) it suffices to prove the case when s; € (0,1]. When so € (0,1], as
well, then it follows easily from the definitions that || f[l4= (ary < 5 fll¢z2 (ar)- When
s9 > 1, we use (iii), (i), and (ii) to see

1 llez @y < 511 o apy < 1807l any < 151 Flleg any < 150 Fllazear

completing the proof of (iv). (v) follows easﬂy from the definitions. 0
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REMARK 8.2. Given the analogy with Euclidean spaces, one expects the reverse
inequality to Lemma 8.1 (iii), when s € (0,1); namely |[fllcz=xrn < | fllgzrman-
Under additional hypotheses, this is true locally. See the second paper in this series
for details.

PROPOSITION 8.3. The spaces C"°(M), €5 (M), C"™3(Q), and €5(Q) are algebras.
In fact, we have for m € N, s € [0,1],

I fallcms(ary < Cmgllf]

where C,, 4 is a constant depending only on m and q. And form € N, s € (m, m+1],

1f9lles o) < Cmgll flleg (an llglles (ar)- (8.1)

Moreover, these algebras have multiplicative inverses for functions which are bounded
away from zero. If f € C* (M) with infoeny |f(@)] > co > 0 then f(x) ! = 75 €
C'¢*(M) with

croanllgllems

I1f (@) Mo < C,

where C' can be chosen to depend only on m, q, ¢y, and an upper bound for
I fllcmary- And form € N, s € (m,m+1]if f € €5 (M) withinf,eps |f(z)] = co >0
then f(x)~1 € €5 (M) with

1 ()" leeg

where C' can be chosen to depend only onm, q, co, and an upper bound for || f||«: (rr)-
The same results hold with C'¢"*(M) replaced by C™*(Q) and €5 (M) replaced by
¢*(Q2) (with n playing the role of q).

Proof. The proofs for C'{"*(M) and C™%(Q) are straightforward and standard, so we
focus on the Zygmund spaces. We prove (8.1) by induction on m, where s € (m,m+
1]. We begin with the base case s € (0, 1]. Since we already know HngCg{,s/z(M) S

||f||C§>(,s/z(M)||g||c§(,3/z(M), it suffices to show for v € P%S/Q(h),

h=?1f(v(2h))g(v(2R)) = 2 (v(R)g(v(h)) + F((0))g(Y (O)] < 61 Fllg oy 9l as

Notice that p(y(h),v(0)) < h, and therefore |f(y(h)) — f(~(0))] < h5/2||f|]C%S/Q(M).
Thus, we have

h=*|f(v(2h )(7(2h))—2f(7(h) g(v(h)) + £(7(0))g(+(0))]
< K7 f(v(2R)) = 2f(v(h)) + F(v(0)]lg(v(2R))]
+h7E2f (v(h)) = F(v(0)]lg(v(2h)) — 2g(~(Rh)) + g(7(0))]
+h7E2[f(y(R)) = F(y(O)lg(v(R)) — ( (0))]
|

< I flles anllgllcan + 3l fllcoan lgllss
<6|f

M)+ QHfHCSg-‘“(M)”9”0;-</2(M)

@z () llgllgs ()
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Having proved the base case, (8.1) follows by a straightforward induction, which we
leave to the reader.

We now turn to inverses. We prove (8.2) by induction on m, where s € (m, m+1].
We begin with the base case s € (0,1]. Let f € €5 (M) with inf,cps | f(x)] > ¢o > 0.
We write A < B for A < CB where C is as in (8.2). Since we already know the
results for Holder spaces, we have Hf(x)_chg(,s/z(M) < 1. Thus, it suffices to show

for v € P%S/z(h),

1 2 1
'f(v(%)) T e T Fe0)
B ‘f(v(h))f(v(o))—2f(7(2h))f(7(0)) FOEMOM)| - .
F(12R)) F( () F(2(0)) ~

Since we have [f(7(2h))f(v(h)) f(~(0))
[f(v(R)) F(7(0)) — 2f(7(2h))f(’v(0)) FOy@h)fF(v(h)] < h*.

But we have

|F(v(h) F(7(0)) = 2f (7(2h)) f (7(0)) + f(7(2R)) f (7(R))]
< |(f(r(2h)) = 2f (v(R)) + f(7(0))) F(v()| + 2| F(v(R))? — f((2)) f(+(0)))|
< P fllezonllflleon +2\f 7(h))? = F(4(2h)) f(7(0))]
ShT+2[f(v(R)? = F((2M) F(4(0))] -
Thus, it suffices to show
|F(v(h))? = F(4(2h)) f(7(0))] < *.
But, using that p(y(h),v(0)) < h, and therefore | f(y(h))—f(7(0))| < hS/QHfHCg(,S/z(M)

< b2 we have

| F(y(h)? = f(7(2h)) f(7(0))]

< |(f(3(2R)) = 2£(v(h) + F((0) SO+ [(F () = F((0))?
SHHR SR,

| > c} , it suffices to show

completing the proof of the base case. Having proved the base case, the inductive
step is straightforward, and we leave it to the reader.
The proofs for €*(2) are similar, and we leave them to the reader. O

REMARK 8.4. In the proof of Proposition 8.3, it is used that || f{|co./2(q) < [|fll%= (),

€ (0,1], which is clearly true because of our nonstandard definition of || f|l%:(q)
(see Remark 2.1). Even with the more standard definition, for a bounded Lipschitz
domain €2, one has || f||co.cr2(q) , however C' depends on 2. Thus, if one
takes the more standard deﬁmtlon the conclusmns of Proposition 8.3 take a more
complicated form.
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REMARK 8.5. Lemma 8.1 and Proposition 8.3 hold (with exactly the same proofs) if
M is repalced by Bx (z0,&), whether or not Bx (o, £) is a manifold—see Section 2.2.1.

PROPOSITION 8.6. Let N be another C? manifold, Y7, . .. , Y, be C' vector fields on
N, and ® : N — M be a C' map such that d®(u)Y;j(u) = X;(®(u)), Vu € N. Then,
1f o ®@llcrenvy < Ifllemsany, meN,se€]0,1], (8.3)

1f o @llzg vy < I fllegary, s> 0. (8.4)

Proof. We begin with (8.3). Since Y*(fo®) = (X*f)o®, it suffices to prove the case
m = 0. We have a sub-Riemannian metric py on N and another sub-Riemannian
metric px on M, defined by (2.3). We claim

px (P(ur), ®(u2)) < py (u1, uz). (8.5)

This is clear if py(ui,u2) = oo. If py(uj,uz) < oo, let 6 > py(u1,us). Then,
there exists 7 ¢ [0,1] — N, 5(0) = u, /(1) = uz, 7(1) = Sas()Y;(1(),
I3 a5 L~qor)y < 1. Set 5 = ® o 7. Then, 3(0) = ®(ur), (1) = (us), and
7 (t) =" a;j(t)0X;(3(t)). This proves px (P(u1), ®(u2)) < d. Taking 6 — py (u1,u2)
proves (8.5). We conclude, for s € [0, 1],

py (u1, ug) °[f o ®(ur) — f o D(uz)| < px (P(u1), P(uz))”*|f(P(u1)) — f(P(u2))]-

(8.3) follows.
We turn to (8.4). Again, since Y*(fo®) = (X“f)o®, it suffices to prove (8.4) for
s € (0,1]. That ||f o <I>HC&S/2(N) < Hf||cr;(,s/2(M) follows from (8.3). Furthermore, it

follows easily from the definitions that for v € 733]/\78/2(h), we have oy € P)]\fs/z(h).
Using this, (8.4) for s € (0, 1] follows immediately. 0

8.1 Comparison with Euclidean function spaces. Fix n € (0,1] and let
Y1,..., Y, be vector fields on B"(n). When Y7, ..., Y, span the tangent space at every
point of B"(n) and are sufficiently smooth, we have C{""*(B"(n)) = C™*(B"™(n)) and
¢y (B™(n)) = €°(B™(n)). In what follows, we state and prove quantitative versions
of these equalities. ‘

4 We write Y; = > 1, a?% and assume % = >0, 0,Yj, where aé‘? € CY(B"™(n)),
by, € C(B"(n)).
DEFINITION 8.7. In analogy with Definition 2.2, for m < 0 we define C"*(B"™(n))

C(B"™(n)), with equality of norms. For s € (—1,0] we define €*(B"(n))
CO(+D/2(Bn(n)), with equality of norms.

DEFINITION 8.8. We say C is a 0:E-admissible constant'® if C' can be chosen to
depend only on upper bounds for q and Ha;?HC(Bn(,,)), Hme(Bn(n)), Vi, k.

13 Here we are using the E to stand for Euclidean, and to help differentiate these admissible
constants from the other admissible constants in this paper.
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DEFINITION 8.9. Form € Z, s € [0, 1], if we say C'is an (m, s:E)-admissible constant
ifak b, € C™*(B™(n)), Vj, k, and C' can be chosen to depend only on upper bounds

for q, m, and [|a%| ¢« (5o () IOl cone (5 () Vi .

DEFINITION 8.10. For s > —1 we say C is an {s: E}-admissible constant if a?, bi €
¢*(B"(n)), Vj,k and C can be chosen to depend only on s and upper bounds for q,

77_1, and Ha %s(B"(n))> Hb %=(B"(n))» Vi, k.

As before, we define A <, 5.5y B to be A < OB where C is an (m,s: E)-
admissible constant. We similarly define ~,, .. gy, <fs: g}, and =~y g). Recall, the
vector fields Y3, ..., Y, induce a metric p on B"(n) via (2.3).

LEMMA 8.11. p(z,y) ~o.E |z — y|.
Proof. This follows immediately from the assumptions. O
PROPOSITION 8.12. For m € N, s € [0, 1],

| fllcms(Br () Rm—1,s:8) |fllcmeBnm); (8.6)

and for s > 0,

| fllgs(Bnm)) ~gs—1:8} I fllgs (Brm))- (8.7)

Proof. We use Proposition 8.3 freely in this proof. In this proof, the norms || f||cm-,
Ilfllcms, [ flles, and || f||«- are always taken to be over the domain B"™(n) unless oth-
erwise mentioned. We prove (8.6) by induction on m. The base -case,
I fllcos(Br(m)) =o0E HfHCg,S(Bn(n)), follows immediately from Lemma 8.11. We as-
sume (8.6) for m — 1 and prove it for m. We have

1Fllege =111

C'm 1, +Z‘|Yf’c7n 1,s Nm 25 E Hf’CnL 1, +ZHYf‘

Jj=1 =

q n
< HfHCm—lvs+ZZ||ak3xkam ve Sme1,6:8) 1 fllcms

Cm—1,

For the reverse inequality,

[flleme < [ fllem=r.e +Z|lamf||0m e <l fllem-r +ZZ|WYfHCm .

k=1 j=1

— +Z\|qum ve Sz, 1 Flloge u+ZHYf\

Jj=1 Jj=1

<

mlsEHf| cyhe

= [[flleg
This completes the proof of (8.6).
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We prove (8.7) by induction on m, where s € (m,m + 1]. We begin with the
base case, m = 0, and thus s € (0, 1]. First we show Sys_1.gy- Take 0 # h € R”,
and = € ), (where Q = B"(n)). Set v(t) = x 4 tf, where 6§ = h/|h|. Note ~'(t) =
> k1 eka%k = 3:1 > h=1 Okbr (v (1)) Y5(7(t)). Since [|by[|co.sr2 S(s—1:E} 1, we have

BTL
!Ib;“ o Yllgosrz Sgs—1:8y 1, and therefore v € PY’S/(;?)(CW), where C' Sre_1:gy 1.
ence,

|h| 72| f(x + 2h) = 2f(z + h) + f(2)]
Sgs—1:5} (ClRD) [ (v (2[A]) = 2f(v(Ih]) + f(7(0))]
< I fllgs B (m))-

Since we have already shown || f|[co.2 ~fs_1. ) ||f|\03,5/2 (by (8.6)), the Sqs—1: 1)
direction of (8.7) follows.

We turn to Z¢,_1.g). We already have ||f|]03,s/2 ~s—1:8} I fllcosr < || flles

: Br
(by (8.6)). Fix h > 0 and 7 € Py [7(h). Note 7/(t) = Y9, d;(t)Y;((t)) =
Iy dj(t)a;?(fy(t))aik, with Z”djnéovs/?([ogh}) < 1. Since we also have

||a?||(10’5/2 Sgs—1:E) 1, it follows that [|v|c1er2(0,2n)) Sqs—1: £y 1. Define 7 : [0,2h] —
B"(n) by 4(t) = (£/2h)y(2h) + (1 = t/2h)(0).
We claim that
Y(t) = A(t)| Sgsmrimy B2 (8.8)
Indeed,
7(2h) =7(0) () —~(0)

() = ()] = [ P52 = BRIty () = /(e

by the mean value theorem, where c1,co € [0,2h]. Since t € [0,2h], it follows that

7(t) = (1) Sgo—1: 1y hT/2, by using the estimate [|ycrrz(o2n) Sqs—1:E) 1-
Next we claim that

| fllco.sratvermBrmyy Sgs—1:8} 1 lles(Brm))- (8.9)

To prove (8.9) we use

I fllcoerarerarimyy = | fllgsratarnBnmy) (8.10)

where the implicit constants depend on s, n, and an upper bound for n=! (here we use
s/(1+s/2) € (0,1); (8.10) does not hold when the exponent equals 1). Then, since
0< 8/(1 + 8/2) < s <1, we have Hf &=/ (+3/2) (B (n)) < 5”f”<ge(3n(n)) (this follows
immediately from the definitions) and (8.9) follows. (8.10) is classical; indeed, we
first consider the case when = 1. The 2 part of (8.10) follows immediately from the
definitions. For the < part when n = 1, see [Tri06, Theorem 1.118 (i)]-by choosing
M = 1,2 in that theorem, the < part of (8.10) follows, for n = 1, with implicit
constant depending only on s and n. Finally, a simple scaling argument establishes
(8.10) for general n > 0, which we leave to the reader.
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Note that 7(t) is a line with [7(2h) — 3(0)| < 2h[|v[lcr(o,2n) Sgs—1:E} I and
therefore |f(5(2h)) — 2f(3(h)) + fF(F(0)| Sgs—1: 8} 7°||fll#-. We combine this with
(8.8) and (8.9) to see:

[f(v(2R)) = 2f(v(R)) + f(7(0))]
< |f(3(2Rh)) = 2f(3(R)) + F(57(0))] + 2[f (v(h)) — f(5(h))]
Sgs—rmy Wl e + Iy (R) = AR fll coravere
Sts—1:8} PO flles
This proves ||fllzy Sqs—1:8) [[fll¢s, and completes the proof for the base case of

(8.7). From here the inductive step follows just as in the inductive step for (8.6),
and we leave it to the reader. O

9 Proofs

We turn to the proofs of the main results of this paper. The heart of this paper is the
study of a certain ODE which arises in canonical coordinates; this is presented in
Section 9.1. Then we present a quantitative version of a special case of the Inverse
Function Theorem in Section 9.2. We then prove the main result (Theorem 4.7)
in Section 9.3. Next, we prove the results concerning densities from Section 6 in
Section 9.4. Finally, we prove Proposition 4.14 in Section 9.5.

9.1 An ODE. The quantitative study of canonical coordinates is closely tied
to the study of the following ODE, defined for an n x n matrix A(u), depending on
u € B™(n) for some n > 0. Write u =760, > 0, §# € S*~!. The ODE is:

irA(rﬁ) = —A(r0)* — C(r0) A(rf) — C(r6), (9.1)
where C(u) € C(B™(n);M"*") is a given function. That this ODE arises in the
study of cannonical coordinates is classical (see, for example, [Che46, p. 155] for
the derivation of a similar ODE); however the detailed study of the ODE to prove
regularity properties in canonical coordinates was pioneered by Tao and Wright
[TWO03].

In Section 9.1.1 we show how this ODE arises in cannonical coordinates. Because
our vector fields X1,..., X, are merely assumed to be C!, there are some slight
technicalities which we deal with in that section. In Section 9.1.2 we prove the
regularity properties of solutions to this ODE.

9.1.1 Derivation of the ODE. Let Xi,...,X, be C' vector fields on an
n-dimensional C? manifold M. Fix 2 € M and € > 0 and suppose:

e X,..., X, span the tangent space at every point of M.
o O(u) = e XatuXot+unXog oxists for u € B"(e).
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Write [X;, X3 = >, c;le. Since X1,..., X, form a basis for the tangent space
of M at every point, c; x € C(M) are uniquely defined. Classical theorems show that
® is C* (since X1,..., X, are).

Let U C M and V C B"(e) be open sets such that ®|y : V — U is a C!
diffeomorphism. Let Y; = ®[{, X so that Y} is a C° vector field on V. Write,

Y:i=— 2
I 8u] + kz_: Buk (9:2)

where a;? € C(V). Let A(u) denote the n x n matrix with j, k component a?(u), and

let C'(u) denote the n x n matrix with j, & component ), ulc;?’l o ®(u). We write u

in polar coordinates as u = rf@, r > 0.

PROPOSITION 9.1. In the above setting, A(u) satisfies the differential equation

0

a—rA(rH) = —A(r0)* — C(ro) A(r) — C(r0). (9.3)
”

In particular, %TA(T@) exists in the classical sense.

LEMMA 9.2. Proposition 9.1 holds in the special case when M is a C*° manifold
and X1,...,X, are C* vector fields on M.

Proof. When Xi,..., X, are C*°, then ® is C*° and ®|y : V — ®(V) is a O
diffeomorphism. We conclude that Y7,...,Y, are C* vector fields. Furthermore,
Y;, Y] = Zlc]kY Whereck—ckofb

Note that d®(r6)r2 ra; = rd(b(r@)ar = rf - X (®(rh)), since ®(rf) = "Xz, and
we are identifying X with the vector of vector fields (X7, ..., X, ). Writing this in
Cartesian coordinates, we have

n 8 n
Z“JBTL] = Z%’Yj(u)- (94)
7j=1 7j=1

Taking the Lie bracket of (9.4) with Y;, we obtain

n n

> ((Yiu) 0, + wi[¥i, 0,]) = Y ((Yiuy)Yj + uy[Y;, Yj)

J=1 J=1

—Z(Yujy+uj2” Yl> (9.5)

=1
We re-write (9.5) as

3

D [0, Vi = 0u) | +Yi— 00 = — | D (Vi = 0u)(w;)) (V; — Du)
; j=1

n n

j=11=1
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Plugging (9.2) into (9.6), we have

Zn:zn:uj(aujaf)auk + zn:afauk == zn:zn:aza§auk o zn:zn:ujé?’jauk
k=1

=1 k=1 k=1 j=1 k=1 j=1
n n n
§ E § ~l k
- chi’jal (9uk
=1 k=1 j=1

Taking the 0, component of the above, and writing 1 + Z?:l uj0y, = Opr, we have

n n n n
ko ik ok o k
Opra; = — E a;aj — E u;iCi ;= E g u;c; ;| ar’
J=1 Jj=1

=1 \j=1
This is exactly (9.3) and completes the proof. O

Proof of Proposition 9.1. By a classical theorem of Whitney, there is a C'*° structure
on M compatible with its C? structure, so we may assume M is a C° manifold.
Pick!* V € V and U € U open sets with Py - V — U a C* diffeomorphism. Fix
uop € V. We will prove the result with V replaced by B™(ug, dg) for some oy > 0, and
the result will follow as the conclusion is local.

Fix € € (0,¢) so large that V C B"(¢’). Let X¢ be smooth vector fields on M
such that X7 — X; in C! as ¢ — 0. Define

(I)g(u) — eule-i-“'-‘ruanLx_
Then, for o sufficiently small, ®,(u) is defined for u € B"(¢'), and X{,..., X7 form
a basis for the tangent space at every point of a neighborhood of the closure of
®,(B"(¢')). Thus, we may write [X7, X7] = >, cﬁ’fX,‘j, with cﬁ’f — ¢ in CY as
o — 0. Also, &, — ® in C*(B"(¢')) as o — 0, by standard theorems.

For o sufficiently small, | det d®,(uo)| > 3| det d®(ug)| > 0. The Inverse Function
Theorem shows that there is a dg > 0 (independent of o) so that for o small,
Do | Br (up,6,) 18 @ diffeomorphism onto its image.

Define A, and C, in the obvious way on B"(ug,dy), by using the vector fields
X¢,...,X2. We have that A, — A and C, — C in C°(B"(ug,dp)). Furthermore,
by Lemma 9.2, ,rA, = —A%2 — C, A, — C,. Taking the limit as ¢ — 0, we find that
0,1 A exists in the classical sense and 9,7A = —A% — CA — C, completing the proof.

O

For another proof of Proposition 9.1 in the special case where € is assumed to be
small, see [MM13b, Appendix A].

14 Recall, V € V means that V is a relatively compact susbet of V.



GAFA COORDINATES ADAPTED TO VECTOR FIELDS: CANONICAL COORDINATES 1821

9.1.2 Regularity properties.  In this section, we discuss the existence, uniqueness,
and regularity of solutions to (9.1) satisfying A(0) = 0. Some of this was done in
[Str11], however we provide a complete proof here.

To facilitate the proof, we introduce a family of function spaces on B™(n).
Throughout this section, for a matrix A, we write |A| to denote the operator norm
of A.

Fix n > 0, we are interested in solutions A(x) € C(B™(n); M"*") to (9.1) (in this
section, we use the variable z in place of u). For [ € N set

O := {(a,h) € B"(n) x (R"\ {0}) : 2+ jh € B"(1),0 < j <1}.

Note that Qg := B"(n) x (R™\ {0}). For h € R™"\ {0} set Ap,A(z) = A(x+h) — A(x)
and AL A(x) = (Ap)'A(z). Note that Al A(z) is defined precisely for (z,h) € Q.
Without explicitly mentioning it, we will repeatedly use the fact that if (z,h) €
and s € (0,1], then (sz, sh) € .

Let w : (0,00) — (0,00) be a non-decreasing function and for [,m € N set

1A

)

l
mw:}jzfmcmwﬂgﬁm@

18<m j=0 (@h)EL;
b = {A € C™(B"(1); M) ¢ [|Allgmae < 00}

Note that C™! is a Banach space, and when [ = 0, w does not play a role.
REMARK 9.3. We are particularly interested in the following special cases

Cm(Bn(n);Mnxn) — Cm,(),w’ Cm,s(Bn(n);Mnxn) — Cm71,ws,
%m+S(Bn(n); Mnxn) — Cm,2,w5/27

with equality of norms, where ws(h) = h®.

PROPOSITION 9.4. Let C' € C(B"(n); M™*™) be given with C'(0) = 0. Suppose
|C(x)| < D|x|, for # € B™(n). Then, if n < (10D)~!, there exists a unique A €
C°(B™(n); M™*") with A(0) = 0 satisfying (9.1). This unique solution satisfies:

5 1
|A(x)] < éD\a:| and |A(z)| < e Vx € B"(n). (9.7)
Furthermore, for this solution A,
CeC™¥ = AecCm™¥  vm,lw,

and

1A]

Cmol,w < Kn,m,l,wa

where K, 1., can be chosen to depend only on n, m, |, and an upper bound for
IC e
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The rest of this section is devoted to the proof of Proposition 9.4. We begin with
several lemmas.

LEMMA 9.5. For j <m, k <1, C™h% — C9* and
| Allosee < Al (9.8)
If A,B € C"™" then AB € C™! and
||ABHCWL,l,w S Cm7l”.AHC’nl,l,wHBHC’VYL,L,W, (9-9)
where C,,; can be chosen to depend only on m and [.

Proof. The inclusion and inequality (9.8) follow immediately from the definitions,
thus we prove only the algebra property and (9.9).

For A,B € C"™" and 0 < j < [,|3| < m, we have 85A{l(AB) is a constant
coefficient linear combination of terms of the form

Thih <A{;6§1A) Thah (A{f@%B) ; (9.10)

where 7, A(z) = A(x + h), j1 +jo = J, 0 < k1 < j2, 0 < ko < j1, B1 + B2 = (. Note
that, since 0 < k1 < jo, 0 < ko < j1, and j; + j2 = j < [, the expression in (9.10) is
defined for (x,h) € ;. Finally,
(B 7 (8705 A4) min (A0 B)
= |an (b)) A 02 A4) i (w(Inl) 22702 B)|
< [[Allgisn || Bllcisize < [ Allgmie || Bllgme,

where the last inequality follows from (9.8). The result follows. O
Define 7 : C(B"(n); M"™*") — C(B"(n); M"™*") by

1
T(A)(x) = /0 —A(sx)? — C(sz)A(sx) — C(sz) ds.

The relevance of 7 is the following lemma.

LEMMA 9.6. A € C(B"(n); M™™) is a solution to (9.1) if and only if T(A) = A.
Also, writing x = rf, we have the following formula for T when r > 0:

1 T
T(A)(rd) = 7n/ —A(s0)? — C(s0)A(s0) — C(s0) ds. (9.11)
0
Proof. (9.11) follows from a straightforward change of variables in the definition of
7. That A € C(B"(n); M™*"™) is a solution to (9.1) if and only if 7(A) = A follows
from (9.11). O

LEMMA 9.7. If C € O™ then T : C™bv — C™mibw,
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Proof. Let A € C™. We wish to show T(A) € C™!. Set B := —A%2 — CA — C.
By Lemma 9.5, B € C™!%. We wish to show fol B(sx)ds € C™h,
Let 0 < j <1, |#| < m. Consider,

‘ 1 1 ' 1 A
‘A%@f/ﬂ B(sz) ds| = /0 slm(Aih(?gB)(s:L‘) < /0 sl (s|h)|| B||cmtw ds
< w([h[Y || Bllgmes (18] + 1) 71,
where we have used that w is non-decreasing. The result follows. O

LEMMA 9.8. (Izzo’s contraction mapping principle [1zz99]). Suppose (X, d) is a met-
ric space and {Qq }22, is a sequence of contractions on X for which there exists ¢ < 1
with

d(Qau(x), Qu(y)) < cd(x,y), Vr,y € X,a€N.

Suppose Jro € X with limg—00 Qu(Too) = Too- Let xg € X be arbitrary, and define
x4 recursively by xq,11 = Qu(x4). Then lim, o0 Tq = Too-

Proof. We include a slightly modified version of the proof in [1zz99]. For each a € N,

d(l‘aJrl,-xoo) = d(Qa(xa)wToo) < d(Qa(xa)a Qa(-roo)) + d(Qa(xoo)a xoo)
< cd(Tq, Too) + A(Qa(Too), Too)- (9.12)

First we claim that the sequence d(z,, T~) is bounded. Since Q4 (o) — Too, AN,
a> N = d(Qu(Tx),Too) < 1 — c. Suppose d(z4,Too) is not bounded; then Ja > N
with max{d(z,,Tx),1} <  d(Zg+1,T0). Applying this to (9.12), we
have d(Zg41,%o0) < €d(Tgy Too) + d(Qa(Too)s Too) < €d(Tat1,To0) + 1 — c. And so
d(Tat1,%To00) < 1 < d(zg41,%T0), a contradiction. Thus the sequence d(xg4, Too) is
bounded.

Since Qu(Too) — Too, (9.12) implies

limsup d(z,, Too) < climsup d(xq, Too).
a—00 a—00
Since limsup,_, o, d(Zq, Too) < 00, this gives limsup, .. d(zq, T) = 0, completing
the proof. O

We now turn to Proposition 9.4. We begin with uniqueness. Suppose A, Ay €
C(B™(n); M™™) are two solutions to (9.1) with A;(0) = A2(0) = 0. By Lemma 9.6
we have 7 (A1) = Ay, T(Az) = Az. We first claim that |A;(z)| = O(|z|) for j =
1,2; we prove this for 4; and the same is true for Ay by symmetry. Set F(r) =
SUp|g|<, |A41(2)[, note that I : [0,n7) — R is continuous, increasing, and F(0) = 0.
Since 7 (A1) = A; and |C(sz)| < Ds|z| by assumption, we have

1 1 1
|A1(z)| < / F(s|z|)® + Ds|z|F(s|z]) + Ds|z| ds < F(|z])* + §Dlx\F(|x|) + §Dlw|-
0
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And so F(r) < F(r)?>+3DrF(r)+ $Dr, and thus F(r)(1— F(r)) < 1DrF(r)+ 5 Dr.
Taking r so small that F/(r) < 3, we have for such 7, F(r) < 3Dr. Thus |A;(z )| =

O(Jz|)-

Writing « in polar coordinates x = rf and using (9.11) we have for r > 0,

r(Av(rf) — Az(r0))|
< /0 |s(A1(s8) — Aa(s0))] (5_1|A1(50)| + 8_1]A2(59)| + s_1|C(89)]) ds.

Using that |A1(s60)],|A2(s0)], |C(s6)| = O(s), the integral form of Grénwall’s inequal-
ity shows that A;(rf) = Aa(rf) for r > 0 and therefore A; = Ay. This completes
the proof of uniqueness.

We now turn to existence for which we use the contraction mapping principle.
Let

M= Ae C¥%B"(n);M™") | A(0) =0, sup IA( )| < o0,
0zeBn () 2]
sup [A(z)] <

:r i
xeB™(n) — 10

|A(z) = B(z)] -

We give M the metric

d(A,B) := sup
0#z€B™(n |x|

With this metric, M is a complete metric space.

LEMMA 9.9. 7 : M — M and VA, B € M, d(T(A),T(B)) < Ld(A,B). Also,
d(T(0),0) < D/2.

Proof. Let A € M. For x € B"(n),

T < [ 14120+ DolallAlce + Dsjel ds < (a5 + Do + 2
= ) oo mEEEiAlien TSI = 700 T o T
1111
700 T 200 T 20 = 10 9.13
=700 T200 20 = 10 (9.13)
Also,
L)< & [ Defalas < 1p 0.14)
‘:L’| _|='17’ 0 -2 :

and so 7 (0) € M with d(7(0),0) < D/2.
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Finally, for A, B € M, 0 # x € B"(n),

|$1|\T(A)(w)—7 P ‘/ |A(sz) = B(sz)|(|A(sz)[ + [B(sz)| + |C(s2)]) ds
1! ! 1 s
< |95|/0 slz|d(A, B) (5 + Ds\x|> ds < /0 sd(A, B) (5 + 10> ds
< d(A, B) <110 + 310) d(A B). (9.15)

Putting 0 = B in (9.15) and using (9.14) shows supg_,epn(y) |%M’T(A)(av)\ < 00.
Combining this with (9.13) shows 7 : M — M. Further, (9.15) with arbitrary
A, B € M shows d(7(A),7T(B)) < %d(A, B), and this completes the proof. O

By Lemma 9.9, 7 : M — M is a strict contraction, and the contraction mapping
principle applies to show that if Ay =0, A, = 7(Aq—1), a > 1, then 4, — Ay in
M, where T (Ax) = Ax. Aso is the desired solution to (9.1).

Also, for a € NU {oc} we have, using Lemma 9.9,

1

W o(z)| < d(Aq, 0) gz d(T"(0 <Z5 ba(T
b=0

OO\U!

(9.16)

In particular, for z € B"(n), |Aso()| < 2D|z|. Also, since n < (10D)~!, it follows
that [A(2)] < {5; this establishes (9.7).

It remains to prove the regularity properties of A, in terms of the regularity
of C. For the remainder of this section, K, ;. is a constant which can be chosen
to depend only on n, m, [, and an upper bound for ||C||gm.... This constant may
change from line to line.

To complete the proof of Proposition 9.4, we will prove the following when C €
Cm,l,w:

o A, — Ay in C™he,
b ||AOO||C"L’[’LU S Kn,m,l,w'

We prove the above two properties by induction on m, . The base case, m =1 =0,
was just proved above (since C%0« = CO(B"(n); M™*™)).

Fix (m,[). We assume we have the above for all (k,j) with0 <k <m, 0 < j </,
and (k,j) # (m,1), and we assume C' € C™", Since for 0 < k < m, 0 < j <,
Ccmle sy CRI% (Lemma 9.5), the inductive hypothesis shows for such (k,j) with
(k,§) # (m,1), Ay — Ao in CF3% and || Aso||criw < Knkjw-

We define a Banach space X, ; as follows:

e X, 0=C(B"(n);M" "), with the usual norm.
e For [ >0, X,; = {B(x,h) € C(; M"*") : | B||x,, < oo}, where ||Blx_, :=
sup (e, nyeq, @ ()| B(x, h)].
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Fix || = m. We will show (under our inductive hypothesis)

(i) A, € C™ Vg € N.

(i) ALASA,(x) € X, Va € N.
(iii) 3Bo € X, such that ALdJA, =% B in X,
(iv) [1Bsslxo, < Knmtw-

First we see why the above completes the proof. We already know from our
inductive hypothesis that

sup  w(|h]) 7 |ATO(As — As)| 220, (9.17)
(z,h)€Q;

for 0 < j <, |af < m with (j,|a]) # (I,m), and that |Ax||cire < Ky jw for
0<k<m,0<j<l (jk)# (I,m). Thus, that 4, — Ay in C"™ will follow
from (9.17) for (j,|a|) = (I,m) and the fact that A4, € C"™%. If [ = 0, (i) implies
A, € C™ and (iii) implies 85 A, — By in the supremum norm. Since A, — As
in C°, we have 851400 = Byo. (iv) implies the desired bound on 6£Aoo. Since S is
arbitrary with |3| = m, we conclude Ay, € C™, with ||Ax||cmoe < Ky mo0w, and
A, — A in C™O%  ag desired.

If [ > 1, then we already know A, — Ay in C"(B"(n); M"*™), by the inductive
hypothesis. Thus

ALdPAL(z) — ALOP AL, pointwise.

Hence, A%@ngo(az) = Boo(x,h). Since § was arbirary with |3| = m, (iii) shows
Ay — As in C™ and (iv) shows || As|

Having shown them to be sufficient, we turn to proving (i) to (iv). Recall, we
have fixed § with |3| = m. Since A, = 7%(0), (i) follows from Lemma 9.7. (ii) is an
immediate consequence of (i). Thus, it remains only to prove (iii) and (iv). We will
do this by applying Lemma 9.8. To begin, we need a few preliminary lemmas.

Cmlw < Kn,m,l,uJ'

LEMMA 9.10. Fix mq,l1,ms,ls, j1,j2 € N and set | = I1 + 1o and suppose j1 +11, jo+
ly < 1. Let B and (33 be multi-indicies with |$1| = m; and |B2| = mqy. Then, the
bilinear map for Ay € C™vhw Ay € O™ given by

(A, Ag) (lehAﬁgaflfh) () (TthAﬁgaf‘ZAz) (). (9.18)

is a continuous map C™1w x CM2lw w,l, and the norm of this map is < 1.
Here, T, A(z) = A(x + h).

Proof. The restriction ji + l1,j2 + lo < I, ensures that the expression in (9.18) is
defined for (z,h) € ;. With this in mind, the result follows immediately from the
definitions. O

For an element B € X,,; we often write B(x,h). When [ > 1, the meaning of
this is obvious. For [ = 0 this is to be interpreted as B(x).
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LEMMA 9.11. For B(x,h) € X,,; and d > 1 the map

B»—>/ B(sxz,sh)d

is continous X,,; — X,,; and has norm < 1.
Proof. This is clear from the definitions. O
For A, Ay € C™%! we have

A0S (A1 Ag) () = (A}OL A1) (2) Az (a + Th) + A1 (2)(A},05 As) (x) + Ray(Ar, Ag) (),

where Rj (A1, A2)(x, h) is a constant coefficient linear combination (depending only
on (8 and [) of terms of the form

(lehAlfiaflAl) (2) (szhﬁlffaf%%) (2),

where 0 < ji <lp, 0 < jo < Iy, l1 +la =1, B1 + o = B, and Iy + |B1], 2 + | F2| > 0.

LEMMA 9.12. We have the following limits in X, ;:

1 1
/ SWRﬁ’,z(Aa7 Aa)(sz, sh) ds == slng’l(Aoo, Aco)(sz, sh) ds. (9.19)
0 0
1 1
/ s‘mR@l(C, Ag)(sz, sh) ds =2 slmRﬁJ(C, Ao)(sz, sh) ds. (9.20)
0 0

1 1
/ 58 (Aghaﬁc) (s2)Aa(s(a + b)) ds <=2 [ slF] (Aghaéjc) (s2) Aso(s(x + 1R)) ds.
0 0
(9.21)

And for any B(x,h) € X,

/1 sl B(sz, sh) Aq(s(x + 1h)) ds “=% /1 s B (s, 2) Asc (s(x + 1h)) ds.
0 0
(9.22)

1 1
/ s A, (sz)B(sz, sh) ds 2225 | sIPl A (sx)B(sz, sh) ds. (9.23)
0 0

Proof. Recall, we are assuming C' € C"™! and our inductive hypothesis implies
Ay — As in ORI with 0 < k < m, 0 < j <, and (k,j) # (m,!1). Using this
and Lemmas 9.10 and 9.11, (9.19), (9.20), and (9.21) follow immediately. (9.22)
and (9.23) follow from the fact that A, — Ay in C°(B"(n)) and a straightforward
estimate. O
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LEMMA 9.13.

1
/ PR3 (Ao, Ase) (s, sh) ds|| < Ko
0 Xot

1
[ 4 (8400€) (s Astote + ) | < Ko
0 Xon

1
/ s RG (C) Ase) (s, sh) ds| < Kpmiw.
0 Xoo

Proof. This follows from the inductive hypothesis and Lemmas 9.10 and 9.11. O

For a € NU {o0}, B € X, define

Qu.(B)(z,h) = /0 — 1Al [B(sac, sh)Aq(s(x 4+ lh)) + Aq(sx)B(sx, sh)

+ O(sz)B(sz, sh) + (Aghagc) (sz)Aa(s(z + Ih)) + (Aghagc) (sz)
+ Rp1(Aq, Ag)(sz, sh) + Rg 1 (C, Ag) (s, sh)] ds
LEMMA 9.14. For a € NU {oo}, Q, : X, — X, and satisfies

/ 1 /
19a(B) = Qu(B)Ix... < glIB = B'llx.... (9.24)

Furthermore, VB € X, limy .00 Qa(B) = Quo(B). Finally, || Qe (0) |l x., < Kpm iw-

w,l —

Proof. That Q, : X,,; — X, follows from Lemmas 9.10 and 9.11, the inductive
hypothesis, and the fact that A, € C°(B"(n)), Va € NU {oo}.

That limg oo Qu(B) = Quo(B) follows from Lemma 9.12 and [[Qu(0)|x,, <
K, mw follows from Lemmas 9.11 and 9.13.

Thus we need only show (9.24). We have, using (9.16), for (z,h) € Q;, a €
NU {oo},

|Qa(B)(x,h) — Qa(B)(w, )]

1
g/o s Ag(s(x + 1h)| 4 |Aa(sz)| 4 |C(sz)|)| B(sx, sh) — B'(sx, sh)]| ds

1
5 5
< / <8Ds|x +lh| + §D8|$| + Ds|a:|> w(s|h|)Y|B — B'| x.,, ds
0

1
9
<|B-Blx., [ Dsm(n) ds
0

< cw(lh)'lIB - B'|lx

PRE

|

completing the proof of (9.24), and therefore the proof of the lemma. O
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For a € N, define B (z, h) := A%@;’?Aa(:x); note that B, € X,,; since A, € C™%!,
Also, Byy1(z,h) = ALOST (Ay)(x) = Qu(Ba)(x, h).

Since Qn is a strict contraction (Lemma 9.14), there exists a unique fixed point
By € X,. Since Qy(Boo) — Qoo(Bx) = Boo, by Lemma 9.14, Lemma 9.8 shows
B, — B in X,,;. Since B,(z,h) = Aél@an(w), this proves (iii).

Finally, to prove (iv) note that By is the fixed point of the strict contraction
Q. Thus, Q% (0) — Bo. Hence,

8
1Bocllx... < Z 1957(0) ~ Q% Ol < ZS 19 (0) = Ollx.., = =11 Que(0) x..

< Kn,m,l,wa
where the last inequality follows from Lemma 9.14. This completes the proof.

9.2 An inverse function theorem. We require a quantitative version of a
special case of the Inverse Function Theorem that does not follow from the standard
statement of the theorem, though we will be able to achieve it by keeping track of
some constants in a standard proof. We present it here.

Fix n > 0 and let Yi,...,Y, € CY(B"(n);R") be vector fields on B"(n) and
suppose they satisfy

inf |det (Yi(u)]---|Yn(u))| > ¢o > 0.
u€B™(n)

Take Co > 0 so that [|Y| o1 (pr(m):rn) < Co, Vj. Define

W, (v) = evr Vit tonYoy,
PROPOSITION 9.15. There exist k = k(Cy, co,n) > 0 and Ay = Ay(Cop,co,n,n) >0
such that V§ € (0, Ao], uw € B"(kd), v — ¥, (v) is defined and injective on v € B™(J).
Furthermore, B™(k6) C U, (B™(9)).

The rest of this section is devoted to the proof of Proposition 9.15; for a closely
related result see [MM13b, Theorem 4.5].

LEMMA 9.16. Let &g > 0, F € CY(B"(d);R"), and suppose dF(0) is nonsingu-

lar and sup e gn (s, |[dF(0)LdF (z) — I||lynxn < 5. Then F(B"(d)) C R™ is open

and F : B"(6y) — F(B"(y)) is a C! diffeomorphism. Furthermore, F(B"(5y)) 2
B"(F(0), kéo) where

(n—1)

k= ||d(F~ > ¢l det dF(0)[| | o5 (50 ) (9.25)

-1
[

and ¢, > 0 can be chosen to depend only on n.
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Proof. We first show F is injective. Fix y € R" and set ¢(z) = = + dF(0) "} (y —
F(z)). Note that F(z) = y & ¢(x) = z. Also, Vo € B"(dy), ||do(z)||pnxn < || —
dF(0)~YdF (z)||pexn < 5. Hence |¢(z1) — ¢(z2)| < 2|x1 —z2|. Hence, there is at most
one solution of ¢(x) = x, and therefore at most one solution of F'(z) = y, proving
that F'is injective.

Since ||dF(0)'dF (z) — I|jynxn < 3, Vo € B"(&p), it follows that dF(z) is in-
vertible Vo € B"(dp). Combining this with the fact that F' is injective, the Inverse
Function Theorem shows F(B"(dy)) is open and F : B"(5y) — F(B"(dp)) is a C*
diffeomorphism.

Next we prove the bound for x given in (9.25). In what follows, we use A <
B to denote A < C,B, where C, can be chosen to depend only on n. Since
|[dF(0)~'dF(z) — I|| < 3, by assumption,

|det dF'(z)| 2 | det dF'(0)]. (9.26)

x€B™(n)

Also, Yz € B™(dp),
I(dF ()™ e S | det dF (@) AF G0 g 50y

as can be seen via the cofactor representation dF (z)~!. Hence,

sup dF ()" Yppmn < ( inf |detdF(y > dF|| ™% mn emys
e I@F@) nt At dP )] ) IO 00
and therefore

1

-1 < .
A lescpiemsoponeeey 5 (_int, 19etdF@]) Il gaoer

1
<
< (weg}lf | det dF'(x )|> HFHC1 B (60) R (9.27)

Combining (9.26) and (9.27) yields (9.25).

Finally, we prove F(B™(dy)) 2 B(F(0), kdp). Take € > 0 to be the largest € so that
B"™"(F(0),e) C F(B"(dp)) (note that € > 0 by the Inverse Function Theorem). The
proof will be complete once we show € > dyk. Suppose, for contradiction, € < dyk.
We have, by the Mean Value Theorem,

F~H(B(F(0),€)) € B(0, el|dF ! lco(m(me(s,))pm5m))-

Thus, if € < kdp, F~1(B(F(0),¢)) € B(0,dp), which contradicts the choice of € and
completes the proof. O

LEMMA 9.17. Let Y}, Cy, n, n, and ¥ be as in Proposition 9.15. There exists 61 =
01(Co,m,n) > 0 such that Vu € B™(n/2), ¥, is defined on B™(61) and satisfies

[Pullcr (B (5,)mm) < C(Co,n) (9.28)
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and Yu € B™(n/2),v € B"(41),
[doWu(v) = doWu(0)]pguscn < C(Co,m)lv], (9.29)
where C(Cy,n) can be chosen to depend only on Cy and n.

Proof. The existence of §; > 0 so that Vu € B"(n/2), ¥,(v) is defined and (9.28)
holds are classical theorems from ODEs. Thus, we prove only (9.29). We write A < B
for A < C'B where C' can be chosen to depend only on Cy and n. We use the equation
Op Wy (rv) = v - Y (¥, (rv)), and so

1
U, (v) = /0 v-Y (¥, (sv)) ds.

Since d,¥,,(0) = (Yi(u)|---|Yn(u)), we have Yu € B™(n/2),v € B"(61)

1
U, (v) = (dp Wy (0))v = / v (YV(Wyu(sv)) =Y (¥,(0))) ds.
0
Applying d,, to the above equation and using the chain rule, we have Yu € B™(n/2),
v E B”(él),
||dv\Iju(’U) - dv\I/u(O)”M"X"

1
/0 (Y(0,,)(sv) = Y (¥, (0))) 4+ sv dY (¥, (sv))(dy¥,) (sv) ds

Mnxn
S Y o Wullor(mn(se)pamxny + [0l[Y [[o1 (B gy pam <y [Wull o1 (B (51)mm)

S Y ller ey [Wullor s s,)imn) S 101,

where we have written Y (u) for the matrix valued function (Yi(u)|---|Y,(u)) and
used (9.28). This completes the proof. 0

Proof of Proposition 9.15. In what follows we write A < B for A < CB, where C
can be chosen to depend only on n, Cy, and cy, and write A <, B if C' can also
depend on 7. By taking 61 2, 1 as in Lemma 9.17, for all uw € B"(n/2), v € B"(1),
U, (v) is defined. For such u, since |det d¥,(0)| = |det(Y1(u)| - |[Yn(w))| = 1 and
using (9.28), we have ||d, W, (0) ! {|ymxn < 1. Hence, using (9.29), for u € B"(n/2),
(NS Bn((51>,

ldp ¥ (0)1d, Wy (v) — I

mrxn S [ dy Wy (v) — dy Wy (0)]

Mnxn 5 |/U‘

Thus, if 62 2, 1 is sufficiently small, for all u € B"(n/2), v € B™(02),
1
H%mﬂmﬁ%mam—ﬂmmngi

By Lemma 9.16, for |u| < n/2, ¥, : B"(dy) — ¥, (B"(3)) is a C* diffeomorphism,

and if we set £ == 3 influj<y/2 (5 cogw, (3 (52))aaey We Bave £ 2 1 (also by
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Lemma 9.16). Notice the extra factor of 1/2 in the defintion of x as compared to
Lemma 9.16.

Take Ag < 02, Ag 2, 1 sufficiently small so that kKAg < 7/2. Then for ¢ € (0, Ag]
and |u| < k0, Lemma 9.16 shows

U, (B"(9)) 2 B"(¥,(0),2kd) = B"(u,2k0) 2 B"(0,K0),
which completes the proof. O

9.3 Proof of the main result. We turn to the proof of Theorem 4.7. We
separate the proof into two parts: when X (), ..., X4(xo) are linearly independent
(i.e., when n = ¢), and more generally when X;(zo),...,X,(zo) may be linearly
dependent (i.e., when g > n).

9.3.1 Linearly independent.  In this section, we prove Theorem 4.7 in the special
case n = ¢q. We take the same setting as Theorem 4.7 with the same notions of
admissible constants, and with the additional assumption that n = g. Note that,
in this case, X;, = X, so we may replace X with X throughout the statement
of Theorem 4.7. Also, because n = ¢, in (m,mg, s)-admissible constants, mgy does
not play a role (since in all of our results m; > mgy when (mq,mso,s) admissible
constants are used), so we instead use (mp, —1, s)-admissible constants throughout
this section.

Similarly, we use {s, —1}-admissible constants throughout this section.

Proposition 3.1 implies that Bx(xo,&) is an n-dimensional manifold and that
X1,...,X, span the tangent space to every point of Bx(zo,§). Thus, Xi(y),...,
Xn(y) are linearly independent Yy € Bx(zo,&), and Theorem 4.7 (a) follows with
x = & (b) and (c) are both obvious when n = ¢ (and x = ). With (a), (b),
and (c) proved, we henceforth assume Cé',k € C)I(JO (Bx,, (0,§)) = C%(Bx(z0,£)),
1 <5,k 1<n.

Consider the map ® : B"(ny) — Bx(zo,&) defined in (4.1); which we a priori
know to be C!. Clearly d@(O)% = Xj(zp). Since X1(zo),...,Xn(zo) form a basis
of the tangent space T, Bx(xo,&), the Inverse Function Theorem shows that there
exists a (non-admissible) § > 0 such that ® : B"(5) — ®(B"(5)) is a C! diffeo-
morphism. Let }A/j = @‘;n(é)Xj, so that }A/J is a OO vector field on B"(§). Write

}/}j = % +> % d;‘-”(t)({%. Let A(t) € C(B™(5); M™ ") denote the n X n matrix with
(4, k) component d?(t) and let C'(t) € C(B"(no); M™"™) denote the n x n matrix
with (j, k) component equal to Y ;" tlc;?l o D(t).

ProrosITION 9.18. Write t in polar coordinates, t = v, and consider the differen-
tial equation

aarm(ra) = —A(r0)* — C(r0) A(r8) — C(r6), (9.30)

defined for A : B"(ng) — M"*". There exists a 0-admissible constant i’ > 0, which
also depends on a lower bound for n > 0, such that there exists a unique continuous
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solution A € C(B™(n); M™*™) to (9.30) with A(0) = 0. Moreover, this solution lies
in CY(B"(n'); M"™*") and satisfies

1
HA@ e So [t and [| Al < 5, VE € B (1)

For m € N and s € [0,1], if cﬁj o® e C"™*(B™(n)) with ||ch 0 ®|lgm.s(Br(myy) <
D5, Vi, j, k, then A € C™%(B™(1); M™*™) and there exists a constant Cy, s, which
depends only on n, m, and Dy, s, such that || Al|gm.gn @y )mnxn)y < Cm,s. Similarly,
for s € (0, 00), ifcf”jo@ € ¢°(B"(n)) with ||cﬁjo<1>||<g5(3n(n/)) < Dy, then there exists
a constant Cs which depends only onn, s, and D such that || A||¢(gn(y)mxn) < Cs.

Finally, A| . oo 50 = Al o ming o))

Proof. Note that, by the definition of C(t) we have ||[C(t)|yer <o |t]. Also, A
satisfies (9.30) on B"(4) by Proposition 9.1. Since d@(O)% = X,(xo), we have

A\(O) = 0. With these remarks in hand, the proposition (except for the claim A €
CY(B™(n'); M ™)) follows directly from Proposition 9.4 (see also Remark 9.3).

The claim that A € C*(B"(n'); M"*") can be seen as follows. First note that

we may assume 1 < 1o as if ' = 1, we may replace n’ with 7y/2. Since cé RS

C)I(JO (Bx,, (0,€)) = CL(Bx(z0,)), X1,...,X, span the tangent space at every
point of Bx(zo,&), and the vector fields X7,..., X, are C!, it follows that Cé‘,k are
C' on Bx(z0,§). Since ® : B"(n9) — Bx/(z0,£) is a priori known to be C*!, we
have Cé‘,k o ® is C* on B"(np). Thus, C € C*(B"(n'); M™*"), and it follows from
Proposition 9.4 that A € C*(B"(n); M"™*"). 0

We fix > 0 and A as in Proposition 9.18. Write a;‘?(t) for the (j, k) component
of A(t) and set Y; := % + > 1 a?a%c. Note that Y1,...,Y, are C! vector fields
on B™(n'). By Proposition 9.18, Y; Br(min{y o)) = Y; B (min{r3}
admissible, we think of ¢ as being much smaller than 7, and so Y; should be thought

~

) Since 0 is not

of as extending }/}]
PROPOSITION 9.19. Vt € B™(1)), d®(t)Y;(t) = X;(®(t)), 1 <j < n.
Proof. Fix # € S 1 and set
r1 :=sup{r > 0:d®(r'0)Y;(r'0) = X;(®(+'0)),0 <7’ <r, 1 <j<n}

We wish to show r; = 7/, and this will complete the proof since § € S"~! was
arbitrary. Suppose, for contradiction, r; < n’. Since Y; Br(min{y 6}) = Y;

and d@(u)}z(u) = X,;(®(u)), we know r; > 0. By continuity, we have
d®(r10)Y;(r10) = X;(®(r10)).

By Proposition 3.1, X1(®(r10)), ..., X;,(®(r10)) span T, 6 Bx (7o, &), and there-
fore the Inverse Function Theorem applies to ® at the point ;0. Thus, there exists

B (min{n’,6})
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a neighborhood V' of 716 such that ® : V — ®(V) is a C! diffeomorphism. Pick
0 <rg <rg<ry <ry<n suchthat {r'f:ry <+’ <1y} CV. N

Let Y := @‘;Xj. By the choice of ry, for ro <1’ < r3 we have Y;(r'0) = Y;(r'0).
Write §~/J = a%j + > h dé’? 6%% and let A denote the matrix with (j, k) component
d?. We therefore have A(r'0) = A(r'0) for 7o < ' < r3. A satisfies (9.30) by
Proposition 9.1. Away from r = 0, (9.30) is a standard ODE that both A and
A satisfy. Thus, by standard uniqueness theorems (using, for example, Gronwall’s
inequality) we have A(r'8) = A(r'0) for ro < ' < ry. Thus, Y;(r'0) = Y;(r'0),
ro < 1 < ry. Since d®(r'0)Y;(r'0) = X;(®(+'0)) we conclude 71 > r4. This is a
contradiction, completing the proof. O

LEMMA 9.20. ® : B"(n') — Bx(wq,&) is C2.

Proof. Since we already know that ® : B"(1) — Bx(xo,¢) is C!, it suffices to show
the map u — d®(u), u € B"(') is C*. We have already remarked that Y1,...,Y,, are
Cl. Since Y = (I+A)V, with | A(t)|jpnxn < 3, Vt, we conclude Y7, ..., Y, are a basis
for the tangent space at every point of B"(n’). Also, d®(u)Y;(u) = X;(®(u)) € C!
since X; € Cl, ® € C'. Since Y7,...,Y, are C' and a basis for the tangent space
at every point, we conclude u — d®(u) is C', and therefore ® is C2, completing the
proof. O

PROPOSITION 9.21. For m € N, s € [0,1], " € (0,7'] we have (for any function f),

/1

cms (Br(n)) Fm—1,-1,5) | fllops B @), (9.31)

and

1Y llomos (Br()smny Stm,—1,s) 1- (9.32)

Similarly, for s € (0, 00),

I fllzs (Br @y Ris—1,-1ym7 1 gz Brm)) (9.33)

and
1Y;

(B (n)R) -1 (9-34)

In (9.33) we have written ~,_ 1y, to denote that the implicit constants are also
allowed to depend on the choice of .
Furthermore, for m € N, s € [0,1], and 1 < i, j,k < n, we have

15 0 ®lgmee (Br () Stm—1,8) Ly (9.35)

and for s € (0, 00),

||Ci'€,j od €=(B"(n)) S{s,—l} 1. (936)
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Proof. Since sup;e g () [|A(E)[[nxn < s, and Y = (I + A)V, we also have
V = (I + A)~'Y. Thus, once we prove a certain regularity on A,
we can compare norms as in (9.31) and (9.33) by applying Proposition 8.12. For ex-
ample, once we show [|Alcmspn@)mrcn)y  Sm—1,5 1, we will also have
(I + A) Mg (o ypansn) Stmo—1,5p 1- It will then follow that constants which
are (m,s: E)-admissible in the sense of Definition 8.9 (when applied to the vec-
tor fields Y7,...,Y,,) are (m, —1, s)-admissible in the sense of Definition 4.3. From
here, Proposition 8.12 implies (9.31). Similar comments hold for Zygmund spaces;
however, we are applying Proposition 8.12 with 1 replaced by 71", and therefore
{s: E}-admissible constants will also depend on an upper bound for (5”)~!. This is
where the dependance on 1" enters in (9.33).
We first prove (9.31) and (9.32). We claim (for any function f),

[ fllcms(Br )y Ram—1,-1,8) I fllcms(Bemr)» (9.37)
HA||C’"=S(B"(77’);M"X") S{m,—l,s) 1, (938)

which are clearly equivalent to (9.31) and (9.32). We proceed by induction on m.

Using that || Allco(gnm)mmsny < 3 S(—1,-1,5) 1, the base case of (9.37) follows from

Proposition 8.12. Using this and Propositions 8.6 and 9.19 we have

) S(0,-1,) 1.
(9.39)

In light of (9.39), Proposition 9.18 implies || A[|co.«(n (i )mamn) S(0,1,s) 1, completing

the proof of the base case m = 0.

We assume (9.37) and (9.38) for m — 1 and prove them for m. Because
| Allgm-—1.s(Bn@gymmn) Stm—1,-1,s) 1, Proposition 8.12 implies (9.37) for m. Thus
we need to show (9.38).

Using (9.37) and Propositions 8.6 and 9.19 we have

Hcﬁj © (I)HCOvS(Bn(n’)) N(-1,~1,s) Hcﬁj © ‘bHc&S(Bn(nf)) < Hcﬁch%-*(Bx(xo,g)

k0 @llem.s 5 (ry) R m—1.-1) lleks © Pl niry) < leijllonBx(eoe) Sm-1 1
(9.40)
In light of (9.40), Proposition 9.18 implies || Al|cm.«(Bn (i )mrsn) Sem,—1,s) 1, complet-
ing the proof of (9.38), and therefore completing the proof of (9.31) and (9.32).
We turn to proving (9.33) and (9.34). We prove (for any function f)

[ fllgs (B )y Rgs—1,~13m | fllge (Bror)s (9.41)

1A

@=(Br(n');Mnxn) §{s,f1} 1, (9.42)

which are clearly equivalent to (9.33) and (9.34).
We first prove (9.41) and (9.42) for s € (0, 1]. (9.38) shows

<

[ Allo.or2(Br i ypaneny S(—1,-1,5/2) Ly

and therefore
| Allco.r2(Brm)pnsny Sgs—1,-13 1-
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Using this, Proposition 8.12 implies (9.41). In particular, since ' is a {—1,—1}-
admissible constant (since it is a 0-admissible constant), and using (9.41) and Propo-
sitions 8.6 and 9.19,

i 0@

(B ) Fs-1,-13 1650Pllge (r(ry) < 1Fs 1|4 (Bx (w0.0)) Sgem13 1+ (9:43)

In light of (9.43), Proposition 9.18 implies (9.42).

We now assume (9.41) and (9.42) for s € (0, k] and prove them for s € (k, k+ 1].
Fix s € (k, k+1]. By the inductive hypothesis, we know || Al[¢—1(gr () mmxn) S{s—1,-1}
1. Using this, Propositions 8.12 implies (9.41) for s. In particular, since 1’ is a
{1, —1}-admissible constant (since it is a 0-admissible constant), and using (9.41)
and Propositions 8.6 and 9.19,

e 0@l (Br () Rgs—1,-1y €F;0@lligpBriy) < 16 llwg (Bx (o)) Stsi-1y 1+ (9.44)

In light of (9.44), Proposition 9.18 implies (9.42).
Finally, (9.35) was established in (9.39) and (9.40) while (9.36) was established
in (9.43) and (9.44). 0

PROPOSITION 9.22. There exists a 1-admissible constant n; € (0,7] such that
(I)|Bn(n1) is injective. Furthermore, ®(B™(n1)) € Bx(zo,&) is open and ® : B™(n;) —

®(B™ (1)) is a C?-diffeomorphism.
Proof. Consider the maps, defined for u,v € R" sufficiently small, given by

\Iju(v) — Vit Yo,

Since Y = (I+A)V and [|A(t)||yx» < 3, Vt € B"(1)'), we have | det(Y7(t)] - - - |[Ya (1))
> ¢, > 0, Vt € B"(1)), where ¢,, > 0 can be chosen to depend only on n. Further-
more, by Proposition 9.21 (taking m =1, s =0 in (9.32)), we have

1Yjllcrsrymny Sa,-1,0) 1- (9.45)

Thus, by the definition of 1-admissible constants, we have ||Y;|c1(gn (i )mn) S1 1

Take Ag,x > 0 as in Proposition 9.15 (with n’ playing the role of 1 in that
proposition). In light of the above remarks, Ag and x can be taken to be 1-admissible
constants. Set 1 := min{Ay, dp, 1} so that d; > 0 is a l-admissible constant; see
Section 3.2 for the definition of dy. Let n1 := min{d1x,n'} > 0 so that 7 is a
1-admissible constant.

We claim (I)}Bn(m) is injective. Let uy,us € B™(n1) be such that ®(u;) = P(uz);
we wish to show u; = ug. By Proposition 9.15 there exists v € B™(d1) such that
uz = ¥y, (v), ie., ug = e’ Yuy. Since d®(u)Y;(u) = X;(®(u)) (Proposition 9.19), it
follows that

D(uy) = B(up) = (" Y uy) = "X d(uy).

Also, we know X (®(u)),..., X, (P(u)) are linearly independent (as a consequence
of Proposition 3.1). Finally, X satisfies C(®(u1), 61, Bx(z0,&)) because Y satisfies
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C(u1,01, B™(n)) (by Proposition 9.15). Hence, by the definition of dy, we have v = 0.
We conclude us = e?Yuy = u1, and therefore ® is injective.

Combining the fact that d®(u)Y;(u) = X;(®(u)) and Xy, ..., X, span the tan-
gent space at every point of Bx(xg,§), the Inverse Function Theorem implies @ :
B"(n') — Bx(z0,€) is an open map and is locally a C* diffeomorphism. In particu-
lar, ®(B™(n1)) is open. Hence, since ® is injective, locally a C! diffeomorphism, and
® is C? (Lemma 9.20), we conclude ® : B"(1;) — ®(B"(n1)) is a C?-diffeomorphism.

O

LEMMA 9.23. There exists a 1-admissible constant £ > 0 such that Bx(xg,&1) C
(B"(m)).

Proof. Fix & € (0,£] to be chosen later, and suppose y € BX(:E07€1) Thus, there
exists v : [O, 1] — Bx(Io,f) with ’y(O) = 70, ’7(1) =y, ’Yl(t) _ ZJ X ( )ng ( ( ))
122 ‘bj(t)IQHLm([oJ]) < 1. Define

to :=sup{t € [0,1] : v(t') € ®(B™(1n1/2)),V0 <t < t}.

We want to show that by taking & > 0 to be a sufficiently small 1-admissible
constant, we have typ = 1 and (1) € ®(B"(n1/2)). Note that tog > 0, since v(0) =
o = (I)(O).

Suppose not. Then [®~!(y(to))| = % And, using that ||Yjllc(pn )z So 1 and
(I’(()) = X,

n

_ fod fo _
m/2 = @) =| [ et orwa = | [ DG 0r(0) d

<o &1
This is a contradiction if &; is a sufficiently small 1-admissible constant, completing
the proof. O

LEMMA 9.24. [V;,Yj] = Y0 & .Y, on B (), where [|&F;lcms(Brn)) Sm,—1,5) 1

and HEZCJ

@ (Br(m)) S{s,—1} 1-

Proof. Because ® : B™(n1) — ®(B"(n1)) is a diffeomorphism, we have

Vi, Y] = [0°X,, &*X;] = 97X, X, <1>*Zc Xk =) Y
k

with 64-‘3, ;= cﬁ ;©®. From here the result follows from Proposition 9.21, since 7 < 7.
O

Proof of Theorem 4.7 when n = q. As mentioned above, we take x := & We also
take & = &;. Note that (i) is vacuuous when n = ¢. Also, since n = ¢, X = X,
and Y = Y. With these remarks, all of the parts of Theorem 4.7 except for (1)
were proved above. We clarify one point in (k). In Proposition 9.21, (k) was proved
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on B"(n") for any n” € (0,1]. Here, we are taking n” = ;. However, in the case of
Zygmund spaces the implicit constant in (9.33) also depended on the choice of 1.
Since 7 is a l-admissible constant, if s > 2, it is a {s — 1, —1}-admissible constant.
This is why (k) is only stated for s > 2 in the case of Zygmund spaces—in the
case s < 1, the implicit constants also depend on 71, and are therefore 1-admissible
constants.'®

We close the proof by proving (1). We prove the result for Zygmund spaces, the
same proof works for Holder spaces. Let f € C(Bx,, (2o, x)). We use Proposition 9.21
in the case n” = 7/, and that 7’ is a {—1, —1}-admissible constant. We also use
Proposition 8.6. We have, for s € (0, 00),

1f 0 @llg=(Br(ny)) SIS © Pllgs(Bn(n)) Rgs—1,-13 IIf © @llgs (Brary) < I1f lles (Bx (o))
completing the proof. a

In the third paper of this series, it will be be convenient to use a slight modifi-
cation of Theorem 4.7 in the case n = ¢, where we replace 1-admissible constants
with a slightly different definition. We present this here.

DEFINITION 9.25. In the case n = q, if we say C is a 1’-admissible constant, it

means that we assume Cé’,k o® € CY(B™(ng)), for 1 < j,k,1 < n. C is then allowed
to depend only on upper bounds for n, ¢4, n1, 561, and Hcé,c o ®||c1(pr(n,)) and

leh klleese,, ey (1 <3 k1< n).

PROPOSITION 9.26. In the case n = q, Theorem 4.7 (except for (k)) holds with
the following modifications. The assumption c; w € C’)I(J0 (Bx,, (0,&)) is replaced by

Cé',k o® ¢ CY(B"™(n)) and 1-admissible constants are replaced with 1’-admissible
constants throughout.

: !
Comments on the proof. The only place the estimates on ||Cj,k”C}<JO (Bx,, (@0.6)) from

l-admissible constants arose in the proof was to conclude [|Yj | c1(groy)rn) S1 15 iee,
to conclude [[A||c1(gr(y)mmnxny S1 1. However, one obtains || Allcr(gn (g yamxny S1v 1
directly from Proposition 9.18. Using this, the proof goes through unchanged. O

9.3.2 Linearly dependent. In this section, we prove Theorem 4.7 in the general
case ¢ > n. Thus, we take the same setting and notation as in Theorem 4.7.

LEMMA 9.27. For J € Z(n,q), 1 <j <mn,

Lin/\XJ: Z g]I‘i]/\XKy on By, (0,§),

KeTo(n,g)

15 Tt is classical that C%*(B" (1)) and *(B" (1)) have comparable norms for s € (0, 1). However,
the constants involved in the comparability of these norms depend on 7, and are therefore 1-
admissible.
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where

llgss | <ol

95,7110 (Bx , (20,€)) <0 45
form € N and s € [0, 1],

K
1957 llcz+ By, (20,6) Stmm.s) 1

and for s € (0,00),

K
”gj,J

€3 (Bx,, (20,6) S{s,s}
Proof. Let J = (j1,...,7n). We have,

Lx, \Xs=Lx, (Xj, ANXju A= N XG,)

n
:Zle NXj, N NXj /\[Xj7ij]/\ij+1 AN NXG
=1
n q
k
=3 E X ANX N AXG AKX N X A AX
=1 k=1

The result follows from the anti-commutativity of A and the assumptions

k
on ¢; ;. O

LEMMA 9.28. Let x' € (0,&]. Suppose for all y € Bx, (wo,X"), \ XJ,(y) # 0. Then,
for J € I(n,q), 1 <j <mn,

A X, x N Xk x NXs A\ Xk ,
X = g — F B
! /\XJO Z gj,J/\XJo Z gj,JO /\XJ(J /\XJO on XJO (1170, X )’

KeTZo(n,q) KeTZo(n,q)

where g]{{ ; are the functions from Lemma 9.27.
Proof. This follows by combining Lemmas 5.1 and 9.27. O

LEMMA 9.29. Let C' > 0 and ug > 0. Let w,, c(t) be the unique solution to

d

%uuo,c(t) - C(uu(hc(t) + uumc(t)z)? UUO,C(O) = Uuo,

defined on some maximum interval [0, Ry, ). Let F(t) be a non-negative function
defined on (0, R") with R' < R, ¢ satisfying

%F(t) < CF) + F®)?2), F(0) < .

Then, for t € [0, R), F(t) < ty, o(t).

Proof. This is standard and is easy to see directly. It is also a special case of the
Bihari-LaSalle inequality. O
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LEMMA 9.30. There exists a 0-admissible constant x € (0,&] such that the
following holds. Suppose v : [0,x] — Bx, (wo,&) satisfies v(0) = wo, 7/(t) =
> =105 (0)X;(v(t)), and || 32 |a;(8)]*]| (o)) < 1. Suppose further that for some
X" € (0,x], A Xy, (7(t)) #0 for t € (0,x']. Then,

AX;(0(1))
Jes%ulrz% /\XJO(’)/(t))‘ So 1. (9.46)
tel0,x’

Here, the implicit constant depends on neither X' nor .

Proof. Let x € (0,€] be a 0-admissible constant to be chosen later. Let v and x’
be as in the statement of the lemma. We wish to show that if x is chosen to be
a sufficiently small 0-admissible constant (which forces x’ to be small), then (9.46)
holds.

Set

F(t):= ).

JEZo(n,q)

We wish to show that if x is a sufficiently small 0-admissible constant, then F(t) <o
1, Vt € [0,%'], and this will complete the proof.'6
Using Lemma 9.28, we have,

d AXs () AXy
wFO= 2 AXJ0<v<t)>Z ( TANX )W))

JEZy(n,q)

_ AKX (e AXKGO) AXs(®) AXi((0)
- Jerozwwez.;w”zQ 1O N @) <g""](7(t))/\XJo(v(t)) NSO s owerny /\x,o(m)))

<o F(t) + F(t)*? <o F(t) + F(1)°.

Also, we have
2

So L.

(o)

F(0) = X, (z0)

JEZy(n,q)

Thus, there exist 0-admissible constants C' and ug > 0 such that

CZ (t) < C(F(t)+ F(t)%), F(0) < ug.

Standard theorems from ODEs show that if y = x(C,up) > 0 is chosen sufficiently
small, then the unique solution u(t) to

d

%u(t) =C (u(t) + u(t)z) , u(0) = uo,

16 Here we are using VK € Z(n,q), either A X = 0 or 3J € Zy(n,q) with A Xx = + A X, by
the basic properties of wedge products.
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exists for ¢ € [0, x] and satisfies u(t) < 2ug, Vt € [0, x]. For this choice of x (which is
0-admissible, since C' and g are), Lemma 9.29 shows F(t) < 2ug <o 1, Vt € [0, }/],
completing the proof. O

PROPOSITION 9.31. There exists a 0-admissible constant x € (0,&] such that Yy €
BXJO (x07X)7 /\XJo(y) 75 0 and

N X (y) ‘
sup —1 S0 1. (9.47)
JeI(n,q) ‘ /\ XJO (y)

YE€Bx , (€0,X)

Proof. Take x as in Lemma 9.30. First we claim Vy € Bx, (7o, x), A XJ,(y) # 0. Fix
7S BXJO ('rO)X)v so that there exists v [07X] - BXJO (LU(),g), ’7(0) = 20, W(X) =Y,
V(1) = 35 0y (1) X5 (1)), |5 a3 (P (o) < L. We will show that ¥t € [0, x],
A\ X7, (7(t)) # 0, and then it will follow that A X, (y) = A X, (v(x)) # 0.

Suppose not, so that A X, (7(t)) = 0 for some ¢ € [0, x]. Let tog = inf{t € [0, x] :
A X7, (v(t)) = 0}, so that A X, (7v(to)) = 0 but A X, (v(t)) # 0, Vt € [0,tp). Note
that t9 > 0 since A X, (zo) # 0.

Let v be a C! n-form, defined on a neighborhood of 7(#y) and which is nonzero
at y(tp). We have

timy (AXa) (G0) =0, lim max [p(X)((0)] >0,

by continuity, the fact that Xi,..., X, span the tangent space at y(tp), and that v
is nonzero at (tp). We conclude,

: AXs(v(®)) ' : v(AXy) (v(#) ‘
lim sup |F—=——-5|=1lm sup = 00. 9.48
T St | A XD |~ 1 s [ (A X5 6 0) (945)
Take any X’ € (0,t0). We know V¢ € [0, x], A X, (7(t)) # 0. Lemma 9.30 implies
A Xs(y(1)) ‘
sup || S 1.
sexma) | AN X5, ()|~
te[0,x’]

Since X’ € (0,ty) was arbitrary, we have

AXIOW0)
AX LGB~

sup
JEI(n,q)
te[0,t0)

This contradicts (9.48) and completes the proof that A X, (y) # 0, Vy € Bx, (o, X)
To prove (9.47) take y € Bx, (w0, x). Then, there exists 7 : [0, x] — Bx, (zo,¢),

¥(0) = w0, Y00 = v, V() = XjLia;(0OX;(6W) 1 lasOP o) < 1
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We have already shown A Xy (v(t)) # 0, ¥t € (0,x]. Lemma 9.30 implies

X X
SUD s Z(nq) | A X‘;’O((yy))‘ = SUDjeT(n,q) //\\X;’Oi‘ So 1. Since y € Bx, (w0,x) was
arbitrary, (9.47) follows. 0

For the remainder of the section, fix x € (0,£] as in Proposition 9.31.

LEMMA 9.32. Form € N, s € [0,1], J € Z(n,q),

NXy <
~{m—1m—1,s 17 (949)
H /\XJO CX BX, (w0,x)) < >
and for s € (0,00),
NXy <
<ts1s_1y L. 9.50
H N X, bty )

%’/))?]0 (BXJO ($07X))

Proof. In this proof, we freely use the estimates on the functions g]{{ 7 as described
in Lemmas 9.27 and 9.28. We begin with (9.49). Proposition 9.31 shows

X
H AR <o 1. (9.51)
AXs ey, @)
We claim,
X
H /\XJ < 1. (9.52)
N X, Ck 5, (Bx 5, (20.X))
Indeed, for 1 < j < n, using Lemma 9.28,
AXy
‘Xj AN X,

C(Bx ;, (z0,X))

T ANXk T gK ANX; NXk

g _
]J/\XJO JyJO/\XJo /\XJO

KeZIo(n,q) KeTIo(n,q) C(Bx , (0:x))
DY A Xk H/\XJ H/\XK <1
wezmna 1N X0 lemy, @y IAX0 e, @oxn 1A X5 lloss, @)

where the last inequality follows from (9.51). (9.52) follows.
Using Lemma 8.1 (i) and (ii), we have for s € [0, 1],

H /\‘<J H /\‘<J

/\ Jo CO (BXJ xo,X) /\ Jo CO'I (BXJO (%O())
H /\"{J <0
/\ <0 CX BX] (%J()) ~ ’

where the last inequality used (9.52). This proves (9.49) in the case m = 0.
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We prove (9.49) by induction on m, the base case (m = 0) having just been
proved. We assume (9.49) for m — 1 and prove it for m. We use Proposition 8.3
freely in what follows. We have

H A Xy
A X lleg,: By, @)
_ H AXs Z A X
AXnllog= e, @orn SN AXs llegzre e, o

The first term is S(,,—2m—2,5) 1, by the inductive hypothesis, so we focus only on
the second term. We have, using Lemma 9.28, and letting C),, be a constant which
depends only on m,

e
A X C;J_OI’S(BXJO(I(MX))
AN Xk
<On 3 el H*
= Jllem=1(Bx  (xo, o
KeTotna) X7, (Bx 5, (o) || A X g, oy 1, (BXJ (20,))
/\XJ /\XK
+Cn 3 e llop-re s H—
K€Zo(n,q) Xgg (B GO A X g, C;?;OLS(BXJO(LUO»X)) N X C;i,l's(BXJU<wo,x))

5(m—1,m—1,s) 1,

where the last inequality follows from the bounds described in Lemma 9.27 and the
inductive hypothesis. This completes the proof of (9.49).

We turn to (9.50), and proceed by induction on m, where s € (m,m + 1]. We
begin with the base case, m = 0, so that s € (0, 1]. Using Lemma 8.1 (iii), we have

' A X A X
/\XJO /\XJD

where the last inequality follows from (9.49). This implies (9.50) for the base case
€ (0,1]. From here, the inductive step follows just as in (9.49) and we leave the
remaining details to the reader. O

<0 17

~

-

‘to”jq(Jo (BXJO (0,X)) C;’jﬂ (BXJO (z0,X))

LEMMA 9.33. For 1 <k <gq, 1 <[ <n, there exists l;fk, € C’(BXJ0 (zo,x)) such that

n
X =Y bX, (9.53)
=1

where for m € N, s € [0, 1],

El
k|| ~m.s
CXJO (BXJO (z0,x))

i),

%, (B, (70:X))

S(mfl,mfl,s> 1,

and for s € (0,00),
5{371,571} L.
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Proof. For 1 < k < n this is trivial (merely take b, = 1 if k = [ and b}, = 0 if k # 1),
however the proof that follows deals with all 1 < k < ¢ simultaneously.

For 1 <k<gq 1<I0i<mn,let J({ k)= (1,2,....,0 =1k, l+1,...,n) € I(n,q).
We have, by Cramer’s rule (5.1),

= NXx
From here, the result follows from Lemma 9.32. O
LEMMA 9.34. For 1 < 4,5, < n, Elééhj € C(Bx,, (wo,x)) such that [X;, X;] =

Sy éanl, where for m € N, s € [0, 1],

N
1€ e (Bx,, @ox) Stmm—1,5) 1

and for s € (0,00),
L
16 31l (Bx,, (@ox)) Stss—1y 1

Proof. For 1 <i,5 <n and using Lemma 9.33, we have

q n q
XX =S X =Y ( céz-bz) X
k=1

k=1 =1 \k=
Setting & ;= i ¥ jég, the result follows from the definition of admissible con-
stants, Lemma 9.33, and Proposition 8.3. O

Lemma 9.34 shows that the case n = ¢ of Theorem 4.7 (which was proved in
Section 9.3.1) applies to X1,. .., X, with & replaced by x.!” In light of Lemma 9.34
any constants which are (m,m —1,s), {s,s — 1}, 0, or 1-admissible in the sense of
this application of the case n = ¢q of Theorem 4.7, are (m,m —1,s), {s,s — 1}, 0, or
1-admissible (respectively) in the sense of this section. Thus, from the case n = ¢,
we obtain 1-admissible constants 1,71 > 0 and a map ® : B"(n1) — Bx,, (%o, X) as
in Theorem 4.7. Most of the case ¢ > n of Theorem 4.7 immediately follows from
this application of the case n = ¢. All that remain to show are: (b), (c), there exists
& asin (f), (h) forn+1<j<gq, (i), and (k).

Proof of (b). That Yy € Bx, (%o, X)

X
sup AXs(y) ‘ > 1
JEI(n,q) /\XJo (y)
is clear (by taking J = Jy). That
X
7ez(ng) | A X5 (y)
Vy € Bx,, (0, x), is Proposition 9.31. 0

17 When we proved Theorem 4.7 for n = ¢, in Section 9.3.1, we took x = £.
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Proof of (c). Let X' € (0,x] and fix z € Bx, (z0,x)- (a) shows Xi(x),..., X, (x)
are linearly independent. Define W(t) := ehXit+Xng 5o that d¥(0) =
(X1(z)| -+ | Xn(z)) and is therefore invertible. It is clear that for § sufficienty small
W(B"(0)) € Bx,, (20,X’) and the Inverse Function Theorem shows that for ¢ suf-
ficiently small W(B"(d)) € Bx(zo,&) is open. Hence, ¥(B"(J)) is an open neigh-
borhood of = in Bx, (zo,X’). Since x € Bx, (zo,x') was arbitrary, we conclude
Bx,, (w0, x") € Bx(x0,§) is open. O

That there exists a l-admissible constant £ > 0 such that (f) holds follows by
applying the next lemma with (; = &;.

LEMMA 9.35. Fix (; € (0, x]. Then, there is a 0-admissible constant (o > 0 (which
also depends on () such that Bx(xg,(2) C Bx,, (x0,C1).

Proof. Let (o € (0,(1], we will pick (5 at the end of the proof. Suppose y €
Bx (w0,¢2), so that 3y : [0,1] — Bx(wo,(2) with v(0) = =z, 7(1) = y, 7'(t) =
S0y i (0GX; (1), 1| a0 1= o < L Let

to = sup{t € [0,1] : (') € Bx,, (w0,¢1/2),Vt" € [0,t]}.

We wish to show that if (o = (2(¢1) > 0is taken to be a sufficiently small 0-admissible
constant, then we have tp = 1 and y = (1) € Bx, (z0,(1).

In fact, we will prove v(to) € Bx, (z0,(1/2). The result will then follow as if
to < 1, the fact that Bx, (zo,(1/2) is open (see (c)) and 7 is continuous show that
v(t') € Bx,, (z0,¢1/2) for t' € [0,19+¢) for some e > 0, which contradicts the choice
of to.

We turn to proving v(to) € Bx,, (7o, (1/2). We have

V() =D a®)eXe(y(t) = < ak(ﬂ(z%@(ﬂ)) Xi(v(2))
k=1

k=1 =1

where || |dl(t)\2HLm([0 to]) <0 % (see Lemma 9.33). Thus, by taking (2 = (2(¢1) > 0
to be a sufficiently small 0-admissible constant, we have ||3- |&l(t)|2HLoc([o o) < L
It follows that y(to) € Bx,, (20,(1/2), which completes the proof. 0

Proof of (i). Forn+1<k <gq,1<1<n,set bl := 52 o ®. Pulling back (9.53) via
® shows Y = >, b%ch. The regularity of bﬁc now follows by combining (1) and the
bounds in Lemma 9.33. O

Proof of (h) forn+1 < j <gq. This follows by combining (h) for 1 < 57 < n
and (i). 0
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Proof of (k). We prove the result for Zygmund spaces; the proof for Holder spaces is
similar, and we leave it to the reader. Let s > 2. The case n = g of Theorem 4.7 gives
£ s (Br ) Rs—15-23 1f gy, Bn@muy- Also, [ flley (Brm)) 2 (s—1,5-2) |1 Fllige(Bnimy)
follows from Proposition 8.12, (g), (h), and the fact that n; is a {s — 1,5 — 2}-
admissible constant, for s > 2. Here we are using V = (I + A)~'Y;, and ||(I +
A)’1||<gs(Bn(m);Man) Sys,s—1) 1, for s > 0 (which follows from (g) and (h)). O

9.4 Densities. In this section, we prove the results from Section 6. We recall
the density 1 from (6.2), defined on Bx, (zo,X):

| Zi(@) A Za(z) N N Z ()

yo(x)(Zl(ﬁ),.. .,Zn(l')) = X1($) /\X2($) Ae- /\Xn(:L') ’

LEMMA 9.36. Vo(Xl,...,Xn) =1, and for ji,...,Jn € {1,...,q}, VO(le,...7Xjn)
So L.

Proof. That vy(X1,...,X,) = 1 follows directly from the definition. That vo(X},,
.., Xj,) So 1 follows from Theorem 4.7 (b). 0

LEMMA 9.37. Let V and W be n-dimensional real vector spaces, and let A : W —
V' be an invertible linear transformation. Let v1,...,v, be a basis for V and let
wi, ..., w, € W. Then,

Awi N Awg A -+ N\ Aw,, wy Awa A A wy

v Ava A A vy AT AATT AN AN,

Proof. Let Z1, Z> be one dimensional real vector spaces and let B : Z1 — Z5 be an
invertible linear transformation. Let z; € Z1 and 0 # 25 € Z5. We claim

BZ1 Z1

= . 9.54
V) B_le ( )
Indeed, let Ao : Zo — R be any nonzero linear functional, and set A\; := Ay 0 B :
Z1 — R so that \; is also a nonzero linear functional. We have
BZl o )\Q(BZ]_) _ )\1(21) Z1

V) o )\2(2’2) - )\1(3_122) - B_lzg‘

Applying (9.54) in the case Z; = \"W, Zo = \"V, and B : Z; — Z3 given by
B(wiy Awa A -+ ANwy) = (Awy) A (Awsz) A -+ - A (Aw,) completes the proof. 0

LEMMA 9.38. For 1 < j <n, Lx,1p = fjoyo, where f]Q € C(Bx,, (zo,x)). Further-
more, form € N, s € [0,1],

||fJQHc;g32 (Bx,, (@0x)) S(mm,s) L (9.55)

and for s € (0,00),
Hf](')H%;JO (Bx,, (@o0x)) S{s,s} 1 (9.56)
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Proof. Set ¢(x) = e"ix so that Lx, 1y = %‘tzoﬁuo. We write d¢(z) to denote the
differential of ¢; in the x variable. We have, using Lemma 9.37,

(9t10)(x)(Z1, - -, Zn) = vo(de(x))(dee(2) Z1(2), - . . de(x) Zn())
dgi(x) 21 (x) A di(x) Za(x) A - - - A\ dpi(2) Zn ()

X1(oe(x)) N Xo(de(x)) A+ A Xn(¢e(2))
Zi(x) A ZQ(LE) A N Zp(x)
dp(x) 71 X1 (de(2)) A de(x) T Xa(e(@)) A -+ A de ()~ X (¢ ()
Zi(x) N Zo(x) N+ N Zyp(x) (9.57)
51 X1(2) A G Xa(@) A A G Xn(@)

Fix x € Bx, (7o, x). We claim that the sign of

Zi(x) N Za(x) A\ -+ A Zy(x)
Qi X1 (x) A Gf Xo(x) A= A Gf X ()
does not change for ¢ small. To this end, let § be a C! n-form which is nonzero near
x. Since Xj(x) A Xo(z) A -+ A Xy (x) # 0 (Theorem 4.7 (a)), 0(z)(X1(x) A Xao(z) A
-+ A Xp(z)) # 0, and so by continuity, for ¢ small, 6(z)(¢; X1(x) A ¢ Xa(z) A+ A
o7 Xn(z)) # 0. We conclude that for ¢ sufficiently small,

Zi(x) N Zo(x) N+ A Zy(x) _ O(x)(Z1(x) AN Zo(x) N+ N Zyp(x))
i X1(2) A Gp Xa(x) A= N Xn(z)  0(2)(¢F X1 (x) A @ Xa(x) A~ A §f X (1))

does not change sign, and is either never zero or always zero for small .
Set, for ¢t small,

Zi(x) N Za(x) N+ A\ Zy(x)
O X1 () A gf Xo(x) A - A @ X ()
and in the case the quantity inside sgn equals zero, the choice of € does not matter.

By the above discussion, € does not depend on t (for ¢ small). We have, using the
functions gj{( ; from Lemmas 9.27 and 9.28,

€ 1= sgn

9
ot

9
ot

Zi(x) N Za(x) N+ N\ Zn(x)

(6iv0)(@)(Z1(2).... Zu(@)) = X A )

t=0

_9
ot
8

t=0
Z1(x) N Za(x) N -+ N Zn(x)
t:0€¢>IX1(r)/\¢?X2(ff)A~~~/\¢IXn(ff)
0@ (A (@) A Za(@) N~ N Zn(2))
o 0(@) (o Xa(z) A @y Xa(z) A~ A Pf X ()
0(z)(Z1(x) A Za(@) A -~ - N Zn(2)) 9 . . «
e A B D LI S 601 A 07 Xale) A+ ()
. 0(z)(Z1(x) A Za(m) A -+ A Zn(x)) 0(@)(Lx; (X1 AXa A A Xn)(z))
9(1‘)(X1(90)/\X2(1?)/\"'/\Xn(x)) 0(z)(X1(z) A Xo(x) A~ A Xn(x))
Z1(x) N Za(z) A+ A Zn () »CXj(Xl/\X2/\"'/\Xn)($)
Xi(z) AXo(@) A AXn(z) Xi(z) A Xo(z) Ao A X ()

t=0
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C’Xj (X1 ANXoA--- /\Xn)(x)
= X @) A Ka@) A A K@) 0D E @) Zn(2)

—_— K o NXE@) .
- KEIzo(:n,q)gj’JO( )/\XJO(I) 0(@)(Z1(@), - Zn(@)).

We conclude that

ff==> g AXx
; .

.j7J0
KeZo(n,q) /\ XJO
(9.55) and (9.56) follow from Lemmas 9.27 and 9.32 and Proposition 8.3. O

Let o := ®*1y, so that ¢ is a density on B"(n;). Define hg by o¢g = hooLep, SO
that hg € C(B™(m)).

LEMMA 9.39. ho(t) = det(I + A(t))~!, where A is the matrix from Theorem 4.7. In
particular, ho(t) ~¢ 1, Vt € B"(n1). Form € N, s € [0, 1],
[hollcm.s(Bn () Stmm—1,s) L (9.58)

and for s € (0, 00),

Iholles (Br ) Sqs,s—13 1- (9.59)
Proof. Because ||A(t)|lynxn < 5, Vt € B"(m1) (Theorem 4.7 (g)), we have |det(I +
A)7Y = det(I + A(t))~L, Vt € B"(n1). We have,

ho(t) = ool() (£ 828‘3) = oo() (I + A1) Yi(0), ... (I + At)) " Ya(t))

= |det(T + A() oo (Vi) ... Ya(t))

= det( + A(1)) "o (® (1)) (X1(2(1)), ..., Xa(®(1)))

= det(I + A(t))" L.
That ho(t) ~ 1, Vt € B"(n) follows from the fact that || A(t)|[x=x» < 3, V¢ € B™(m1)
(Theorem 4.7 (g)). Using Proposition 8.3 (applied to the cofactor representation of
(I + A)~Y), (9.58) and (9.59) follow from the corresponding regularity for A as

described in Theorem 4.7 (h)-here we are using that the regularity for A and the
regularity for Y7,...,Y, are the same, by the definition of A. O

We now turn to studying the density v from Section 6; thus we use the functions
fj from (6.1). Because vy is a nonzero density on Bx 7 (0, X), there is a unique
g € C(Bx,, (7o, x)) such that v = guyp.

LEMMA 9.40. For 1 < j <n, X;g = (f; — fjo)g.
Proof. We have,
figvo = fiv = Lx,v = Lx,(gv0) = (X;9)v0 + 9Lx,v0 = (X;9)v0 + ngQVo.
The result follows. O
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LEMMA 9.41. Theorem 6.5 (i) holds. Namely,

9(x) ~ow g(x0) = v(20)(X1(20), - .., Xn(20)), Va € Bx, (zo,X).
Proof. Note g(zo) = g(xo)vo(z0)(X1(z0), - - -, Xn(z0)) = v(z0)(X1(20), - - ., Xn(20)),
by definition. So it suffices to show g(x) =0, g(zo) for x € Bx, (w0, X).

Let v : [0,1] — Bx, (w0,x) be such that v(0) = w0, ¥(1) = =, ¥'(t) =
S a5 (OXX; (18 |5 a8 0.1) < 1. We have, using Lenna 9.40,

%g('ﬂt)) = Z a; ()x(X;9)(v(t)) = Z aj(O)x(fi(v(t) — £2(v(1)g(v (1))

Hence, g(y(t)) satisfies an ODE. Solving this ODE we have

g(m) — g(fy(l)) — efol 2;1:1 aJ(S)X(fJ(’Y(S))ffJO(’Y(S))) dsg(xo)

We know Hf]oHC(BXJ (@ory)) S0 1 (by the case m = 0, s = 0 of (9.55)). Using this
and the definition of 0; v-admissible constants, g(z) ~o,, g(zo) follows immediately,
completing the proof. O

LEMMA 9.42. Theorem 6.5 (ii) holds. Namely, for m € N, s € [0, 1],
lgllegs: (Bx,, o) Stm—tm—1sw) V(X Xn) (o), (9.60)
and for s € (0,00),
HQH%zJO (Bx,, (wo0x)) S{s—Ls—1w} V(X155 Xn) (o). (9.61)
Proof. We begin with (9.60). First note that
”gHC(BXJO (o) S0 V(X1 -+, X ) (20)], (9.62)
which follows immediately from Lemma 9.41. We claim that
lglley, (Bx,, @ox) Sow [V(Xi, ..., Xa)(2o)l- (9.63)
Indeed, using Lemma 9.40, for each 1 < j < n,

X9l @on) = 1(fi = Fallesx,, (om0
SO;V HgHC(BxJO (%0,X)) SO;V |V(X1> s ,Xn)(.l‘o)’, (9'64)

where in the last inequality we have used (9.62) and in the second to last inequality
we have used | fjllc(y, (zox)) Sow 1 (which follows from the definition of 0;v-

admissible constants) and || f jQ le(Bx, (zox)) So 1 (which follows from the case m = 0,
s =0 of (9.55)). Combining (9.62) and (9.64) proves (9.63).
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We prove (9.60) by induction on m. For the base case, m = 0, we have using
Lemma 8.1 (i) and (ii), and (9.63),

HQHC‘;% (Bx, (mo X)) = 3“9”@“ 1 (Bx (170 X)) = 3”9”01 (BXJo (z0,X)) SO;V |V(X17~~~7Xn)($0)|'

This proves the case m = 0 of (9.60).
We now assume (9.60) for m — 1 and prove it for m. We have

lgllezs: (B, o) = I9llog+(x, oy T Z 1X59leg By, (o)
7j=1
The first term is Sim—2m—2,60) [V(X1, ..., Xpn)(w0)| by the inductive hypothesis, so
we focus only on the second term. We have, using Lemma 9.40 and Proposition 8.3,
for a constant (), depending only on m, for 1 < j < n,

0
Xiglleg e, ooy = 165 = DGle e, (anoe)

< Cllfs = f5 ||c;;’5<Bx,0 o9l @on)
S(m—l,m—l,s;u) ‘V(le R 7Xn)(x0)‘7

where the last inequality follows from the inductive hypothesis, (9.55), and the
definition of (m — 1, m — 1, s; v)-admissible constants. (9.60) follows.

We turn to (9.61), which we prove by induction on m, where s € (m, m+ 1]. We
begin with the base case, m = 0, so that s € (0, 1]. Using Lemma 8.1 (iii) and (9.60)
we have

g G, (B, (r0x)) = 5H9Hc§5;0 (B, (20.)) Sow [V(X1, ..., X,)(x0)|.

(9.61) follows for s € (0,1]. From here the inductive step follows just as in the
inductive step for (9.60), and we leave the details to the reader. O

LEMMA 9.43. Let h(t) be as in Theorem 6.5. Then h(t) = hy(t)g o ®(t).
Proof. We have
v =gy = (9o ®)P* 1y = (g 0 P)hooLeb,
completing the proof. O
Proof of Theorem 6.5 (iii). This follows from Lemmas 9.39, 9.41 and 9.43. O

Proof of Theorem 6.5 (iv). We prove the result for Zygmund spaces; the same proof
works for Holder spaces, and we leave the details to the reader. Using Theorem 4.7
(1) we have

lgo®

¢+ (B™(m1)) N{s 1,5—2} ||g||‘§x BXJ (z0,X)) N{s 1,s—1;v} ’V(Xla . .,Xn)(l’o)‘,
(9.65)

where the last inequality uses (9.61). Since h(t) = ho(t)g o ®(¢) (Lemma 9.43),

combining (9.65) and (9.59), and using Proposition 8.3 completes the proof. 0
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Having completed the proof of Theorem 6.5, we turn to Corollary 6.6. To facilitate
this, we introduce a corollary of Theorem 4.7.

COROLLARY 9.44. Let m, &1, &2 be as in Theorem 4.7. Then, there exist 1-admissible
constants 0 < ne < m1, 0 < & < &3 < & such that

Bx (z0,&) € Bx,, (%0,€3) € ®(B"(n2)) € Bx,, (0,&2) € Bx (%o, ¢2)
C Bx,, (z0,§1) € ®(B"(m)) C Bx,, (z0,x) € Bx(20,¢).

Proof. After obtaining 71, &1, £2 from Theorem 4.7, apply Theorem 4.7 again with
& replaced by & to obtain 72, &3, and &4 as in the statement of the corollary. O

Proof of Corollary 6.6. We have

V(BXJO ($07§2)) - /B (20,62) v= [pl(B (20,2)) q)*y

= / h(t) dt ~o,, Vol(®~ ! (Bx,, (z0,&2)))(X1,- .., Xn)(20),
<I>'71(BXJO (20,62))

(9.66)

where Vol(-) denotes Lebesgue measure, and we have used Theorem 6.5 (iii). By
Corollary 9.44, and the fact that 7,72 > 0 are 1-admissible constants, we have

~1 Vol(B" (1)) < Vol(®~!(Bx,, (x0,&2))) < Vol(B"(m)) ~1 1. (9.67)

Combining (9.66) and (9.67) proves v(Bx, (z0,82)) =1, v(X1,...,Xn)(20). The
same proof works with Bx, (zo,&2) replaced by Bx(zo,{2), which completes the
proof of (6.3).

All that remains to prove (6.4) is to show

v(X1,...,Xn)(20)| = max v(Xj,,..., X;, ) (zo0)
lv(X1 n) (o) 0(j17...,jn)€I(n,q)| ( J J )(o)|

We have, using Lemma 9.36,

|l/(X1, c. ,Xn)(l’o)| == ’g(l‘o)uo(Xl, NN ,Xn)(CL‘())’
= lg(xo)| =0 lg(wo)| ~ max — uo(Xj,,. .., Xj,)(wo)]

(J15ee50n) EZ(N,9)

= max xo)vo( Xy, ..., X ) (x
(J13n)EL(N,q) ‘g( 0)vo( J J ) 0)’

= max v(X;,, . X)) (o),
(jl,-..7jn)ez(n,q)‘ (X; 4. (o)

completing the proof. O
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9.5 More on the assumptions. In this section we prove Proposition 4.14.
The existence of n > 0 as in Proposition 4.14 follows immediately from the Picard—
Lindel6f Theorem, so we focus on the existence of §y > 0. The key is the next
lemma.

LEMMA 9.45. Suppose Z is a C' vector field on an open set V. C R™. Then, there
exists § > 0, depending only on n, such that if || Z||c1 (v < J, then there does not
exist x € V with:

e c?r eV, vtelo,1].

o Zx =r.

o Z(z) #0.
Proof. For a proof of this classical result, see [Str1l, Lemma 3.19]. O

To prove the existence of dy as in Proposition 4.14, since K is compact, it suffices
to prove the next lemma.

LEMMA 9.46. Let X1,..., X, be C'" vector fields on a C? manifold M. For all = € N,
there exists an open set N C O with x € N, and &y > 0 such that V§ € S9=1 if
y € N is such that 01 X,(y) + - -+ + 0,X,4(y) # 0, then Vr € (0, do],

€r01X1+~--+r9quy?é Y.
Proof. Since this result is local, it suffices to prove the lemma in the case when 91 =
B"(1) and z = 0 € R". We set N := B"(1/2). Take 6 = §(n) > 0 as in Lemma 9.45.
Take 0; > 0 so small that Yy € B"(1/2), t € BI(d1), we have eltXit+taXey ¢
Bn(3/4) Set C := maxi<;<q HX]‘H01(37L(3/4);R11), and let (50 = min{él,é/qC}. From
here, the result follows from Lemma 9.45. O
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A Proof of Proposition 3.1

The ideas behind Proposition 3.1 are well-known to experts; however, we could not find
an exact statement of Proposition 3.1 in the literature, so we include the proof here for
completeness, with the understanding that the methods used are known to experts. It seems
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closely related to the theory of orbits of Sussman [Sus73] and Stefan [Ste74], though does not
follow directly from these theories. Similar methods have been used to prove the Frobenius
theorem for Lipschitz vector fields; see [MM13a] and references therein.

We begin with the existence of the C? structure; we take all the same notation as in the
statement of Proposition 3.1. Set D := dim 9, and let (¢4, Uy)aca be a C? atlas for M
with {U, : @ € A} an open cover for MM and ¢, : Uy, — BP(1) a C? diffeomorphism.

Let X (@) — = (¢a)+X; so that X](-a) is a C! vector field on BP(1). We may pick the above
atlas so that ||Xj( )||01(BD(1);RTL) < oo0.

LEMMA A.1. Let Z be as in the beginning of Section 3.1. The topology on Z (induced by
the metric p) is finer than the topology as a subspace of M.

Proof. Let U C 9 be an open set and let x € U N Z. We wish to show that there isa § > 0
with By (z,0) C U. Since z € U, for some a € A, we may replace U with U N U,, and
therefore assume U C U, for some a € A.

By the Picard-Lindeléf Theorem, there exists § > 0 so small such that given ai,...,aq €
L>([0,1]) with || 3 [a;[?|| Lo (jo,1) < 1, there exists a unique 7 : [0,1] — ¢o(U) with

7(0) = da(z) and 7' (t Z £)0X ) (F(1)). (A.1)

We claim Bx(z,d) C U. Indeed, fix y € Bx(x,d). By the definition of Bx(z,d), 3
[0,1] = Bx(x,0), 7(0) = @, 7(1) =y, v'(t) = 327_; a;()0X;(7(t)). Let 7 : [0,1] — ¢ (U)
be the unique solution to (A.1) with this choice of a1,...,a,, and set 4 := ¢, o 5. Then,

5(0) =z = v(0), ¥(t) = 3—:1 a;(t)0X;(~(t)) = +'(t). Standard uniqueness theorems for
ODEs show v = 4, and therefore y = (1) = 4(1) = ¢, (5(1)). Since F(1) € ¢, (U), it
follows y € U, which completes the proof. a

Recall, M is a connected open subset of Z which is given the topology as subspace of Z;
i.e., M is given the topology induced by the metric p.

Set My, := ¢o (U, N M); we give M, the topology so that ¢, : M NU, — M, is a homeo-
morphism (with M NU, C M given the topology as a subspace of M). Let X () (u) denote
the D x ¢ matrix X (u) = (X (u)] -+ | X (u)). For K = (k1,...,k;) € Z(l,q) let X\
denote the list of vector fields X,g?), . ,X,g;l) and for J = (jy,...,51) € Z(I,D) let X&af)(

denote the I x [ submatrix of X(® (u) given by taking the rows listed in J and the columns
listed in K.

LEMMA A.2. Forue M,,1<k<gq,1<1<min{q,D}, K € Z(l,q), J € Z(I, D)

X det XPhw) = T £l det X5 (),
K'eZ(l,q)
J'eZ(l,D)

where fk JK : M, — R are locally bounded.

Proof. Let J = (ji,...,j1), K = (ku,...,k). Then, det X = v, (X}, ..., X;"), where
vy is the -form duj, A duj, A --- A duj,. Hence, using [Lee03, Proposition 18.9] we have
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X}ga) det Xﬁ( =Ly (VJ(XIE?), . ’Xzif“)))
— <£X£Q)VJ) (X X)) v (X, XL X X))
+ I/J(Xli(ll)7 [Xlga)aXlgj)]aXlg:?)a e 7X1£7)) et VJ(X/E?)’ e ’X]Si)l, [X’ga)’Xlgla)])
(A.2)

We begin with the first term on the right hand side of (A.2). Since X,ga) is a C'! vector field,
EX(Q)VJ is a C° [-form on BP(1) and we have
k

Ly@ry= Z v,
J'€Z(1,D)
where \|f,‘€7,1,||co(BD(1)) < 0. Hence
(;cX’ia)l/‘]> (Xlg?),-.-,X,(ﬂa)) = Z ka’JdetXS?’)K,
J'eL(l,D)

as desired.
We now turn to the rest of the terms on the right hand side of (A.2). These terms are all
similar, so we only discuss the first. We have

va (XS, X X LX) = Sk 0 da)va (X, X1, X

m,k1
T

= Z (cfn’kl 0 ¢o) det XL(]’O‘I)(T7
T
where K, = (r,ka,...,k;) € Z(l,q). The result follows. O

For 1 < I < min{D,q} let det;x; X(®(u) denote the vector whose components are
detXS?‘I)((u), where J € Z(I, D), K € Z(l,q).

LEMMA A.3. Foru € My, 1 <j<gq,1<!<min{D,q}, J€ZI(l,D), K € Z(l,q),

X1 det X ()| < g5 ()

det X (u)
Ixl1

where g; 7k : Mo — [0, 00) is locally bounded.
Proof. This follows immediately from Lemma A.2. a

LEMMA A.4. Let v : [0,1] — M, be such that v'(t) = 3:1 aj(t)Xﬁa)(*y(t)), where a; €
L*>([0,1]). Then,
dim span{X{* (7(0)), .., X\ ((0))} = dimspan{X{* (4(1)),..., X\ (v(1))}.

Proof. We will show

detX(a)(y(O))‘ =0=
Ix1

et X (1) 0. (A.3)
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To see why (A.3) implies the result note that by reversing v, we have

Ixl Ixl

det X (y (0))’ =0

det X ((1 >>\=o,

and by noting that dimspan{X'* (x),..., X/ (W)} > < |detyx; X (@) (u)| # 0, the result
follows. We turn to proving (A.3). We have, using Lemma A.3,

d d
X @ (y =2 x4 L qet X
@ |t > det X ((6) 5 det X% (v(1))
J€EZ(l,D)
KeZ(l,q)
=2 3 detX(y Zaj ) (X det X5 ) (4(0))
JeI(1,D)
KeT(l,q)
2
<2 Z ( sup gj, JK ) ZHG/J”LOC([O 1]) (}S};X( )( ( ))
Jez(l,p) \t€0.1]
KeZ(l,q)

We conclude,

d 2 2
x (@) < x (@)
D act x| < et xO0)
for some constant C. (A.3) follows by Gronwall’s inequality. O

PROPOSITION A.5. The map x — dimspan{X;(z),..., X,(z)}, M — N is constant.

Proof. Since M is connected, it suffices to show the map is locally constant. Fix € M and
pick a € A such that z € U,. Take 6 > 0 so small that Bx(x,0) C M NU, (here, we are
using Lemma A.1). We wish to show z +— dimspan{X;(z),...,Xq(z)}, Bx(z,6) — N is
constant.

Take y € Bx(z,9), so that 3y : [0,1] — M, v(0) =z, v(1) =y, ¥'(t) = D a;(¢)0X;(y(t)),
13 |a; (8)[* || Lo jo,17) < 1. Note, Vt € [0,1], (t) € Bx(x,6) C Uq.

Set Y(t) := ¢ 0 y(t). 7 satisfies all the hypotheses of Lemma A.4 and this shows

dimspan{X{* (¢a(2)), ... X\ (¢a(2))} = dimspan{X{* (¢a(y)), ..., X[ (da(y))}.

Hence, dimspan{X;(z),...,Xq(z)} = dimspan{X;(y),..., Xq(y)}, completing the proof.
O

Set n := dimspan{Xj(z),...,X,(2)}, z € M (by Proposition A.5, n does not depend on

LEMMA A.6. Let x € M and K = (k1,...,k,) € Z(n,q) be such that Xy, (z),..., X, (x)
are linearly independent. Then, there is an open set U C 9, containing z, J € Z(n, D), and
0 > 0 such that the following hold:

(i) Bx(z,8) C U.
(i) Ja € A, U C Us.
(iii) infueq, (1) (det X§f‘1)<(u)‘ > 0.
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(iv) Yy € Bx(x,9), span{ Xy, (v), ..., Xk, (y)} = span{X1(v),..., X4(y)}.

(V) Vy S BX(xv(s)} [kaXk]](y) € Span{Xkl (y)a s 7an (y)}

(vi) For 1 < j < ¢, 1 <1 <n, 3 € CYU), Ibs o o3 (|1 (poy) < 00, such that
Vy S BX(‘T75);

Zbl )Xk, (y (A.4)
Proof. Let U C 9 be a neighborhood of  which may shrink from line to line. First, we

may take U so small that U C U, for some o € A. Since Xlg?)(qﬁa(x)), e Xlgj)((ba(m)) are
linearly independent, by the hypotheses, 3J € Z(n, D) such that

’det Xﬁ){((gba(m))’ > 0.

By the continuity of the map u — ’det X; (a) ‘ we may shrink U so that (iii) holds. We
take ¢ > 0 so small that (i) holds; here we are using Lemma A.1.
Since Yu € ¢ (U), XL(,D})(( )‘ > 0 we have Yy € Bx(z,d) C U,

dim span{ Xy, (v), ..., Xk, (v)} = n = dimspan{X; (y), ..., Xq(v)},

proving (iv).
Since [Xy,, Xi,](y) € span{X1(y),...,Xq(y)}, Yy € M (by assumption), (v) follows from
(iv).
Finally, for (vi), set
o et XSR 6al)

Y

det X 73 (¢a(v))
where K is the same as K but with k; repalced by j. That ||bé ot o1 (g (uy) < 00 follows
from (iii) and the fact that X;,..., X, € C'. (A.4) follows from Cramer’s rule. O

PROPOSITION A.7. Let x € M. Then there exist an open set U C I, containing x, § > 0,
and C' vector fields Vi, ..., V, on U such that the following hold:

(i) Bx(z,0) CU.
(ii) Ja € A, U C U,.
(ili) For 1 < j < ¢, 1 <1 < n, 3ff € CYU), |f} o 95 lcr(gavy) < oo such that
Yy € Bx(x,a),

(iv) Vy € Bx(x,9), Vi(y), ..., Va(y) are linearly independent.
(v) Forall1 <1<mn,1<j<gq, 3g € CYU), g} © ¢5 llc1(sa()) < o0, such that
Yy € Bx(x,9),

(vi) Yy € Bx(x,9), [V;,Vi](y) =0,1 <4,k <
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Proof. Take K = (ki,...,ky) € Z(n,q) such that Xy, (x),..., Xk, (z) are linearly indepen-
dent and let J € Z(n,D), U C M, 6 > 0 be as in Lemma A.6. Without loss of generality,
we may reorder the vector fields and coordinates so that J = (1,...,n), K = (1,...,n).
For 1 <j <n,u€ ¢,(U), write

Zhjko¢ 8mk

and let H(y) denote the n x n matrix H(y) = (hjkr)i<j<n,i1<k<n. Clearly,
125, © 65 o2 (g ury) < 00 ,

By Lemma A.6 (iii), inf,es, (v)|detH(u)] > 0. Define /% by H(y)™' =
(W™*(y))1<j<n,1<k<n, ¥ € U. By the above comments, ||h¥*¥ o ¢ |1, (1)) < 00. Set

th’“ )Xi(y), yeU,

so that (v) holds, by definition. Furthermore, for 1 < j < n,
n
=2 hixly
k=1

so that (iii) holds for 1 < j <n.Forn+1<j <
(vi). Since Yy € Bx(x,0), dimspan{Xi(y),..., X
{Vi(y),...,Valy)} = n and so (iv) follows.

It remains to prove (vi). Let V(a) (¢a)+ Vi, so that V( ) is a C'* vector field on b (U).
By the construction of Vk ), Yu € U,

ai mod{ 0 ‘9} (A.5)

6un+1 GuD

q, (iii) follows from this and Lemma A.6
¢(y)} = n, we see from (iii) that dimspan

Vi (Ga(u))
Also, by (iii) and (v), for y € Bx(z,9),

VO V) (Gay) € span{X{™ (¢a(®)); - -, X (a(y))}
= span{ V) (¢a (1)), - .., V) ($a(y))}-
Combining this with (A.5), we have for y € Bx(z,9),

[v;a),v,gaq(%(y))eSPan{v;w(%(y)),_..,vw(%(y))}mspan{ o . a}{O}.

8un+1 ’ ’ 8uD
(vi) follows, completing the proof. O
LEMMA A.8. Let W and Z be C' vector fields on an open set U C R®. Then, Yz € U,
t,s € R such that e *Ze~™Wes2e™ x makes sense for all T € [min{0, ¢}, max{0,t}], we have

t s
€_Sze_tW€SZ€tW$ =4+ / / ([W Z]<e—sZe—TXeoZ)) (e(s—a)ZeTW(x)) dO’dT,
0 JO

where we have written ([W, Z](f))(y) to denote the vector field [W, Z] applied to the function
f, then evaluated at the point y.
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Proof. This is [RS07, Lemma 4.1]. O

Fixx € M and let « € A, U C U,, § > 0, and V7,...,V, be as in Proposition A.7. By
Proposition A.7 (v), there exists d; > 0 such that By (z,61) C Bx(z,d). For e = ¢(z) > 0
sufficiently small,'® define the map ®, : B"(¢) — 9 by

Du(ty,... ty) = ehtVighVa . gtnVn g
Note that for t € B"(61/n), ®,(t) € By(x,01) C Bx(z,6) C M.
LEMMA A.9. For e = e(x) > 0 sufficiently small and for any permutation o € Sy,
Dp(ty,... ty) = elrVoele@ Vo) . glomVotmg Yt € B"(e).

Proof. The minor difficulty in this lemma is that V;,...,V,, are only known to commute on
Bx(x,0), not on a neighborhood in Mi-since we do not yet know that Bx (z,d) is a manifold,
the lemma does not follow from standard results. We prove the lemma with € = 61 /4n. It
suffices to show VI € {1,...,n—1},

€t1V1 etzvz . etleetl+1Vl+1 . ethnx — 6151V1 etzvz . tz—1V1,—1etl+1Vz+16tszetz+2V1,+2 . ethn

e

as the result will then follow by repeated applications of this and by symmetry in the assump-
tions on Vi,...,V,. Since ett+2Vi+2 ... etnVug € By (1,6, /4) it suffices to show V(t;,t;41) €
B?(e), y € By (x,81/4),

etLVzetl+1Vz+1y _ et“lvl“etlvly. (A6)

Note, V(tl,tprl) S .B2(€)7
e—tlee—tz+1Vz+1etszetz+1Vz+1y c Bv(x7 51) C By (1;75)
Pushing this equation forward via ¢, gives

eft’vl(a) eftHlVl(fl) et’Vl(a) et’“vl(fl) baly)-

Since [V, V,())(u) = 0, Yu € ¢o(By(2,61)) C da(Bx(z,8)), it follows from Lemma A.8
that
eV e Vi Vi Vil g () = ga(y),
and so
etlvvl(a)etl'*'l‘/l(fél)qsa(y) _ 6tl+1Vl(f‘l>etlvl(a)¢a(y)'

(A.6) follows, completing the proof. a

LEMMA A.10. For € = e(z) > 0 sufficiently small,

(i) ®,(B"(¢)) C Bx(x,9) is an open set (and we give ®,(B"(¢)) the subspace topology).
®, : B"(¢) — P,(B™(¢)) is a homeomorphism.

®, : B"(e) — M is C? and d®,(u) has full rank (i.e., rank n), Vu € B"(e).

(v) There are C* vector fields Y1, ..., Y, on B™(¢) with ||Y;||c1(pn(e)rn) < 0o such that

APy ()Y (u) = X;(@q(u)).

18 We allow € > 0 to shrink, as needed, throughout the argument.
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Proof. We have already seen ®,(B"(¢)) C By (z,81) € Bx(x,6). Since V4,...,V, are C!,
standard proofs show that ®, is C*. Since %|t:0¢)$(t) = V;(z) and Vi(x),...,V,(x) are
linearly independent (Proposition A.7 (iv)) the Inverse Function Theorem shows that if
€ > 0 is sufficiently small, ®, : B"(¢) — 9 is injective and d®,(u) has full rank (i.e., rank
n) Yu € B"(e).

By the definition of ®,, %@w(t) = V1 (®,(¢)), and by Lemma A.9, ¥, is symmetric in
Vi,...,V, and so (iv) follows for € > 0 sufficiently small.

Let S C B"™(¢) be open. We claim ®,(S) C Bx(z,d) is open. Indeed, take ®,(u) €
®,(5). Let ¢¢ > 0 be so small that B"(u,ep) C S. Then @,(B"(u,€)) C ®,(S5). And
so By (®.(u),e0) = ®,.(B"(u,e0)) C ®,(S).1% By Proposition A.7 (iii) Je; > 0 with
Bx(®,(u),€e1) € By (P (u),€e0) = (B (u,€6)) C D,(5). Thus, ®,(S) C Bx(x,9) is open.
In particular ®,(B"(¢)) C Bx(z,d) is open. This proves (i).

Since ¥, is an injective open map, to prove it is a homeomophism it suffices to prove it is
continuous. Let u € B"(e) and let S C Bx(z,d) be an open set such that ®,(u) € S. We
wish to show that there is an open set O C B™(¢), u € O, ¢,(0) C S.

Take €9 > 0 so small that Bx(®,(u),eo) € S. Then by Proposition A.7 (iii) Je; > 0
with By (®,(u),€e1) € Bx(P,(u),e9) € S. But @,(B"(u,€1)) = By (P, (u),€1); thus O =
B™(u, €1) is our desired neighborhood of u. This proves (ii).

Taking fjl as in Proposition A.7 (iii), and setting Y;(u) = > ;" fjl 0 ®,(u)-2, (v) follows.

%7
For (iii), we already know @, is C!. That ®, is C? follows from (iv) and the fact that
Vi,...,Vy, are Ct. We have already shown d®, (u) has full rank, Vu € B"(e). O

In the previous discussion, € > 0 implicitly depended on x. We now make this dependance
explicit and write €, > 0. We consider a family of functions and open sets on M given by

{((I);l7 (I)ﬂc(Bn(ew))}xeM .

The proof of the existence of the C? structure in Proposition 3.1 is completed by the next
proposition.
PROPOSITION A.11. The above maps yield a C? atlas on M. With this manifold structure

X1,...,X, are C! vector fields on M, and the inclusion map M — 9 is a C? injective
immersion.

Proof. The main point is to show that the collection of maps gives a C? atlas. Once this
is shown, that Xi,..., X, are C' on this manifold follows from Lemma A.10 (v). That the
inclusion map is a C? injective immersion follows from Lemma A.10 (iii).

We turn to showing the collection is a C? atlas. Set W = ®,, (B"(€z,)) N @, (B"(ex,)). We
want to show @, o @,, : &, (W) — B"(e,,) is C?. Since O, : B"(€,,) — M is injective,
C?, and has injective differential (Lemma A.10 (ii) and (iii)) we have

P ' od,, is C? & &, 0D, 0y, is C2.
But ®,, o ®; 1 0 ®,, = §,, is C* by Lemma A.10 (iii), completing the proof. 0

Finally, the uniqueness of the C? structure in Proposition 3.1 follows immediately from the
next lemma and Lemma A.1.

LEMMA A.12. Let 9 be a manifold and let M C 9t be a subset. Give M any topology which
is finer?® than the subspace topology induced by 9. Then, there is at most one C? manifold

Y To conclude By (®4(u),e0) = Po(B"(u,€0)), we have used dPq(t)z-
J

definition of By (®.(y),€0)-

20 Not necessarily strictly finer.

= V;(®,(t)) and the
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structure on M, compatible with this topology, such that the inclusion map M — M is an
injective immersion.

Proof. Suppose there are two such C? structures on M; denote the corresponding C? man-
ifolds by M; and M,. We wish to show that the identity map M; — M, is a C? diffeomor-
phism. Let iy : My — 9M, is : My — 9 be the inclusion maps (on the underlying space M,
i1 = i2). Since i and iy are assumed to be injective immersions, for all x € M, there is a
neighborhood U C M of z such that

i1|U:M1ﬂU—>EDTﬂU, i2|U:M20U—>9ﬁﬂU

are C? diffeomorpisms, where 9t N U is given the C? structure as a submanifold of 9.
Hence, the idenitity map U N M; — UN My is a C? diffeomorphism. Since the idenitity map
M, — My is a homeomorphism which is locally a C? diffeomorphism, we conclude that it

is a global C? diffeomorphism, as desired. O
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