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COORDINATES ADAPTED TO VECTOR FIELDS:
CANONICAL COORDINATES

Betsy Stovall and Brian Street

Abstract. Given a finite collection of C1 vector fields on a C2 manifold which span
the tangent space at every point, we consider the question of when there is locally a
coordinate system in which these vector fields have a higher level of smoothness. For
example, when is there a coordinate system in which the vector fields are smooth,
or real analytic, or have Zygmund regularity of some finite order? We address this
question in a quantitative way, which strengthens and generalizes previous works
on the quantitative theory of sub-Riemannian (aka Carnot–Carathéodory) geometry
due to Nagel, Stein, and Wainger, Tao and Wright, the second author, and others.
Furthermore, we provide a diffeomorphism invariant version of these theories. This
is the first part in a three part series of papers. In this paper, we study a partic-
ular coordinate system adapted to a collection of vector fields (sometimes called
canonical coordinates) and present results related to the above questions which are
not quite sharp; these results form the backbone of the series. The methods of this
paper are based on techniques from ODEs. In the second paper, we use additional
methods from PDEs to obtain the sharp results. In the third paper, we prove results
concerning real analyticity and use methods from ODEs.
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1 Introduction

Let X1, . . . , Xq be C1 vector fields on a C2 manifold M , which span the tangent
space at every point of M . For s > 0 let C s denote the Zygmund space of order s
(see Section 2.1), let C∞ denote the space of smooth functions, and let C ω denote
the space of real analytic functions. In this three part series of papers, we investigate
the following closely related questions for s ∈ (1, ∞] ∪ {ω}:1

(i) When is there a coordinate system near a fixed point x0 ∈ M such that the
vector fields X1, . . . , Xq are C s+1 in this coordinate system?

(ii) When is there a C s+2 manifold structure on M , compatible with its C2 struc-
ture, such that X1, . . . , Xq are C s+1 with respect to this structure? When such
a structure exists, we will see it is unique.

(iii) When there is a coordinate system as in (i), how can we pick it so that X1, . . . , Xq

are “normalized” in this coordinate system in a quantitative way which is useful
for applying techniques from analysis?

We present necessary and sufficient, coordinate free, conditions for (i) and (ii) and,
under these conditions, give a quantitative answer to (iii). See Section 3 for an
overview of the results of this series. The outline of this series is as follows:

(I) In this paper, we study a particular explicit coordinate system adapted to
a collection of vector fields. This coordinate system is sometimes known (at
least in the setting of Lie groups) as canonical coordinates of the first kind.

1 We define ∞ + 1 = ∞ + 2 = ∞ and ω + 1 = ω + 2 = ω.
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This builds on previous work of Nagel, Stein, and Wainger [NSW85], Tao
and Wright [TW03, Section 4], and the second author [Str11]. To study these
canonical coordinates, we use methods from ODEs. Unfortunately, the re-
sults given by these methods are one derivative short of being optimal (see
Remark 4.8).

(II) In the second paper [Str18a], we obtain the optimal results (in terms of Zyg-
mund spaces) by introducing a new (implicitly defined) coordinate system.
The second paper takes as a starting point the main result of this paper, and
then uses methods from PDEs to obtain the sharp results. These PDE meth-
ods were inspired by, and are closely related to, Malgrange’s celebrated proof
of the Newlander–Nirenberg theorem [Mal69].

(III) While the second paper obtains optimal regularity in terms of Zgymund
spaces, the methods there are not applicable to the real analytic setting. In
the third paper [Str18b], we return to canonical coordinates and methods from
ODEs to obtain results regarding real analyticity. The third paper takes the
main results of this paper as its starting point.

To help explain the sorts of questions we investigate, we consider a trivial exam-
ple.

Example 1.1. Let X be a C1 vector field on a C2 manifold M with X(x0) �= 0
for some x0 ∈ M. Let M be the integral curve of X passing through x0. It is well
known that there is a unique C2 manifold structure on M which sees M ↪→ M as
a C2 injective immersion (see Proposition 3.1); X spans the tangent space to M at
every point. Set Φ(t) := etXx0 and let I ⊆ R be a maximal open interval containing
0 such that Φ is defined on I and Φ : I → M is injective. It is easy to see that Φ

∣
∣
I

is a C2 diffeomorphism onto its image, and therefore Φ defines a coordinate chart
on M near x0. In this coordinate system X equals ∂

∂t ; more precisely, Φ∗X = ∂
∂t .

Thus, we have not only picked a coordinate chart on M in which X is smooth, but
we have also chosen it so that X is “normalized” to be ∂

∂t .

It is straightforward to generalize Example 1.1 to a finite collection of vector
fields, so long as the vector fields are assumed to commute. The purpose of this
series of papers is to consider similar results when the vector fields are not assumed
to commute; in which case it is not always possible to pick a coordinate system
in which the vector fields are smooth. Indeed, we present necessary and sufficient
conditions for when one can pick a coordinate system giving the vector fields a
desired level of regularity.

The coordinate charts developed in this series can be viewed as scaling maps in
a wide variety of problems; this is described in more detail in Section 7. Seen in
this perspective, these results are the latest, most general, and sharpest in a series
of papers on the quantitative theory of sub-Riemannian (or Carnot–Carathéodory)
geometry. This started with the foundational work of Nagel, Stein, and Wainger
[NSW85] and the closely related work of C. Fefferman and Sánchez-Calle [FSC86].
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Tao and Wright [TW03, Section 4] furthered the results of Nagel, Stein, and Wainger
and offered a new proof based on methods from ODEs (see Section 9.1 for a detailed
discussion of the primary ODE they studied). The second author unified these two
approaches to prove more general results in [Str11]. This series of papers can be
seen as strengthening and generalizing these theories and casting them in a way
which is completely “coordinate free” in the sense that all of our assumptions and
estimates are invariant under arbitrary C2 diffeomorpisms. The most basic version
of this scaling perspective can be seen in Example 1.1, as the next example shows.

Example 1.2. We take the setting of Example 1.1 with M = R, x0 = 0, X = δ ∂
∂x ,

for some fixed δ > 0. In this case Φ(t) = δt; thus the pullback via Φ is the usual
Euclidean dilation of vector fields. We can therefore think of Example 1.1 as a
generalization of the usual dilation maps on R.

As described above, the main results of this series have two facets:

• They provide a coordinate system in which given C1 vector fields have an
optimal degree of smoothness.

• They provide a coordinate system in which given vector fields are normalized
in a way which is useful for applying techniques from analysis.

These two facets, along with some applications, are described in more detail in
Section 7.

Despite the fact that the results in the second paper of this series are sharp in
terms of regularity, and the results in this paper are one-derivative off from being
optimal, we believe the methods and results of this paper have several advantages
over those in the second paper. Some of these advantages are:

(a) The coordinate system defined in this paper is explicit, while it is only defined
implicitly in the second paper.

(b) The proofs in this paper are simpler. Indeed, the second paper requires all of
the results of this paper, plus additional methods from PDEs.

(c) Despite having a simpler proof, the main results of this paper are still useful
in many applications. Indeed, they are stronger, sharper, and more general
than the previous works on this subject [NSW85,TW03,Str11] which have
had many applications; see Section 7 for further details. However, they are
not strong enough to obtain some of the most interesting consequences of the
results in the second paper; for example, the results stated in Section 3.2. The
PDE methods will also be necessary for future work of the second author in
the complex setting; see Section 7.5.

(d) Because the methods of this paper are based on ODEs, as opposed to the
PDEs in the second paper, they are in some ways more robust, and will likely
be easier to adapt to other settings. For example, in the third paper of the
series we see that these ODE methods can be used to study the real analytic
setting.
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2 Function Spaces

Before we can state any results, we need to introduce the function spaces we use. We
make a distinction between function spaces on subsets of Rn and function spaces on
a C2 manifold M . On R

n, we have access to the standard coordinate system (and
its induced smooth structure) and we can define all of the usual function spaces and
their norms in terms of this coordinate system. On M , we do not have access to any
such natural coordinates, and it does not make sense to talk about, for example, C∞

functions on M ; as this would depend on a choice of coordinate system or smooth
structure. However, if we are given a finite collection of vector fields on M , it does
make sense to talk about functions which are C∞ with respect to these vector fields,
and this is how we shall proceed.

2.1 Function spaces on Euclidean space. Let Ω ⊂ R
n be a bounded, con-

nected, open set (we will almost always be considering the case when Ω is a ball in
R

n). We have the following classical Banach spaces of functions on Ω:

C(Ω) = C0(Ω) := {f : Ω → C
∣
∣ f is continuous and bounded},

‖f‖C(Ω) = ‖f‖C0(Ω) := sup
x∈Ω

|f(x)|.

For m ∈ N (throughout the paper we take the convention 0 ∈ N),

Cm(Ω) := {f ∈ C0(Ω)
∣
∣ ∂α

x f ∈ C0(Ω), ∀|α| ≤ m}, ‖f‖Cm(Ω) :=
∑

|α|≤m

‖∂α
x f‖C0(Ω).

Next we define the classical Lipschitz–Hölder spaces. For s ∈ [0, 1],

‖f‖C0,s(Ω) := ‖f‖C0(Ω) + sup
x,y∈Ω
x �=y

|x − y|−s|f(x) − f(y)|,

C0,s(Ω) := {f ∈ C0(Ω) : ‖f‖C0,s(Ω) < ∞}. (2.1)

For m ∈ N, s ∈ [0, 1],

‖f‖Cm,s(Ω) :=
∑

|α|≤m

‖∂α
x f‖C0,s(Ω), Cm,s(Ω) := {f ∈ Cm(Ω) : ‖f‖Cm,s(Ω) < ∞}.

Next, we turn to the Zygmund–Hölder spaces. Given h ∈ R
n define Ωh := {x ∈ R

n :
x, x + h, x + 2h ∈ Ω}. For s ∈ (0, 1] set

‖f‖C s(Ω) := ‖f‖C0,s/2(Ω) + sup
0�=h∈R

n

x∈Ωh

|h|−s |f(x + 2h) − 2f(x + h) + f(x)| ,

C s(Ω) := {f ∈ C0(Ω) : ‖f‖C s(Ω) < ∞}.

For m ∈ N, s ∈ (0, 1], set

‖f‖Cm+s(Ω) :=
∑

|α|≤m

‖∂α
x f‖C s(Ω), C s+m(Ω) := {f ∈ Cm(Ω) : ‖f‖C s+m(Ω) < ∞}.
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We set,
C∞(Ω) :=

⋂

s>0

C s(Ω), C∞(Ω) :=
⋂

m∈N

Cm(Ω).

When Ω is a ball, C∞(Ω) = C∞(Ω).

Remark 2.1. The term ‖f‖C0,s/2(Ω) in the definition of ‖f‖C s(Ω) is somewhat un-
usual, and in the literature is usually replaced by ‖f‖C0(Ω). As is well-known, if Ω
is a bounded Lipschitz domain, these two options yield equivalent2 (but not equal)
norms–and therefore the space C s(Ω) is the usual Zygmund–Hölder space of order
s. However, the constants involved in this equivalence of norms depend on the size
of Ω, and the above choice is more convenient for our purposes. For an example of
the convenience offered by this choice of norm, see Remark 8.4.

Finally, we turn to spaces of real analytic functions. Given r > 0 we define:

‖f‖Cω,r(Ω) :=
∑

α∈Nn

‖∂α
x f‖C(Ω)

α!
r|α|, Cω,r(Ω) := {f ∈ C∞(Ω) : ‖f‖Cω,r(Ω) < ∞}.

We set Cω(Ω) :=
⋃

r>0 Cω,r(Ω). For notational convenience, we set C ω(Ω) := Cω(Ω).
Throughout the paper, if we say ‖f‖Cm(Ω) < ∞, it means that f ∈ Cm(Ω), and

similarly for any other function space.
For a Banach space V we define the same spaces taking values in V by the

obvious modifications and write Cm(Ω; V ), Cm,s(Ω; V ), Cm+s(Ω; V ), Cω,r(Ω; V ),
and Cω(Ω; V ) to denote these spaces. When we have a vector field X on Ω, we
identify X with a function X : Ω → R

n by writing X =
∑n

j=1 aj(x) ∂
∂xj

and treating
X as the function X(x) = (a1(x), . . . , an(x)). Thus, it makes sense to consider norms
like ‖X‖C s(Ω;Rn) and ‖X‖Cm,s(Ω;Rn).

2.2 Function spaces on manifolds. Let X1, . . . , Xq be C1 vector fields on
a connected C2 manifold M . Define the Carnot–Carathéodory ball associated to
X1, . . . , Xq, centered at x ∈ M , of radius δ > 0, by

BX(x, δ) :=

{

y ∈ M

∣
∣
∣
∣
∃γ : [0, 1] → M, γ(0) = x, γ(1) = y, γ′(t) =

q
∑

j=1

aj(t)δXj(γ(t)),

aj ∈ L∞([0, 1]),

∥
∥
∥
∥
∥
∥

q
∑

j=1

|aj |2
∥
∥
∥
∥
∥
∥

L∞

< 1

}

, (2.2)

and for y ∈ M , set
ρ(x, y) := inf{δ > 0 : y ∈ BX(x, δ)}. (2.3)

When X1, . . . , Xq are smooth vector fields on a smooth connected manifold M ,
if the Lie algebra generated by X1, . . . , Xq spans the tangent space at every point of

2 This equivalence follows easily from [Tri06, Theorem 1.118 (i)]. We will usually use these norms
in the case when Ω is a ball in Euclidean space, and is therefore a bounded Lipschitz domain.
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M , ρ is a metric on M–sometimes known as a sub-Riemannian metric or a Carnot–
Carathéodory metric. In this case, the metric toplogy induced by ρ is the same as
the topology on M . If the Lie algebra generated by X1, . . . , Xq does not span the
tangent space at some point, then ρ may or may not be a metric: it is possible that
ρ(x, y) = ∞ for some x, y. If ρ(x, y) = ∞, we make the convention that ρ(x, y)−s = 0
for s > 0 and ρ(x, y)0 = 1. In the nonsmooth setting, we will usually be considering
the special case when X1, . . . , Xq span the tangent space at every point of M , and
in this case ρ is a metric, and the metric topology induced by ρ is the same as the
topology on M .

We use ordered multi-index notation: Xα. Here, α denotes a list of elements of
{1, . . . , q} and |α| denotes the length of the list. For example, X(2,1,3,1) = X2X1X3X1

and |(2, 1, 3, 1)| = 4.
Associated to the vector fields X1, . . . , Xq, we have the following Banach spaces

of functions on M .

C(M) = C0
X(M) := {f : M → C

∣
∣ f is continuous and bounded},

‖f‖C(M) = ‖f‖C0
X(M) := sup

x∈M
|f(x)|.

For m ∈ N, we define

Cm
X (M) := {f ∈ C(M)

∣
∣Xαf exists and Xαf ∈ C(M), ∀|α| ≤ m},

‖f‖Cm
X (M) :=

∑

|α|≤m

‖Xαf‖C(M).

For s ∈ [0, 1], we define the Lipschitz–Hölder space associated to X by

‖f‖C0,s
X (M) := ‖f‖C(M) + sup

x,y∈M
x �=y

ρ(x, y)−s|f(x) − f(y)|,

C0,s
X (M) := {f ∈ C(M) : ‖f‖C0,s

X (M) < ∞}.

For m ∈ N and s ∈ [0, 1], set

‖f‖Cm,s
X (M) :=

∑

|α|≤m

‖Xαf‖C0,s
X (M), Cm,s

X (M) := {f ∈ Cm
X (M) : ‖f‖Cm,s

X (M) < ∞}.

We turn to the Zygmund–Hölder spaces. For this, we use the Hölder spaces
C0,s([a, b]) for a closed interval [a, b] ⊂ R; ‖ · ‖C0,s([a,b]) is defined via the formula
(2.1). Given h > 0, s ∈ (0, 1) define

PM
X,s(h) :=

⎧

⎨

⎩
γ : [0, 2h] → M

∣
∣
∣
∣
γ′(t) =

q
∑

j=1

dj(t)Xj(γ(t)), dj ∈ C0,s([0, 2h]),

q
∑

j=1

‖dj‖2
C0,s([0,2h]) < 1

⎫

⎬

⎭
.
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For s ∈ (0, 1] set

‖f‖C s
X(M) := ‖f‖C

0,s/2
X (M) + sup

h>0
γ∈PM

X,s/2(h)

h−s |f(γ(2h)) − 2f(γ(h)) + f(γ(0))| ,

and for m ∈ N,
‖f‖Cm+s

X (M) :=
∑

|α|≤m

‖Xαf‖C s
X(M),

and we set
C s+m

X (M) := {f ∈ Cm
X (M) : ‖f‖Cm+s

X (M) < ∞}.

Set
C∞

X (M) :=
⋂

s>0

C s
X(M) and C∞

X (M) :=
⋂

m∈N

Cm
X (M).

It is a consequence of Lemma 8.1 that C∞
X (M) = C∞

X (M); indeed, C∞
X (M) ⊆

C∞
X (M) is clear while the reverse containment follows from Lemma 8.1.

We introduce the following counter-intuitive, but convenient, definitions.

Definition 2.2. For m < 0, s ∈ [0, 1], we define Cm,s
X (M) := C(M) with equality of

norms. For s ∈ (−1, 0], we define C s
X(M) := C

0,(s+1)/2
X (M), with equality of norms.

For s ∈ (−∞, −1], we define C s
X(M) := C(M) with equality of norms.

Finally, for r > 0 we introduce a space of functions which are “real analytic with
respect to X”.

‖f‖Cω,r
X (M) :=

∞∑

m=0

rm

m!

∑

|α|=m

‖Xαf‖C(M), Cω,r
X (M) := {f ∈ C∞

X (M) : ‖f‖Cω,r
X (M) < ∞}.

This definition was introduced in greater generality by Nelson [Nel59].
We set Cω

X(M) :=
⋃

r>0 Cω,r
X (M), and for notational convenience set C ω

X(M) :=
Cω

X(M). We refer the reader to the third paper in the series for a more detailed
discussion of the spaces Cω,r(Ω) and Cω,r

X (M).
Importantly, all of the above spaces are invariant under diffeomorphisms. In fact,

we have the following result.

Proposition 2.3. Let N be another C2 manifold, let Φ : M → N be a C2 dif-
feomorphism, and let Φ∗X denote the list of vector fields Φ∗X1, . . . ,Φ∗Xq. Then
the map f 
→ f ◦ Φ is an isometric isomorphism between the following Banach
spaces: Cm

Φ∗X(N) → Cm
X (M), Cm,s

Φ∗X(N) → Cm,s
X (M), C s

Φ∗X(N) → C s
X(M), and

Cω,r
Φ∗X(N) → Cω,r

X (M).

Proof. This is immediate from the definitions. ��
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Remark 2.4. Some of the above definitions deserve some additional remarks.

• In (2.2), γ′(t) is defined as follows. In the case that M is an open subset
Ω ⊆ R

n and γ : [a, b] → Ω, γ′(t) =
∑q

j=1 aj(t)Xj(γ(t)) is defined to mean
γ(t) = γ(a)+

∫ t
a

∑

j aj(s)Xj(γ(s)) ds; note that this definition is local in t. For
an abstract C2 manifold M , this is interpreted locally. I.e., if γ : [a, b] → M , we
say γ′(t) =

∑q
j=1 aj(t)Xj(γ(t)) if ∀t0 ∈ [a, b], there is an open neighborhood

N of γ(t0) and a C2 diffeomorphism Ψ : N → Ω, where Ω ⊆ R
n is open, such

that (Ψ ◦ γ)′(t) =
∑q

j=1 aj(t)(Ψ∗Xj)(Ψ ◦ γ(t)) for t near t0 (t ∈ [a, b]).
• When we write V f for a C1 vector field V and f : M → R, we define this as

V f(x) := d
dt

∣
∣
t=0

f(etV x). When we say V f exists, it means that this derivative
exists in the classical sense, ∀x. If we have several C1 vector fields V1, V2, . . . , VL,
we define V1V2 · · ·VLf := V1(V2(· · ·VL(f))) and to say that this exists means
that at each stage the derivatives exist.

2.2.1 Beyond manifolds. For certain subsets of M which are not themselves man-
ifolds, we can still define the above norms. Indeed, let X1, . . . , Xq be C1 vector
fields on a C2 manifold M and fix ξ > 0. In this setting, BX(x0, ξ) might not
be a manifold (though it sometimes is–see Proposition 3.1). BX(x0, ξ) is a metric
space, with the metric ρ. For a function f : BX(x0, ξ) → C and x ∈ BX(x0, ξ), it
makes sense to consider Xjf(x) := d

dt

∣
∣
t=0

f(etXjx). Using this, we can define the
spaces Cm,s

X (BX(x0, ξ)), C s
X(BX(x0, ξ)), and Cω,r

X (BX(x0, ξ)) and their correspond-
ing norms, with the same formulas as above.

3 Overview of the Series

In this section, we present the main results of this three part series of papers; though
we will offer a more detailed presentation of these results in the later papers. We
separate the results into two parts: the qualitative results (i.e., (i) and (ii) from the
introduction) and the quantitative results (i.e., (iii)). The quantitative results are
the most useful for applications, and the qualitative results are simple consequences
of the quantitative ones. The proofs will not be completed until the later papers–
though in this paper we prove a slightly weaker version of the quantitative results
(see Section 4). We begin by stating the qualitative results, as they are easier to
understand.

3.1 Qualitative results. Let X1, . . . , Xq be C1 vector fields on a C2 manifold
M. For x, y ∈ M, define ρ(x, y) as in (2.3). Fix x0 ∈ M and let Z := {y ∈ M :
ρ(x0, y) < ∞}. ρ is a metric on Z, and we give Z the topology induced by ρ (this is
finer3 than the topology as a subspace of M, and may be strictly finer). Let M ⊆ Z
be a connected open subset of Z containing x0. We give M the topology of a subspace
of Z. We begin with a classical result to set the stage.

3 See Lemma A.1 for a proof that this topology is finer than the subspace topology.
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Proposition 3.1. Suppose [Xi, Xj ] =
∑q

k=1 ck
i,jXk, where ck

i,j : M → R are locally

bounded. Then, there is a C2 manifold structure on M (compatible with its topology)
such that:

• The inclusion M ↪→ M is a C2 injective immersion.
• X1, . . . , Xq are C1 vector fields tangent to M .
• X1, . . . , Xq span the tangent space at every point of M .

Furthermore, this C2 structure is unique in the sense that if M is given another C2

structure (compatible with its topology) such that the inclusion map M ↪→ M is a
C2 injective immersion, then the identity map M → M is a C2 diffeomorphmism
between these two structures.

For a proof of Proposition 3.1 see Appendix A. Henceforth, we assume the
conditions of Proposition 3.1 so that M is a C2 manifold and X1, . . . , Xq are C1

vector fields on M which span the tangent space at every point. We write n =
dim span{X1(x0), . . . , Xq(x0)}, so that dimM = n.

Remark 3.2. If X1(x0), . . . , Xq(x0) span Tx0M, then M is an open submanifold of
M. If X1, . . . , Xq span the tangent space at every point of M and M is connected,
one may take M = M.

Theorem 3.3 (The Local Theorem). For s ∈ (1, ∞] ∪ {ω}, the following three
conditions are equivalent:

(i) There is an open neighborhood V ⊆ M of x0 and a C2 diffeomorphism Φ :
U → V where U ⊆ R

n is open, such that Φ∗X1, . . . ,Φ∗Xq ∈ C s+1(U ;Rn).
(ii) Re-order the vector fields so that X1(x0), . . . , Xn(x0) are linearly independent.

There is an open neighborhood V ⊆ M of x0 such that:
• [Xi, Xj ] =

∑n
k=1 ĉk

i,jXk, 1 ≤ i, j ≤ n, where ĉk
i,j ∈ C s

X(V ).
• For n + 1 ≤ j ≤ q, Xj =

∑n
k=1 bk

j Xk, where bk
j ∈ C s+1

X (V ).
(iii) There exists an open neighborhood V ⊆ M of x0 such that [Xi, Xj ] =

∑q
k=1 ck

i,jXk, 1 ≤ i, j ≤ q, where ck
i,j ∈ C s

X(V ).

Remark 3.4. (ii) and (iii) of Theorem 3.3 are similar but have slightly different
advantages. In (ii), because X1, . . . , Xn form a basis for the tangent space of M
near x0, the functions ĉk

i,j and bk
j are uniquely determined (so long as V is chosen

sufficiently small), and one can directly check to see if (ii) holds by computing these
functions.4 If q > n, X1, . . . , Xq are linearly dependent, so the ck

i,j in (iii) are not
unique–and (iii) only asks that there exists a choice of ck

i,j satisfying the conditions
in (iii). Despite this lack of uniqueness, (iii) is the setting which usually arises in
applications.

4 The computation can be done in any coordinate system, as the conditions are invariant under
a change of coordinate system–see Proposition 2.3.
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Remark 3.5. Theorem 3.3 is stated for s ∈ (1, ∞]. It is reasonable to expect the
same result for s ∈ (0, ∞], however our proof runs into some technical issues when
s ∈ (0, 1]. We refer the reader to the second paper for a further discussion of this. A
similar remark holds for Theorem 3.6, below.

Theorem 3.6 (The Global Theorem). For s ∈ (1, ∞], the following three condi-
tions are equivalent:

(i) There exists a C s+2 atlas on M , compatible with its C2 structure, such that
X1, . . . , Xq are C s+1 with respect to this atlas.

(ii) For each x0 ∈ M , any of the three equivalent conditions (i), (ii), or (iii) from
Theorem 3.3 holds for this choice of x0.

(iii) [Xi, Xj ] =
∑q

k=1 ck
i,jXk, 1 ≤ i, j ≤ q, where ∀x0 ∈ M , ∃V ⊆ M open with

x0 ∈ V such that ck
i,j

∣
∣
V

∈ C s
X(V ), 1 ≤ i, j, k ≤ q.

Furthermore, under these conditions, the C s+2 manifold structure on M induced
by the atlas in (i) is unique, in the sense that if there is another C s+2 atlas on M ,
compatible with its C2 structure, and such that X1, . . . , Xq are C s+1 with respect to
this second atlas, then the identity map M → M is a C s+2 diffeomorphism between
these two C s+2 manifold structures on M .

Also, the following two conditions are equivalent:

(a) There is a real analytic atlas on M , compatible with its C2 structure, such
that X1, . . . , Xq are real analytic with respect to this atlas.

(b) For each x0 ∈ M , any of the three equivalent conditions (i), (ii), or (iii) from
Theorem 3.3 hold for this choice of x0 (with s = ω).

Furthermore, under these conditions, the real analytic manifold structure on M
induced by the atlas in (a) is unique, in the sense that if there is another real
analytic atlas on M , compatible with its C2 structure and such that X1, . . . , Xq are
real analytic with respect to this second atlas, then the identity map M → M is a
real analytic diffeomorphism between these two real analytic structures on M .

3.2 Quantitative results. Theorem 3.3 gives necessary and sufficient condi-
tions for a certain type of coordinate chart to exist. For applications in analysis, it is
essential to have quantitative control of this coordinate chart. In the second part to
this series, these quantitative charts are studied in the setting of Zygmund spaces,
while in the third part they are studied in the real analytic setting. In this section,
we present the results on Zygmund spaces, and refer the reader to the third paper
for the corresponding real analytic results.

Because we need to keep track of what each constant depends on for applications
in analysis (see Section 7), the statements of the results in this section, later in
the paper, and in the subsequent papers in this series, are quite technical. To help
simplify matters, we define various notions of “admissible constants”. These will be
constants that can only depend on certain parameters. While these definitions are
somewhat unwieldy, they greatly simplify the statements of the results in the rest
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of this series. In each instance, it will be clear what notion of admissible constants
we are using.

First we need some new notation. Bn(η) denotes the Euclidean ball of radius
η > 0 centered at 0 ∈ R

n. Let X1, . . . , Xq be C1 vector fields on a C2 manifold M.

Definition 3.7. For x0 ∈ M, η > 0, and U ⊆ M, we say the list X = X1, . . . , Xq

satisfies C(x0, η, U) if for every a ∈ Bq(η) the expression

ea1X1+···+aqXqx0

exists in U . More precisely, consider the differential equation

∂

∂r
E(r) = a1X1(E(r)) + · · · + aqXq(E(r)), E(0) = x0.

We assume that a solution to this differential equation exists up to r = 1, E : [0, 1] →
U . We have E(r) = era1X1+···+raqXqx0.

For 1 ≤ n ≤ q, we let

I(n, q) := {(i1, i2, . . . , in) : ij ∈ {1, . . . , q}},

I0(n, q) := {i ∈ I(n, q) : 1 ≤ i1 < i2 < · · · < in ≤ q}.

For J = (j1, . . . , jn) ∈ I(n, q) we write XJ for the list of vector fields Xj1 , . . . , Xjn
.

We write
∧

XJ = Xj1 ∧ Xj2 ∧ · · · ∧ Xjn
.

Fix x0 ∈ M, let n = dim span{X1(x0), . . . , Xq(x0)}. Fix ξ, ζ ∈ (0, 1]. We assume
that on BX(x0, ξ), the Xj ’s satisfy

[Xj , Xk] =
q
∑

l=1

cl
j,kXl, cl

j,k ∈ C(BX(x0, ξ)),

where BX(x0, ξ) is given the metric topology induced by ρ from (2.3). Proposition 3.1
applies to show that BX(x0, ξ) is an n-dimensional, C2, injectively immersed sub-
manifold of M. X1, . . . , Xq are C1 vector fields on BX(x0, ξ) and span the tangent
space at every point. Henceforth, we treat X1, . . . , Xq as vector fields on BX(x0, ξ).

Let J0 ∈ I(n, q) be such that
∧

XJ0(x0) �= 0 and moreover

max
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(x0)

∧
XJ0(x0)

∣
∣
∣
∣
≤ ζ−1, (3.1)

see Section 5 for the definition of this quotient. Note that such a J0 ∈ I(n, q) always
exists–indeed, we may choose J0 so that the left hand side of (3.1) equals 1. Without
loss of generality, reorder the vector fields so that J0 = (1, . . . , n).

• Let η > 0 be such that XJ0 satisfies C(x0, η,M).
• Let δ0 > 0 be such that for δ ∈ (0, δ0] the following holds: if z ∈ BXJ0

(x0, ξ)
is such that XJ0 satisfies C(z, δ, BXJ0

(x0, ξ)) and if t ∈ Bn(δ) is such that
et1X1+···+tnXnz = z and if X1(z), . . . , Xn(z) are linearly independent, then
t = 0.
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Remark 3.8. Using that the vector fields X1, . . . , Xn are C1, it follows that there
exist η and δ0 as above (which are small depending on, among other things, the C1

norms of X1, . . . , Xn in a fixed coordinate system); see Proposition 4.14. However, it
is possible that the C1 norms of X1, . . . , Xq can be very large while η and δ0 are not
small. Furthermore, the quantities η and δ0 are invariant under C2 diffeomorphisms,
while the C1 norms of X1, . . . , Xn depend on the choice of coordinate system. Thus,
we present our results in terms of η and δ0.

Remark 3.9. For a more detailed discussion of η and δ0 see Section 4.1.

Fix s0 > 1.

Definition 3.10. For s ≥ s0 if we say C is an {s}-admissible constant, it means
that we assume cl

j,k ∈ C s
XJ0

(BXJ0
(x0, ξ)) for 1 ≤ j, k, l ≤ q. C is then allowed to

depend on s, s0, lower bounds > 0 for ζ, ξ, η, and δ0, and upper bounds for q and
‖cl

j,k‖C s
XJ0

(BXJ0
(x0,ξ)), 1 ≤ j, k, l ≤ q. We write A �{s} B for A ≤ CB where C is a

positive {s}-admissible constant. We write A ≈{s} B for A �{s} B and B �{s} A.

Theorem 3.11 (The Quantitative Theorem). Suppose ck
i,j ∈ C s0

X (BXJ0
(x0, ξ)),

1 ≤ i, j, k ≤ q. Then, there exists a map Φ : Bn(1) → BXJ0
(x0, ξ) and {s0}-

admissible constants ξ1, ξ2 > 0 such that the following hold:

(i) Φ(Bn(1)) ⊆ BX(x0, ξ) is an open subset of the C2 manifold BX(x0, ξ).
(ii) Φ : Bn(1) → Φ(Bn(1)) is a C2 diffeomorphism.
(iii) BX(x0, ξ2) ⊆ BXJ0

(x0, ξ1) ⊆ Φ(Bn(1)) ⊆ BX(x0, ξ).

Let Yj = Φ∗Xj . There exists an {s0}-admissible constant K ≈{s0} 1 and a matrix
A ∈ C s0(Bn(1);Mn×n) such that:5

(iv) YJ0 = K(I + A)∇, where ∇ denotes the gradient in R
n (thought of as a

column vector) and we are identifying YJ0 with the column vector of vector

fields
[

Y1, Y2, . . . , Yn

]	
.

(v) A(0) = 0, supt∈Bn(1) ‖A(t)‖Mn×n ≤ 1
2 .

(vi) For all s ≥ s0, 1 ≤ j ≤ q, ‖Yj‖C s+1(Bn(1);Rn) �{s} 1.

Remark 3.12. In the second paper, we discuss further details of the map Φ from
Theorem 3.11. For example, we describe how to understand Φ∗ν where ν is a density
on BX(x0, ξ).

3.2.1 Diffeomorphism invariance. The results in this series are invariant under
arbitrary C2 diffeomorphisms. In light of Proposition 2.3 this is obvious for the
qualitative results (Theorems 3.3 and 3.6). It is true for the quantitative results as
well (e.g., Theorem 3.11).

Indeed, let X1, . . . , Xq be C1 vector fields on a C2 manifold M, as in Theo-
rem 3.11, and fix x0 ∈ M. Let Ψ : M → N be a C2 diffeomorphism. Then, X1, . . . , Xq

5 Here, and in the rest of the paper, Mn×n denotes the space of n×n real matrices endowed with
the usual operator norm of a matrix.
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satisfy the conditions of Theorem 3.11 at the point x0 if and only if Ψ∗X1, . . . ,Ψ∗Xq

satisfy the conditions at Ψ(x0). Moreover, {s}-admissible constants as defined in
terms of X1, . . . , Xq are the same as {s}-admissible constants when defined in terms
of Ψ∗X1, . . . ,Ψ∗Xq. Finally, if Φ is the map guaranteed by Theorem 3.11 when ap-
plied to X1, . . . , Xq, then Ψ◦Φ is the map guaranteed by Theorem 3.11 when applied
to Ψ∗X1, . . . ,Ψ∗Xq (as can be seen by tracing through the proof). The same remarks
hold for Theorem 4.7, below.

4 Main Results of this Paper

We now turn to the results of this paper, which amount to a slightly weaker ver-
sion of Theorem 3.11. We take the same setup as Theorem 3.11; so that we have
X1, . . . , Xq, C1 vector fields on a C2 manifold M. Fix x0 ∈ M and set n =
dim span{X1(x0), . . . , Xq(x0)}. As before, we assume that on BX(x0, ξ), the Xj ’s
satisfy

[Xj , Xk] =
q
∑

l=1

cl
j,kXl, cl

j,k ∈ C(BX(x0, ξ)),

where BX(x0, ξ) is given the metric topology induced by ρ from (2.3). Proposition 3.1
applies to show that BX(x0, ξ) is an n-dimensional, C2, injectively immersed sub-
manifold of M. X1, . . . , Xq are C2 vector fields on BX(x0, ξ) and span the tangent
space at every point. Henceforth, we treat X1, . . . , Xq as vector fields on BX(x0, ξ).
Let J0 ∈ I(n, q) be such that

∧
XJ0(x0) �= 0 and moreover

max
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(x0)

∧
XJ0(x0)

∣
∣
∣
∣
≤ ζ−1,

see Section 5 for the definition of this quotient.6 Without loss of generality, reorder
the vector fields so that J0 = (1, . . . , n). Let η, δ0 > 0 be as in Section 3.2.

Definition 4.1. We say C is a 0-admissible constant if C can be chosen to depend
only on upper bounds for q, ζ−1, ξ−1, and ‖cl

j,k‖C(BXJ0
(x0,ξ)), 1 ≤ j, k, l ≤ q.

Definition 4.2. If we say C is a 1-admissible constant, it means that we assume
cl
j,k ∈ C1

X(BXJ0
(x0, ξ)) for 1 ≤ j, k ≤ n, 1 ≤ l ≤ q. C is then allowed to depend on

anything a 0-admissible constant can depend on, lower bounds > 0 for η and δ0, and
upper bounds for ‖cl

j,k‖C1
X(BXJ0

(x0,ξ)), 1 ≤ j, k ≤ n, 1 ≤ l ≤ q.

Definition 4.3. For m1, m2 ∈ Z and s ∈ [0, 1] if we say C is an 〈m1, m2, s〉-
admissible constant, it means that we assume:

6 One may always choose J0 so that ζ = 1. However, the flexibility to take ζ < 1 is essential for
some applications. It will prove to be particularly important when we turn to analogous results in
the complex setting in a future paper.
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• cl
j,k ∈ Cm1,s

XJ0
(BXJ0

(x0, ξ)), 1 ≤ j, k ≤ n, 1 ≤ l ≤ q.

• cl
j,k ∈ Cm2,s

XJ0
(BXJ0

(x0, ξ)), 1 ≤ j, k, l ≤ q.

C can then be chosen to depend only on upper bounds for m1, m2, q, ζ−1, ξ−1,
‖cl

j,k‖C
m1,s
XJ0

(BXJ0
(x0,ξ)), 1 ≤ j, k ≤ n, 1 ≤ l ≤ q, and ‖cl

j,k‖C
m2,s
XJ0

(BXJ0
(x0,ξ)), 1 ≤

j, k, l ≤ q.

Definition 4.4. For s1, s2 ∈ R if we say C is an {s1, s2}-admissible constant, it
means that we assume:

• cl
j,k ∈ C s1

XJ0
(BXJ0

(x0, ξ)), 1 ≤ j, k ≤ n, 1 ≤ l ≤ q.

• cl
j,k ∈ C s2

XJ0
(BXJ0

(x0, ξ)), 1 ≤ j, k, l ≤ q.

C can then be chosen to depend only on s1, s2 and upper bounds for q, ζ−1, η−1,
ξ−1, ‖cl

j,k‖C s1
XJ0

(BXJ0
(x0,ξ)), 1 ≤ j, k ≤ n, 1 ≤ l ≤ q, and ‖cl

j,k‖C s2
XJ0

(BXJ0
(x0,ξ)), 1 ≤

j, k, l ≤ q.

Remark 4.5. 0 and 1-admissible constants are the most basic type of admissible
constants, and nearly all of our estimates depend on those quantities used in 0-
admissible constants, while many depend on the stronger 1-admissible constants.
Admissible constants using the braces 〈·〉 are used when working with estimates
relating to Hölder norms, while those using {·} are used for estimates relating to
Zygmund norms. In Section 6, we introduce a density ν and admissible constants that
take into account this density. To indicate this, we will decorate the notions of admis-
sible constants by writing, e.g., 〈m1, m2, s; ν〉-admissible constants and {s1, s1; ν}-
admissible constants. Finally, in Section 8.1 we will prove some technical results for
vector fields which are defined on Euclidean space. To indicate the corresponding
admissible constants, we will use notation like 〈m1, s: E〉 and {s: E}, where E stands
for “Euclidean”.

Remark 4.6. In the various definitions of admissible constants in this section, we
treat cl

j,k differently depending on whether 1 ≤ j, k ≤ n or 1 ≤ j, k ≤ q. This is likely
an artifact of the proof. Indeed, this lack of symmetry disappears when we move to
the sharp results in the second paper in the series; see Theorem 3.11.

We write A �0 B for A ≤ CB where C is a positive 0-admissible constant. We
write A ≈0 B for A �0 B and B �0 A. We similarly define �1, ≈1, �〈m1,m2,s〉,
≈〈m1,m2,s〉, �{s1,s2}, and ≈{s1,s2}.

Because XJ0 satisfies C(x0, η,M), by hypothesis, we may define the map, for
t ∈ Bn(η),

Φ(t) := et1X1+···+tnXnx0. (4.1)

Let η0 := min{η, ξ} so that Φ : Bn(η0) → BXJ0
(x0, ξ). Note that, a priori, Φ is C1,

since X1, . . . , Xn are C1.
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Theorem 4.7. There exists a 0-admissible constant χ ∈ (0, ξ] such that:

(a) ∀y ∈ BXJ0
(x0, χ),

∧
XJ0(y) �= 0.

(b) ∀y ∈ BXJ0
(x0, χ),

max
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(y)

∧
XJ0(y)

∣
∣
∣
∣
≈0 1.

(c) ∀χ′ ∈ (0, χ], BXJ0
(x0, χ

′) is an open subset of BX(x0, ξ) and is therefore a
submanifold.

For the rest of the theorem, we assume cl
j,k ∈ C1

XJ0
(BXJ0

(x0, ξ)) for 1 ≤ j, k ≤ n,
1 ≤ l ≤ q. There exist 1-admissible constants η1, ξ1, ξ2 > 0 such that:

(d) Φ(Bn(η1)) is an open subset of BXJ0
(x0, χ), and is therefore a submanifold

of BX(x0, ξ).
(e) Φ : Bn(η1) → Φ(Bn(η1)) is a C2 diffeomorphism.
(f) BX(x0, ξ2) ⊆ BXJ0

(x0, ξ1) ⊆ Φ(Bn(η1)) ⊆ BXJ0
(x0, χ) ⊆ BX(x0, ξ).

Let Yj = Φ∗Xj and write YJ0 = (I + A)∇, where YJ0 denotes the column vector of

vector fields YJ0 =
[

Y1, Y2, . . . , Yn

]	
, ∇ denotes the gradient in R

n thought of as a
column vector, and A ∈ C(Bn(η1);Mn×n).

(g) A(0) = 0 and supt∈Bn(η1) ‖A(t)‖Mn×n ≤ 1
2 .

(h) We have the following regularity on Yj , 1 ≤ j ≤ q:
• ‖Yj‖Cm,s(Bn(η1);Rn) �〈m,m−1,s〉 1, for m ∈ N, s ∈ [0, 1].
• ‖Yj‖C s(Bn(η1);Rn) �{s,s−1} 1, for s > 0.

(i) There exist bl
k ∈ C1(Bn(η1)), n + 1 ≤ k ≤ q, 1 ≤ l ≤ n, such that Yk =

∑n
l=1 bl

kYl and

‖bl
k‖Cm,s(Bn(η1)) �〈m−1,m−1,s〉 1, m ∈ N, s ∈ [0, 1],

‖bl
k‖C s(Bn(η1)) �{s−1,s−1} 1, s > 0.

(j) For 1 ≤ j, k ≤ n, [Yj , Yk] =
∑n

l=1 c̃l
j,kYl, where

‖c̃l
j,k‖Cm,s(Bn(η1)) �〈m,m−1,s〉 1, m ∈ N, s ∈ [0, 1],

‖c̃l
j,k‖C s(Bn(η1)) �{s,s−1} 1, s > 0.

(k) We have the following equivalence of norms, for f ∈ C(Bn(η1)),
• ‖f‖Cm,s(Bn(η1)) ≈〈m−1,m−2,s〉 ‖f‖Cm,s

YJ0
(Bn(η1)) ≈〈m−1,m−2,s〉 ‖f‖Cm,s

Y (Bn(η1)),

for m ∈ N, s ∈ [0, 1].
• ‖f‖C s(Bn(η1)) ≈{s−1,s−2} ‖f‖C s

YJ0
(Bn(η1)) ≈{s−1,s−2} ‖f‖C s

Y (Bn(η1)), for s > 2.

(l) We have, for f ∈ C(BXJ0
(x0, χ)),

• ‖f ◦ Φ‖Cm,s(Bn(η1)) �〈m−1,m−2,s〉 ‖f‖Cm,s
XJ0

(BXJ0
(x0,χ)), m ∈ N, s ∈ [0, 1].

• ‖f ◦ Φ‖C s(Bn(η1)) �{s−1,s−2} ‖f‖C s
XJ0

(BXJ0
(x0,χ)), s ∈ (0, ∞).
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Remark 4.8. The lack of optimality of Theorem 4.7 can be seen by comparing The-
orem 4.7 (h) and Theorem 3.11 (vi); in the later one can estimate ‖Yj‖C s+1 in terms
of an {s}-admissible constant, while in the former, one can only estimate ‖Yj‖C s in
terms of the similar {s, s − 1}-admissible constants. Because of this, Theorem 4.7
“loses one derivative” and is not powerful enough to conclude necessary and sufficient
results like Theorems 3.3 and 3.6.

Remark 4.9. By comparing (h) and (j), we see that the functions c̃l
j,k have the same

regularity as Y1, . . . , Yn. If one only knew the regularity of Y1, . . . , Yn, one could only
conclude the regularity of c̃l

j,k for one fewer derivative. Similarly, (i) gives one more
derivative regularity on bl

k than we get from merely considering the regularity of
Y1, . . . , Yq. In the second paper of this series, we will leverage this extra regularity
to prove Theorem 3.11.

Remark 4.10. Because the methods in this paper are based on ODEs, it is possible
to prove versions of Theorem 4.7 for some function spaces other than Cm,s or C s,
with the same methods as in this paper. However, once we turn to the second paper
in the series, where PDEs are used, we are forced to work with more specialized
spaces–and that is the main motivation for using Zygmund spaces in this context.

Remark 4.11. In the context of Lie groups, the coordinates given by Φ are some-
times called canonical coordinates of the first kind.

4.1 More on the assumptions. We further consider the constants η > 0 and
δ0 > 0 which were introduced in Section 3.2. First we present two examples which
show why these constants cannot be dispensed with in our results, and then we state
a result which shows such constants always exist.

Example 4.12. This example demonstrates the importance of η. Let M = R, q = 1,
x0 > 0, and let X1 = x2 ∂

∂x . In this case, η can be taken no larger than 1/x0–i.e.,
X1 satisfies C(x0, x

−1
0 ,R) but does not satisfy C(x0, η

′,R) for any η′ > x−1
0 (because

the ODE γ̇(t) = γ(t)2, γ(0) = x0 exists only for t < 1
x0

). If Theorem 4.7 held
with constants independent of η (and therefore independent of x0), then we could
conclude that X1 satisfied C(x0, η

′,R) for some η′ independent of x0. This is because
the condition C is invariant under a change of coordinates, and we can therefore
check it in the coordinate system given by Φ in Theorem 4.7. This is a contradiction,
showing η must play a role in Theorem 4.7.7

Example 4.13. This example demonstrates the importance of δ0–and also shows
its topological nature. The point of δ0 is to ensure the map Φ in Theorem 4.7 is
injective.8 Let M = S1, q = 1, x0 ∈ S1, and let X1 = K ∂

∂θ for some large constant

7 For a similar example, one could take M = (−ε, ε), q = 1, x0 = 0, and X1 = ∂
∂x

. Then, X
satisfies C(0, ε, (−ε, ε)), but does not satisfy C(0, η′, (−ε, ε)) for any η′ > ε.
8 In fact, by inspecting the proof of Theorem 4.7, it is easy to see that one can prove similar

results, independent of δ0, so long as one allows Φ to not be injective.
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K. For this example, we must take δ0 ≤ 2π/K. If the constants in Theorem 4.7
did not depend on δ0, they would also not depend on K. We could then conclude
that δ0 could be taken independent of K–this is because δ0 is invariant under a
change of coordinates and we can check it in the coordinate system given by Φ
in Theorem 4.7–see also Proposition 4.14. This shows that δ0 must play a role in
Theorem 4.7.

Now we state a result which shows that such a δ0 and η always exist for C1 vector
fields. Let X1, . . . , Xq be C1 vector fields on a C2 manifold M, and let X denote the
list X1, . . . , Xq.

Proposition 4.14. • ∀x0 ∈ M, ∃η > 0, such that X satisfies C(x0, η,M).
• Let K � M be a compact set. Then, ∃δ0 > 0 such that ∀θ ∈ Sq−1 if x ∈ K is

such that θ1X1(x) + · · · + θqXq(x) �= 0, then ∀r ∈ (0, δ0],

erθ1X1+···+rθqXqx �= x.

For the proof, see Section 9.5. Proposition 4.14 shows that there always exist
η and δ0 as in Section 3.2. However, the η and δ0 guaranteed by Proposition 4.14
depend on the C1 norms of X1, . . . , Xq in some fixed coordinate system, and this
is not invariant under diffeomorphisms. It is important for some applications that
η and δ0 can be taken to be large in some settings even when the C1 norms of
X1, . . . , Xq are large. The next example gives a simple setting where this is the case.

Example 4.15. Take q = 1, M = R, X1 = K ∂
∂x , for any K ∈ R \ {0} (we think of

K as large). Then one can take η = δ0 = ∞ in the assumptions in Section 3.2.

5 Wedge Products

Let Z be a one dimensional real vector space. For x, y ∈ Z, x �= 0 we define y
x ∈ R

by y
x := λ(y)

λ(x) where λ : Z → R is any nonzero linear functional. It is easy to see that
y
x is independent of the choice of λ.

This allows us to formulate a “coordinate free” version of Cramer’s rule. Let V
be an n-dimensional vector space, so that

∧n V is a one dimensional vector space.
Let x1, . . . , xn ∈ V be a basis for V . For any y ∈ V , we have

y =
y ∧ x2 ∧ x3 ∧ · · · ∧ xn

x1 ∧ x2 ∧ · · · ∧ xn
x1 +

x1 ∧ y ∧ x3 ∧ · · · ∧ xn

x1 ∧ x2 ∧ · · · ∧ xn
x2 + · · · +

x1 ∧ x2 ∧ · · · ∧ xn−1 ∧ y

x1 ∧ x2 ∧ · · · ∧ xn
xn.

(5.1)

Let M be a C2 manifold of dimension n. Let Y1, . . . , Yn be C1 vector fields in
on M . For another C1 vector field Z, the Lie derivative of Y1 ∧ Y2 ∧ · · · ∧ Yn with
respect Z is given by
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LZ(Y1 ∧ Y2 ∧ · · · ∧ Yn) = [Z, Y1] ∧ Y2 ∧ Y3 ∧ · · · ∧ Yn + Y1 ∧ [Z, Y2] ∧ Y3 ∧ · · · ∧ Yn

+ · · · + Y1 ∧ Y2 ∧ · · · ∧ Yn−1 ∧ [Z, Yn].

Let X1, . . . , Xn be C1 vector fields on M which span the tangent space near a point
x0. Thus, near x0, we may define a real valued function by

Y1 ∧ Y2 ∧ · · · ∧ Yn

X1 ∧ X2 ∧ · · · ∧ Xn
.

The derivative of this function with respect to Z is exactly what one would expect
as the next lemma shows.

Lemma 5.1.

Z
Y1 ∧ Y2 ∧ · · · ∧ Yn

X1 ∧ X2 ∧ · · · ∧ Xn
=

LZ(Y1 ∧ Y2 ∧ · · · ∧ Yn)

X1 ∧ X2 ∧ · · · ∧ Xn

− Y1 ∧ Y2 ∧ · · · ∧ Yn

X1 ∧ X2 ∧ · · · ∧ Xn

LZ(X1 ∧ X2 ∧ · · · ∧ Xn)

X1 ∧ X2 ∧ · · · ∧ Xn
.

Proof. Let X = X1 ∧ X2 ∧ · · · ∧ Xn and Y = Y1 ∧ Y2 ∧ · · · ∧ Yn. Let ν be any C1

n-form which is nonzero near x0, so that by definition

Y

X
=

ν(Y)
ν(X)

.

Because ν is nonzero near x0 (and the space of n-forms is one dimensional at each
point), we may write LZν = fν for some continuous function f (near x0); where
here and in the rest of the paper LZ denotes the Lie derivative with respect to Z.
Using [Lee03, Proposition 18.9], we have

Zν(Y) = (LZν)(Y) + ν(LZY) = fν(Y) + ν(LZY).

and similarly with Y replaced by X. We conclude

Z
Y

X
= Z

ν(Y)
ν(X)

=
Zν(Y)
ν(X)

− ν(Y)
ν(X)

Zν(X)
ν(X)

=
fν(Y) + ν(LZY)

ν(X)
− ν(Y)

ν(X)
fν(X) + ν(LZX)

ν(X)

=
ν(LZY)

ν(X)
− ν(Y)

ν(X)
ν(LZX)

ν(X)
=

LZY

X
− Y

X

LZX

X
,

completing the proof. ��

6 Densities

Let χ ∈ (0, ξ] be as in Theorem 4.7. In many applications, one is given a density on
BXJ0

(x0, χ) and it is of interest to measure certain sets with respect to this density.
For a quick introduction to the basics of densities, we refer the reader to Guillemin’s
lecture notes [Gui08].
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Let ν be a C1 density on BXJ0
(x0, χ). Suppose

LXj
ν = fjν, 1 ≤ j ≤ n, fj ∈ C(BXJ0

(x0, χ)). (6.1)

Our goal is to understand Φ∗ν and ν(BX(x0, ξ2)) where Φ and ξ2 are as in Theo-
rem 4.7.

Definition 6.1. We say C is a 0; ν-admissible constant if C is a 0-admissible
constant which is also allowed to depend on upper bounds for ‖fj‖C(BXJ0

(x0,χ)),

1 ≤ j ≤ n.

Definition 6.2. We say C is a 1; ν-admissible constant if C is a 1-admissible
constant which is also allowed to depend on upper bounds for ‖fj‖C(BXJ0

(x0,χ)),

1 ≤ j ≤ n.

Definition 6.3. For m1, m2 ∈ Z, s ∈ [0, 1] if we say C is an 〈m1, m2, s; ν〉-admissible
constant, it means that we assume fj ∈ Cm1,s

XJ0
(BXJ0

(x0, χ)), and C is an 〈m1, m2, s〉-
admissible constant which is also allowed to depend on upper bounds for
‖fj‖C

m1,s
XJ0

(BXJ0
(x0,χ)), 1 ≤ j ≤ n.

Definition 6.4. For s1 > 0, s2 ∈ R, if we say C is an {s1, s2; ν}-admissible constant,
it means that we assume fj ∈ C s1

XJ0
(BXJ0

(x0, χ)), and C is an {s1, s2}-admissible

constant which is also allowed to depend on upper bounds for ‖fj‖C s1
XJ0

(BXJ0
(x0,χ)),

1 ≤ j ≤ n. For s1 ≤ 0, s2 ∈ R, if we say C is an {s1, s2; ν}-admissible constant, it
means C is an {s1, s2}-admissible constant which is also allowed to depend on upper
bounds for ‖fj‖C(BXJ0

(x0,χ)), 1 ≤ j ≤ n.

We write A �0;ν B for A ≤ CB where C is a positive 0; ν-admissible constant,
and write A ≈0;ν B for A �0;ν B and B �0;ν A. We define �1;ν , ≈1;ν , �〈m1,m2,s;ν〉,
≈〈m1,m2,s;ν〉, �{s1,s2;ν}, and ≈{s1,s2;ν} similarly.

To help understand ν, we use a distinguished density ν0 on BXJ0
(x0, χ):

ν0(Z1, . . . , Zn) :=
∣
∣
∣
∣

Z1 ∧ Z2 ∧ · · · ∧ Zn

X1 ∧ X2 ∧ · · · ∧ Xn

∣
∣
∣
∣
, (6.2)

note that ν0 is defined since X1 ∧ X2 ∧ · · · ∧ Xn is never zero on BXJ0
(x0, χ) by

Theorem 4.7 (a); ν0 is clearly a density.

Theorem 6.5. There exists g ∈ C(BXJ0
(x0, χ)) such that ν = gν0 and

(i) g(x) ≈0;ν g(x0) = ν(X1, . . . , Xn)(x0), ∀x ∈ BXJ0
(x0, χ). In particular, g

always has the same sign, and is either never zero or always zero.
(ii) We have the following regularity on g:

• For m ∈ N, s ∈ [0, 1], we have ‖g‖Cm,s
XJ0

(BXJ0
(x0,χ)) �〈m−1,m−1,s;ν〉

|ν(X1, . . . , Xn)(x0)|.
• For s>0, we have ‖g‖C s

XJ0
(BXJ0

(x0,χ)) �{s−1,s−1;ν} |ν(X1, . . . , Xn)(x0)|.
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Define h ∈ C1(Bn(η1)) by Φ∗ν = hσLeb, where σLeb denotes the usual Lebesgue
density on R

n.

(iii) h(t) ≈0;ν ν(X1, . . . , Xn)(x0), ∀t ∈ Bn(η1). In particular, h always has the
same sign and is either never zero or always zero.

(iv) We have the following regularity on h:
• For m ∈ N, s ∈ [0, 1], ‖h‖Cm,s(Bn(η1)) �〈m,m−1,s;ν〉 |ν(X1, . . . , Xn)(x0)|.
• For s > 0, ‖h‖C s(Bn(η1)) �{s,s−1;ν} |ν(X1, . . . , Xn)(x0)|.

Corollary 6.6. Let ξ2 be as in Theorem 4.7. Then,

ν(BXJ0
(x0, ξ2)) ≈1;ν ν(BX(x0, ξ2)) ≈1;ν ν(X1, . . . , Xn)(x0), (6.3)

and therefore,

|ν(BXJ0
(x0, ξ2))| ≈1;ν |ν(BX(x0, ξ2))| ≈1;ν |ν(X1, . . . , Xn)(x0)| ≈0

max
(j1,...,jn)∈I(n,q)

|ν(Xj1 , . . . , Xjn
)(x0)|. (6.4)

7 Scaling and Other Consequences

The main results of this series have two facets:

• (Smoothness) They provide a coordinate system in which given C1 vector fields
have an optimal degree of smoothness.

• (Scaling) They provide a coordinate system in which given vector fields are
normalized in a way which is useful for applying techniques from analysis.

In both cases, the results are in many ways optimal: they provide necessary and suffi-
cient, diffeomorphic invariant conditions under which one can obtain such coordinate
charts. In this section, we describe these two facets.

When viewed as providing a coordinate system in which vector fields have an
optimal level of smoothness, these results seem to be of a new type. When viewed
as scaling maps, these results take their roots in the quantitative study of sub-
Riemannian (aka Carnot–Carathéodory) geometry initiated by Nagel, Stein, and
Wainger [NSW85]. Since Nagel, Stein, and Wainger’s original work, these ideas have
had a significant impact on various questions in harmonic analysis (see the discussion
at the end of Chapter 2 of [Str14] for a detailed history of these ideas). Following
Nagel, Stein, and Wainger’s work, Tao and Wright [TW03] generalized Nagel, Stein,
and Wainger’s ideas and provided a new approach to proving their results. In [Str11],
the second author combined these two approaches to prove results in more general
settings; these more general results have already had several applications, for exam-
ple [SS11,Str12,SS13,SS12,Str17,Str14,Gre15,Sto14].
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7.1 Classical sub-Riemmanian geometries and the work of Nagel, Stein,
and Wainger. In this section, we describe the foundational work of Nagel, Stein,
and Wainger [NSW85], and see how it is a special case of Theorem 4.7. This pro-
vides the simplest non-trivial setting where the results in this paper can be seen as
providing scaling maps adapted to a sub-Riemannian geometry. In Section 7.3, we
generalize these results to more general geometries.

Let X1, . . . , Xq be C∞ vector fields on an open set Ω ⊆ R
n; we assume X1, . . . , Xq

span the tangent space at every point of Ω. To each Xj assign a formal degree
dj ∈ [1, ∞). We assume

[Xj , Xk] =
∑

dl≤dj+dk

cl
j,kXl, cl

j,k ∈ C∞(Ω). (7.1)

We write (X, d) for the list (X1, d1), . . . , (Xq, dq) and for δ > 0 write δdX for the
list of vector fields δd1X1, . . . , δ

dqXq. The sub-Riemannian ball associated to (X, d)
centered at x0 ∈ Ω of radius δ > 0 is defined by

B(X,d)(x0, δ) := BδdX(x0, 1),

where the later ball is defined by (2.2). B(X,d)(x0, δ) is an open subset of Ω. It is
easy to see that the balls B(X,d)(x, δ) are metric balls.

Define, for x ∈ Ω, δ ∈ (0, 1],

Λ(x, δ) := max
j1,...,jn∈{1,...,q}

∣
∣
∣det

(

δdj1Xj1(x)| · · · |δdjn Xjn
(x)
)∣
∣
∣ .

For each x ∈ Ω, δ ∈ (0, 1], pick j1 = j1(x, δ), . . . , jn = jn(x, δ) so that
∣
∣
∣det

(

δdj1Xj1(x)| · · · |δdjn Xjn
(x)
)∣
∣
∣ = Λ(x, δ).

For this choice of j1 = j1(x, δ), . . . , jn = jn(x, δ), set

Φx,δ(t1, . . . , tn) := exp
(

t1δ
dj1Xj1 + · · · + tnδdjn Xjn

)

x.

Theorem 7.1 ([NSW85]). Fix a compact set K � Ω.9 In what follows, we write
A � B for A ≤ CB where C is a positive constant which may depend on K, but
does not depend on the particular point x ∈ K or the scale δ ∈ (0, 1]. There exist
η1, ξ0 ≈ 1, such that ∀x ∈ K,

(i) σLeb(B(X,d)(x, δ)) ≈ Λ(x, δ), ∀δ ∈ (0, ξ0].
(ii) σLeb(B(X,d)(x, 2δ)) � σLeb(B(X,d)(x, δ)), ∀δ ∈ (0, ξ0/2].
(iii) ∀δ ∈ (0, 1], Φx,δ(Bn(η1)) ⊆ Ω is open and Φx,δ : Bn(η1) → Φx,δ(Bn(η1)) is a

C∞ diffeomorphism.
(iv) | det dΦx,δ(t)| ≈ Λ(x, δ), ∀t ∈ Bn(η1).

9 Here, and in the rest of the paper, we write K � Ω to mean that K is a relatively compact
subset of Ω.
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(v) B(X,d)(x, ξ0δ) ⊆ Φx,δ(Bn(η1)) ⊆ B(X,d)(x, δ), ∀δ ∈ (0, 1].
(vi) Let Y x,δ

j := Φ∗
x,δδ

djXj , so that Y x,δ
j is a C∞ vector field on Bn(η1). We have

∥
∥
∥Y

x,δ
j

∥
∥
∥

Cm(Bn(η1);Rn)
� 1, ∀m ∈ N,

where the implicit constant depends on m, by not on x ∈ K or δ ∈ (0, 1].
Finally, Y x,δ

1 (u), . . . , Y x,δ
q (u) span TuBn(η1), uniformly in x, δ, and u, in the

sense that

max
j1,...,jn∈{1,...,q}

inf
u∈Bn(η1)

∣
∣
∣det

(

Y x,δ
j1

(u)| · · · |Y x,δ
jn

(u)
)∣
∣
∣ ≈ 1.

Proof. This result is a special case of Theorem 7.6, below. To see this, for δ ∈ (0, 1]
we multiply both sides of (7.1) by δdj+dk to obtain

[δdjXj , δ
dkXk] =

∑

dl≤dj+dk

δdj+dk−dlcl
j,kδ

dlXl,

so that if we set

Xδ
j := δdjXj , cl,δ

j,k :=

{

δdj+dk−dlcl
j,k, dl ≤ dj + dk,

0, otherwise,

then we have
[Xδ

j , Xδ
k ] =

∑

l

cl,δ
j,kX

δ
l .

Furthermore, cl,δ
j,k ∈ C∞ and Xδ

l ∈ C∞ uniformly in δ. From here it is straightforward
to verify that Xδ

1 , . . . , Xδ
q satisfy all the hypotheses of Theorem 7.6; in the application

of Theorem 7.6, we replace Ω with Ω′ where K � Ω′ � Ω. ��

Remark 7.2. It is easy to see that the balls B(X,d)(x, δ) are metric balls.10 The-
orem 7.1 (ii) is the main estimate needed to show these balls (when paired with
σLeb) form a space of homogeneous type. Thus, one can obtain a theory of singular
integrals associated with these balls. Such singular integrals have a long history and
have proven to be quite useful in a variety of contexts. The history of these ideas is
detailed at the end of [Str14, Chapter 2].

7.1.1 Hörmander’s condition. The main way that Theorem 7.1 arises is via vec-
tor fields which satisfy Hörmander’s condition. Suppose V1, . . . , Vr are C∞ vector
fields on an open set Ω ⊆ R

n. We assume that V1, . . . , Vr satisfy Hörmander’s con-
dition of order m on Ω. I.e., we assume that the finite list of vector fields

V1, . . . , Vr, . . . , [Vi, Vj ], . . . , [Vi, [Vj , Vk]], . . . , . . . , commutators of order m,

span the tangent space at every point of Ω.

10 This uses that dj ≥ 1, ∀j. If dj ∈ (0, ∞), they are quasi-metric balls.
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To each V1, . . . , Vr, we assign the formal degree 1. If Z has formal degree e,
we assign to [Vj , Z] the formal degree e + 1. Let (X1, d1), . . . , (Xq, dq) denote the
finite list of vector fields with formal degree dj ≤ m. Hörmander’s condition implies
X1, . . . , Xq span the tangent space at every point of Ω.

We claim that (7.1) holds, and therefore Theorem 7.1 applies to (X1, d1), . . . ,
(Xq, dq). Indeed, if dj + dk ≤ m we have

[Xj , Xk] =
∑

dl=dj+dk

cl
j,kXl,

where cl
j,k are constants by the Jacobi identity. If dj +dk > m then, since X1, . . . , Xq

span the tangent space at every point, we have

[Xj , Xk] =
q
∑

l=1

cl
j,kXl =

∑

dl≤dj+dk

cl
j,kXl, cl

j,k ∈ C∞(Ω).

Thus, (7.1) holds and Theorem 7.1 applies.
Let K � Ω be a compact set. Applying Theorem 7.1, for δ ∈ (0, 1], x ∈ K, we

obtain η1 > 0 and Φx,δ : Bn(η1) → B(X,d)(x, δ) as in that theorem. Set V x,δ
j :=

Φ∗
x,δδVj , 1 ≤ j ≤ r.

If dk = l, then
Xk = [Vj1 , [Vj2 , · · · , [Vjl−1 , Vjl

] · · · ]],
and so

Φ∗
x,δδ

dkXk =Φ∗
x,δ[δVj1 , [δVj2 , . . . , [δVjl−1 , δVjl

] . . .]] = [V x,δ
j1

, [V x,δ
j2

, . . . , [V x,δ
jl−1

, V x,δ
jl

] . . .]].

Theorem 7.1 implies that the vector fields Φ∗
x,δδ

dkXk are smooth and span the tan-
gent space, uniformly for x ∈ K, δ ∈ (0, 1]. We conclude that the vector fields
V x,δ

1 , . . . , V x,δ
r are smooth and satisfy Hörmander’s condition, uniformly for x ∈ K,

δ ∈ (0, 1]. In short, the map Φ∗
x,δ takes δV1, . . . , δVr to V x,δ

1 , . . . , V x,δ
r which satisfy

Hörmander’s condition “uniformly”; i.e., it takes the case of δ small and “rescales”
it to the case δ = 1.

Remark 7.3. In the above, we multiplied V1, . . . , Vr all by the same small number
δ. Similar results hold (with the same proofs) for δ1V1, . . . , δrVr where δ1, . . . , δr

are small, provided they are “weakly-comparable.” I.e., provided ∃N, κ such that
δN
j ≤ κδk, for all j, k. This was first noted and used by Tao and Wright [TW03]. See

[Str11, Section 5.2.1] for further details.

Remark 7.4. It is possible for (7.1) to hold (for a sufficiently large m) even if
V1, . . . , Vr do not satisfy Hörmander’s condition. In this case, with the same proof
one can obtain similar results; however, now the ball B(X,d)(x, δ) lies on an injectively
immersed submanifold of Rn as discussed in Proposition 3.1. An important setting
where this arises is when V1, . . . , Vr are real analytic; see [Str14, Section 2.15.5] for
details.
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7.2 Multi-parameter balls. In a generalization of the work of Nagel, Stein,
and Wainger, the second author studied multi-parameter sub-Riemannian balls in
[Str11]. The main result of [Str11] is a special case of Theorems 4.7 and 6.5 and
Corollary 6.6. We refer the reader to [Str11] for the detailed assumptions used in
that paper, which are very similar to the assumptions of Theorem 4.7. We give a
few comments here to help the reader understand how the main result of [Str11]
(namely [Str11, Theorem 4.1]) is a special case of the results in this paper.

The main differences between [Str11, Theorem 4.1] and the setting of this paper
are:

• M is taken to be an open subset of RN in [Str11].
• In [Str11], the various kinds of admissible constants are allowed to depend

on upper bounds for quantities like ‖Xj‖Cm . This quantity is not invariant
under diffeomorphisms, and the norm is defined in terms of the fixed standard
coordinate system on R

N .
• Instead of an abstract density as is used in Theorem 6.5 and Corollary 6.6,

[Str11] uses the usual Lebesgue measure on submanifolds of RN .
• In [Str11], the existence of δ0 is not assumed. Instead, one uses bounds on

‖Xj‖C1 to prove that such a δ0 exists (as in Proposition 4.14). This process is
not invariant under diffeomorphisms.

• The constants in Theorem 4.7 have better dependence on various quantities
than they do in [Str11, Theorem 4.1]. For example, the methods in [Str11] do
not imply that η1 is a 1-admissible constant.

• In [Str11], only the spaces Cm
X (and not Cm,s

X or C s
X) were used.

We include a lemma, whose straightforward proof we omit, which will allow the
reader to more easily translate the results of [Str11] into the language of this paper.
For an N × n matrix we write detn×n B to be the vector consisting of determinants
of n × n submatricies of B.

Lemma 7.5. Let L be an n-dimensional injectively immersed submanifold of R
N ,

and give L the induced Riemannian metric. Let ν denote the Riemannian volume
density on L. For vector fields Z1, . . . , Zn on R

N which are tangent to L, let Z denote
the N × n matrix whose columns are Z1, . . . , Zn. Then,

∣
∣
∣
∣
det
n×n

Z

∣
∣
∣
∣
= ν(Z1, . . . , Zn).

Furthermore, if Φ : Bn(η) → L ⊆ R
N , and if Φ∗ν = h(t)σLeb, then we have

h(t) =
∣
∣
∣
∣
det
n×n

dΦ(t)
∣
∣
∣
∣
,

where dΦ(t) is computed by thinking of Φ as a map Bn(η) → R
N .

Using this lemma and the above remarks, [Str11, Theorem 4.1] follows easily
from the results in this paper. We refer the reader to [Str11,Str14,SS11,Str12,SS13,
SS12,Str17] for examples of how these ideas can be used as scaling maps.
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7.3 Generalized sub-Riemannian geometries. The results described in Sec-
tion 7.1 concern the classical setting of sub-Riemannian geometry. When applied to
partial differential equations defined by vector fields, this is the geometry which arises
in the important case of maximally hypoelliptic operators. Maximal hypoellipticity
is a far reaching generalization of ellipticity, which was first introduced (implicitly)
by Folland and Stein [FS74]; see [Str14, Chapter 2] for a discussion of these ideas as
well as a detailed history. When one moves beyond the setting of maximal hypoel-
lipticity, other more general sub-Riemannian geometries can arise. These are defined
by choosing different vector fields at each scale. A particularly transparent setting
where this arises is in the work of Charpentier and Dupain on the Bergman and
Szegö projections [CD14]. The theory in this paper allows us to easily understand
what properties one requires on these vector fields so that the induced quasi-metrics
give rise to a space of homogeneous type; furthermore, our theory provides gener-
alized scaling maps adapted to these geometries. See Section 7.5 for some further
comments on the relationship between the results in this paper and several complex
variables.

Fix an open set Ω ⊆ R
n, and for each δ ∈ (0, 1], let Xδ = Xδ

1 , . . . , Xδ
q be a list

of C1 vector fields on Ω, which span the tangent space at every point. For x ∈ Ω,
δ ∈ (0, 1] set B(x, δ) := BXδ(x, 1), where BXδ(x, 1) is defined by (2.2). Our goal is to
give conditions on Xδ so that the balls B(x, δ), when paired with Lebesgue measure
on Ω (denoted σLeb), locally form a space of homogeneous type (see [Ste93] for the
definition we are using of a space of homogeneous type). The conditions we give can
be thought of as infinitesimal versions of the axioms of a space of homogeneous type.
In what follows, we write Xδ for the column vector of vector fields [Xδ

1 , . . . , Xδ
q ]	.

Because of this, if we are given a matrix A : Ω → M
q×q, it makes sense to consider

A(x)Xδ(x) which again gives a column vector of vector fields on Ω.
We assume:

(I) ∀δ ∈ (0, 1], x ∈ Ω, we have span{Xδ
1(x), . . . , Xδ

q (x)} = TxΩ.
(II) supδ∈(0,1] ‖Xδ

j ‖C1(Ω;Rn) < ∞.
(III) Xδ

j → 0, as δ → 0, uniformly on compact subsets of Ω.
(IV) ∀0 < δ1 ≤ δ2 ≤ 1, Xδ1 = Tδ1,δ2X

δ2 , where Tδ1,δ2 ∈ L∞(Ω;Mq×q), and
‖Tδ1,δ2‖L∞(Ω;Mq×q) ≤ 1.

(V) ∃B1, B2 ∈ (1, ∞), b1, b2 ∈ (0, 1), such that ∀δ ∈ (0, 1/B1], ∃Sδ ∈ L∞(Ω;
M

q×q) and ∀δ ∈ (0, 1/B2], ∃Rδ ∈ L∞(Ω;Mq×q) with SδX
B1δ = Xδ, RδX

δ =
XB2δ, and

sup
0<δ≤1/B1

‖Sδ‖L∞(Ω;Mq×q) ≤ b1, sup
0<δ≤1/B2

‖Rδ‖L∞(Ω;Mq×q) ≤ b−1
2 .

(VI) ∀δ ∈ (0, 1], [Xδ
j , Xδ

k ] =
∑q

l=1 cl,δ
j,kX

δ
l , where cl,δ

j,k ∈ C(Ω) and ∀m ∈ N

sup
δ∈(0,1],x∈Ω

‖cl,δ
j,k‖Cm

Xδ (B(x,δ)) < ∞.
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Define, for x ∈ Ω, δ ∈ (0, 1],

Λ(x, δ) := max
j1,...,jn∈{1,...,q}

∣
∣
∣det

(

Xδ
j1(x)| · · · |Xδ

jn
(x)
)∣
∣
∣ .

For each x ∈ Ω, δ ∈ (0, 1], pick j1 = j1(x, δ), . . . , jn = jn(x, δ) ∈ {1, . . . , q} so that
∣
∣
∣det

(

Xδ
j1(x)| · · · |Xδ

jn
(x)
)∣
∣
∣ = Λ(x, δ),

and set (for this choice of j1 = j1(x, δ), . . . , jn = jn(x, δ)),

Φx,δ(t1, . . . , tn) = exp
(

t1X
δ
j1 + · · · + tnXδ

jn

)

x.

Theorem 7.6.

(i) B(x, δ1) ⊆ B(x, δ2), ∀x ∈ Ω, 0 < δ1 ≤ δ2 ≤ 1.
(ii)
⋂

δ∈(0,1] B(x, δ) = {x}, ∀x ∈ Ω.

(iii) B(x, δ) ∩ B(y, δ) �= ∅ ⇒ B(y, δ) ⊆ B(x, Cδ), ∀δ ∈ (0, 1/C], where C = Bk
1

and k is chosen so that bk
1 ≤ 1

3 .
(iv) For each U � Ω with U open, δ ∈ (0, 1], the map x 
→ σLeb(U ∩ B(x, δ)) is

continuous.

Fix a compact set K � Ω. In what follows we write A � B for A ≤ CB where C
is a positive constant which may depend on K, but does not depend on the particular
point x ∈ K or the scale δ ∈ (0, 1]. We write A ≈ B for A � B and B � A. There
exist η1, ξ0 ≈ 1 such that ∀x ∈ K:

(v) σLeb(B(x, δ)) ≈ Λ(x, δ), ∀δ ∈ (0, ξ0].
(vi) σLeb(B(x, 2δ)) � σLeb(B(x, δ)), ∀δ ∈ (0, ξ0/2].
(vii) ∀δ ∈ (0, 1], Φx,δ(Bn(η1)) ⊆ Ω is open and Φx,δ : Bn(η1) → Φx,δ(Bn(η1)) is a

C2 diffeomorphism.
(viii) |det dΦx,δ(t)| ≈ Λ(x, δ), ∀t ∈ Bn(η1), δ ∈ (0, 1].
(ix) B(x, ξ0δ) ⊆ Φx,δ(Bn(η1)) ⊆ B(x, δ), ∀δ ∈ (0, 1].
(x) Let Y x,δ

j := Φ∗
x,δX

δ
j , so that Y x,δ

j is a vector field on Bn(η1). Then Y x,δ
j ∈

C∞(Bn(η1);Rn) and

‖Y x,δ
j ‖Cm(Bn(η1);Rn) � 1, ∀m ∈ N,

where the implicit constant may depend on m, but does not depend on x ∈ K
or δ ∈ (0, 1]. Furthermore, Y x,δ

1 (u), . . . , Y x,δ
q (u) span TuBn(η1), uniformly in

x, δ, and u in the sense that

max
j1,...,jn∈{1,...,q}

inf
u∈Bn(η1)

∣
∣
∣det

(

Y x,δ
j1

(u)| · · · |Y x,δ
jn

(u)
)∣
∣
∣ ≈ 1.
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Proof. To facilitate the proof, we introduce some new notation. For y ∈ Ω, y ∈
B(x, δ) = BXδ(x, 1) if and only if ∃γ : [0, 1] → Ω, γ(0) = x, γ(1) = y, γ′(t) =
〈

a(t), Xδ(γ(t))
〉

, where a ∈ L∞([0, 1];Rq) with ‖a‖L∞([0,1];Rq) < 1, we have identified
Xδ with the vector of vector fields Xδ = (Xδ

1 , . . . , Xδ
q ), and 〈·, ·〉 denotes the usual

inner product on R
q.

(i): Let 0 < δ1 ≤ δ2 ≤ 1. Take y ∈ B(x, δ1) so that ∃γ : [0, 1] → Ω, γ(0) = x,
γ(1) = y, γ′(t) =

〈

a(t), Xδ1(γ(t))
〉

, ‖a‖L∞([0,1];Rq) < 1. We have

γ′(t) =
〈

a(t), Xδ1(γ(t))
〉

=
〈

a(t), Tδ1,δ2(γ(t))Xδ2(γ(t))
〉

=
〈

Tδ1,δ2(γ(t))	a(t), Xδ2(γ(t))
〉

.

Since ‖Tδ1,δ2(γ(t))	a‖L∞([0,1];Rq) ≤ ‖a‖L∞([0,1];Rq) < 1, this proves y ∈ B(x, δ2),
completing the proof of (i).

(ii) follows from the hypothesis (III).
(iii): Suppose B(x, δ)∩B(y, δ) �= ∅. This is equivalent to BXδ(x, 1)∩BXδ(y, 1) �=

∅. Since the balls BXδ(x, ·) are metric balls, this implies B(y, δ) = BXδ(y, 1) ⊆
BXδ(x, 3). Thus it suffices to show BXδ(x, 3) ⊆ B(x, Cδ). Suppose z ∈ BXδ(x, 3),
so that ∃γ : [0, 1] → Ω, γ(0) = x, γ(1) = z, γ′(t) =

〈

a(t), 3Xδ(γ(t))
〉

, where
‖a‖L∞([0,1];Rq) < 1.

Take k so large that bk
1 ≤ 1

3 . Then, for δ ∈ (0, B−k
1 ],

γ′(t) =
〈

a(t), A(t)XBk
1 δ(γ(t))

〉

=
〈

A(t)	a(t), XBk
1 δ(γ(t)

〉

,

where
A(t) = 3Sδ(γ(t))SB1δ(γ(t)) · · · SBk−1

1 δ(γ(t)).

Since ‖A‖L∞([0,1];Mq×q) ≤ 3bk
1 ≤ 1, it follows that ‖A	a‖L∞([0,1];Rq) ≤ ‖a‖L∞([0,1];Rq) <

1, and therefore z = γ(1) ∈ B(x, Bk
1δ) = B(x, Cδ), completing the proof of (iii).

(iv) follows from standard ODE results.
For the remaining parts, the goal is to apply Theorems 4.7 and 6.5 and Corol-

lary 6.6 to the list of vector fields Xδ (with ν = σLeb and ξ = 1). Take η ∈ (0, 1],
depending on K and upper bounds for ‖Xδ

j ‖C1(Ω), so that ∀x ∈ K, Xδ
1 , . . . , Xδ

q sat-
isfy C(x, η,Ω). Note that η can be chosen independent of x ∈ K and δ ∈ (0, 1]. Take
δ0 > 0 as in Proposition 4.14 when applied to Xδ

1 , . . . , Xδ
q , with M = Ω. It can be seen

from the proof of Proposition 4.14 that δ0 can be chosen independent of δ ∈ (0, 1].
Finally, note that LXδ

j
ν = div(Xδ

j )ν =: f δ
j ν, where supδ∈(0,1] ‖f δ

j ‖C(Ω) < ∞.
Using the above choices, all of the hypotheses of Theorems 4.7, 6.5 and Corol-

lary 6.6 hold for x0 ∈ K with X1, . . . , Xq replaced by Xδ
1 , . . . , Xδ

q , uniformly for
δ ∈ (0, 1], x0 ∈ K. In particular, any constant which is admissible (of any kind)
in the sense of those results is ≈ 1 in the sense of this theorem (when working
with ν, we only use 1; ν-admissible constants–see Definition 6.2 for the definition of
1; ν-admissible constants).

(vii) is contained in Theorem 4.7.
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(ix): Theorem 4.7 gives ξ2 ≈ 1 (ξ2 < 1) such that

BXδ(x, ξ2) ⊆ Φx,δ(Bn(η1)) ⊆ BXδ(x, 1) = B(x, δ).

Thus, to prove (ix), we wish to show ∃ξ0 ≈ 1 with

B(x, ξ0δ) ⊆ BXd(x, ξ2). (7.2)

Take k ≈ 1 so large that bk
1 ≤ ξ2 and set ξ0 = B−k

1 . Let y ∈ B(x, ξ0δ), so that there
exists γ : [0, 1] → Ω, γ(0) = x, γ(1) = y, γ′(t) =

〈

a(t), Xξ0δ(γ(t))
〉

, with ‖a‖L∞ < 1.
Then,

γ′(t) =
〈

a(t), ξ2A(t)Xδ(γ(t))
〉

=
〈

A(t)	a(t), ξ2X
δ(γ(t))

〉

,

where A(t) = ξ−1
2 Sξ0δ(γ(t))Sξ0B1δ(γ(t)) · · ·Sξ0B

k−1
1 δ(γ(t)); note that ‖A‖L∞([0,1];Mq×q)

≤ 1, and therefore, ‖A	a‖L∞([0,1];Rq) ≤ ‖a‖L∞([0,1];Rq) < 1. It follows that y = γ(1) ∈
BXδ(x, ξ2), completing the proof of (ix).

We claim, for δ1 ≤ δ2,
Λ(x, δ1) � Λ(x, δ2), (7.3)

where the implicit constant can be chosen to depend only on q. Indeed,

Λ(x, δ1) = max
j1,...,jn∈{1,...,q}

∣
∣
∣det

(

Xδ1
j1

(x)| · · · |Xδ1
jn

(x)
)∣
∣
∣

= max
j1,...,jn∈{1,...,q}

∣
∣
∣det

(

(Tδ1,δ2X
δ2)j1(x)| · · · |(Tδ1,δ2X

δ2)jn
(x)
)∣
∣
∣ .

Since ‖Tδ1,δ2(x)‖ ≤ 1, the right hand side is the determinant of a matrix whose
columns are linear combinations (with coefficients bounded by 1) of the vectors
Xδ2

1 (x), . . . , Xδ2
q (x). (7.3) follows.

Next we claim, for c > 0 fixed,

Λ(x, cδ) ≈ Λ(x, δ), δ, cδ ∈ (0, 1], (7.4)

where the implicit constant depends on c. It suffices to prove (7.4) for c < 1. By
(7.3), it suffices to prove (7.4) for c = B−k

2 for some k. We have

Λ(x, δ) = max
j1,...,jn∈{1,...,q}

∣
∣
∣det

(

Xδ
j1(x)| · · · |Xδ

jn
(x)
)∣
∣
∣

= max
j1,...,jn∈{1,...,q}

∣
∣
∣det

(

(AXcδ)j1(x)| · · · |(AXcδ)jn
(x)
)∣
∣
∣ , (7.5)

where A(x) = RB−1
2 δ(x)RB−2

2 δ(x) · · ·RB−k
2 δ(x). Since supx∈Ω ‖A(x)‖Mq×q ≤ b−k

2 � 1,
it follows that the right hand side of (7.5) is the determinant of a matrix whose
columns are linear combinations (with coefficients whose magnitudes are � 1) of the
vectors Xcδ

1 (x), . . . , Xcδ
q (x). It follows that Λ(x, δ) � Λ(x, cδ). Combining this with

(7.3), (7.4) follows.
Corollary 6.6 shows

σLeb(BXδ(x, ξ2)) ≈ Λ(x, δ), (7.6)
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where we have used that (thinking of σLeb as a density) σLeb(V1(x), . . . , Vn(x)) =
|det(V1(x)| · · · |Vn(x))|. Combining this with (7.4) and (7.2), we have

σLeb(B(x, ξ0δ)) ≤ σLeb(BXδ(x, ξ2)) ≈ Λ(x, δ) ≈ Λ(x, ξ0δ). (7.7)

Conversely, using (7.6) again we have,

Λ(x, δ) ≈ σLeb(BXδ(x, ξ2)) ≤ σLeb(BXδ(x, 1)) = σLeb(B(x, δ)). (7.8)

Combining (7.7) and (7.8) proves (v). (vi) follows from (v) and (7.4).
Since Φ∗

x,δσLeb = | det dΦx,δ|σLeb, (viii) follows from Theorem 6.5 (iii) and Corol-
lary 6.6. (x) follows directly from Theorem 4.7. ��

Remark 7.7. One can generalize the multi-parameter geometries from Section 7.2
in a similar way by changing the above variable δ ∈ (0, 1] to a vector, δ ∈ [0, 1]ν for
some ν ∈ N, and proceeding in a a similar way.

Remark 7.8. The most artificial hypothesis in this section is (II). Indeed, it is not
directly related to any of the hypotheses of a space of homogeneous type. This
hypothesis can be replaced with weaker hypotheses and we can still achieve the
same result. In fact, the main purposes of (II) are to ensure the existence of η
and δ0 (independent of x ∈ K, δ ∈ (0, 1]) in our application of Theorem 4.7, and to
estimate LXδ

j
σLeb. One could just directly assume the existence of such constants and

estimates, or assume any number of other hypotheses which imply their existence,
depending on the application at hand.

7.4 Diffeomorphism invariance and nonsmooth vector fields. An impor-
tant way in which the results in this paper are stronger than previously mentioned
works is that the statements of the main thoerems are completely invariant under
C2 diffeomorphisms (see Section 3.2.1). This is true quantitatively: all of the esti-
mates depend on quantities which are invariant under arbitrary C2 diffeomorphisms.
In previous works like [NSW85,TW03,Str11,MM12] the estimates were in terms of
Cm type norms of the vector fields in some fixed coordinate system.11 Thus, the
vector fields had to be a priori “smooth” and “not large” in some fixed coordinate
system. The concepts of “smooth” and “not large” are not invariant under C2 dif-
feomorphisms. Under the assumptions of Theorem 4.7, we conclude the existence
of a coordinate system in which the vector fields are smooth and not large, but we
need not assume it. This allows us to address some settings where the vector fields
are given in a coordinate system in which they are large and/or are merely C1;
in particular, unlike previous works, we only use the qualitative assumption that
the vector fields are C1, and our estimates do not depend on the C1 norms of the
coefficients in a coordinate system.

11 [MM12] works with Lipschitz vector fields to obtain some results with less regularity than the
other mentioned works. It is possible that the ideas from that paper could be combined with the
ideas from this paper to prove results like the ones in this paper, but with Lipschitz vector fields
instead of C1 vector fields; though we do not pursue this here.
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When considering only the smoothness (and not the size) aspect of this diffeo-
morphism invariance, these results can be rephrased as the qualitative results in
Section 3.1; the methods from previous works on this subject cannot yield such the-
orems, since they require the vector fields to be smooth in the first place. In fact,
the qualitative results in this series seem to be of a new type; though there may be
some connection to Hilbert’s fifth problem.

In the series of papers [SS11,Str12,SS13,SS12,Str17], the second author and
Stein used the scaling techniques from [Str11] to study singular Radon transforms
of the form

Tf(x) = ψ(x)
∫

f(γ(t, x))K(t) dt,

where γ(t, x) is a germ of a smooth function defined near (0, 0), γ(t, x) : RN
0 ×R

n
0 →

R
n with γ(0, x) ≡ x (we have used R

m
0 to denote a small neighborhood of 0 ∈ R

m),
and K(t) is a “multi-parameter singular kernel” supported near 0 ∈ R

N . Conditions
were given so that the above operator was bounded on Lp. Because the theory was
based on [Str11], it was required that γ(t, x) be smooth and supported very near
(0, 0). One could replace every application of the results from [Str11] in these papers
with Theorem 4.7 to obtain more general results where γ is not necessarily required
to be smooth or supported very close to 0. In fact, the results can be made completely
invariant under arbitrary C2 diffeomorphisms, and so the concepts of smooth and
small do not have intrinsic meaning. Similar remarks hold for many other settings
where methods from [NSW85,TW03,Str11] are used.

Large sub-Riemannian balls have been studied in some special cases before. See,
for example, the discussion of model pseudoconvex boundaries in [NS01, Section 4]
as well as [Pet14,DP18]. The approach in this paper allows us to unify the ideas
behind these large sub-Riemannian balls with the more robust theory of small sub-
Riemannian balls.

7.5 Several complex variables. As described in Section 7.3, the results in
this paper can be used to study generalized versions of sub-Riemannian geometries,
and as elucidated by Charpentier and Dupain [CD14], these geometries arise when
studying ∂-problems. When applying the results from this series to such questions,
a difficulty arises. We turn to describing this issue, and how it will be addressed in
a future work of the second author.

Let M be a complex manifold of dimension n, and for each δ ∈ (0, 1], let
Lδ

1, . . . , L
δ
q be C1 complex vector fields on M such that ∀ζ ∈ M , span{Lδ

1(ζ), . . . ,
Lδ

q(ζ)} = T 0,1
ζ M . Let Xδ

1 , . . . , Xδ
2q denote the list of real vector fields Re(Lδ

1), . . . ,
Re(Lδ

q), Im(Lδ
1), . . . , Im(Lδ

q). We assume that the list Xδ
1 , . . . , Xδ

2q locally satisfies the
hypotheses of Section 7.3. Then, Theorem 7.6 applies to show that the balls B(x, δ)
defined in that section locally give M the structure of a space of homogeneous type12,

12 Since M is an abstract manifold, we do not have a natural choice of density σLeb on M . However,
one may instead use any strictly positive C1 density on M and obtain the same results. All such
choices of density are equivalent for our purposes.
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and we obtain scaling maps Φx,δ : B2n(η1) → B(x, δ) as in that theorem. In partic-
ular, by Theorem 7.6 (x), the maps Φx,δ “rescale” the vector fields Xδ

1 , . . . , Xδ
2q so

that they are smooth and span the tangent space, uniformly for x in compact sets
and δ ∈ (0, 1].

In other words, Φ∗
x,δL

δ
1, . . . ,Φ

∗
x,δL

δ
q, Φ

∗
x,δL

δ
1, . . . ,Φ

∗
x,δL

δ
q are smooth and span the

complexified tangent space, uniformly for x in compact sets and δ ∈ (0, 1]. The
hope is to apply techniques from several complex variables at the unit scale to these
rescaled vector fields, to be able to conclude results at every scale δ ∈ (0, 1]. However,
there is one key component that is missing in the complex setting. We identify R

2n

with C
n via the map (x1, . . . , x2n) 
→ (x1 +ixn+1, . . . , xn +ix2n). To be able to apply

results from complex analysis, we would need that Φ∗
x,δL

δ
1, . . . ,Φ

∗
x,δL

δ
q (thought of

as vector fields on the ball of radius η1 in C
n) are still T 0,1 vector fields. It is easy

to see that this is equivalent to the map Φx,δ being holomorphic. However, the best
one can say about the maps constructed in this series is that they are C2.

One therefore wishes to obtain the same results as this paper, but with a different
map Φ, where we can also conclude that Φ is holomorphic. In the past, this has been
achieved in special cases by using ad hoc methods for the particular problem at
hand (e.g., by using non-isotropic dilations determined by the Taylor series of some
ingredients in the problem)–see, for example, [NRSW89, Section 3], [CD14, Section
3.3.2], and [CD06, Section 2.1]. However, using such ad hoc methods does not allow
one to proceed in the generality of this paper, and can obfuscate the underlying
mechanism of the problem.

In a forthcoming paper, the second author will address this issue, and obtain
appropriate analogs of results in this series in the complex setting; which can be
seen as a quantitatively diffeomorphic invariant version of the classical Newlander–
Nirenberg theorem [NN57]. The results and methods of this series are the first step
in addressing this complex setting.

When we move to the complex setting (and more general settings which will be
discussed in a future paper), the ODE methods of this paper are no longer sufficient
to obtain even non-sharp results, and one must move to PDE methods. In particular,
Zygmund spaces are the right scale of spaces to discuss any of the results in the
complex setting.

8 Function Spaces, Revisited

In this section, we state and prove the basic results we need concerning the function
spaces introduced in Section 2. We begin with several straightforward inclusions of
these spaces, which we state in the next lemma. For the rest of this section, we take
the setting of Section 2.2.

Lemma 8.1. (i) For 0 ≤ s1 ≤ s2 ≤ 1, m ∈ N, ‖f‖C
m,s1
X (M) ≤ 3‖f‖C

m,s2
X (M).

(ii) ‖f‖Cm,1
X (M) ≤ ‖f‖Cm+1

X (M).
(iii) For s ∈ (0, 1], m ∈ N, ‖f‖C s+m

X (M) ≤ 5‖f‖Cm,s
X (M).
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(iv) For 0 < s1 ≤ s2 < ∞, ‖f‖C s1
X (M) ≤ 15‖f‖C s2

X (M).
(v) If U ⊆ M is an open set, then ‖f‖Cm,s

X (U) ≤ ‖f‖Cm,s
X (M) and ‖f‖C s

X(U) ≤
‖f‖C s

X(M).

Proof. For (i), it suffices to prove the case m = 0. We have,

‖f‖C
0,s1
X

= ‖f‖C(M) + sup
x �=y

ρ(x, y)−s1 |f(x) − f(y)|

≤ ‖f‖C(M) + sup
x �=y

min{ρ(x, y), 1}−s1 |f(x) − f(y)|

≤ ‖f‖C(M) + sup
x �=y

min{ρ(x, y), 1}−s2 |f(x) − f(y)|

≤ 3‖f‖C(M) + sup
x �=y

ρ(x, y)−s2 |f(x) − f(y)| ≤ 3‖f‖C
0,s2
X

,

proving (i).
For (ii), it suffices to prove the case m = 0. Let x �= y ∈ M with ρ(x, y) < ∞,

fix ε > 0, and let δ = ρ(x, y) + ε. Pick γ : [0, 1] → M with γ(0) = x, γ(1) = y,
γ′(t) =

∑q
j=1 aj(t)δXj(γ(t)), ‖

∑
|aj |2‖L∞([0,1]) < 1. Then we have,

ρ(x, y)−1|f(x) − f(y)|

= ρ(x, y)−1

∣
∣
∣
∣

∫ 1

0

∑

aj(t)δ(Xjf)(γ(t)) dt

∣
∣
∣
∣

≤ δ

ρ(x, y)

∥
∥
∥
∥

max
1≤j≤q

|aj(t)|
∥
∥
∥
∥

L∞([0,1])

q
∑

j=1

‖Xjf‖C(M)

≤ δ

ρ(x, y)

q
∑

j=1

‖Xjf‖C(M) =
ρ(x, y) + ε

ρ(x, y)

q
∑

j=1

‖Xjf‖C(M)
ε→0−−→

q
∑

j=1

‖Xjf‖C(M).

If ρ(x, y) = ∞, then ρ(x, y)−1|f(x) − f(y)| = 0 ≤
∑

j ‖Xjf‖C(M). It follows that
‖f‖C0,1

X (M) ≤ ‖f‖C1
X(M), completing the proof of (ii).

For (iii), it suffices to prove the case m = 0. Let γ ∈ PM
X,s/2(h). Then

ρ(γ(2h), γ(h)), ρ(γ(h), γ(0)) < h, and so

h−s|f(γ(2h)) − 2f(γ(h)) + f(γ(0))| ≤ 2 sup
ρ(x,y)<h

h−s|f(x) − f(y)|

≤ 2 sup
x,y∈M,x �=y

ρ(x, y)−s|f(x) − f(y)|.

Combining this with ‖f‖C
0,s/2
X (M) ≤ 3‖f‖C0,s

X (M) (by (i)), (iii) follows.
For (iv) it suffices to prove the case when s1 ∈ (0, 1]. When s2 ∈ (0, 1], as

well, then it follows easily from the definitions that ‖f‖C s1
X (M) ≤ 5‖f‖C s2

X (M). When
s2 > 1, we use (iii), (i), and (ii) to see

‖f‖C s1
X (M) ≤ 5‖f‖C

0,s1
X (M) ≤ 15‖f‖C0,1

X (M) ≤ 15‖f‖C1
X(M) ≤ 15‖f‖C s2

X (M),

completing the proof of (iv). (v) follows easily from the definitions. ��
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Remark 8.2. Given the analogy with Euclidean spaces, one expects the reverse
inequality to Lemma 8.1 (iii), when s ∈ (0, 1); namely ‖f‖Cm,s

X (M) � ‖f‖C s+m
X (M).

Under additional hypotheses, this is true locally. See the second paper in this series
for details.

Proposition 8.3. The spaces Cm,s
X (M), C s

X(M), Cm,s(Ω), and C s(Ω) are algebras.
In fact, we have for m ∈ N, s ∈ [0, 1],

‖fg‖Cm,s
X (M) ≤ Cm,q‖f‖Cm,s

X (M)‖g‖Cm,s
X (M),

where Cm,q is a constant depending only on m and q. And for m ∈ N, s ∈ (m, m+1],

‖fg‖C s
X(M) ≤ Cm,q‖f‖C s

X(M)‖g‖C s
X(M). (8.1)

Moreover, these algebras have multiplicative inverses for functions which are bounded
away from zero. If f ∈ Cm,s

X (M) with infx∈M |f(x)| ≥ c0 > 0 then f(x)−1 = 1
f(x) ∈

Cm,s
X (M) with

‖f(x)−1‖Cm,s
X (M) ≤ C,

where C can be chosen to depend only on m, q, c0, and an upper bound for
‖f‖Cm,s

X (M). And for m ∈ N, s ∈ (m, m+1] if f ∈ C s
X(M) with infx∈M |f(x)| ≥ c0 > 0

then f(x)−1 ∈ C s
X(M) with

‖f(x)−1‖C s
X(M) ≤ C, (8.2)

where C can be chosen to depend only on m, q, c0, and an upper bound for ‖f‖C s
X(M).

The same results hold with Cm,s
X (M) replaced by Cm,s(Ω) and C s

X(M) replaced by
C s(Ω) (with n playing the role of q).

Proof. The proofs for Cm,s
X (M) and Cm,s(Ω) are straightforward and standard, so we

focus on the Zygmund spaces. We prove (8.1) by induction on m, where s ∈ (m, m+
1]. We begin with the base case s ∈ (0, 1]. Since we already know ‖fg‖C

0,s/2
X (M) �

‖f‖C
0,s/2
X (M)‖g‖C

0,s/2
X (M), it suffices to show for γ ∈ PM

X,s/2(h),

h−s|f(γ(2h))g(γ(2h)) − 2f(γ(h))g(γ(h)) + f(γ(0))g(γ(0))| ≤ 6‖f‖C s
X(M)‖g‖C s

X(M).

Notice that ρ(γ(h), γ(0)) ≤ h, and therefore |f(γ(h)) − f(γ(0))| ≤ hs/2‖f‖C
0,s/2
X (M).

Thus, we have

h−s|f(γ(2h))g(γ(2h)) − 2f(γ(h))g(γ(h)) + f(γ(0))g(γ(0))|
≤ h−s|f(γ(2h)) − 2f(γ(h)) + f(γ(0))||g(γ(2h))|

+ h−s|2f(γ(h)) − f(γ(0))||g(γ(2h)) − 2g(γ(h)) + g(γ(0))|
+ h−s2|f(γ(h)) − f(γ(0))||g(γ(h)) − g(γ(0))|

≤ ‖f‖C s
X(M)‖g‖C(M) + 3‖f‖C(M)‖g‖C s

X(M) + 2‖f‖C
0,s/2
X (M)‖g‖C

0,s/2
X (M)

≤ 6‖f‖C s
X(M)‖g‖C s

X(M).



1814 B. STOVALL AND B. STREET GAFA

Having proved the base case, (8.1) follows by a straightforward induction, which we
leave to the reader.

We now turn to inverses. We prove (8.2) by induction on m, where s ∈ (m, m+1].
We begin with the base case s ∈ (0, 1]. Let f ∈ C s

X(M) with infx∈M |f(x)| ≥ c0 > 0.
We write A � B for A ≤ CB where C is as in (8.2). Since we already know the
results for Hölder spaces, we have ‖f(x)−1‖C

0,s/2
X (M) � 1. Thus, it suffices to show

for γ ∈ PM
X,s/2(h),
∣
∣
∣
∣

1
f(γ(2h))

− 2
f(γ(h))

+
1

f(γ(0))

∣
∣
∣
∣

=
∣
∣
∣
∣

f(γ(h))f(γ(0)) − 2f(γ(2h))f(γ(0)) + f(γ(2h))f(γ(h))
f(γ(2h))f(γ(h))f(γ(0))

∣
∣
∣
∣
� hs.

Since we have |f(γ(2h))f(γ(h))f(γ(0))| ≥ c3
0 � 1, it suffices to show

|f(γ(h))f(γ(0)) − 2f(γ(2h))f(γ(0)) + f(γ(2h))f(γ(h))| � hs.

But we have

|f(γ(h))f(γ(0)) − 2f(γ(2h))f(γ(0)) + f(γ(2h))f(γ(h))|
≤ |(f(γ(2h)) − 2f(γ(h)) + f(γ(0))) f(γ(h))| + 2

∣
∣f(γ(h))2 − f(γ(2h))f(γ(0))

∣
∣

≤ hs‖f‖C s
X(M)‖f‖C(M) + 2

∣
∣f(γ(h))2 − f(γ(2h))f(γ(0))

∣
∣

� hs + 2
∣
∣f(γ(h))2 − f(γ(2h))f(γ(0))

∣
∣ .

Thus, it suffices to show
∣
∣f(γ(h))2 − f(γ(2h))f(γ(0))

∣
∣ � hs.

But, using that ρ(γ(h), γ(0)) ≤ h, and therefore |f(γ(h))−f(γ(0))| ≤ hs/2‖f‖C
0,s/2
X (M)

� hs/2, we have
∣
∣f(γ(h))2 − f(γ(2h))f(γ(0))

∣
∣

≤ |(f(γ(2h)) − 2f(γ(h)) + f(γ(0))) f(γ(0))| +
∣
∣(f(γ(h)) − f(γ(0))2

∣
∣

� hs + hs � hs,

completing the proof of the base case. Having proved the base case, the inductive
step is straightforward, and we leave it to the reader.

The proofs for C s(Ω) are similar, and we leave them to the reader. ��

Remark 8.4. In the proof of Proposition 8.3, it is used that ‖f‖C0,s/2(Ω) ≤ ‖f‖C s(Ω),
s ∈ (0, 1], which is clearly true because of our nonstandard definition of ‖f‖C s(Ω)

(see Remark 2.1). Even with the more standard definition, for a bounded Lipschitz
domain Ω, one has ‖f‖C0,s/2(Ω) ≤ C‖f‖C s(Ω), however C depends on Ω. Thus, if one
takes the more standard definition, the conclusions of Proposition 8.3 take a more
complicated form.
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Remark 8.5. Lemma 8.1 and Proposition 8.3 hold (with exactly the same proofs) if
M is repalced by BX(x0, ξ), whether or not BX(x0, ξ) is a manifold–see Section 2.2.1.

Proposition 8.6. Let N be another C2 manifold, Y1, . . . , Yq be C1 vector fields on
N , and Φ : N → M be a C1 map such that dΦ(u)Yj(u) = Xj(Φ(u)), ∀u ∈ N . Then,

‖f ◦ Φ‖Cm,s
Y (N) ≤ ‖f‖Cm,s

X (M), m ∈ N, s ∈ [0, 1], (8.3)
‖f ◦ Φ‖C s

Y (N) ≤ ‖f‖C s
X(M), s > 0. (8.4)

Proof. We begin with (8.3). Since Y α(f ◦Φ) = (Xαf)◦Φ, it suffices to prove the case
m = 0. We have a sub-Riemannian metric ρY on N and another sub-Riemannian
metric ρX on M , defined by (2.3). We claim

ρX(Φ(u1), Φ(u2)) ≤ ρY (u1, u2). (8.5)

This is clear if ρY (u1, u2) = ∞. If ρY (u1, u2) < ∞, let δ > ρY (u1, u2). Then,
there exists γ : [0, 1] → N , γ(0) = u1, γ(1) = u2, γ′(t) =

∑
aj(t)δYj(γ(t)),

‖
∑

|aj |2‖L∞([0,1]) < 1. Set γ̃ = Φ ◦ γ. Then, γ̃(0) = Φ(u1), γ̃(1) = Φ(u2), and
γ̃′(t) =

∑
aj(t)δXj(γ̃(t)). This proves ρX(Φ(u1), Φ(u2)) < δ. Taking δ → ρY (u1, u2)

proves (8.5). We conclude, for s ∈ [0, 1],

ρY (u1, u2)−s|f ◦ Φ(u1) − f ◦ Φ(u2)| ≤ ρX(Φ(u1), Φ(u2))−s|f(Φ(u1)) − f(Φ(u2))|.

(8.3) follows.
We turn to (8.4). Again, since Y α(f ◦Φ) = (Xαf)◦Φ, it suffices to prove (8.4) for

s ∈ (0, 1]. That ‖f ◦ Φ‖C
0,s/2
Y (N) ≤ ‖f‖C

0,s/2
X (M) follows from (8.3). Furthermore, it

follows easily from the definitions that for γ ∈ PN
Y,s/2(h), we have Φ ◦ γ ∈ PM

X,s/2(h).
Using this, (8.4) for s ∈ (0, 1] follows immediately. ��

8.1 Comparison with Euclidean function spaces. Fix η ∈ (0, 1] and let
Y1, . . . , Yq be vector fields on Bn(η). When Y1, . . . , Yq span the tangent space at every
point of Bn(η) and are sufficiently smooth, we have Cm,s

Y (Bn(η)) = Cm,s(Bn(η)) and
C s

Y (Bn(η)) = C s(Bn(η)). In what follows, we state and prove quantitative versions
of these equalities.

We write Yj =
∑n

k=1 ak
j

∂
∂tk

and assume ∂
∂tk

=
∑q

j=1 bj
kYj , where ak

j ∈ C1(Bn(η)),
bj
k ∈ C(Bn(η)).

Definition 8.7. In analogy with Definition 2.2, for m < 0 we define Cm,s(Bn(η)) :=
C(Bn(η)), with equality of norms. For s ∈ (−1, 0] we define C s(Bn(η)) :=
C0,(s+1)/2(Bn(η)), with equality of norms.

Definition 8.8. We say C is a 0:E-admissible constant13 if C can be chosen to
depend only on upper bounds for q and ‖ak

j ‖C(Bn(η)), ‖bj
k‖C(Bn(η)), ∀j, k.

13 Here we are using the E to stand for Euclidean, and to help differentiate these admissible
constants from the other admissible constants in this paper.
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Definition 8.9. For m ∈ Z, s ∈ [0, 1], if we say C is an 〈m, s:E〉-admissible constant
if ak

j , b
j
k ∈ Cm,s(Bn(η)), ∀j, k, and C can be chosen to depend only on upper bounds

for q, m, and ‖ak
j ‖Cm,s(Bn(η)), ‖bj

k‖Cm,s(Bn(η)), ∀j, k.

Definition 8.10. For s > −1 we say C is an {s: E}-admissible constant if ak
j , b

j
k ∈

C s(Bn(η)), ∀j, k and C can be chosen to depend only on s and upper bounds for q,
η−1, and ‖ak

j ‖C s(Bn(η)), ‖bj
k‖C s(Bn(η)), ∀j, k.

As before, we define A �〈m,s: E〉 B to be A ≤ CB where C is an 〈m, s: E〉-
admissible constant. We similarly define ≈〈m,s: E〉, �{s: E}, and ≈{s: E}. Recall, the
vector fields Y1, . . . , Yq induce a metric ρ on Bn(η) via (2.3).

Lemma 8.11. ρ(x, y) ≈0:E |x − y|.

Proof. This follows immediately from the assumptions. ��

Proposition 8.12. For m ∈ N, s ∈ [0, 1],

‖f‖Cm,s(Bn(η)) ≈〈m−1,s: E〉 ‖f‖Cm,s
Y (Bn(η)), (8.6)

and for s > 0,

‖f‖C s(Bn(η)) ≈{s−1: E} ‖f‖C s
Y (Bn(η)). (8.7)

Proof. We use Proposition 8.3 freely in this proof. In this proof, the norms ‖f‖Cm,s
Y

,
‖f‖Cm,s , ‖f‖C s

Y
, and ‖f‖C s are always taken to be over the domain Bn(η) unless oth-

erwise mentioned. We prove (8.6) by induction on m. The base case,
‖f‖C0,s(Bn(η)) ≈0:E ‖f‖C0,s

Y (Bn(η)), follows immediately from Lemma 8.11. We as-
sume (8.6) for m − 1 and prove it for m. We have

‖f‖Cm,s
Y

= ‖f‖Cm−1,s
Y

+
q
∑

j=1

‖Yjf‖Cm−1,s
Y

≈〈m−2,s: E〉 ‖f‖Cm−1,s +
q
∑

j=1

‖Yjf‖Cm−1,s

≤ ‖f‖Cm−1,s +
q
∑

j=1

n∑

k=1

‖ak
j ∂xk

f‖Cm−1,s �〈m−1,s: E〉 ‖f‖Cm,s .

For the reverse inequality,

‖f‖Cm,s ≤ ‖f‖Cm−1,s +
n∑

k=1

‖∂xk
f‖Cm−1,s ≤ ‖f‖Cm−1,s +

n∑

k=1

q
∑

j=1

‖bj
kYjf‖Cm−1,s

�〈m−1,s: E〉 ‖f‖Cm−1,s +
q
∑

j=1

‖Yjf‖Cm−1,s �〈m−2,s: E〉 ‖f‖Cm−1,s
Y

+
q
∑

j=1

‖Yjf‖Cm−1,s
Y

= ‖f‖Cm,s
Y

.

This completes the proof of (8.6).
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We prove (8.7) by induction on m, where s ∈ (m, m + 1]. We begin with the
base case, m = 0, and thus s ∈ (0, 1]. First we show �{s−1: E}. Take 0 �= h ∈ R

n,
and x ∈ Ωh (where Ω = Bn(η)). Set γ(t) = x + tθ, where θ = h/|h|. Note γ′(t) =
∑n

k=1 θk
∂

∂xk
=
∑q

j=1

∑n
k=1 θkb

j
k(γ(t))Yj(γ(t)). Since ‖bj

k‖C0,s/2 �{s−1: E} 1, we have

‖bk
j ◦ γ‖C0,s/2 �{s−1: E} 1, and therefore γ ∈ PBn(η)

Y,s/2 (C|h|), where C �{s−1: E} 1.
Hence,

|h|−s|f(x + 2h) − 2f(x + h) + f(x)|
�{s−1: E} (C|h|)−s|f(γ(2|h|)) − 2f(γ(|h|)) + f(γ(0))|
≤ ‖f‖C s

Y (Bn(η)).

Since we have already shown ‖f‖C0,s/2 ≈{s−1: E} ‖f‖C
0,s/2
Y

(by (8.6)), the �{s−1: E}
direction of (8.7) follows.

We turn to �{s−1: E}. We already have ‖f‖C
0,s/2
Y

≈{s−1: E} ‖f‖C0,s/2 ≤ ‖f‖C s

(by (8.6)). Fix h > 0 and γ ∈ PBn(η)
Y,s/2 (h). Note γ′(t) =

∑q
j=1 dj(t)Yj(γ(t)) =

∑q
j=1

∑n
k=1 dj(t)ak

j (γ(t)) ∂
∂xk

, with
∑

‖dj‖2
C0,s/2([0,2h]) < 1. Since we also have

‖ak
j ‖C0,s/2 �{s−1: E} 1, it follows that ‖γ‖C1,s/2([0,2h]) �{s−1: E} 1. Define γ̃ : [0, 2h] →

Bn(η) by γ̃(t) = (t/2h)γ(2h) + (1 − t/2h)γ(0).
We claim that

|γ(t) − γ̃(t)| �{s−1: E} h1+s/2. (8.8)

Indeed,

|γ̃(t) − γ(t)| = t

∣
∣
∣
∣

γ(2h) − γ(0)
2h

− γ(t) − γ(0)
t

∣
∣
∣
∣
= t|γ′(c1) − γ′(c2)|,

by the mean value theorem, where c1, c2 ∈ [0, 2h]. Since t ∈ [0, 2h], it follows that
|γ(t) − γ̃(t)| �{s−1: E} h1+s/2, by using the estimate ‖γ‖C1,s/2([0,2h]) �{s−1: E} 1.

Next we claim that

‖f‖C0,s/(1+s/2)(Bn(η)) �{s−1: E} ‖f‖C s(Bn(η)). (8.9)

To prove (8.9) we use

‖f‖C0,s/(1+s/2)(Bn(η)) ≈ ‖f‖C s/(1+s/2)(Bn(η)), (8.10)

where the implicit constants depend on s, n, and an upper bound for η−1 (here we use
s/(1 + s/2) ∈ (0, 1); (8.10) does not hold when the exponent equals 1). Then, since
0 < s/(1 + s/2) < s ≤ 1, we have ‖f‖C s/(1+s/2)(Bn(η)) ≤ 5‖f‖C s(Bn(η)) (this follows
immediately from the definitions) and (8.9) follows. (8.10) is classical; indeed, we
first consider the case when η = 1. The � part of (8.10) follows immediately from the
definitions. For the � part when η = 1, see [Tri06, Theorem 1.118 (i)]–by choosing
M = 1, 2 in that theorem, the � part of (8.10) follows, for η = 1, with implicit
constant depending only on s and n. Finally, a simple scaling argument establishes
(8.10) for general η > 0, which we leave to the reader.
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Note that γ̃(t) is a line with |γ̃(2h) − γ̃(0)| ≤ 2h‖γ‖C1([0,2h]) �{s−1: E} h; and
therefore |f(γ̃(2h)) − 2f(γ̃(h)) + f(γ̃(0))| �{s−1: E} hs‖f‖C s . We combine this with
(8.8) and (8.9) to see:

|f(γ(2h)) − 2f(γ(h)) + f(γ(0))|
≤ |f(γ̃(2h)) − 2f(γ̃(h)) + f(γ̃(0))| + 2|f(γ(h)) − f(γ̃(h))|
�{s−1: E} hs‖f‖C s + |γ(h) − γ̃(h)|s/(1+s/2)‖f‖C0,s/(1+s/2)

�{s−1: E} hs‖f‖C s .

This proves ‖f‖C s
Y

�{s−1: E} ‖f‖C s , and completes the proof for the base case of
(8.7). From here the inductive step follows just as in the inductive step for (8.6),
and we leave it to the reader. ��

9 Proofs

We turn to the proofs of the main results of this paper. The heart of this paper is the
study of a certain ODE which arises in canonical coordinates; this is presented in
Section 9.1. Then we present a quantitative version of a special case of the Inverse
Function Theorem in Section 9.2. We then prove the main result (Theorem 4.7)
in Section 9.3. Next, we prove the results concerning densities from Section 6 in
Section 9.4. Finally, we prove Proposition 4.14 in Section 9.5.

9.1 An ODE. The quantitative study of canonical coordinates is closely tied
to the study of the following ODE, defined for an n × n matrix A(u), depending on
u ∈ Bn(η) for some η > 0. Write u = rθ, r > 0, θ ∈ Sn−1. The ODE is:

∂

∂r
rA(rθ) = −A(rθ)2 − C(rθ)A(rθ) − C(rθ), (9.1)

where C(u) ∈ C(Bn(η);Mn×n) is a given function. That this ODE arises in the
study of cannonical coordinates is classical (see, for example, [Che46, p. 155] for
the derivation of a similar ODE); however the detailed study of the ODE to prove
regularity properties in canonical coordinates was pioneered by Tao and Wright
[TW03].

In Section 9.1.1 we show how this ODE arises in cannonical coordinates. Because
our vector fields X1, . . . , Xq are merely assumed to be C1, there are some slight
technicalities which we deal with in that section. In Section 9.1.2 we prove the
regularity properties of solutions to this ODE.

9.1.1 Derivation of the ODE. Let X1, . . . , Xn be C1 vector fields on an
n-dimensional C2 manifold M . Fix x ∈ M and ε > 0 and suppose:

• X1, . . . , Xn span the tangent space at every point of M .
• Φ(u) := eu1X1+u2X2+···+unXnx exists for u ∈ Bn(ε).



GAFA COORDINATES ADAPTED TO VECTOR FIELDS: CANONICAL COORDINATES 1819

Write [Xj , Xk] =
∑n

l=1 cl
j,kXl. Since X1, . . . , Xn form a basis for the tangent space

of M at every point, cl
j,k ∈ C(M) are uniquely defined. Classical theorems show that

Φ is C1 (since X1, . . . , Xn are).
Let U ⊆ M and V ⊆ Bn(ε) be open sets such that Φ|V : V → U is a C1

diffeomorphism. Let Yj = Φ|∗V Xj so that Yj is a C0 vector field on V . Write,

Yj =
∂

∂uj
+

n∑

k=1

ak
j (u)

∂

∂uk
, (9.2)

where ak
j ∈ C(V ). Let A(u) denote the n×n matrix with j, k component ak

j (u), and
let C(u) denote the n × n matrix with j, k component

∑

l ulc
k
j,l ◦ Φ(u). We write u

in polar coordinates as u = rθ, r ≥ 0.

Proposition 9.1. In the above setting, A(u) satisfies the differential equation

∂

∂r
rA(rθ) = −A(rθ)2 − C(rθ)A(rθ) − C(rθ). (9.3)

In particular, ∂
∂rrA(rθ) exists in the classical sense.

Lemma 9.2. Proposition 9.1 holds in the special case when M is a C∞ manifold
and X1, . . . , Xn are C∞ vector fields on M .

Proof. When X1, . . . , Xn are C∞, then Φ is C∞ and Φ|V : V → Φ(V ) is a C∞

diffeomorphism. We conclude that Y1, . . . , Yn are C∞ vector fields. Furthermore,
[Yj , Yk] =

∑

l c̃
l
j,kYl. where c̃l

j,k = cl
j,k ◦ Φ.

Note that dΦ(rθ)r ∂
∂r = rdΦ(rθ) ∂

∂r = rθ · X(Φ(rθ)), since Φ(rθ) = er(θ·X)x, and
we are identifying X with the vector of vector fields (X1, . . . , Xn). Writing this in
Cartesian coordinates, we have

n∑

j=1

uj
∂

∂uj
=

n∑

j=1

ujYj(u). (9.4)

Taking the Lie bracket of (9.4) with Yi, we obtain
n∑

j=1

(

(Yiuj)∂uj
+ uj [Yi, ∂uj

]
)

=
n∑

j=1

((Yiuj)Yj + uj [Yi, Yj ])

=
n∑

j=1

(

(Yiuj)Yj + uj

n∑

l=1

c̃l
i,j(u)Yl

)

. (9.5)

We re-write (9.5) as
⎛

⎝

n∑

j=1

uj [∂uj
, Yi − ∂ui

]

⎞

⎠+ Yi − ∂ui
= −

⎛

⎝

n∑

j=1

((Yi − ∂ui
)(uj)) (Yj − ∂uj

)

⎞

⎠

−
n∑

j=1

n∑

l=1

uj c̃
l
i,j(u)Yl. (9.6)
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Plugging (9.2) into (9.6), we have

n∑

j=1

n∑

k=1

uj(∂uj
ak

i )∂uk
+

n∑

k=1

ak
i ∂uk

= −
n∑

k=1

n∑

j=1

aj
ia

k
j ∂uk

−
n∑

k=1

n∑

j=1

uj c̃
k
i,j∂uk

−
n∑

l=1

n∑

k=1

n∑

j=1

uj c̃
l
i,ja

k
l ∂uk

.

Taking the ∂uk
component of the above, and writing 1 +

∑n
j=1 uj∂uj

= ∂rr, we have

∂rra
k
i = −

n∑

j=1

aj
ia

k
j −

n∑

j=1

uj c̃
k
i,j −

n∑

l=1

⎛

⎝

n∑

j=1

uj c̃
l
i,j

⎞

⎠ ak
l .

This is exactly (9.3) and completes the proof. ��

Proof of Proposition 9.1. By a classical theorem of Whitney, there is a C∞ structure
on M compatible with its C2 structure, so we may assume M is a C∞ manifold.
Pick14 Ṽ � V and Ũ � U open sets with Φ|Ṽ : Ṽ → Ũ a C1 diffeomorphism. Fix
u0 ∈ Ṽ . We will prove the result with V replaced by Bn(u0, δ0) for some δ0 > 0, and
the result will follow as the conclusion is local.

Fix ε′ ∈ (0, ε) so large that Ṽ ⊆ Bn(ε′). Let Xσ
j be smooth vector fields on M

such that Xσ
j → Xj in C1 as σ → 0. Define

Φσ(u) = eu1Xσ
1 +···+unXσ

n x.

Then, for σ sufficiently small, Φσ(u) is defined for u ∈ Bn(ε′), and Xσ
1 , . . . , Xσ

n form
a basis for the tangent space at every point of a neighborhood of the closure of
Φσ(Bn(ε′)). Thus, we may write [Xσ

i , Xσ
j ] =

∑

k ck,σ
i,j Xσ

k , with ck,σ
i,j → cl

i,j in C0 as
σ → 0. Also, Φσ → Φ in C1(Bn(ε′)) as σ → 0, by standard theorems.

For σ sufficiently small, | det dΦσ(u0)| ≥ 1
2 | det dΦ(u0)| > 0. The Inverse Function

Theorem shows that there is a δ0 > 0 (independent of σ) so that for σ small,
Φσ|Bn(u0,δ0) is a diffeomorphism onto its image.

Define Aσ and Cσ in the obvious way on Bn(u0, δ0), by using the vector fields
Xσ

1 , . . . , Xσ
n . We have that Aσ → A and Cσ → C in C0(Bn(u0, δ0)). Furthermore,

by Lemma 9.2, ∂rrAσ = −A2
σ −CσAσ −Cσ. Taking the limit as σ → 0, we find that

∂rrA exists in the classical sense and ∂rrA = −A2 − CA − C, completing the proof.
��

For another proof of Proposition 9.1 in the special case where ε is assumed to be
small, see [MM13b, Appendix A].

14 Recall, Ṽ � V means that Ṽ is a relatively compact susbet of V .
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9.1.2 Regularity properties. In this section, we discuss the existence, uniqueness,
and regularity of solutions to (9.1) satisfying A(0) = 0. Some of this was done in
[Str11], however we provide a complete proof here.

To facilitate the proof, we introduce a family of function spaces on Bn(η).
Throughout this section, for a matrix A, we write |A| to denote the operator norm
of A.

Fix η > 0, we are interested in solutions A(x) ∈ C(Bn(η);Mn×n) to (9.1) (in this
section, we use the variable x in place of u). For l ∈ N set

Ωl := {(x, h) ∈ Bn(η) × (Rn \ {0}) : x + jh ∈ Bn(η), 0 ≤ j ≤ l} .

Note that Ω0 := Bn(η)× (Rn \{0}). For h ∈ R
n \{0} set ΔhA(x) = A(x+h)−A(x)

and Δl
hA(x) = (Δh)lA(x). Note that Δl

hA(x) is defined precisely for (x, h) ∈ Ωl.
Without explicitly mentioning it, we will repeatedly use the fact that if (x, h) ∈ Ωl

and s ∈ (0, 1], then (sx, sh) ∈ Ωl.
Let ω : (0, ∞) → (0, ∞) be a non-decreasing function and for l, m ∈ N set

‖A‖Cm,l,ω :=
∑

|β|≤m

l∑

j=0

sup
(x,h)∈Ωj

ω(|h|)−j
∣
∣
∣Δj

h∂β
xA(x)

∣
∣
∣ ,

Cm,l,ω :=
{

A ∈ Cm(Bn(η);Mn×n) : ‖A‖Cm,l,ω < ∞
}

.

Note that Cm,l,ω is a Banach space, and when l = 0, ω does not play a role.

Remark 9.3. We are particularly interested in the following special cases

Cm(Bn(η);Mn×n) = Cm,0,ω, Cm,s(Bn(η);Mn×n) = Cm,1,ωs ,

Cm+s(Bn(η);Mn×n) = Cm,2,ωs/2 ,

with equality of norms, where ωs(h) = hs.

Proposition 9.4. Let C ∈ C(Bn(η);Mn×n) be given with C(0) = 0. Suppose
|C(x)| ≤ D|x|, for x ∈ Bn(η). Then, if η ≤ (10D)−1, there exists a unique A ∈
C0(Bn(η);Mn×n) with A(0) = 0 satisfying (9.1). This unique solution satisfies:

|A(x)| ≤ 5
8
D|x| and |A(x)| ≤ 1

16
, ∀x ∈ Bn(η). (9.7)

Furthermore, for this solution A,

C ∈ Cm,l,ω ⇒ A ∈ Cm,l,ω, ∀m, l, ω,

and

‖A‖Cm,l,ω ≤ Kn,m,l,ω,

where Kn,m,l,ω can be chosen to depend only on n, m, l, and an upper bound for
‖C‖Cm,l,ω .
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The rest of this section is devoted to the proof of Proposition 9.4. We begin with
several lemmas.

Lemma 9.5. For j ≤ m, k ≤ l, Cm,l,ω ↪→ Cj,k,ω and

‖A‖Cj,k,ω ≤ ‖A‖Cm,l,ω . (9.8)

If A, B ∈ Cm,l,ω, then AB ∈ Cm,l,ω and

‖AB‖Cm,l,ω ≤ Cm,l‖A‖Cm,l,ω‖B‖Cm,l,ω , (9.9)

where Cm,l can be chosen to depend only on m and l.

Proof. The inclusion and inequality (9.8) follow immediately from the definitions,
thus we prove only the algebra property and (9.9).

For A, B ∈ Cm,l,ω and 0 ≤ j ≤ l, |β| ≤ m, we have ∂β
xΔj

h(AB) is a constant
coefficient linear combination of terms of the form

τk1h

(

Δj1
h ∂β1

x A
)

τk2h

(

Δj2
h ∂β2

x B
)

, (9.10)

where τhA(x) = A(x + h), j1 + j2 = j, 0 ≤ k1 ≤ j2, 0 ≤ k2 ≤ j1, β1 + β2 = β. Note
that, since 0 ≤ k1 ≤ j2, 0 ≤ k2 ≤ j1, and j1 + j2 = j ≤ l, the expression in (9.10) is
defined for (x, h) ∈ Ωl. Finally,

∣
∣
∣ω(|h|)−jτk1h

(

Δj1
h ∂β1

x A
)

τk2h

(

Δj2
h ∂β2

x B
)∣
∣
∣

=
∣
∣
∣τk1h

(

ω(|h|)−j1Δj1
h ∂β1

x A
)

τk2h

(

ω(|h|)−j2Δj2
h ∂β2

x B
)∣
∣
∣

≤ ‖A‖C|β1|,j1,ω‖B‖C|β2|,j2,ω ≤ ‖A‖Cm,l,ω‖B‖Cm,l,ω ,

where the last inequality follows from (9.8). The result follows. ��

Define T : C(Bn(η);Mn×n) → C(Bn(η);Mn×n) by

T (A)(x) =
∫ 1

0
−A(sx)2 − C(sx)A(sx) − C(sx) ds.

The relevance of T is the following lemma.

Lemma 9.6. A ∈ C(Bn(η);Mn×n) is a solution to (9.1) if and only if T (A) = A.
Also, writing x = rθ, we have the following formula for T when r > 0:

T (A)(rθ) =
1
r

∫ r

0
−A(sθ)2 − C(sθ)A(sθ) − C(sθ) ds. (9.11)

Proof. (9.11) follows from a straightforward change of variables in the definition of
T . That A ∈ C(Bn(η);Mn×n) is a solution to (9.1) if and only if T (A) = A follows
from (9.11). ��

Lemma 9.7. If C ∈ Cm,l,ω, then T : Cm,l,ω → Cm,l,ω.
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Proof. Let A ∈ Cm,l,ω. We wish to show T (A) ∈ Cm,l,ω. Set B := −A2 − CA − C.
By Lemma 9.5, B ∈ Cm,l,ω. We wish to show

∫ 1
0 B(sx) ds ∈ Cm,l,ω.

Let 0 ≤ j ≤ l, |β| ≤ m. Consider,
∣
∣
∣
∣
Δj

h∂β
x

∫ 1

0
B(sx) ds

∣
∣
∣
∣
=
∣
∣
∣
∣

∫ 1

0
s|β|(Δj

sh∂β
xB)(sx)

∣
∣
∣
∣
≤
∫ 1

0
s|β|ω(s|h|)j‖B‖Cm,l,ω ds

≤ ω(|h|)j‖B‖Cm,l,ω(|β| + 1)−1,

where we have used that ω is non-decreasing. The result follows. ��

Lemma 9.8. (Izzo’s contraction mapping principle [Izz99]). Suppose (X, d) is a met-
ric space and {Qa}∞

a=0 is a sequence of contractions on X for which there exists c < 1
with

d(Qa(x), Qa(y)) ≤ cd(x, y), ∀x, y ∈ X, a ∈ N.

Suppose ∃x∞ ∈ X with lima→∞ Qa(x∞) = x∞. Let x0 ∈ X be arbitrary, and define
xa recursively by xa+1 = Qa(xa). Then lima→∞ xa = x∞.

Proof. We include a slightly modified version of the proof in [Izz99]. For each a ∈ N,

d(xa+1, x∞) = d(Qa(xa), x∞) ≤ d(Qa(xa), Qa(x∞)) + d(Qa(x∞), x∞)
≤ cd(xa, x∞) + d(Qa(x∞), x∞). (9.12)

First we claim that the sequence d(xa, x∞) is bounded. Since Qa(x∞) → x∞, ∃N ,
a ≥ N ⇒ d(Qa(x∞), x∞) < 1 − c. Suppose d(xa, x∞) is not bounded; then ∃a ≥ N
with max{d(xa, x∞), 1} ≤ d(xa+1, x∞). Applying this to (9.12), we
have d(xa+1, x∞) ≤ cd(xa, x∞) + d(Qa(x∞), x∞) < cd(xa+1, x∞) + 1 − c. And so
d(xa+1, x∞) < 1 ≤ d(xa+1, x∞), a contradiction. Thus the sequence d(xa, x∞) is
bounded.

Since Qa(x∞) → x∞, (9.12) implies

lim sup
a→∞

d(xa, x∞) ≤ c lim sup
a→∞

d(xa, x∞).

Since lim supa→∞ d(xa, x∞) < ∞, this gives lim supa→∞ d(xa, x∞) = 0, completing
the proof. ��

We now turn to Proposition 9.4. We begin with uniqueness. Suppose A1, A2 ∈
C(Bn(η);Mn×n) are two solutions to (9.1) with A1(0) = A2(0) = 0. By Lemma 9.6
we have T (A1) = A1, T (A2) = A2. We first claim that |Aj(x)| = O(|x|) for j =
1, 2; we prove this for A1 and the same is true for A2 by symmetry. Set F (r) =
sup|x|≤r |A1(x)|, note that F : [0, η) → R is continuous, increasing, and F (0) = 0.
Since T (A1) = A1 and |C(sx)| ≤ Ds|x| by assumption, we have

|A1(x)| ≤
∫ 1

0
F (s|x|)2 + Ds|x|F (s|x|) + Ds|x| ds ≤ F (|x|)2 +

1
2
D|x|F (|x|) +

1
2
D|x|.
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And so F (r) ≤ F (r)2+ 1
2DrF (r)+ 1

2Dr, and thus F (r)(1−F (r)) ≤ 1
2DrF (r)+ 1

2Dr.
Taking r so small that F (r) ≤ 1

2 , we have for such r, F (r) ≤ 3
2Dr. Thus |A1(x)| =

O(|x|).
Writing x in polar coordinates x = rθ and using (9.11) we have for r > 0,

|r(A1(rθ) − A2(rθ))|

≤
∫ r

0
|s(A1(sθ) − A2(sθ))|

(

s−1|A1(sθ)| + s−1|A2(sθ)| + s−1|C(sθ)|
)

ds.

Using that |A1(sθ)|, |A2(sθ)|, |C(sθ)| = O(s), the integral form of Grönwall’s inequal-
ity shows that A1(rθ) = A2(rθ) for r > 0 and therefore A1 = A2. This completes
the proof of uniqueness.

We now turn to existence for which we use the contraction mapping principle.
Let

M :=

{

A ∈ C0(Bn(η);Mn×n)
∣
∣
∣
∣
A(0) = 0, sup

0�=x∈Bn(η)

1
|x| |A(x)| < ∞,

sup
x∈Bn(η)

|A(x)| ≤ 1
10

}

.

We give M the metric

d(A, B) := sup
0�=x∈Bn(η)

1
|x| |A(x) − B(x)| .

With this metric, M is a complete metric space.

Lemma 9.9. T : M → M and ∀A, B ∈ M, d(T (A), T (B)) ≤ 1
5d(A, B). Also,

d(T (0), 0) ≤ D/2.

Proof. Let A ∈ M. For x ∈ Bn(η),

|T (A)(x)| ≤
∫ 1

0
‖A‖2

C0 + Ds|x|‖A‖C0 + Ds|x| ds ≤ 1
100

+
D

2
η

1
10

+
D

2
η

≤ 1
100

+
1

200
+

1
20

≤ 1
10

. (9.13)

Also,

1
|x| |T (0)(x)| ≤ 1

|x|

∫ 1

0
Ds|x| ds ≤ 1

2
D, (9.14)

and so T (0) ∈ M with d(T (0), 0) ≤ D/2.
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Finally, for A, B ∈ M, 0 �= x ∈ Bn(η),

1
|x| |T (A)(x) − T (B)(x)| ≤ 1

|x|

∫ 1

0
|A(sx) − B(sx)|(|A(sx)| + |B(sx)| + |C(sx)|) ds

≤ 1
|x|

∫ 1

0
s|x|d(A, B)

(
1
5

+ Ds|x|
)

ds ≤
∫ 1

0
sd(A, B)

(
1
5

+
s

10

)

ds

≤ d(A, B)
(

1
10

+
1
30

)

≤ 1
5
d(A, B). (9.15)

Putting 0 = B in (9.15) and using (9.14) shows sup0�=x∈Bn(η)
1
|x| |T (A)(x)| < ∞.

Combining this with (9.13) shows T : M → M. Further, (9.15) with arbitrary
A, B ∈ M shows d(T (A), T (B)) ≤ 1

5d(A, B), and this completes the proof. ��

By Lemma 9.9, T : M → M is a strict contraction, and the contraction mapping
principle applies to show that if A0 = 0, Aa = T (Aa−1), a ≥ 1, then Aa → A∞ in
M, where T (A∞) = A∞. A∞ is the desired solution to (9.1).

Also, for a ∈ N ∪ {∞} we have, using Lemma 9.9,

1
|x| |Aa(x)| ≤ d(Aa, 0) ≤

a−1∑

b=0

d(T b+1(0), T b(0)) ≤
a−1∑

b=0

5−bd(T (0), 0) ≤ 5
8
D. (9.16)

In particular, for x ∈ Bn(η), |A∞(x)| ≤ 5
8D|x|. Also, since η ≤ (10D)−1, it follows

that |A∞(x)| ≤ 1
16 ; this establishes (9.7).

It remains to prove the regularity properties of A∞, in terms of the regularity
of C. For the remainder of this section, Kn,m,l,ω is a constant which can be chosen
to depend only on n, m, l, and an upper bound for ‖C‖Cm,l,ω . This constant may
change from line to line.

To complete the proof of Proposition 9.4, we will prove the following when C ∈
Cm,l,ω:

• Aa → A∞ in Cm,l,ω.
• ‖A∞‖Cm,l,ω ≤ Kn,m,l,ω.

We prove the above two properties by induction on m, l. The base case, m = l = 0,
was just proved above (since C0,0,ω = C0(Bn(η);Mn×n)).

Fix (m, l). We assume we have the above for all (k, j) with 0 ≤ k ≤ m, 0 ≤ j ≤ l,
and (k, j) �= (m, l), and we assume C ∈ Cm,l,ω. Since for 0 ≤ k ≤ m, 0 ≤ j ≤ l,
Cm,l,ω ↪→ Ck,j,ω (Lemma 9.5), the inductive hypothesis shows for such (k, j) with
(k, j) �= (m, l), Aa → A∞ in Ck,j,ω and ‖A∞‖Ck,j,ω ≤ Kn,k,j,ω.

We define a Banach space Xω,l as follows:

• Xω,0 = C(Bn(η);Mn×n), with the usual norm.
• For l > 0, Xω,l = {B(x, h) ∈ C(Ωl;Mn×n) : ‖B‖Xω,l

< ∞}, where ‖B‖Xω,l
:=

sup(x,h)∈Ωl
ω(|h|)−l|B(x, h)|.
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Fix |β| = m. We will show (under our inductive hypothesis)

(i) Aa ∈ Cm,l,ω, ∀a ∈ N.
(ii) Δl

h∂β
xAa(x) ∈ Xω,l, ∀a ∈ N.

(iii) ∃B∞ ∈ Xω,l such that Δl
h∂β

xAa
a→∞−−−→ B∞ in Xω,l.

(iv) ‖B∞‖Xω,l
≤ Kn,m,l,ω.

First we see why the above completes the proof. We already know from our
inductive hypothesis that

sup
(x,h)∈Ωj

ω(|h|)−j
∣
∣
∣Δj

h∂α
x (Aa − A∞)

∣
∣
∣

a→∞−−−→ 0, (9.17)

for 0 ≤ j ≤ l, |α| ≤ m with (j, |α|) �= (l, m), and that ‖A∞‖Cj,k,ω ≤ Kn,k,j,ω for
0 ≤ k ≤ m, 0 ≤ j ≤ l, (j, k) �= (l, m). Thus, that Aa → A∞ in Cm,l,ω will follow
from (9.17) for (j, |α|) = (l, m) and the fact that Aa ∈ Cm,l,ω. If l = 0, (i) implies
Aa ∈ Cm and (iii) implies ∂β

xAa → B∞ in the supremum norm. Since Aa → A∞
in C0, we have ∂β

xA∞ = B∞. (iv) implies the desired bound on ∂β
xA∞. Since β is

arbitrary with |β| = m, we conclude A∞ ∈ Cm, with ‖A∞‖Cm,0,ω ≤ Kn,m,0,ω, and
Aa → A∞ in Cm,0,ω, as desired.

If l ≥ 1, then we already know Aa → A∞ in Cm(Bn(η);Mn×n), by the inductive
hypothesis. Thus

Δl
h∂β

xAa(x) → Δl
h∂β

xA∞, pointwise.

Hence, Δl
h∂β

xA∞(x) = B∞(x, h). Since β was arbirary with |β| = m, (iii) shows
Aa → A∞ in Cm,l,ω and (iv) shows ‖A∞‖Cm,l,ω ≤ Kn,m,l,ω.

Having shown them to be sufficient, we turn to proving (i) to (iv). Recall, we
have fixed β with |β| = m. Since Aa = T a(0), (i) follows from Lemma 9.7. (ii) is an
immediate consequence of (i). Thus, it remains only to prove (iii) and (iv). We will
do this by applying Lemma 9.8. To begin, we need a few preliminary lemmas.

Lemma 9.10. Fix m1, l1, m2, l2, j1, j2 ∈ N and set l = l1+ l2 and suppose j1+ l1, j2+
l2 ≤ l. Let β1 and β2 be multi-indicies with |β1| = m1 and |β2| = m2. Then, the
bilinear map for A1 ∈ Cm1,l1,ω, A2 ∈ Cm2,l2,ω given by

(A1, A2) 
→
(

τj1hΔl1
h ∂β1

x A1

)

(x)
(

τj2hΔl2
h ∂β2

x A2

)

(x). (9.18)

is a continuous map Cm1,l1,ω × Cm2,l2,ω → Xω,l, and the norm of this map is ≤ 1.
Here, τhA(x) = A(x + h).

Proof. The restriction j1 + l1, j2 + l2 ≤ l, ensures that the expression in (9.18) is
defined for (x, h) ∈ Ωl. With this in mind, the result follows immediately from the
definitions. ��

For an element B ∈ Xω,l we often write B(x, h). When l ≥ 1, the meaning of
this is obvious. For l = 0 this is to be interpreted as B(x).
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Lemma 9.11. For B(x, h) ∈ Xω,l and d ≥ 1 the map

B 
→
∫ 1

0
sdB(sx, sh) ds

is continous Xω,l → Xω,l and has norm ≤ 1.

Proof. This is clear from the definitions. ��

For A1, A2 ∈ Cm,ω,l, we have

Δl
h∂β

x (A1A2)(x) = (Δl
h∂β

xA1)(x)A2(x + lh) + A1(x)(Δl
h∂β

xA2)(x) + Rβ,l(A1, A2)(x),

where Rβ,l(A1, A2)(x, h) is a constant coefficient linear combination (depending only
on β and l) of terms of the form

(

τj1hΔl1
h ∂β1

x A1

)

(x)
(

τj2hΔl2
h ∂β2

x A2

)

(x),

where 0 ≤ j1 ≤ l2, 0 ≤ j2 ≤ l1, l1 + l2 = l, β1 + β2 = β, and l1 + |β1|, l2 + |β2| > 0.

Lemma 9.12. We have the following limits in Xω,l:

∫ 1

0
s|β|Rβ,l(Aa, Aa)(sx, sh) ds

a→∞−−−−→
∫ 1

0
s|β|Rβ,l(A∞, A∞)(sx, sh) ds. (9.19)

∫ 1

0
s|β|Rβ,l(C, Aa)(sx, sh) ds

a→∞−−−−→
∫ 1

0
s|β|Rβ,l(C, A∞)(sx, sh) ds. (9.20)

∫ 1

0
s|β| (Δl

sh∂β
x C
)

(sx)Aa(s(x + lh)) ds
a→∞−−−−→

∫ 1

0
s|β| (Δl

sh∂β
x C
)

(sx)A∞(s(x + lh)) ds.

(9.21)

And for any B(x, h) ∈ Xω,l,

∫ 1

0
s|β|B(sx, sh)Aa(s(x + lh)) ds

a→∞−−−→
∫ 1

0
s|β|B(s, x)A∞(s(x + lh)) ds.

(9.22)
∫ 1

0
s|β|Aa(sx)B(sx, sh) ds

a→∞−−−→
∫ 1

0
s|β|A∞(sx)B(sx, sh) ds. (9.23)

Proof. Recall, we are assuming C ∈ Cm,ω,l and our inductive hypothesis implies
Aa → A∞ in Ck,j,ω with 0 ≤ k ≤ m, 0 ≤ j ≤ l, and (k, j) �= (m, l). Using this
and Lemmas 9.10 and 9.11, (9.19), (9.20), and (9.21) follow immediately. (9.22)
and (9.23) follow from the fact that Aa → A∞ in C0(Bn(η)) and a straightforward
estimate. ��
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Lemma 9.13.

∥
∥
∥
∥

∫ 1

0
s|β|Rβ,l(A∞, A∞)(sx, sh) ds

∥
∥
∥
∥

Xω,l

≤ Kn,m,l,ω.

∥
∥
∥
∥

∫ 1

0
s|β|Rβ,l(C, A∞)(sx, sh) ds

∥
∥
∥
∥

Xω,l

≤ Kn,m,l,ω.

∥
∥
∥
∥

∫ 1

0
s|β|
(

Δl
sh∂β

xC
)

(sx)A∞(s(x + lh)) ds

∥
∥
∥
∥

Xω,l

≤ Kn,m,l,ω.

Proof. This follows from the inductive hypothesis and Lemmas 9.10 and 9.11. ��

For a ∈ N ∪ {∞}, B ∈ Xω,l, define

Qa(B)(x, h) =
∫ 1

0
−s|β|

[

B(sx, sh)Aa(s(x + lh)) + Aa(sx)B(sx, sh)

+ C(sx)B(sx, sh) +
(

Δl
sh∂β

xC
)

(sx)Aa(s(x + lh)) +
(

Δl
sh∂β

xC
)

(sx)

+ Rβ,l(Aa, Aa)(sx, sh) + Rβ,l(C, Aa)(sx, sh)
]

ds

Lemma 9.14. For a ∈ N ∪ {∞}, Qa : Xω,l → Xω,l and satisfies

‖Qa(B) − Qa(B′)‖Xω,l
≤ 1

8
‖B − B′‖Xω,l

. (9.24)

Furthermore, ∀B ∈ Xω,l, lima→∞ Qa(B) = Q∞(B). Finally, ‖Q∞(0)‖Xω,l
≤ Kn,m,l,ω.

Proof. That Qa : Xω,l → Xω,l follows from Lemmas 9.10 and 9.11, the inductive
hypothesis, and the fact that Aa ∈ C0(Bn(η)), ∀a ∈ N ∪ {∞}.

That lima→∞ Qa(B) = Q∞(B) follows from Lemma 9.12 and ‖Q∞(0)‖Xω,l
≤

Kn,m,l,ω follows from Lemmas 9.11 and 9.13.
Thus we need only show (9.24). We have, using (9.16), for (x, h) ∈ Ωl, a ∈

N ∪ {∞},

|Qa(B)(x, h) − Qa(B′)(x, h)|

≤
∫ 1

0
s|β|(|Aa(s(x + lh)| + |Aa(sx)| + |C(sx)|)|B(sx, sh) − B′(sx, sh)| ds

≤
∫ 1

0

(
5
8
Ds|x + lh| +

5
8
Ds|x| + Ds|x|

)

ω(s|h|)l‖B − B′‖Xω,l
ds

≤ ‖B − B′‖Xω,l

∫ 1

0

9
4
Dsηω(|h|)l ds

≤ 1
8
ω(|h|)l‖B − B′‖Xω,l

,

completing the proof of (9.24), and therefore the proof of the lemma. ��
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For a ∈ N, define Ba(x, h) := Δl
h∂β

xAa(x); note that Ba ∈ Xω,l since Aa ∈ Cm,ω,l.
Also, Ba+1(x, h) = Δl

h∂β
xT (Aa)(x) = Qa(Ba)(x, h).

Since Q∞ is a strict contraction (Lemma 9.14), there exists a unique fixed point
B∞ ∈ Xω,l. Since Qa(B∞) → Q∞(B∞) = B∞, by Lemma 9.14, Lemma 9.8 shows
Ba → B∞ in Xω,l. Since Ba(x, h) = Δl

h∂β
xAa(x), this proves (iii).

Finally, to prove (iv) note that B∞ is the fixed point of the strict contraction
Q∞. Thus, Qa∞(0) → B∞. Hence,

‖B∞‖Xω,l
≤

∞∑

a=0

‖Qa+1
∞ (0) − Qa

∞(0)‖Xω,l
≤

∞∑

a=0

8−a‖Q∞(0) − 0‖Xω,l
=

8
7
‖Q∞(0)‖Xω,l

≤ Kn,m,l,ω,

where the last inequality follows from Lemma 9.14. This completes the proof.

9.2 An inverse function theorem. We require a quantitative version of a
special case of the Inverse Function Theorem that does not follow from the standard
statement of the theorem, though we will be able to achieve it by keeping track of
some constants in a standard proof. We present it here.

Fix η > 0 and let Y1, . . . , Yn ∈ C1(Bn(η);Rn) be vector fields on Bn(η) and
suppose they satisfy

inf
u∈Bn(η)

|det (Y1(u)| · · · |Yn(u))| ≥ c0 > 0.

Take C0 > 0 so that ‖Yj‖C1(Bn(η);Rn) ≤ C0, ∀j. Define

Ψu(v) := ev1Y1+···+vnYnu.

Proposition 9.15. There exist κ = κ(C0, c0, n) > 0 and Δ0 = Δ0(C0, c0, n, η) > 0
such that ∀δ ∈ (0, Δ0], u ∈ Bn(κδ), v 
→ Ψu(v) is defined and injective on v ∈ Bn(δ).
Furthermore, Bn(κδ) ⊆ Ψu(Bn(δ)).

The rest of this section is devoted to the proof of Proposition 9.15; for a closely
related result see [MM13b, Theorem 4.5].

Lemma 9.16. Let δ0 > 0, F ∈ C1(Bn(δ0);Rn), and suppose dF (0) is nonsingu-
lar and supx∈Bn(δ0) ‖dF (0)−1dF (x) − I‖Mn×n ≤ 1

2 . Then F (Bn(δ0)) ⊆ R
n is open

and F : Bn(δ0) → F (Bn(δ0)) is a C1 diffeomorphism. Furthermore, F (Bn(δ0)) ⊇
Bn(F (0), κδ0) where

κ := ‖d(F−1)‖−1
C0(F (Bn(δ0));Mn×n) ≥ cn| det dF (0)|‖F‖−(n−1)

C1(Bn(δ0);Rn), (9.25)

and cn > 0 can be chosen to depend only on n.
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Proof. We first show F is injective. Fix y ∈ R
n and set φ(x) = x + dF (0)−1(y −

F (x)). Note that F (x) = y ⇔ φ(x) = x. Also, ∀x ∈ Bn(δ0), ‖dφ(x)‖Mn×n ≤ ‖I −
dF (0)−1dF (x)‖Mn×n ≤ 1

2 . Hence |φ(x1)−φ(x2)| ≤ 1
2 |x1−x2|. Hence, there is at most

one solution of φ(x) = x, and therefore at most one solution of F (x) = y, proving
that F is injective.

Since ‖dF (0)−1dF (x) − I‖Mn×n ≤ 1
2 , ∀x ∈ Bn(δ0), it follows that dF (x) is in-

vertible ∀x ∈ Bn(δ0). Combining this with the fact that F is injective, the Inverse
Function Theorem shows F (Bn(δ0)) is open and F : Bn(δ0) → F (Bn(δ0)) is a C1

diffeomorphism.
Next we prove the bound for κ given in (9.25). In what follows, we use A �

B to denote A ≤ CnB, where Cn can be chosen to depend only on n. Since
‖dF (0)−1dF (x) − I‖ ≤ 1

2 , by assumption,

inf
x∈Bn(η)

| det dF (x)| � | det dF (0)|. (9.26)

Also, ∀x ∈ Bn(δ0),

‖(dF (x))−1‖Mn×n � | det dF (x)|−1‖dF‖n−1
C0(Bn(δ0);Mn×n),

as can be seen via the cofactor representation dF (x)−1. Hence,

sup
x∈Bn(δ0)

‖(dF (x))−1‖Mn×n �
(

inf
y∈Bn(δ0)

| det dF (y)|
)−1

‖dF‖n−1
C0(Bn(δ0);Mn×n),

and therefore

‖d(F−1)‖C0(F (Bn(δ0));Mn×n) �
(

inf
x∈Bn(δ0)

| det dF (x)|
)−1

‖dF‖n−1
C0(Bn(δ0);Mn×n)

�
(

inf
x∈Bn(δ0)

| det dF (x)|
)−1

‖F‖n−1
C1(Bn(δ0);Rn). (9.27)

Combining (9.26) and (9.27) yields (9.25).
Finally, we prove F (Bn(δ0)) ⊇ B(F (0), κδ0). Take ε > 0 to be the largest ε so that

Bn(F (0), ε) ⊆ F (Bn(δ0)) (note that ε > 0 by the Inverse Function Theorem). The
proof will be complete once we show ε ≥ δ0κ. Suppose, for contradiction, ε < δ0κ.
We have, by the Mean Value Theorem,

F−1(B(F (0), ε)) ⊆ B(0, ε‖dF−1‖C0(F (Bn(δ0));Mn×n)).

Thus, if ε < κδ0, F−1(B(F (0), ε)) � B(0, δ0), which contradicts the choice of ε and
completes the proof. ��

Lemma 9.17. Let Yj , C0, n, η, and Ψ be as in Proposition 9.15. There exists δ1 =
δ1(C0, n, η) > 0 such that ∀u ∈ Bn(η/2), Ψu is defined on Bn(δ1) and satisfies

‖Ψu‖C1(Bn(δ1);Rn) ≤ C(C0, n) (9.28)
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and ∀u ∈ Bn(η/2), v ∈ Bn(δ1),

‖dvΨu(v) − dvΨu(0)‖
Mn×n ≤ C(C0, n)|v|, (9.29)

where C(C0, n) can be chosen to depend only on C0 and n.

Proof. The existence of δ1 > 0 so that ∀u ∈ Bn(η/2), Ψu(v) is defined and (9.28)
holds are classical theorems from ODEs. Thus, we prove only (9.29). We write A � B
for A ≤ CB where C can be chosen to depend only on C0 and n. We use the equation
∂rΨu(rv) = v · Y (Ψu(rv)), and so

Ψu(v) =
∫ 1

0
v · Y (Ψu(sv)) ds.

Since dvΨu(0) = (Y1(u)| · · · |Yn(u)), we have ∀u ∈ Bn(η/2), v ∈ Bn(δ1)

Ψu(v) − (dvΨu(0))v =
∫ 1

0
v · (Y (Ψu(sv)) − Y (Ψu(0))) ds.

Applying dv to the above equation and using the chain rule, we have ∀u ∈ Bn(η/2),
v ∈ Bn(δ1),

‖dvΨu(v) − dvΨu(0)‖
Mn×n

=
∥
∥
∥
∥

∫ 1

0
(Y (Ψu)(sv) − Y (Ψu(0))) + sv	dY (Ψu(sv))(dvΨu)(sv) ds

∥
∥
∥
∥
Mn×n

� |v|‖Y ◦ Ψu‖C1(Bn(δ0);Mn×n) + |v|‖Y ‖C1(Bn(η);Mn×n)‖Ψu‖C1(Bn(δ1);Rn)

� |v|‖Y ‖C1(Bn(η);Mn×n)‖Ψu‖C1(Bn(δ1);Rn) � |v|,

where we have written Y (u) for the matrix valued function (Y1(u)| · · · |Yn(u)) and
used (9.28). This completes the proof. ��

Proof of Proposition 9.15. In what follows we write A � B for A ≤ CB, where C
can be chosen to depend only on n, C0, and c0, and write A �η B if C can also
depend on η. By taking δ1 �η 1 as in Lemma 9.17, for all u ∈ Bn(η/2), v ∈ Bn(δ1),
Ψu(v) is defined. For such u, since | det dΨu(0)| = | det(Y1(u)| · · · |Yn(u))| � 1 and
using (9.28), we have ‖dvΨu(0)−1‖Mn×n � 1. Hence, using (9.29), for u ∈ Bn(η/2),
v ∈ Bn(δ1),

‖dvΨu(0)−1dvΨu(v) − I‖Mn×n � ‖dvΨu(v) − dvΨu(0)‖Mn×n � |v|.

Thus, if δ2 �η 1 is sufficiently small, for all u ∈ Bn(η/2), v ∈ Bn(δ2),

‖dvΨu(0)−1dvΨu(v) − I‖Mn×n ≤ 1
2
.

By Lemma 9.16, for |u| ≤ η/2, Ψu : Bn(δ2) → Ψu(Bn(δ2)) is a C1 diffeomorphism,
and if we set κ := 1

2 inf |u|<η/2 ‖d(Ψ−1
u )‖−1

C0(Ψu(Bn(δ2));Mn×n), we have κ � 1 (also by
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Lemma 9.16). Notice the extra factor of 1/2 in the defintion of κ as compared to
Lemma 9.16.

Take Δ0 < δ2, Δ0 �η 1 sufficiently small so that κΔ0 < η/2. Then for δ ∈ (0, Δ0]
and |u| < κδ, Lemma 9.16 shows

Ψu(Bn(δ)) ⊇ Bn(Ψu(0), 2κδ) = Bn(u, 2κδ) ⊇ Bn(0, κδ),

which completes the proof. ��

9.3 Proof of the main result. We turn to the proof of Theorem 4.7. We
separate the proof into two parts: when X1(x0), . . . , Xq(x0) are linearly independent
(i.e., when n = q), and more generally when X1(x0), . . . , Xq(x0) may be linearly
dependent (i.e., when q ≥ n).

9.3.1 Linearly independent. In this section, we prove Theorem 4.7 in the special
case n = q. We take the same setting as Theorem 4.7 with the same notions of
admissible constants, and with the additional assumption that n = q. Note that,
in this case, XJ0 = X, so we may replace XJ0 with X throughout the statement
of Theorem 4.7. Also, because n = q, in 〈m1, m2, s〉-admissible constants, m2 does
not play a role (since in all of our results m1 ≥ m2 when 〈m1, m2, s〉 admissible
constants are used), so we instead use 〈m1, −1, s〉-admissible constants throughout
this section.

Similarly, we use {s, −1}-admissible constants throughout this section.
Proposition 3.1 implies that BX(x0, ξ) is an n-dimensional manifold and that

X1, . . . , Xn span the tangent space to every point of BX(x0, ξ). Thus, X1(y), . . . ,
Xn(y) are linearly independent ∀y ∈ BX(x0, ξ), and Theorem 4.7 (a) follows with
χ = ξ. (b) and (c) are both obvious when n = q (and χ = ξ). With (a), (b),
and (c) proved, we henceforth assume cl

j,k ∈ C1
XJ0

(BXJ0
(x0, ξ)) = C1

X(BX(x0, ξ)),
1 ≤ j, k, l ≤ n.

Consider the map Φ : Bn(η0) → BX(x0, ξ) defined in (4.1); which we a priori
know to be C1. Clearly dΦ(0) ∂

∂tj
= Xj(x0). Since X1(x0), . . . , Xn(x0) form a basis

of the tangent space Tx0BX(x0, ξ), the Inverse Function Theorem shows that there
exists a (non-admissible) δ > 0 such that Φ : Bn(δ) → Φ(Bn(δ)) is a C1 diffeo-
morphism. Let Ŷj := Φ

∣
∣∗
Bn(δ)

Xj , so that Ŷj is a C0 vector field on Bn(δ). Write

Ŷj = ∂
∂tj

+
∑

k âk
j (t)

∂
∂tk

. Let Â(t) ∈ C(Bn(δ);Mn×n) denote the n × n matrix with
(j, k) component âk

j (t) and let C(t) ∈ C(Bn(η0);Mn×n) denote the n × n matrix
with (j, k) component equal to

∑n
l=1 tlc

k
j,l ◦ Φ(t).

Proposition 9.18. Write t in polar coordinates, t = rθ, and consider the differen-
tial equation

∂

∂r
rA(rθ) = −A(rθ)2 − C(rθ)A(rθ) − C(rθ), (9.30)

defined for A : Bn(η0) → M
n×n. There exists a 0-admissible constant η′ > 0, which

also depends on a lower bound for η > 0, such that there exists a unique continuous
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solution A ∈ C(Bn(η′);Mn×n) to (9.30) with A(0) = 0. Moreover, this solution lies
in C1(Bn(η′);Mn×n) and satisfies

‖A(t)‖Mn×n �0 |t| and ‖A(t)‖Mn×n ≤ 1
2
, ∀t ∈ Bn(η′).

For m ∈ N and s ∈ [0, 1], if ck
i,j ◦ Φ ∈ Cm,s(Bn(η′)) with ‖ck

i,j ◦ Φ‖Cm,s(Bn(η′)) ≤
Dm,s, ∀i, j, k, then A ∈ Cm,s(Bn(η′);Mn×n) and there exists a constant Cm,s, which
depends only on n, m, and Dm,s, such that ‖A‖Cm,s(Bn(η′);Mn×n) ≤ Cm,s. Similarly,

for s ∈ (0, ∞), if ck
i,j ◦Φ ∈ C s(Bn(η′)) with ‖ck

i,j ◦Φ‖C s(Bn(η′)) ≤ Ds, then there exists
a constant Cs which depends only on n, s, and Ds such that ‖A‖C s(Bn(η′);Mn×n) ≤ Cs.

Finally, Â
∣
∣
Bn(min{η′,δ})

= A
∣
∣
Bn(min{η′,δ})

.

Proof. Note that, by the definition of C(t) we have ‖C(t)‖Mn×n �0 |t|. Also, Â
satisfies (9.30) on Bn(δ) by Proposition 9.1. Since dΦ(0) ∂

∂tj
= Xj(x0), we have

Â(0) = 0. With these remarks in hand, the proposition (except for the claim A ∈
C1(Bn(η′);Mn×n)) follows directly from Proposition 9.4 (see also Remark 9.3).

The claim that A ∈ C1(Bn(η′);Mn×n) can be seen as follows. First note that
we may assume η′ < η0 as if η′ = η0, we may replace η′ with η0/2. Since cl

j,k ∈
C1

XJ0
(BXJ0

(x0, ξ)) = C1
X(BX(x0, ξ)), X1, . . . , Xn span the tangent space at every

point of BX(x0, ξ), and the vector fields X1, . . . , Xn are C1, it follows that cl
j,k are

C1 on BX(x0, ξ). Since Φ : Bn(η0) → BX(x0, ξ) is a priori known to be C1, we
have cl

j,k ◦ Φ is C1 on Bn(η0). Thus, C ∈ C1(Bn(η′);Mn×n), and it follows from
Proposition 9.4 that A ∈ C1(Bn(η′);Mn×n). ��

We fix η′ > 0 and A as in Proposition 9.18. Write ak
j (t) for the (j, k) component

of A(t) and set Yj := ∂
∂tj

+
∑n

k=1 ak
j

∂
∂tk

. Note that Y1, . . . , Yn are C1 vector fields

on Bn(η′). By Proposition 9.18, Yj

∣
∣
Bn(min{η′,δ})

= Ŷj

∣
∣
Bn(min{η′,δ})

. Since δ is not
admissible, we think of δ as being much smaller than η′, and so Yj should be thought
of as extending Ŷj .

Proposition 9.19. ∀t ∈ Bn(η′), dΦ(t)Yj(t) = Xj(Φ(t)), 1 ≤ j ≤ n.

Proof. Fix θ ∈ Sn−1 and set

r1 := sup{r ≥ 0 : dΦ(r′θ)Yj(r′θ) = Xj(Φ(r′θ)), 0 ≤ r′ ≤ r, 1 ≤ j ≤ n}.

We wish to show r1 = η′, and this will complete the proof since θ ∈ Sn−1 was
arbitrary. Suppose, for contradiction, r1 < η′. Since Yj

∣
∣
Bn(min{η′,δ})

= Ŷj

∣
∣
Bn(min{η′,δ})

and dΦ(u)Ŷj(u) = Xj(Φ(u)), we know r1 > 0. By continuity, we have

dΦ(r1θ)Yj(r1θ) = Xj(Φ(r1θ)).

By Proposition 3.1, X1(Φ(r1θ)), . . . , Xn(Φ(r1θ)) span TΦ(r1θ)BX(x0, ξ), and there-
fore the Inverse Function Theorem applies to Φ at the point r1θ. Thus, there exists
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a neighborhood V of r1θ such that Φ : V → Φ(V ) is a C1 diffeomorphism. Pick
0 < r2 < r3 < r1 < r4 < η′ such that {r′θ : r2 ≤ r′ ≤ r4} ⊂ V .

Let Ỹj := Φ
∣
∣∗
V

Xj . By the choice of r1, for r2 ≤ r′ ≤ r3 we have Ỹj(r′θ) = Yj(r′θ).
Write Ỹj = ∂

∂uj
+
∑n

k=1 ãk
j

∂
∂uk

and let Ã denote the matrix with (j, k) component

ãk
j . We therefore have Ã(r′θ) = A(r′θ) for r2 ≤ r′ ≤ r3. Ã satisfies (9.30) by

Proposition 9.1. Away from r = 0, (9.30) is a standard ODE that both A and
Ã satisfy. Thus, by standard uniqueness theorems (using, for example, Grönwall’s
inequality) we have Ã(r′θ) = A(r′θ) for r2 ≤ r′ ≤ r4. Thus, Yj(r′θ) = Ỹj(r′θ),
r2 ≤ r′ ≤ r4. Since dΦ(r′θ)Ỹj(r′θ) = Xj(Φ(r′θ)) we conclude r1 ≥ r4. This is a
contradiction, completing the proof. ��

Lemma 9.20. Φ : Bn(η′) → BX(x0, ξ) is C2.

Proof. Since we already know that Φ : Bn(η′) → BX(x0, ξ) is C1, it suffices to show
the map u 
→ dΦ(u), u ∈ Bn(η′) is C1. We have already remarked that Y1, . . . , Yn are
C1. Since Y = (I+A)∇, with ‖A(t)‖Mn×n ≤ 1

2 , ∀t, we conclude Y1, . . . , Yn are a basis
for the tangent space at every point of Bn(η′). Also, dΦ(u)Yj(u) = Xj(Φ(u)) ∈ C1

since Xj ∈ C1, Φ ∈ C1. Since Y1, . . . , Yn are C1 and a basis for the tangent space
at every point, we conclude u 
→ dΦ(u) is C1, and therefore Φ is C2, completing the
proof. ��

Proposition 9.21. For m ∈ N, s ∈ [0, 1], η′′ ∈ (0, η′] we have (for any function f),

‖f‖Cm,s(Bn(η′′)) ≈〈m−1,−1,s〉 ‖f‖Cm,s
Y (Bn(η′′)), (9.31)

and

‖Yj‖Cm,s(Bn(η′);Rn) �〈m,−1,s〉 1. (9.32)

Similarly, for s ∈ (0, ∞),

‖f‖C s(Bn(η′′)) ≈{s−1,−1},η′′ ‖f‖C s
Y (Bn(η′′)) (9.33)

and

‖Yj‖C s(Bn(η′);Rn) �{s,−1} 1. (9.34)

In (9.33) we have written ≈{s−1,−1},η′′ to denote that the implicit constants are also
allowed to depend on the choice of η′′.

Furthermore, for m ∈ N, s ∈ [0, 1], and 1 ≤ i, j, k ≤ n, we have

‖ck
i,j ◦ Φ‖Cm,s(Bn(η′)) �〈m,−1,s〉 1, (9.35)

and for s ∈ (0, ∞),

‖ck
i,j ◦ Φ‖C s(Bn(η′)) �{s,−1} 1. (9.36)
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Proof. Since supt∈Bn(η′) ‖A(t)‖Mn×n ≤ 1
2 , and Y = (I + A)∇, we also have

∇ = (I + A)−1Y . Thus, once we prove a certain regularity on A,
we can compare norms as in (9.31) and (9.33) by applying Proposition 8.12. For ex-
ample, once we show ‖A‖Cm,s(Bn(η′);Mn×n) �〈m,−1,s〉 1, we will also have
‖(I + A)−1‖Cm,s(Bn(η′);Mn×n) �〈m,−1,s〉 1. It will then follow that constants which
are 〈m, s: E〉-admissible in the sense of Definition 8.9 (when applied to the vec-
tor fields Y1, . . . , Yn) are 〈m, −1, s〉-admissible in the sense of Definition 4.3. From
here, Proposition 8.12 implies (9.31). Similar comments hold for Zygmund spaces;
however, we are applying Proposition 8.12 with η replaced by η′′, and therefore
{s: E}-admissible constants will also depend on an upper bound for (η′′)−1. This is
where the dependance on η′′ enters in (9.33).

We first prove (9.31) and (9.32). We claim (for any function f),

‖f‖Cm,s(Bn(η′′)) ≈〈m−1,−1,s〉 ‖f‖Cm,s
Y (Bn(η′′)), (9.37)

‖A‖Cm,s(Bn(η′);Mn×n) �〈m,−1,s〉 1, (9.38)

which are clearly equivalent to (9.31) and (9.32). We proceed by induction on m.
Using that ‖A‖C0(Bn(η′);Mn×n) ≤ 1

2 �〈−1,−1,s〉 1, the base case of (9.37) follows from
Proposition 8.12. Using this and Propositions 8.6 and 9.19 we have

‖ck
i,j ◦ Φ‖C0,s(Bn(η′)) ≈〈−1,−1,s〉 ‖ck

i,j ◦ Φ‖C0,s
Y (Bn(η′)) ≤‖ck

i,j‖C0,s
X (BX(x0,ξ))

�〈0,−1,s〉 1.
(9.39)

In light of (9.39), Proposition 9.18 implies ‖A‖C0,s(Bn(η′);Mn×n) �〈0,−1,s〉 1, completing
the proof of the base case m = 0.

We assume (9.37) and (9.38) for m − 1 and prove them for m. Because
‖A‖Cm−1,s(Bn(η′);Mn×n) �〈m−1,−1,s〉 1, Proposition 8.12 implies (9.37) for m. Thus
we need to show (9.38).

Using (9.37) and Propositions 8.6 and 9.19 we have

‖ck
i,j◦Φ‖Cm,s(Bn(η′)) ≈〈m−1,−1,s〉 ‖ck

i,j ◦ Φ‖Cm,s
Y (Bn(η′)) ≤ ‖ck

i,j‖Cm,s
X (BX(x0,ξ)) �〈m,−1,s〉 1.

(9.40)
In light of (9.40), Proposition 9.18 implies ‖A‖Cm,s(Bn(η′);Mn×n) �〈m,−1,s〉 1, complet-
ing the proof of (9.38), and therefore completing the proof of (9.31) and (9.32).

We turn to proving (9.33) and (9.34). We prove (for any function f)

‖f‖C s(Bn(η′′)) ≈{s−1,−1},η′′ ‖f‖C s
Y (Bn(η′′)), (9.41)

‖A‖C s(Bn(η′);Mn×n) �{s,−1} 1, (9.42)

which are clearly equivalent to (9.33) and (9.34).
We first prove (9.41) and (9.42) for s ∈ (0, 1]. (9.38) shows

‖A‖C0,s/2(Bn(η′);Mn×n) �〈−1,−1,s/2〉 1,

and therefore
‖A‖C0,s/2(Bn(η′);Mn×n) �{s−1,−1} 1.
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Using this, Proposition 8.12 implies (9.41). In particular, since η′ is a {−1, −1}-
admissible constant (since it is a 0-admissible constant), and using (9.41) and Propo-
sitions 8.6 and 9.19,

‖ck
i,j◦Φ‖C s(Bn(η′)) ≈{s−1,−1} ‖ck

i,j◦Φ‖C s
Y (Bn(η′)) ≤ ‖ck

i,j‖C s
X(BX(x0,ξ)) �{s,−1} 1. (9.43)

In light of (9.43), Proposition 9.18 implies (9.42).
We now assume (9.41) and (9.42) for s ∈ (0, k] and prove them for s ∈ (k, k + 1].

Fix s ∈ (k, k+1]. By the inductive hypothesis, we know ‖A‖C s−1(Bn(η′);Mn×n) �{s−1,−1}
1. Using this, Propositions 8.12 implies (9.41) for s. In particular, since η′ is a
{−1, −1}-admissible constant (since it is a 0-admissible constant), and using (9.41)
and Propositions 8.6 and 9.19,

‖ck
i,j◦Φ‖C s(Bn(η′)) ≈{s−1,−1} ‖ck

i,j◦Φ‖C s
Y (Bn(η′)) ≤ ‖ck

i,j‖C s
X(BX(x0,ξ)) �{s,−1} 1. (9.44)

In light of (9.44), Proposition 9.18 implies (9.42).
Finally, (9.35) was established in (9.39) and (9.40) while (9.36) was established

in (9.43) and (9.44). ��

Proposition 9.22. There exists a 1-admissible constant η1 ∈ (0, η′] such that
Φ
∣
∣
Bn(η1)

is injective. Furthermore, Φ(Bn(η1)) ⊆ BX(x0, ξ) is open and Φ : Bn(η1) →
Φ(Bn(η1)) is a C2-diffeomorphism.

Proof. Consider the maps, defined for u, v ∈ R
n sufficiently small, given by

Ψu(v) = ev1Y1+···+vnYnu.

Since Y = (I+A)∇ and ‖A(t)‖Mn×n ≤ 1
2 , ∀t ∈ Bn(η′), we have | det(Y1(t)| · · · |Yn(t))|

≥ cn > 0, ∀t ∈ Bn(η′), where cn > 0 can be chosen to depend only on n. Further-
more, by Proposition 9.21 (taking m = 1, s = 0 in (9.32)), we have

‖Yj‖C1(Bn(η′);Rn) �〈1,−1,0〉 1. (9.45)

Thus, by the definition of 1-admissible constants, we have ‖Yj‖C1(Bn(η′);Rn) �1 1.
Take Δ0, κ > 0 as in Proposition 9.15 (with η′ playing the role of η in that

proposition). In light of the above remarks, Δ0 and κ can be taken to be 1-admissible
constants. Set δ1 := min{Δ0, δ0, 1} so that δ1 > 0 is a 1-admissible constant; see
Section 3.2 for the definition of δ0. Let η1 := min{δ1κ, η′} > 0 so that η1 is a
1-admissible constant.

We claim Φ
∣
∣
Bn(η1)

is injective. Let u1, u2 ∈ Bn(η1) be such that Φ(u1) = Φ(u2);
we wish to show u1 = u2. By Proposition 9.15 there exists v ∈ Bn(δ1) such that
u2 = Ψu1(v), i.e., u2 = ev·Y u1. Since dΦ(u)Yj(u) = Xj(Φ(u)) (Proposition 9.19), it
follows that

Φ(u1) = Φ(u2) = Φ(ev·Y u1) = ev·XΦ(u1).

Also, we know X1(Φ(u)), . . . , Xn(Φ(u)) are linearly independent (as a consequence
of Proposition 3.1). Finally, X satisfies C(Φ(u1), δ1, BX(x0, ξ)) because Y satisfies



GAFA COORDINATES ADAPTED TO VECTOR FIELDS: CANONICAL COORDINATES 1837

C(u1, δ1, B
n(η′)) (by Proposition 9.15). Hence, by the definition of δ0, we have v = 0.

We conclude u2 = ev·Y u1 = u1, and therefore Φ is injective.
Combining the fact that dΦ(u)Yj(u) = Xj(Φ(u)) and X1, . . . , Xn span the tan-

gent space at every point of BX(x0, ξ), the Inverse Function Theorem implies Φ :
Bn(η′) → BX(x0, ξ) is an open map and is locally a C1 diffeomorphism. In particu-
lar, Φ(Bn(η1)) is open. Hence, since Φ is injective, locally a C1 diffeomorphism, and
Φ is C2 (Lemma 9.20), we conclude Φ : Bn(η1) → Φ(Bn(η1)) is a C2-diffeomorphism.

��

Lemma 9.23. There exists a 1-admissible constant ξ1 > 0 such that BX(x0, ξ1) ⊆
Φ(Bn(η1)).

Proof. Fix ξ1 ∈ (0, ξ] to be chosen later, and suppose y ∈ BX(x0, ξ1). Thus, there
exists γ : [0, 1] → BX(x0, ξ) with γ(0) = x0, γ(1) = y, γ′(t) =

∑n
j=1 bj(t)ξ1Xj(γ(t)),

‖
∑

|bj(t)|2‖L∞([0,1]) < 1. Define

t0 := sup{t ∈ [0, 1] : γ(t′) ∈ Φ(Bn(η1/2)), ∀0 ≤ t′ ≤ t}.

We want to show that by taking ξ1 > 0 to be a sufficiently small 1-admissible
constant, we have t0 = 1 and γ(1) ∈ Φ(Bn(η1/2)). Note that t0 ≥ 0, since γ(0) =
x0 = Φ(0).

Suppose not. Then |Φ−1(γ(t0))| = η1

2 . And, using that ‖Yj‖C(Bn(η1);Rn) �0 1 and
Φ(0) = x0,

η1/2 = |Φ−1(γ(t0))| =
∣
∣
∣
∣

∫ t0

0

d

dt
Φ−1 ◦ γ(t) dt

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∫ t0

0

n∑

j=1

bj(t)ξ1Yj(Φ−1 ◦ γ(t)) dt

∣
∣
∣
∣
∣
∣

�0 ξ1.

This is a contradiction if ξ1 is a sufficiently small 1-admissible constant, completing
the proof. ��

Lemma 9.24. [Yi, Yj ] =
∑n

k=1 c̃k
i,jYk on Bn(η1), where ‖c̃k

i,j‖Cm,s(Bn(η1)) �〈m,−1,s〉 1
and ‖c̃k

i,j‖C s(Bn(η1)) �{s,−1} 1.

Proof. Because Φ : Bn(η1) → Φ(Bn(η1)) is a diffeomorphism, we have

[Yi, Yj ] = [Φ∗Xi, Φ∗Xj ] = Φ∗[Xi, Xj ] = Φ∗∑

k

ck
i,jXk =

∑

k

c̃k
i,jYk,

with c̃k
i,j = ck

i,j ◦Φ. From here the result follows from Proposition 9.21, since η1 ≤ η′.
��

Proof of Theorem 4.7 when n = q. As mentioned above, we take χ := ξ. We also
take ξ2 := ξ1. Note that (i) is vacuuous when n = q. Also, since n = q, X = XJ0

and Y = YJ0 . With these remarks, all of the parts of Theorem 4.7 except for (l)
were proved above. We clarify one point in (k). In Proposition 9.21, (k) was proved
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on Bn(η′′) for any η′′ ∈ (0, η′]. Here, we are taking η′′ = η1. However, in the case of
Zygmund spaces the implicit constant in (9.33) also depended on the choice of η′′.
Since η1 is a 1-admissible constant, if s > 2, it is a {s − 1, −1}-admissible constant.
This is why (k) is only stated for s > 2 in the case of Zygmund spaces–in the
case s ≤ 1, the implicit constants also depend on η1, and are therefore 1-admissible
constants.15

We close the proof by proving (l). We prove the result for Zygmund spaces, the
same proof works for Hölder spaces. Let f ∈ C(BXJ0

(x0, χ)). We use Proposition 9.21
in the case η′′ = η′, and that η′ is a {−1, −1}-admissible constant. We also use
Proposition 8.6. We have, for s ∈ (0, ∞),

‖f ◦ Φ‖C s(Bn(η1)) ≤ ‖f ◦ Φ‖C s(Bn(η′)) ≈{s−1,−1} ‖f ◦ Φ‖C s
Y (Bn(η′)) ≤ ‖f‖C s

X(BX(x0,χ)),

completing the proof. ��

In the third paper of this series, it will be be convenient to use a slight modifi-
cation of Theorem 4.7 in the case n = q, where we replace 1-admissible constants
with a slightly different definition. We present this here.

Definition 9.25. In the case n = q, if we say C is a 1′-admissible constant, it
means that we assume cl

j,k ◦ Φ ∈ C1(Bn(η0)), for 1 ≤ j, k, l ≤ n. C is then allowed

to depend only on upper bounds for n, ξ−1, η−1, δ−1
0 , and ‖cl

j,k ◦ Φ‖C1(Bn(η0)) and

‖cl
j,k‖C(BXJ0

(x0,ξ)) (1 ≤ j, k, l ≤ n).

Proposition 9.26. In the case n = q, Theorem 4.7 (except for (k)) holds with
the following modifications. The assumption cl

j,k ∈ C1
XJ0

(BXJ0
(x0, ξ)) is replaced by

cl
j,k ◦ Φ ∈ C1(Bn(η0)) and 1-admissible constants are replaced with 1′-admissible

constants throughout.

Comments on the proof. The only place the estimates on ‖cl
j,k‖C1

XJ0
(BXJ0

(x0,ξ)) from
1-admissible constants arose in the proof was to conclude ‖Yj‖C1(Bn(η′);Rn) �1 1; i.e.,
to conclude ‖A‖C1(Bn(η′);Mn×n) �1 1. However, one obtains ‖A‖C1(Bn(η′);Mn×n) �1′ 1
directly from Proposition 9.18. Using this, the proof goes through unchanged. ��

9.3.2 Linearly dependent. In this section, we prove Theorem 4.7 in the general
case q ≥ n. Thus, we take the same setting and notation as in Theorem 4.7.

Lemma 9.27. For J ∈ I(n, q), 1 ≤ j ≤ n,

LXj

∧

XJ =
∑

K∈I0(n,q)

gK
j,J

∧

XK , on BXJ0
(x0, ξ),

15 It is classical that C0,s(Bn(η1)) and C s(Bn(η1)) have comparable norms for s ∈ (0, 1). However,
the constants involved in the comparability of these norms depend on η1, and are therefore 1-
admissible.
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where

‖gK
j,J‖C(BXJ0

(x0,ξ)) �0 1,

for m ∈ N and s ∈ [0, 1],

‖gK
j,J‖Cm,s

X (BXJ0
(x0,ξ)) �〈m,m,s〉 1,

and for s ∈ (0, ∞),
‖gK

j,J‖C s
X(BXJ0

(x0,ξ)) �{s,s} 1.

Proof. Let J = (j1, . . . , jn). We have,

LXj

∧

XJ = LXj
(Xj1 ∧ Xj2 ∧ · · · ∧ Xjn

)

=
n∑

l=1

Xj1 ∧ Xj2 ∧ · · · ∧ Xjl−1 ∧ [Xj , Xjl
] ∧ Xjl+1 ∧ · · · ∧ Xjn

=
n∑

l=1

q
∑

k=1

ck
j,jl

Xj1 ∧ Xj2 ∧ · · · ∧ Xjl−1 ∧ Xk ∧ Xjl+1 ∧ · · · ∧ Xjn
.

The result follows from the anti-commutativity of ∧ and the assumptions
on ck

i,j . ��

Lemma 9.28. Let χ′ ∈ (0, ξ]. Suppose for all y ∈ BXJ0
(x0, χ

′),
∧

XJ0(y) �= 0. Then,
for J ∈ I(n, q), 1 ≤ j ≤ n,

Xj

∧
XJ

∧
XJ0

=
∑

K∈I0(n,q)

gK
j,J

∧
XK

∧
XJ0

−
∑

K∈I0(n,q)

gK
j,J0

∧
XJ

∧
XJ0

∧
XK

∧
XJ0

on BXJ0
(x0, χ

′),

where gK
j,J are the functions from Lemma 9.27.

Proof. This follows by combining Lemmas 5.1 and 9.27. ��

Lemma 9.29. Let C > 0 and u0 > 0. Let uu0,C(t) be the unique solution to

d

dt
uu0,C(t) = C(uu0,C(t) + uu0,C(t)2), uu0,C(0) = u0,

defined on some maximum interval [0, Ru0,C). Let F (t) be a non-negative function
defined on [0, R′) with R′ ≤ Ru0,C satisfying

d

dt
F (t) ≤ C(F (t) + F (t)2), F (0) ≤ u0.

Then, for t ∈ [0, R′), F (t) ≤ uu0,C(t).

Proof. This is standard and is easy to see directly. It is also a special case of the
Bihari–LaSalle inequality. ��
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Lemma 9.30. There exists a 0-admissible constant χ ∈ (0, ξ] such that the
following holds. Suppose γ : [0, χ] → BXJ0

(x0, ξ) satisfies γ(0) = x0, γ′(t) =
∑n

j=1 aj(t)Xj(γ(t)), and ‖
∑

|aj(t)|2‖L∞([0,χ]) < 1. Suppose further that for some
χ′ ∈ (0, χ],

∧
XJ0(γ(t)) �= 0 for t ∈ (0, χ′]. Then,

sup
J∈I(n,q)
t∈[0,χ′]

∣
∣
∣
∣

∧
XJ(γ(t))

∧
XJ0(γ(t))

∣
∣
∣
∣
�0 1. (9.46)

Here, the implicit constant depends on neither χ′ nor γ.

Proof. Let χ ∈ (0, ξ] be a 0-admissible constant to be chosen later. Let γ and χ′

be as in the statement of the lemma. We wish to show that if χ is chosen to be
a sufficiently small 0-admissible constant (which forces χ′ to be small), then (9.46)
holds.

Set

F (t) :=
∑

J∈I0(n,q)

∣
∣
∣
∣

XJ(γ(t))
XJ0(γ(t))

∣
∣
∣
∣

2

.

We wish to show that if χ is a sufficiently small 0-admissible constant, then F (t) �0

1, ∀t ∈ [0, χ′], and this will complete the proof.16

Using Lemma 9.28, we have,

d

dt
F (t) =

∑

J∈I0(n,q)

2

∧
XJ (γ(t))

∧
XJ0 (γ(t))

n∑

j=1

aj(t)

(

Xj

∧
XJ

∧
XJ0

)

(γ(t))

=
∑

J∈I0(n,q)

∑

K∈I0(n,q)

n∑

j=1

2aj(t)

∧
XJ (γ(t))

∧
XJ0 (γ(t))

(

g
K
j,J (γ(t))

∧
XK(γ(t))

∧
XJ0 (γ(t))

− g
K
j,J0

(γ(t))

∧
XJ (γ(t))

∧
XJ0 (γ(t))

∧
XK(γ(t))

∧
XJ0 (γ(t))

)

�0 F (t) + F (t)
3/2 �0 F (t) + F (t)

2
.

Also, we have

F (0) =
∑

J∈I0(n,q)

∣
∣
∣
∣

XJ(x0)
XJ0(x0)

∣
∣
∣
∣

2

�0 1.

Thus, there exist 0-admissible constants C and u0 > 0 such that

d

dt
F (t) ≤ C

(

F (t) + F (t)2
)

, F (0) ≤ u0.

Standard theorems from ODEs show that if χ = χ(C, u0) > 0 is chosen sufficiently
small, then the unique solution u(t) to

d

dt
u(t) = C

(

u(t) + u(t)2
)

, u(0) = u0,

16 Here we are using ∀K ∈ I(n, q), either
∧

XK ≡ 0 or ∃J ∈ I0(n, q) with
∧

XK = ±∧XJ , by
the basic properties of wedge products.
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exists for t ∈ [0, χ] and satisfies u(t) ≤ 2u0, ∀t ∈ [0, χ]. For this choice of χ (which is
0-admissible, since C and u0 are), Lemma 9.29 shows F (t) ≤ 2u0 �0 1, ∀t ∈ [0, χ′],
completing the proof. ��

Proposition 9.31. There exists a 0-admissible constant χ ∈ (0, ξ] such that ∀y ∈
BXJ0

(x0, χ),
∧

XJ0(y) �= 0 and

sup
J∈I(n,q)

y∈BXJ0
(x0,χ)

∣
∣
∣
∣

∧
XJ(y)

∧
XJ0(y)

∣
∣
∣
∣
�0 1. (9.47)

Proof. Take χ as in Lemma 9.30. First we claim ∀y ∈ BXJ0
(x0, χ),

∧
XJ0(y) �= 0. Fix

y ∈ BXJ0
(x0, χ), so that there exists γ : [0, χ] → BXJ0

(x0, ξ), γ(0) = x0, γ(χ) = y,
γ′(t) =

∑n
j=1 aj(t)Xj(γ(y)), ‖

∑
|aj(t)|2‖L∞([0,1]) < 1. We will show that ∀t ∈ [0, χ],

∧
XJ0(γ(t)) �= 0, and then it will follow that

∧
XJ0(y) =

∧
XJ0(γ(χ)) �= 0.

Suppose not, so that
∧

XJ0(γ(t)) = 0 for some t ∈ [0, χ]. Let t0 = inf{t ∈ [0, χ] :
∧

XJ0(γ(t)) = 0}, so that
∧

XJ0(γ(t0)) = 0 but
∧

XJ0(γ(t)) �= 0, ∀t ∈ [0, t0). Note
that t0 > 0 since

∧
XJ0(x0) �= 0.

Let ν be a C1 n-form, defined on a neighborhood of γ(t0) and which is nonzero
at γ(t0). We have

lim
t↑t0

ν
(∧

XJ0

)

(γ(t)) = 0, lim
t↑t0

max
J∈I(n,q)

|ν(XJ)(γ(t))| > 0,

by continuity, the fact that X1, . . . , Xq span the tangent space at γ(t0), and that ν
is nonzero at γ(t0). We conclude,

lim
t↑t0

sup
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(γ(t))

∧
XJ0(γ(t))

∣
∣
∣
∣
= lim

t↑t0
sup

J∈I(n,q)

∣
∣
∣
∣

ν (
∧

XJ) (γ(t))
ν (
∧

XJ0) (γ(t))

∣
∣
∣
∣
= ∞. (9.48)

Take any χ′ ∈ (0, t0). We know ∀t ∈ [0, χ′],
∧

XJ0(γ(t)) �= 0. Lemma 9.30 implies

sup
J∈I(n,q)
t∈[0,χ′]

∣
∣
∣
∣

∧
XJ(γ(t))

∧
XJ0(γ(t))

∣
∣
∣
∣
�0 1.

Since χ′ ∈ (0, t0) was arbitrary, we have

sup
J∈I(n,q)
t∈[0,t0)

∣
∣
∣
∣

∧
XJ(γ(t))

∧
XJ0(γ(t))

∣
∣
∣
∣
�0 1.

This contradicts (9.48) and completes the proof that
∧

XJ0(y) �= 0, ∀y ∈ BXJ0
(x0, χ).

To prove (9.47) take y ∈ BXJ0
(x0, χ). Then, there exists γ : [0, χ] → BXJ0

(x0, ξ),
γ(0) = x0, γ(χ) = y, γ′(t) =

∑n
j=1 aj(t)Xj(γ(y)), ‖

∑
|aj(t)|2‖L∞([0,χ]) < 1.



1842 B. STOVALL AND B. STREET GAFA

We have already shown
∧

XJ0(γ(t)) �= 0, ∀t ∈ (0, χ]. Lemma 9.30 implies
supJ∈I(n,q)

∣
∣
∣

∧
XJ(y)

∧
XJ0 (y)

∣
∣
∣ = supJ∈I(n,q)

∣
∣
∣

∧
XJ(γ(χ))

∧
XJ0 (γ(χ))

∣
∣
∣ �0 1. Since y ∈ BXJ0

(x0, χ) was
arbitrary, (9.47) follows. ��

For the remainder of the section, fix χ ∈ (0, ξ] as in Proposition 9.31.

Lemma 9.32. For m ∈ N, s ∈ [0, 1], J ∈ I(n, q),
∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

Cm,s
XJ0

(BXJ0
(x0,χ))

�〈m−1,m−1,s〉 1, (9.49)

and for s ∈ (0, ∞),
∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥
C s

XJ0
(BXJ0

(x0,χ))

�{s−1,s−1} 1. (9.50)

Proof. In this proof, we freely use the estimates on the functions gK
j,J as described

in Lemmas 9.27 and 9.28. We begin with (9.49). Proposition 9.31 shows
∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

C(BXJ0
(x0,χ))

�0 1. (9.51)

We claim, ∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

C1
XJ0

(BXJ0
(x0,χ))

�0 1. (9.52)

Indeed, for 1 ≤ j ≤ n, using Lemma 9.28,
∥
∥
∥
∥
Xj

∧
XJ

∧
XJ0

∥
∥
∥
∥

C(BXJ0
(x0,χ))

=

∥
∥
∥
∥
∥
∥

∑

K∈I0(n,q)

gK
j,J

∧
XK

∧
XJ0

−
∑

K∈I0(n,q)

gK
j,J0

∧
XJ

∧
XJ0

∧
XK

∧
XJ0

∥
∥
∥
∥
∥
∥

C(BXJ0
(x0,χ))

�0

∑

K∈I0(n,q)

∥
∥
∥
∥

∧
XK

∧
XJ0

∥
∥
∥
∥

C(BXJ0
(x0,χ))

+

∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

C(BXJ0
(x0,χ))

∥
∥
∥
∥

∧
XK

∧
XJ0

∥
∥
∥
∥

C(BXJ0
(x0,χ))

�0 1,

where the last inequality follows from (9.51). (9.52) follows.
Using Lemma 8.1 (i) and (ii), we have for s ∈ [0, 1],

∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

C0,s
XJ0

(BXJ0
(x0,χ))

≤ 3
∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

C0,1
XJ0

(BXJ0
(x0,χ))

≤ 3
∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

C1
XJ0

(BXJ0
(x0,χ))

�0 1,

where the last inequality used (9.52). This proves (9.49) in the case m = 0.
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We prove (9.49) by induction on m, the base case (m = 0) having just been
proved. We assume (9.49) for m − 1 and prove it for m. We use Proposition 8.3
freely in what follows. We have

∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

Cm,s
XJ0

(BXJ0
(x0,χ))

=
∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

Cm−1,s
XJ0

(BXJ0
(x0,χ))

+
n∑

j=1

∥
∥
∥
∥
Xj

∧
XJ

∧
XJ0

∥
∥
∥
∥

Cm−1,s
XJ0

(BXJ0
(x0,χ))

.

The first term is �〈m−2,m−2,s〉 1, by the inductive hypothesis, so we focus only on
the second term. We have, using Lemma 9.28, and letting Cm be a constant which
depends only on m,
∥
∥
∥
∥
Xj

∧
XJ

∧
XJ0

∥
∥
∥
∥

C
m−1,s
XJ0

(BXJ0
(x0,χ))

≤ Cm

∑

K∈I0(n,q)

∥
∥gK

j,J

∥
∥

C
m−1,s
XJ0

(BXJ0
(x0,ξ))

∥
∥
∥
∥

∧
XK

∧
XJ0

∥
∥
∥
∥

C
m−1,s
XJ0

(BXJ0
(x0,χ))

+ Cm

∑

K∈I0(n,q)

∥
∥gK

j,J0

∥
∥

C
m−1,s
XJ0

(BXJ0
(x0,ξ))

∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

C
m−1,s
XJ0

(BXJ0
(x0,χ))

∥
∥
∥
∥

∧
XK

∧
XJ0

∥
∥
∥
∥

C
m−1,s
XJ0

(BXJ0
(x0,χ))

�〈m−1,m−1,s〉 1,

where the last inequality follows from the bounds described in Lemma 9.27 and the
inductive hypothesis. This completes the proof of (9.49).

We turn to (9.50), and proceed by induction on m, where s ∈ (m, m + 1]. We
begin with the base case, m = 0, so that s ∈ (0, 1]. Using Lemma 8.1 (iii), we have

∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥
C s

XJ0
(BXJ0

(x0,χ))

≤ 5
∥
∥
∥
∥

∧
XJ

∧
XJ0

∥
∥
∥
∥

C0,s
XJ0

(BXJ0
(x0,χ))

�0 1,

where the last inequality follows from (9.49). This implies (9.50) for the base case
s ∈ (0, 1]. From here, the inductive step follows just as in (9.49) and we leave the
remaining details to the reader. ��

Lemma 9.33. For 1 ≤ k ≤ q, 1 ≤ l ≤ n, there exists b̃l
k ∈ C(BXJ0

(x0, χ)) such that

Xk =
n∑

l=1

b̃l
kXl, (9.53)

where for m ∈ N, s ∈ [0, 1],
∥
∥
∥b̃l

k

∥
∥
∥

Cm,s
XJ0

(BXJ0
(x0,χ))

�〈m−1,m−1,s〉 1,

and for s ∈ (0, ∞),
∥
∥
∥b̃l

k

∥
∥
∥
C s

XJ0
(BXJ0

(x0,χ))
�{s−1,s−1} 1.
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Proof. For 1 ≤ k ≤ n this is trivial (merely take b̃l
k = 1 if k = l and b̃l

k = 0 if k �= l),
however the proof that follows deals with all 1 ≤ k ≤ q simultaneously.

For 1 ≤ k ≤ q, 1 ≤ l ≤ n, let J(l, k) = (1, 2, . . . , l − 1, k, l + 1, . . . , n) ∈ I(n, q).
We have, by Cramer’s rule (5.1),

Xk =
n∑

l=1

∧
XJ(l,k)
∧

XJ0

Xl.

From here, the result follows from Lemma 9.32. ��
Lemma 9.34. For 1 ≤ i, j, l ≤ n, ∃ĉl

i,j ∈ C(BXJ0
(x0, χ)) such that [Xi, Xj ] =

∑n
l=1 ĉl

i,jXl, where for m ∈ N, s ∈ [0, 1],

‖ĉl
i,j‖Cm,s

XJ0
(BXJ0

(x0,χ)) �〈m,m−1,s〉 1,

and for s ∈ (0, ∞),
‖ĉl

i,j‖C s
XJ0

(BXJ0
(x0,χ)) �{s,s−1} 1.

Proof. For 1 ≤ i, j ≤ n and using Lemma 9.33, we have

[Xi, Xj ] =
q
∑

k=1

ck
i,jXk =

n∑

l=1

(
q
∑

k=1

ck
i,j b̃

l
k

)

Xl.

Setting ĉl
i,j =

∑q
k=1 ck

i,j b̃
l
k, the result follows from the definition of admissible con-

stants, Lemma 9.33, and Proposition 8.3. ��
Lemma 9.34 shows that the case n = q of Theorem 4.7 (which was proved in

Section 9.3.1) applies to X1, . . . , Xn, with ξ replaced by χ.17 In light of Lemma 9.34
any constants which are 〈m, m − 1, s〉, {s, s − 1}, 0, or 1-admissible in the sense of
this application of the case n = q of Theorem 4.7, are 〈m, m − 1, s〉, {s, s − 1}, 0, or
1-admissible (respectively) in the sense of this section. Thus, from the case n = q,
we obtain 1-admissible constants ξ1, η1 > 0 and a map Φ : Bn(η1) → BXJ0

(x0, χ) as
in Theorem 4.7. Most of the case q ≥ n of Theorem 4.7 immediately follows from
this application of the case n = q. All that remain to show are: (b), (c), there exists
ξ2 as in (f), (h) for n + 1 ≤ j ≤ q, (i), and (k).

Proof of (b). That ∀y ∈ BXJ0
(x0, χ)

sup
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(y)

∧
XJ0(y)

∣
∣
∣
∣
≥ 1

is clear (by taking J = J0). That

sup
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(y)

∧
XJ0(y)

∣
∣
∣
∣
�0 1,

∀y ∈ BXJ0
(x0, χ), is Proposition 9.31. ��

17 When we proved Theorem 4.7 for n = q, in Section 9.3.1, we took χ = ξ.
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Proof of (c). Let χ′ ∈ (0, χ] and fix x ∈ BXJ0
(x0, χ). (a) shows X1(x), . . . , Xn(x)

are linearly independent. Define Ψ(t) := et1X1+···+tnXnx, so that dΨ(0) =
(X1(x)| · · · |Xn(x)) and is therefore invertible. It is clear that for δ sufficienty small
Ψ(Bn(δ)) ⊆ BXJ0

(x0, χ
′) and the Inverse Function Theorem shows that for δ suf-

ficiently small Ψ(Bn(δ)) ⊆ BX(x0, ξ) is open. Hence, Ψ(Bn(δ)) is an open neigh-
borhood of x in BXJ0

(x0, χ
′). Since x ∈ BXJ0

(x0, χ
′) was arbitrary, we conclude

BXJ0
(x0, χ

′) ⊆ BX(x0, ξ) is open. ��

That there exists a 1-admissible constant ξ2 > 0 such that (f) holds follows by
applying the next lemma with ζ1 = ξ1.

Lemma 9.35. Fix ζ1 ∈ (0, χ]. Then, there is a 0-admissible constant ζ2 > 0 (which
also depends on ζ1) such that BX(x0, ζ2) ⊆ BXJ0

(x0, ζ1).

Proof. Let ζ2 ∈ (0, ζ1], we will pick ζ2 at the end of the proof. Suppose y ∈
BX(x0, ζ2), so that ∃γ : [0, 1] → BX(x0, ζ2) with γ(0) = x0, γ(1) = y, γ′(t) =
∑q

j=1 aj(t)ζ2Xj(γ(t)), ‖
∑

|aj(t)|2‖L∞([0,1]) < 1. Let

t0 = sup{t ∈ [0, 1] : γ(t′) ∈ BXJ0
(x0, ζ1/2), ∀t′ ∈ [0, t]}.

We wish to show that if ζ2 = ζ2(ζ1) > 0 is taken to be a sufficiently small 0-admissible
constant, then we have t0 = 1 and y = γ(1) ∈ BXJ0

(x0, ζ1).
In fact, we will prove γ(t0) ∈ BXJ0

(x0, ζ1/2). The result will then follow as if
t0 < 1, the fact that BXJ0

(x0, ζ1/2) is open (see (c)) and γ is continuous show that
γ(t′) ∈ BXJ0

(x0, ζ1/2) for t′ ∈ [0, t0 + ε) for some ε > 0, which contradicts the choice
of t0.

We turn to proving γ(t0) ∈ BXJ0
(x0, ζ1/2). We have

γ′(t) =
q
∑

k=1

ak(t)ζ2Xk(γ(t)) =
n∑

l=1

(
q
∑

k=1

ak(t)ζ2b̃
l
k(γ(t))

)

Xl(γ(t))

=:
n∑

l=1

ãl(t)
ζ1

2
Xl(γ(t)),

where
∥
∥
∑

|ãl(t)|2
∥
∥

L∞([0,t0])
�0

ζ2
ζ1

(see Lemma 9.33). Thus, by taking ζ2 = ζ2(ζ1) > 0

to be a sufficiently small 0-admissible constant, we have
∥
∥
∑

|ãl(t)|2
∥
∥

L∞([0,t0])
< 1.

It follows that γ(t0) ∈ BXJ0
(x0, ζ1/2), which completes the proof. ��

Proof of (i). For n + 1 ≤ k ≤ q, 1 ≤ l ≤ n, set bl
k := b̃l

k ◦ Φ. Pulling back (9.53) via
Φ shows Yk =

∑n
l=1 bl

kYl. The regularity of bl
k now follows by combining (l) and the

bounds in Lemma 9.33. ��

Proof of (h) for n + 1 ≤ j ≤ q. This follows by combining (h) for 1 ≤ j ≤ n
and (i). ��
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Proof of (k). We prove the result for Zygmund spaces; the proof for Hölder spaces is
similar, and we leave it to the reader. Let s > 2. The case n = q of Theorem 4.7 gives
‖f‖C s(Bn(η1)) ≈{s−1,s−2} ‖f‖C s

YJ0
(Bn(η1)). Also, ‖f‖C s

Y (Bn(η1)) ≈{s−1,s−2} ‖f‖C s(Bn(η1))

follows from Proposition 8.12, (g), (h), and the fact that η1 is a {s − 1, s − 2}-
admissible constant, for s > 2. Here we are using ∇ = (I + A)−1YJ0 and ‖(I +
A)−1‖C s(Bn(η1);Mn×n) �{s,s−1} 1, for s > 0 (which follows from (g) and (h)). ��

9.4 Densities. In this section, we prove the results from Section 6. We recall
the density ν0 from (6.2), defined on BXJ0

(x0, χ):

ν0(x)(Z1(x), . . . , Zn(x)) :=
∣
∣
∣
∣

Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)
X1(x) ∧ X2(x) ∧ · · · ∧ Xn(x)

∣
∣
∣
∣
.

Lemma 9.36. ν0(X1, . . . , Xn) ≡ 1, and for j1, . . . , jn ∈ {1, . . . , q}, ν0(Xj1 , . . . , Xjn
)

�0 1.

Proof. That ν0(X1, . . . , Xn) ≡ 1 follows directly from the definition. That ν0(Xj1 ,
. . . , Xjn

) �0 1 follows from Theorem 4.7 (b). ��

Lemma 9.37. Let V and W be n-dimensional real vector spaces, and let A : W →
V be an invertible linear transformation. Let v1, . . . , vn be a basis for V and let
w1, . . . , wn ∈ W . Then,

Aw1 ∧ Aw2 ∧ · · · ∧ Awn

v1 ∧ v2 ∧ · · · ∧ vn
=

w1 ∧ w2 ∧ · · · ∧ wn

A−1v1 ∧ A−1v2 ∧ · · · ∧ A−1vn
.

Proof. Let Z1, Z2 be one dimensional real vector spaces and let B : Z1 → Z2 be an
invertible linear transformation. Let z1 ∈ Z1 and 0 �= z2 ∈ Z2. We claim

Bz1

z2
=

z1

B−1z2
. (9.54)

Indeed, let λ2 : Z2 → R be any nonzero linear functional, and set λ1 := λ2 ◦ B :
Z1 → R so that λ1 is also a nonzero linear functional. We have

Bz1

z2
=

λ2(Bz1)
λ2(z2)

=
λ1(z1)

λ1(B−1z2)
=

z1

B−1z2
.

Applying (9.54) in the case Z1 =
∧n W , Z2 =

∧n V , and B : Z1 → Z2 given by
B(w1 ∧ w2 ∧ · · · ∧ wn) = (Aw1) ∧ (Aw2) ∧ · · · ∧ (Awn) completes the proof. ��

Lemma 9.38. For 1 ≤ j ≤ n, LXj
ν0 = f0

j ν0, where f0
j ∈ C(BXJ0

(x0, χ)). Further-
more, for m ∈ N, s ∈ [0, 1],

‖f0
j ‖Cm,s

XJ0
(BXJ0

(x0,χ)) �〈m,m,s〉 1, (9.55)

and for s ∈ (0, ∞),
‖f0

j ‖C s
XJ0

(BXJ0
(x0,χ)) �{s,s} 1. (9.56)
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Proof. Set φt(x) = etXjx so that LXj
ν0 = ∂

∂t

∣
∣
t=0

φ∗
t ν0. We write dφt(x) to denote the

differential of φt in the x variable. We have, using Lemma 9.37,

(φ∗
t ν0)(x)(Z1, . . . , Zn) = ν0(φt(x))(dφt(x)Z1(x), . . . , dφt(x)Zn(x))

=
∣
∣
∣
∣

dφt(x)Z1(x) ∧ dφt(x)Z2(x) ∧ · · · ∧ dφt(x)Zn(x)
X1(φt(x)) ∧ X2(φt(x)) ∧ · · · ∧ Xn(φt(x))

∣
∣
∣
∣

=
∣
∣
∣
∣

Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)
dφt(x)−1X1(φt(x)) ∧ dφt(x)−1X2(φt(x)) ∧ · · · ∧ dφt(x)−1Xn(φt(x))

∣
∣
∣
∣

=
∣
∣
∣
∣

Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)
φ∗

t X1(x) ∧ φ∗
t X2(x) ∧ · · · ∧ φ∗

t Xn(x)

∣
∣
∣
∣

(9.57)

Fix x ∈ BXJ0
(x0, χ). We claim that the sign of

Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)
φ∗

t X1(x) ∧ φ∗
t X2(x) ∧ · · · ∧ φ∗

t Xn(x)

does not change for t small. To this end, let θ be a C1 n-form which is nonzero near
x. Since X1(x) ∧ X2(x) ∧ · · · ∧ Xn(x) �= 0 (Theorem 4.7 (a)), θ(x)(X1(x) ∧ X2(x) ∧
· · · ∧ Xn(x)) �= 0, and so by continuity, for t small, θ(x)(φ∗

t X1(x) ∧ φ∗
t X2(x) ∧ · · · ∧

φ∗
t Xn(x)) �= 0. We conclude that for t sufficiently small,

Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)
φ∗

t X1(x) ∧ φ∗
t X2(x) ∧ · · · ∧ φ∗

t Xn(x)
=

θ(x)(Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x))
θ(x)(φ∗

t X1(x) ∧ φ∗
t X2(x) ∧ · · · ∧ φ∗

t Xn(x))

does not change sign, and is either never zero or always zero for small t.
Set, for t small,

ε := sgn
Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)

φ∗
t X1(x) ∧ φ∗

t X2(x) ∧ · · · ∧ φ∗
t Xn(x)

,

and in the case the quantity inside sgn equals zero, the choice of ε does not matter.
By the above discussion, ε does not depend on t (for t small). We have, using the
functions gK

j,J from Lemmas 9.27 and 9.28,

∂

∂t

∣
∣
∣
∣
t=0

(φ∗
t ν0)(x)(Z1(x), . . . , Zn(x)) =

∂

∂t

∣
∣
∣
∣
t=0

∣
∣
∣
∣

Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)

φ∗
t X1(x) ∧ φ∗

t X2(x) ∧ · · · ∧ φ∗
t Xn(x)

∣
∣
∣
∣

=
∂

∂t

∣
∣
∣
∣
t=0

ε
Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)

φ∗
t X1(x) ∧ φ∗

t X2(x) ∧ · · · ∧ φ∗
t Xn(x)

=
∂

∂t

∣
∣
∣
∣
t=0

ε
θ(x)(Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x))

θ(x)(φ∗
t X1(x) ∧ φ∗

t X2(x) ∧ · · · ∧ φ∗
t Xn(x))

= −ε
θ(x)(Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x))

θ(x)(φ∗
t X1(x) ∧ φ∗

t X2(x) ∧ · · · ∧ φ∗
t Xn(x))2

∂

∂t
θ(x)(φ∗

t X1(x) ∧ φ∗
t X2(x) ∧ · · · ∧ φ∗

t Xn(x))

∣
∣
∣
∣
t=0

= −ε
θ(x)(Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x))

θ(x)(X1(x) ∧ X2(x) ∧ · · · ∧ Xn(x))

θ(x)(LXj
(X1 ∧ X2 ∧ · · · ∧ Xn)(x))

θ(x)(X1(x) ∧ X2(x) ∧ · · · ∧ Xn(x))

= −ε
Z1(x) ∧ Z2(x) ∧ · · · ∧ Zn(x)

X1(x) ∧ X2(x) ∧ · · · ∧ Xn(x)

LXj
(X1 ∧ X2 ∧ · · · ∧ Xn)(x)

X1(x) ∧ X2(x) ∧ · · · ∧ Xn(x)
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= −LXj
(X1 ∧ X2 ∧ · · · ∧ Xn)(x)

X1(x) ∧ X2(x) ∧ · · · ∧ Xn(x)
ν0(x)(Z1(x), . . . , Zn(x))

= −
∑

K∈I0(n,q)

gK
j,J0

(x)

∧
XK(x)

∧
XJ0 (x)

ν0(x)(Z1(x), . . . , Zn(x)).

We conclude that
f0

j = −
∑

K∈I0(n,q)

gK
j,J0

∧
XK

∧
XJ0

.

(9.55) and (9.56) follow from Lemmas 9.27 and 9.32 and Proposition 8.3. ��

Let σ0 := Φ∗ν0, so that σ0 is a density on Bn(η1). Define h0 by σ0 = h0σLeb, so
that h0 ∈ C(Bn(η1)).

Lemma 9.39. h0(t) = det(I + A(t))−1, where A is the matrix from Theorem 4.7. In
particular, h0(t) ≈0 1, ∀t ∈ Bn(η1). For m ∈ N, s ∈ [0, 1],

‖h0‖Cm,s(Bn(η1)) �〈m,m−1,s〉 1, (9.58)

and for s ∈ (0, ∞),
‖h0‖C s(Bn(η1)) �{s,s−1} 1. (9.59)

Proof. Because ‖A(t)‖Mn×n ≤ 1
2 , ∀t ∈ Bn(η1) (Theorem 4.7 (g)), we have | det(I +

A(t))−1| = det(I + A(t))−1, ∀t ∈ Bn(η1). We have,

h0(t) = σ0(t)
(

∂

∂t1
,

∂

∂t2
, . . . ,

∂

∂tn

)

= σ0(t)((I + A(t))−1Y1(t), . . . , (I + A(t))−1Yn(t))

= | det(I + A(t))−1|σ0(t)(Y1(t), . . . , Yn(t))

= det(I + A(t))−1ν0(Φ(t)) (X1(Φ(t)), . . . , Xn(Φ(t)))

= det(I + A(t))−1.

That h0(t) ≈0 1, ∀t ∈ Bn(η1) follows from the fact that ‖A(t)‖Mn×n ≤ 1
2 , ∀t ∈ Bn(η1)

(Theorem 4.7 (g)). Using Proposition 8.3 (applied to the cofactor representation of
(I + A)−1), (9.58) and (9.59) follow from the corresponding regularity for A as
described in Theorem 4.7 (h)–here we are using that the regularity for A and the
regularity for Y1, . . . , Yn are the same, by the definition of A. ��

We now turn to studying the density ν from Section 6; thus we use the functions
fj from (6.1). Because ν0 is a nonzero density on BXJ0

(x0, χ), there is a unique
g ∈ C(BXJ0

(x0, χ)) such that ν = gν0.

Lemma 9.40. For 1 ≤ j ≤ n, Xjg = (fj − f0
j )g.

Proof. We have,

fjgν0 = fjν = LXj
ν = LXj

(gν0) = (Xjg)ν0 + gLXj
ν0 = (Xjg)ν0 + gf0

j ν0.

The result follows. ��
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Lemma 9.41. Theorem 6.5 (i) holds. Namely,

g(x) ≈0;ν g(x0) = ν(x0)(X1(x0), . . . , Xn(x0)), ∀x ∈ BXJ0
(x0, χ).

Proof. Note g(x0) = g(x0)ν0(x0)(X1(x0), . . . , Xn(x0)) = ν(x0)(X1(x0), . . . , Xn(x0)),
by definition. So it suffices to show g(x) ≈0;ν g(x0) for x ∈ BXJ0

(x0, χ).
Let γ : [0, 1] → BXJ0

(x0, χ) be such that γ(0) = x0, γ(1) = x, γ′(t) =
∑n

j=1 aj(t)χXj(γ(t)), ‖
∑

|aj(t)|2‖L∞([0,1]) < 1. We have, using Lemma 9.40,

d

dt
g(γ(t)) =

n∑

j=1

aj(t)χ(Xjg)(γ(t)) =
n∑

j=1

aj(t)χ(fj(γ(t)) − f0
j (γ(t)))g(γ(t)).

Hence, g(γ(t)) satisfies an ODE. Solving this ODE we have

g(x) = g(γ(1)) = e
∫ 1
0

∑n
j=1 aj(s)χ(fj(γ(s))−f0

j (γ(s))) dsg(x0).

We know ‖f0
j ‖C(BXJ0

(x0,χ)) �0 1 (by the case m = 0, s = 0 of (9.55)). Using this
and the definition of 0; ν-admissible constants, g(x) ≈0;ν g(x0) follows immediately,
completing the proof. ��

Lemma 9.42. Theorem 6.5 (ii) holds. Namely, for m ∈ N, s ∈ [0, 1],

‖g‖Cm,s
XJ0

(BXJ0
(x0,χ)) �〈m−1,m−1,s;ν〉 |ν(X1, . . . , Xn)(x0)|, (9.60)

and for s ∈ (0, ∞),

‖g‖C s
XJ0

(BXJ0
(x0,χ)) �{s−1,s−1;ν} |ν(X1, . . . , Xn)(x0)|. (9.61)

Proof. We begin with (9.60). First note that

‖g‖C(BXJ0
(x0,χ)) �0;ν |ν(X1, . . . , Xn)(x0)|, (9.62)

which follows immediately from Lemma 9.41. We claim that

‖g‖C1
XJ0

(BXJ0
(x0,χ)) �0;ν |ν(X1, . . . , Xn)(x0)|. (9.63)

Indeed, using Lemma 9.40, for each 1 ≤ j ≤ n,

‖Xjg‖C(BXJ0
(x0,χ)) = ‖(fj − f0

j )g‖C(BXJ0
(x0,χ))

�0;ν ‖g‖C(BXJ0
(x0,χ)) �0;ν |ν(X1, . . . , Xn)(x0)|, (9.64)

where in the last inequality we have used (9.62) and in the second to last inequality
we have used ‖fj‖C(BXJ0

(x0,χ)) �0;ν 1 (which follows from the definition of 0; ν-
admissible constants) and ‖f0

j ‖C(BXJ0
(x0,χ)) �0 1 (which follows from the case m = 0,

s = 0 of (9.55)). Combining (9.62) and (9.64) proves (9.63).
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We prove (9.60) by induction on m. For the base case, m = 0, we have using
Lemma 8.1 (i) and (ii), and (9.63),
‖g‖

C0,s
XJ0

(BXJ0
(x0,χ))

≤ 3‖g‖
C0,1

XJ0
(BXJ0

(x0,χ))
≤ 3‖g‖C1

XJ0
(BXJ0

(x0,χ)) �0;ν |ν(X1, . . . , Xn)(x0)|.

This proves the case m = 0 of (9.60).
We now assume (9.60) for m − 1 and prove it for m. We have

‖g‖Cm,s
XJ0

(BXJ0
(x0,χ)) = ‖g‖Cm−1,s

XJ0
(BXJ0

(x0,χ)) +
n∑

j=1

‖Xjg‖Cm−1,s
XJ0

(BXJ0
(x0,χ)).

The first term is �〈m−2,m−2,s;ν〉 |ν(X1, . . . , Xn)(x0)| by the inductive hypothesis, so
we focus only on the second term. We have, using Lemma 9.40 and Proposition 8.3,
for a constant Cm depending only on m, for 1 ≤ j ≤ n,

‖Xjg‖Cm−1,s
XJ0

(BXJ0
(x0,χ)) = ‖(fj − f0

j )g‖Cm−1,s
XJ0

(BXJ0
(x0,χ))

≤ Cm‖fj − f0
j ‖Cm−1,s

XJ0
(BXJ0

(x0,χ))‖g‖Cm−1,s
XJ0

(BXJ0
(x0,χ))

�〈m−1,m−1,s;ν〉 |ν(X1, . . . , Xn)(x0)|,

where the last inequality follows from the inductive hypothesis, (9.55), and the
definition of 〈m − 1, m − 1, s; ν〉-admissible constants. (9.60) follows.

We turn to (9.61), which we prove by induction on m, where s ∈ (m, m + 1]. We
begin with the base case, m = 0, so that s ∈ (0, 1]. Using Lemma 8.1 (iii) and (9.60)
we have

‖g‖C s
XJ0

(BXJ0
(x0,χ)) ≤ 5‖g‖C0,s

XJ0
(BXJ0

(x0,χ)) �0;ν |ν(X1, . . . , Xn)(x0)|.

(9.61) follows for s ∈ (0, 1]. From here the inductive step follows just as in the
inductive step for (9.60), and we leave the details to the reader. ��

Lemma 9.43. Let h(t) be as in Theorem 6.5. Then h(t) = h0(t)g ◦ Φ(t).

Proof. We have

Φ∗ν = Φ∗gν0 = (g ◦ Φ)Φ∗ν0 = (g ◦ Φ)h0σLeb,

completing the proof. ��

Proof of Theorem 6.5 (iii). This follows from Lemmas 9.39, 9.41 and 9.43. ��

Proof of Theorem 6.5 (iv). We prove the result for Zygmund spaces; the same proof
works for Hölder spaces, and we leave the details to the reader. Using Theorem 4.7
(l) we have

‖g ◦ Φ‖C s(Bn(η1)) �{s−1,s−2} ‖g‖C s
XJ0

(BXJ0
(x0,χ)) �{s−1,s−1;ν} |ν(X1, . . . , Xn)(x0)|,

(9.65)
where the last inequality uses (9.61). Since h(t) = h0(t)g ◦ Φ(t) (Lemma 9.43),
combining (9.65) and (9.59), and using Proposition 8.3 completes the proof. ��
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Having completed the proof of Theorem 6.5, we turn to Corollary 6.6. To facilitate
this, we introduce a corollary of Theorem 4.7.

Corollary 9.44. Let η1, ξ1, ξ2 be as in Theorem 4.7. Then, there exist 1-admissible
constants 0 < η2 ≤ η1, 0 < ξ4 ≤ ξ3 ≤ ξ2 such that

BX(x0, ξ4) ⊆ BXJ0
(x0, ξ3) ⊆ Φ(Bn(η2)) ⊆ BXJ0

(x0, ξ2) ⊆ BX(x0, ξ2)

⊆ BXJ0
(x0, ξ1) ⊆ Φ(Bn(η1)) ⊆ BXJ0

(x0, χ) ⊆ BX(x0, ξ).

Proof. After obtaining η1, ξ1, ξ2 from Theorem 4.7, apply Theorem 4.7 again with
ξ replaced by ξ2 to obtain η2, ξ3, and ξ4 as in the statement of the corollary. ��

Proof of Corollary 6.6. We have

ν(BXJ0
(x0, ξ2)) =

∫

BXJ0
(x0,ξ2)

ν =
∫

Φ−1(BXJ0
(x0,ξ2))

Φ∗ν

=
∫

Φ−1(BXJ0
(x0,ξ2))

h(t) dt ≈0;ν Vol(Φ−1(BXJ0
(x0, ξ2)))ν(X1, . . . , Xn)(x0),

(9.66)

where Vol(·) denotes Lebesgue measure, and we have used Theorem 6.5 (iii). By
Corollary 9.44, and the fact that η1, η2 > 0 are 1-admissible constants, we have

1 ≈1 Vol(Bn(η2)) ≤ Vol(Φ−1(BXJ0
(x0, ξ2))) ≤ Vol(Bn(η1)) ≈1 1. (9.67)

Combining (9.66) and (9.67) proves ν(BXJ0
(x0, ξ2)) ≈1;ν ν(X1, . . . , Xn)(x0). The

same proof works with BXJ0
(x0, ξ2) replaced by BX(x0, ξ2), which completes the

proof of (6.3).
All that remains to prove (6.4) is to show

|ν(X1, . . . , Xn)(x0)| ≈0 max
(j1,...,jn)∈I(n,q)

|ν(Xj1 , . . . , Xjn
)(x0)|.

We have, using Lemma 9.36,

|ν(X1, . . . , Xn)(x0)| = |g(x0)ν0(X1, . . . , Xn)(x0)|
= |g(x0)| ≈0 |g(x0)| max

(j1,...,jn)∈I(n,q)
|ν0(Xj1 , . . . , Xjn

)(x0)|

= max
(j1,...,jn)∈I(n,q)

|g(x0)ν0(Xj1 , . . . , Xjn
)(x0)|

= max
(j1,...,jn)∈I(n,q)

|ν(Xj1 , . . . , Xjn
)(x0)|,

completing the proof. ��



1852 B. STOVALL AND B. STREET GAFA

9.5 More on the assumptions. In this section we prove Proposition 4.14.
The existence of η > 0 as in Proposition 4.14 follows immediately from the Picard–
Lindelöf Theorem, so we focus on the existence of δ0 > 0. The key is the next
lemma.

Lemma 9.45. Suppose Z is a C1 vector field on an open set V ⊆ R
n. Then, there

exists δ > 0, depending only on n, such that if ‖Z‖C1(V ;Rn) ≤ δ, then there does not
exist x ∈ V with:

• etZx ∈ V , ∀t ∈ [0, 1].
• eZx = x.
• Z(x) �= 0.

Proof. For a proof of this classical result, see [Str11, Lemma 3.19]. ��

To prove the existence of δ0 as in Proposition 4.14, since K is compact, it suffices
to prove the next lemma.

Lemma 9.46. Let X1, . . . , Xq be C1 vector fields on a C2 manifold M. For all x ∈ M,
there exists an open set N ⊆ M with x ∈ N , and δ0 > 0 such that ∀θ ∈ Sq−1 if
y ∈ N is such that θ1Xq(y) + · · · + θqXq(y) �= 0, then ∀r ∈ (0, δ0],

erθ1X1+···+rθqXqy �= y.

Proof. Since this result is local, it suffices to prove the lemma in the case when M =
Bn(1) and x = 0 ∈ R

n. We set N := Bn(1/2). Take δ = δ(n) > 0 as in Lemma 9.45.
Take δ1 > 0 so small that ∀y ∈ Bn(1/2), t ∈ Bq(δ1), we have et1X1+···+tqXqy ∈
Bn(3/4). Set C := max1≤j≤q ‖Xj‖C1(Bn(3/4);Rn), and let δ0 = min{δ1, δ/qC}. From
here, the result follows from Lemma 9.45. ��
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A Proof of Proposition 3.1

The ideas behind Proposition 3.1 are well-known to experts; however, we could not find
an exact statement of Proposition 3.1 in the literature, so we include the proof here for
completeness, with the understanding that the methods used are known to experts. It seems
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closely related to the theory of orbits of Sussman [Sus73] and Stefan [Ste74], though does not
follow directly from these theories. Similar methods have been used to prove the Frobenius
theorem for Lipschitz vector fields; see [MM13a] and references therein.
We begin with the existence of the C2 structure; we take all the same notation as in the
statement of Proposition 3.1. Set D := dimM, and let (φα, Uα)α∈A be a C2 atlas for M
with {Uα : α ∈ A} an open cover for M and φα : Uα → BD(1) a C2 diffeomorphism.
Let X

(α)
j = (φα)∗Xj so that X

(α)
j is a C1 vector field on BD(1). We may pick the above

atlas so that ‖X
(α)
j ‖C1(BD(1);Rn) < ∞.

Lemma A.1. Let Z be as in the beginning of Section 3.1. The topology on Z (induced by
the metric ρ) is finer than the topology as a subspace of M.

Proof. Let U ⊆ M be an open set and let x ∈ U ∩ Z. We wish to show that there is a δ > 0
with BX(x, δ) ⊆ U . Since x ∈ Uα for some α ∈ A, we may replace U with U ∩ Uα, and
therefore assume U ⊆ Uα for some α ∈ A.
By the Picard-Lindelöf Theorem, there exists δ > 0 so small such that given a1, . . . , aq ∈
L∞([0, 1]) with ‖

∑
|aj |2‖L∞([0,1]) < 1, there exists a unique γ̃ : [0, 1] → φα(U) with

γ̃(0) = φα(x) and γ̃′(t) =
q
∑

j=1

aj(t)δX(α)(γ̃(t)). (A.1)

We claim BX(x, δ) ⊆ U . Indeed, fix y ∈ BX(x, δ). By the definition of BX(x, δ), ∃γ :
[0, 1] → BX(x, δ), γ(0) = x, γ(1) = y, γ′(t) =

∑q
j=1 aj(t)δXj(γ(t)). Let γ̃ : [0, 1] → φα(U)

be the unique solution to (A.1) with this choice of a1, . . . , aq, and set γ̂ := φ−1
α ◦ γ̃. Then,

γ̂(0) = x = γ(0), γ̂′(t) =
∑q

j=1 aj(t)δXj(γ(t)) = γ′(t). Standard uniqueness theorems for
ODEs show γ = γ̂, and therefore y = γ(1) = γ̂(1) = φ−1

α (γ̃(1)). Since γ̃(1) ∈ φα(U), it
follows y ∈ U , which completes the proof. ��

Recall, M is a connected open subset of Z which is given the topology as subspace of Z;
i.e., M is given the topology induced by the metric ρ.
Set Mα := φα(Uα ∩ M); we give Mα the topology so that φα : M ∩ Uα → Mα is a homeo-
morphism (with M ∩ Uα ⊆ M given the topology as a subspace of M). Let X(α)(u) denote
the D × q matrix X(α)(u) = (X(α)

1 (u)| · · · |X(α)
q (u)). For K = (k1, . . . , kl) ∈ I(l, q) let X

(α)
K

denote the list of vector fields X
(α)
k1

, . . . , X
(α)
kl

and for J = (j1, . . . , jl) ∈ I(l,D) let X
(α)
J,K

denote the l × l submatrix of X(α)(u) given by taking the rows listed in J and the columns
listed in K.

Lemma A.2. For u ∈ Mα, 1 ≤ k ≤ q, 1 ≤ l ≤ min{q,D}, K ∈ I(l, q), J ∈ I(l,D)

X
(α)
k det X

(α)
J,K(u) =

∑

K′∈I(l,q)
J ′∈I(l,D)

fJ ′,K′
k,J,K det X

(α)
J ′,K′(u),

where fJ ′,K′
k,J,K : Mα → R are locally bounded.

Proof. Let J = (j1, . . . , jl), K = (k1, . . . , kl). Then, detX
(α)
J,K = νJ(X(α)

k1
, . . . , X

(α)
kl

), where
νJ is the l-form duj1 ∧ duj2 ∧ · · · ∧ dujl

. Hence, using [Lee03, Proposition 18.9] we have
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X
(α)
k det X

(α)
J,K = L

X
(α)
k

(

νJ(X(α)
k1

, . . . , X
(α)
kl

)
)

=
(

L
X

(α)
k

νJ

)

(X(α)
k1

, . . . , X
(α)
kl

) + νJ([X(α)
k ,X

(α)
k1

],X(α)
k2

, . . . , X
(α)
kl

)

+ νJ(X(α)
k1

, [X(α)
k ,X

(α)
k2

],X(α)
k3

, . . . , X
(α)
kl

) + · · · + νJ(X(α)
k1

, . . . , X
(α)
kl−1

, [X(α)
k ,X

(α)
kl

])
(A.2)

We begin with the first term on the right hand side of (A.2). Since X
(α)
k is a C1 vector field,

L
X

(α)
k

νJ is a C0 l-form on BD(1) and we have

L
X

(α)
k

νJ =
∑

J ′∈I(l,D)

fJ ′
k,JνJ ′ ,

where ‖fJ ′
k,J‖C0(BD(1)) < ∞. Hence

(

L
X

(α)
k

νJ

)

(X(α)
k1

, . . . , X
(α)
kl

) =
∑

J ′∈L(l,D)

fJ ′
k,J det X

(α)
J ′,K ,

as desired.
We now turn to the rest of the terms on the right hand side of (A.2). These terms are all
similar, so we only discuss the first. We have

νJ([X(α)
k ,X

(α)
k1

],X(α)
k2

, . . . , X
(α)
kl

) =
∑

r

(cr
m,k1

◦ φα)νJ (X(α)
r ,X

(α)
k2

, . . . , X
(α)
kl

)

=
∑

r

(

cr
m,k1

◦ φα

)

det X
(α)
J,Kr

,

where Kr = (r, k2, . . . , kl) ∈ I(l, q). The result follows. ��

For 1 ≤ l ≤ min{D, q} let detl×l X(α)(u) denote the vector whose components are
det X

(α)
J,K(u), where J ∈ I(l,D), K ∈ I(l, q).

Lemma A.3. For u ∈ Mα, 1 ≤ j ≤ q, 1 ≤ l ≤ min{D, q}, J ∈ I(l,D), K ∈ I(l, q),

∣
∣
∣X

(α)
j det X

(α)
J,K(u)

∣
∣
∣ ≤ gj,J,K(u)

∣
∣
∣
∣
det
l×l

X(α)(u)
∣
∣
∣
∣

where gj,J,K : Mα → [0,∞) is locally bounded.

Proof. This follows immediately from Lemma A.2. ��

Lemma A.4. Let γ : [0, 1] → Mα be such that γ′(t) =
∑q

j=1 aj(t)X
(α)
j (γ(t)), where aj ∈

L∞([0, 1]). Then,

dim span{X
(α)
1 (γ(0)), . . . ,X(α)

q (γ(0))} = dim span{X
(α)
1 (γ(1)), . . . ,X(α)

q (γ(1))}.

Proof. We will show
∣
∣
∣
∣
det
l×l

X(α)(γ(0))
∣
∣
∣
∣
= 0 ⇒

∣
∣
∣
∣
det
l×l

X(α)(γ(1))
∣
∣
∣
∣
= 0. (A.3)
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To see why (A.3) implies the result note that by reversing γ, we have
∣
∣
∣
∣
det
l×l

X(α)(γ(0))
∣
∣
∣
∣
= 0 ⇔

∣
∣
∣
∣
det
l×l

X(α)(γ(1))
∣
∣
∣
∣
= 0,

and by noting that dim span{X
(α)
1 (u), . . . , X(α)

q (u)} ≥ l ⇔
∣
∣detl×l X(α)(u)

∣
∣ �= 0, the result

follows. We turn to proving (A.3). We have, using Lemma A.3,

d

dt

∣
∣
∣
∣
det
l×l

X(α)(γ(t))
∣
∣
∣
∣

2

= 2
∑

J∈I(l,D)
K∈I(l,q)

det X
(α)
J,K(γ(t))

d

dt
det X

(α)
J,K(γ(t))

= 2
∑

J∈I(l,D)
K∈I(l,q)

det X
(α)
J,K(γ(t))

⎛

⎝

q
∑

j=1

aj(t)
(

X
(α)
j det X

(α)
J,K

)

(γ(t))

⎞

⎠

≤ 2
∑

J∈I(l,D)
K∈I(l,q)

(

sup
t∈[0,1]

gj,J,K(γ(t))

)⎛

⎝

q
∑

j=1

‖aj‖L∞([0,1])

⎞

⎠

∣
∣
∣
∣
det
l×l

X(α)(γ(t))
∣
∣
∣
∣

2

.

We conclude,
d

dt

∣
∣
∣
∣
det
l×l

X(α)(γ(t))
∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣
det
l×l

X(α)(γ(t))
∣
∣
∣
∣

2

,

for some constant C. (A.3) follows by Grönwall’s inequality. ��

Proposition A.5. The map x 
→ dim span{X1(x), . . . , Xq(x)}, M → N is constant.

Proof. Since M is connected, it suffices to show the map is locally constant. Fix x ∈ M and
pick α ∈ A such that x ∈ Uα. Take δ > 0 so small that BX(x, δ) ⊂ M ∩ Uα (here, we are
using Lemma A.1). We wish to show x 
→ dim span{X1(x), . . . , Xq(x)}, BX(x, δ) → N is
constant.
Take y ∈ BX(x, δ), so that ∃γ : [0, 1] → M, γ(0) = x, γ(1) = y, γ′(t) =

∑
aj(t)δXj(γ(t)),

‖
∑

|aj(t)|2‖L∞([0,1]) < 1. Note, ∀t ∈ [0, 1], γ(t) ∈ BX(x, δ) ⊆ Uα.
Set γ̃(t) := φα ◦ γ(t). γ̃ satisfies all the hypotheses of Lemma A.4 and this shows

dim span{X
(α)
1 (φα(x)), . . . , X(α)

q (φα(x))} = dim span{X
(α)
1 (φα(y)), . . . , X(α)

q (φα(y))}.

Hence, dim span{X1(x), . . . , Xq(x)} = dim span{X1(y), . . . , Xq(y)}, completing the proof.
��

Set n := dim span{X1(x), . . . , Xq(x)}, x ∈ M (by Proposition A.5, n does not depend on
x).

Lemma A.6. Let x ∈ M and K = (k1, . . . , kn) ∈ I(n, q) be such that Xk1(x), . . . , Xkn
(x)

are linearly independent. Then, there is an open set U ⊆ M, containing x, J ∈ I(n,D), and
δ > 0 such that the following hold:

(i) BX(x, δ) ⊆ U .
(ii) ∃α ∈ A, U ⊆ Uα.

(iii) infu∈φα(U)

∣
∣
∣det X

(α)
J,K(u)

∣
∣
∣ > 0.
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(iv) ∀y ∈ BX(x, δ), span{Xk1(y), . . . , Xkn
(y)} = span{X1(y), . . . , Xq(y)}.

(v) ∀y ∈ BX(x, δ), [Xki
,Xkj

](y) ∈ span{Xk1(y), . . . , Xkn
(y)}.

(vi) For 1 ≤ j ≤ q, 1 ≤ l ≤ n, ∃bl
j ∈ C1(U), ‖bl

j ◦ φ−1
α ‖C1(φα(U)) < ∞, such that

∀y ∈ BX(x, δ),

Xj(y) =
n∑

l=1

bl
j(y)Xkl

(y). (A.4)

Proof. Let U ⊆ M be a neighborhood of x which may shrink from line to line. First, we
may take U so small that U ⊆ Uα for some α ∈ A. Since X

(α)
k1

(φα(x)), . . . , X(α)
kn

(φα(x)) are
linearly independent, by the hypotheses, ∃J ∈ I(n,D) such that

∣
∣
∣det X

(α)
J,K(φα(x))

∣
∣
∣ > 0.

By the continuity of the map u 
→
∣
∣
∣det X

(α)
J,K(u)

∣
∣
∣, we may shrink U so that (iii) holds. We

take δ > 0 so small that (i) holds; here we are using Lemma A.1.
Since ∀u ∈ φα(U),

∣
∣
∣det X

(α)
J,K(u)

∣
∣
∣ > 0 we have ∀y ∈ BX(x, δ) ⊆ U ,

dim span{Xk1(y), . . . , Xkn
(y)} = n = dim span{X1(y), . . . , Xq(y)},

proving (iv).
Since [Xki

,Xkj
](y) ∈ span{X1(y), . . . , Xq(y)}, ∀y ∈ M (by assumption), (v) follows from

(iv).
Finally, for (vi), set

bl
j(y) :=

det X
(α)
J,Kj,l

(φα(y))

det X
(α)
J,K(φα(y))

,

where Kj,l is the same as K but with kl repalced by j. That ‖bl
j ◦φ−1

α ‖C1(φα(U)) < ∞ follows
from (iii) and the fact that X1, . . . , Xq ∈ C1. (A.4) follows from Cramer’s rule. ��

Proposition A.7. Let x ∈ M . Then there exist an open set U ⊆ M, containing x, δ > 0,
and C1 vector fields V1, . . . , Vn on U such that the following hold:

(i) BX(x, δ) ⊆ U .

(ii) ∃α ∈ A, U ⊆ Uα.

(iii) For 1 ≤ j ≤ q, 1 ≤ l ≤ n, ∃f l
j ∈ C1(U), ‖f l

j ◦ φ−1
α ‖C1(φα(U)) < ∞ such that

∀y ∈ BX(x, δ),

Xj(y) =
n∑

l=1

f l
j(y)Vl(y).

(iv) ∀y ∈ BX(x, δ), V1(y), . . . , Vn(y) are linearly independent.

(v) For all 1 ≤ l ≤ n, 1 ≤ j ≤ q, ∃gj
l ∈ C1(U), ‖gj

l ◦ φ−1
α ‖C1(φα(U)) < ∞, such that

∀y ∈ BX(x, δ),

Vl(y) =
q
∑

j=1

gj
l (y)Xj(y).

(vi) ∀y ∈ BX(x, δ), [Vj , Vk](y) = 0, 1 ≤ j, k ≤ n.
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Proof. Take K = (k1, . . . , kn) ∈ I(n, q) such that Xk1(x), . . . , Xkn
(x) are linearly indepen-

dent and let J ∈ I(n,D), U ⊆ M, δ > 0 be as in Lemma A.6. Without loss of generality,
we may reorder the vector fields and coordinates so that J = (1, . . . , n), K = (1, . . . , n).
For 1 ≤ j ≤ n, u ∈ φα(U), write

X
(α)
j =

D∑

k=1

hj,k ◦ φ−1
α (u)

∂

∂xk
,

and let H(y) denote the n × n matrix H(y) = (hj,k)1≤j≤n,1≤k≤n. Clearly,
‖hj,k ◦ φ−1

α ‖C1(φα(U)) < ∞.
By Lemma A.6 (iii), infu∈φα(U) |det H(u)| > 0. Define hj,k by H(y)−1 =
(hj,k(y))1≤j≤n,1≤k≤n, y ∈ U . By the above comments, ‖hj,k ◦ φ−1

α ‖C1(φα(U)) < ∞. Set

Vj(y) =
n∑

k=1

hj,k(y)Xk(y), y ∈ U,

so that (v) holds, by definition. Furthermore, for 1 ≤ j ≤ n,

Xj(y) =
n∑

k=1

hj,k(y)Vk(y),

so that (iii) holds for 1 ≤ j ≤ n. For n + 1 ≤ j ≤ q, (iii) follows from this and Lemma A.6
(vi). Since ∀y ∈ BX(x, δ), dim span{X1(y), . . . , Xq(y)} = n, we see from (iii) that dim span
{V1(y), . . . , Vn(y)} = n and so (iv) follows.
It remains to prove (vi). Let V

(α)
k := (φα)∗Vk, so that V

(α)
k is a C1 vector field on φα(U).

By the construction of V
(α)
k , ∀u ∈ U ,

V
(α)
k (φα(u)) ≡ ∂

∂uk
mod

{
∂

∂un+1
, . . . ,

∂

∂uD

}

. (A.5)

Also, by (iii) and (v), for y ∈ BX(x, δ),

[V (α)
j , V

(α)
k ](φα(y)) ∈ span{X

(α)
1 (φα(y)), . . . , X(α)

q (φα(y))}

= span{V
(α)
1 (φα(y)), . . . , V (α)

n (φα(y))}.

Combining this with (A.5), we have for y ∈ BX(x, δ),

[V (α)
j , V

(α)
k ](φα(y)) ∈ span{V

(α)
1 (φα(y)), . . . , V (α)

n (φα(y))}∩span
{

∂

∂un+1
, . . . ,

∂

∂uD

}

= {0}.

(vi) follows, completing the proof. ��

Lemma A.8. Let W and Z be C1 vector fields on an open set U ⊆ R
d. Then, ∀x ∈ U ,

t, s ∈ R such that e−sZe−τW esZeτW x makes sense for all τ ∈ [min{0, t},max{0, t}], we have

e−sZe−tW esZetW x = x +
∫ t

0

∫ s

0

(

[W,Z](e−sZe−τXeσZ)
) (

e(s−σ)ZeτW (x)
)

dσdτ,

where we have written ([W,Z](f))(y) to denote the vector field [W,Z] applied to the function
f , then evaluated at the point y.
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Proof. This is [RS07, Lemma 4.1]. ��

Fix x ∈ M and let α ∈ A, U ⊆ Uα, δ > 0, and V1, . . . , Vn be as in Proposition A.7. By
Proposition A.7 (v), there exists δ1 > 0 such that BV (x, δ1) ⊆ BX(x, δ). For ε = ε(x) > 0
sufficiently small,18 define the map Φx : Bn(ε) → M by

Φx(t1, . . . , tn) = et1V1et2V2 · · · etnVnx.

Note that for t ∈ Bn(δ1/n), Φx(t) ∈ BV (x, δ1) ⊆ BX(x, δ) ⊆ M .

Lemma A.9. For ε = ε(x) > 0 sufficiently small and for any permutation σ ∈ Sn,

Φx(t1, . . . , tn) = etσ(1)Vσ(1)etσ(2)Vσ(2) · · · etσ(n)Vσ(n)x, ∀t ∈ Bn(ε).

Proof. The minor difficulty in this lemma is that V1, . . . , Vn are only known to commute on
BX(x, δ), not on a neighborhood in M–since we do not yet know that BX(x, δ) is a manifold,
the lemma does not follow from standard results. We prove the lemma with ε = δ1/4n. It
suffices to show ∀l ∈ {1, . . . , n−1},

et1V1et2V2 · · · etlVletl+1Vl+1 · · · etnVnx = et1V1et2V2 · · · etl−1Vl−1etl+1Vl+1etlVletl+2Vl+2 · · · etnVnx,

as the result will then follow by repeated applications of this and by symmetry in the assump-
tions on V1, . . . , Vn. Since etl+2Vl+2 · · · etnVnx ∈ BV (x, δ1/4) it suffices to show ∀(tl, tl+1) ∈
B2(ε), y ∈ BV (x, δ1/4),

etlVletl+1Vl+1y = etl+1Vl+1etlVly. (A.6)
Note, ∀(tl, tl+1) ∈ B2(ε),

e−tlVle−tl+1Vl+1etlVletl+1Vl+1y ∈ BV (x, δ1) ⊆ BX(x, δ).

Pushing this equation forward via φα gives

e−tlV
(α)

l e−tl+1V
(α)

l+1 etlV
(α)

l etl+1V
(α)

l+1 φα(y).

Since [V (α)
l , V

(α)
l+1 ](u) = 0, ∀u ∈ φα(BV (x, δ1)) ⊆ φα(BX(x, δ)), it follows from Lemma A.8

that
e−tlV

(α)
l e−tl+1V

(α)
l+1 etlV

(α)
l etl+1V

(α)
l+1 φα(y) = φα(y),

and so
etlV

(α)
l etl+1V

(α)
l+1 φα(y) = etl+1V

(α)
l+1 etlV

(α)
l φα(y).

(A.6) follows, completing the proof. ��

Lemma A.10. For ε = ε(x) > 0 sufficiently small,

(i) Φx(Bn(ε)) ⊆ BX(x, δ) is an open set (and we give Φx(Bn(ε)) the subspace topology).
(ii) Φx : Bn(ε) → Φx(Bn(ε)) is a homeomorphism.
(iii) Φx : Bn(ε) → M is C2 and dΦx(u) has full rank (i.e., rank n), ∀u ∈ Bn(ε).
(iv) dΦx(u) ∂

∂uj
= Vj(Φx(u)).

(v) There are C1 vector fields Y1, . . . , Yq on Bn(ε) with ‖Yj‖C1(Bn(ε);Rn) < ∞ such that
dΦx(u)Yj(u) = Xj(Φx(u)).

18 We allow ε > 0 to shrink, as needed, throughout the argument.
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Proof. We have already seen Φx(Bn(ε)) ⊆ BV (x, δ1) ⊆ BX(x, δ). Since V1, . . . , Vn are C1,
standard proofs show that Φx is C1. Since ∂

∂tj

∣
∣
t=0

Φx(t) = Vj(x) and V1(x), . . . , Vn(x) are
linearly independent (Proposition A.7 (iv)) the Inverse Function Theorem shows that if
ε > 0 is sufficiently small, Φx : Bn(ε) → M is injective and dΦx(u) has full rank (i.e., rank
n) ∀u ∈ Bn(ε).
By the definition of Φx, ∂

∂t1
Φx(t) = V1(Φx(t)), and by Lemma A.9, Φx is symmetric in

V1, . . . , Vn and so (iv) follows for ε > 0 sufficiently small.
Let S ⊆ Bn(ε) be open. We claim Φx(S) ⊆ BX(x, δ) is open. Indeed, take Φx(u) ∈
Φx(S). Let ε0 > 0 be so small that Bn(u, ε0) ⊆ S. Then Φx(Bn(u, ε0)) ⊆ Φx(S). And
so BV (Φx(u), ε0) = Φx(Bn(u, ε0)) ⊆ Φx(S).19 By Proposition A.7 (iii) ∃ε1 > 0 with
BX(Φx(u), ε1) ⊆ BV (Φx(u), ε0) = Φx(Bn(u, ε0)) ⊆ Φx(S). Thus, Φx(S) ⊆ BX(x, δ) is open.
In particular Φx(Bn(ε)) ⊆ BX(x, δ) is open. This proves (i).
Since Φx is an injective open map, to prove it is a homeomophism it suffices to prove it is
continuous. Let u ∈ Bn(ε) and let S ⊆ BX(x, δ) be an open set such that Φx(u) ∈ S. We
wish to show that there is an open set O ⊆ Bn(ε), u ∈ O, Φx(O) ⊆ S.
Take ε0 > 0 so small that BX(Φx(u), ε0) ⊆ S. Then by Proposition A.7 (iii) ∃ε1 > 0
with BV (Φx(u), ε1) ⊆ BX(Φx(u), ε0) ⊆ S. But Φx(Bn(u, ε1)) = BV (Φx(u), ε1); thus O =
Bn(u, ε1) is our desired neighborhood of u. This proves (ii).
Taking f l

j as in Proposition A.7 (iii), and setting Yj(u) =
∑n

l=1 f l
j ◦ Φx(u) ∂

∂ul
, (v) follows.

For (iii), we already know Φx is C1. That Φx is C2 follows from (iv) and the fact that
V1, . . . , Vn are C1. We have already shown dΦx(u) has full rank, ∀u ∈ Bn(ε). ��
In the previous discussion, ε > 0 implicitly depended on x. We now make this dependance
explicit and write εx > 0. We consider a family of functions and open sets on M given by

{

(Φ−1
x ,Φx(Bn(εx))

}

x∈M
.

The proof of the existence of the C2 structure in Proposition 3.1 is completed by the next
proposition.

Proposition A.11. The above maps yield a C2 atlas on M . With this manifold structure
X1, . . . , Xq are C1 vector fields on M , and the inclusion map M ↪→ M is a C2 injective
immersion.

Proof. The main point is to show that the collection of maps gives a C2 atlas. Once this
is shown, that X1, . . . , Xq are C1 on this manifold follows from Lemma A.10 (v). That the
inclusion map is a C2 injective immersion follows from Lemma A.10 (iii).
We turn to showing the collection is a C2 atlas. Set W = Φx1(B

n(εx1)) ∩ Φx2(B
n(εx2)). We

want to show Φ−1
x1

◦ Φx2 : Φ−1
x2

(W ) → Bn(εx1) is C2. Since Φx1 : Bn(εx1) → M is injective,
C2, and has injective differential (Lemma A.10 (ii) and (iii)) we have

Φ−1
x1

◦ Φx2 is C2 ⇔ Φx1 ◦ Φ−1
x1

◦ Φx2 is C2.

But Φx1 ◦ Φ−1
x1

◦ Φx2 = Φx2 is C2 by Lemma A.10 (iii), completing the proof. ��
Finally, the uniqueness of the C2 structure in Proposition 3.1 follows immediately from the
next lemma and Lemma A.1.

Lemma A.12. Let M be a manifold and let M ⊆ M be a subset. Give M any topology which
is finer20 than the subspace topology induced by M. Then, there is at most one C2 manifold

19 To conclude BV (Φx(u), ε0) = Φx(Bn(u, ε0)), we have used dΦx(t) ∂
∂tj

= Vj(Φx(t)) and the

definition of BV (Φx(y), ε0).
20 Not necessarily strictly finer.
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structure on M , compatible with this topology, such that the inclusion map M ↪→ M is an
injective immersion.

Proof. Suppose there are two such C2 structures on M ; denote the corresponding C2 man-
ifolds by M1 and M2. We wish to show that the identity map M1 → M2 is a C2 diffeomor-
phism. Let i1 : M1 ↪→ M, i2 : M2 ↪→ M be the inclusion maps (on the underlying space M ,
i1 = i2). Since i1 and i2 are assumed to be injective immersions, for all x ∈ M , there is a
neighborhood U ⊆ M of x such that

i1|U : M1 ∩ U → M ∩ U, i2|U : M2 ∩ U → M ∩ U

are C2 diffeomorpisms, where M ∩ U is given the C2 structure as a submanifold of M.
Hence, the idenitity map U ∩M1 → U ∩M2 is a C2 diffeomorphism. Since the idenitity map
M1 → M2 is a homeomorphism which is locally a C2 diffeomorphism, we conclude that it
is a global C2 diffeomorphism, as desired. ��
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Carnot–Carathéodory metric on unbounded model hypersurfaces in C

2. Involve
(1)11 (2018), 103–118

[FS74] G. B. Folland and E. M. Stein. Estimates for the ∂̄b complex and analysis on
the Heisenberg group. Comm. Pure Appl. Math. 27 (1974), 429–522

[FSC86] C. Fefferman and A. Sánchez-Calle. Fundamental solutions for second or-
der subelliptic operators. Ann. of Math. (2) (2)124 (1986), 247–272

[Gre15] P. Gressman. Scalar oscillatory integrals in smooth spaces of homogeneous
type. Rev. Mat. Iberoam. (1)31 (2015), 215–244

[Gui08] V. Guillemin. Lecture notes, http://math.mit.edu/~arita/18.101/, 2008,
prepared by Ana Rita Pires, Accessed: 2017-05-02

[Izz99] A. Izzo. Cr convergence of Picard’s successive approximations. Proc. Amer.
Math. Soc. (7)127 (1999), 2059–2063

[Lee03] J. Lee. Introduction to smooth manifolds. In: Graduate Texts in Mathematics,
Vol. 218. Springer, New York (2003)
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