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MULTILINEAR SINGULAR INTEGRAL FORMS
OF CHRIST-JOURNÉ TYPE

ANDREAS SEEGER CHARLES K. SMART BRIAN STREET

Abstract. We prove L
p1(Rd)× · · · ×L

p
n+2(Rd) polynomial growth estimates for the Christ-

Journé multilinear singular integral forms and suitable generalizations.
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1. Introduction

1.1. The d-commutators. Let 0 < ǫ < 1 and let κ ∈ S ′(Rd) ∩ L1
loc(R

d \ {0}) be a regu-

lar Calderón-Zygmund convolution kernel on R
d, satisfying the standard size and regularity

assumptions,

|κ(x)| ≤ C|x|−d, x 6= 0,(1.1a)

|κ(x+ h)− κ(x)| ≤ C
|h|ǫ

|x|d+ǫ
, x 6= 0, |h| ≤

|x|

2
,(1.1b)

and the L2 boundedness condition

(1.1c) ‖κ̂‖∞ ≤ C <∞.

Let ‖κ‖CZ(ǫ) be the smallest constant C for which the three inequalities (1.1) hold simulta-
neously. For convenience, in order to a priori make sense of some of the expressions in this
introduction the reader may initially assume that κ is compactly supported in R

d \ {0}.

For a ∈ L1
loc(R

d) let mx,ya be the mean of a over the interval connecting x and y,

mx,ya =

∫ 1

0
a(sx+ (1− s)y)ds.
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For every y ∈ R
d this is well defined for almost all x ∈ R

d. Given L∞-functions a1, . . . , an on
R
d the nth order d-commutator associated to a1, . . . , an, is defined by

C[a1, . . . , an]f(x) =

∫
κ(x− y)

( n∏

i=1

mx,yai
)
f(y)dy.

One may consider C as an (n+ 1)-linear operator acting on a1, . . . , an, f . Pairing with another
function and renaming ai = fi, i ≤ n, f = fn+1 one obtains the Christ-Journé multilinear form
defined by

(1.2) ΛCJ(f1, . . . , fn+2) =

∫∫
κ(x− y)

( n∏

i=1

mx,yfi
)
fn+1(y)fn+2(x) dx dy .

In dimension d = 1 this operator reduces to the Calderón commutator. However the emphasis
in this paper is on the behavior in dimension d ≥ 2 where the Schwartz kernels are considerably
less regular. Christ and Journé [7] showed that for ai with ‖ai‖∞ ≤ 1 the operator C[a1, . . . , an]
is bounded on Lp, 1 < p <∞, with operator norm O(nα), for α > 2. More precisely,

(1.3)
∣∣ΛCJ(f1, . . . , fn+2)

∣∣ ≤ Cp,ǫ,α‖K‖CZ(ǫ) n
α
( n∏

i=1

‖fi‖∞
)
‖fn+1‖p‖fn+2‖p′ , α > 2.

For related results on Calderón commutators for d = 1 see the discussion of previous results in
§1.2 below.

The form ΛCJ is not symmetric in fi, i = 1, . . . , n+2, (see the discussion in §1.3 below) and
it is natural to ask whether the analogous estimates hold for fi ∈ Lpi , for other choices of pi.
The problem has been proposed for example in [14] and [18], see also §1.2 for our motivation.

Homogeneity considerations yield the necessary condition
∑n+2

i=1 p
−1
i = 1. In this paper we shall

establish the following estimate, as a corollary of a more general result stated as Theorem 2.8
below.

Theorem 1.1. Suppose that d ≥ 1, 1 < pi ≤ ∞, i = 1, . . . , n+2, and
∑n+2

i=1 p
−1
i = 1. Let ǫ > 0

and min{p1, . . . , pn+2} ≥ 1 + δ. Then for Λ as in (1.2)

(1.4)
∣∣ΛCJ(f1, . . . , fn+2)

∣∣ ≤ C(δ)‖κ‖CZ(ǫ)n
2 log3(2 + n)

n+2∏

i=1

‖fi‖pi .

Our main interest lies in the higher dimensional cases with d ≥ 2. Polynomial bounds are
known for d = 1, although the precise form of Theorem 1.1 may not have been observed before;
see the discussion about previous results in §1.2.

1.2. Background and historical remarks.

Motivation. Our original motivation for considering estimates (1.4) for pi 6= ∞ for i ≤ n came
from Bressan’s problem ([4]) on incompressible mixing flows. A version of the approach chosen
by Bianchini [2] leads in higher dimensions to the problem of bounding a trilinear singular
integral form with even homogeneous kernels κ. One considers a smooth, time-dependent

vector field (x, t) 7→ ~b(x, t) which is periodic, i.e. ~b(x + k, t) = ~b(x, t) for all (x, t) ∈ R
d × R,

k ∈ Z
d , and divergence-free,

∑d
i=1

∂bi
∂xi

= 0. Let φ be the flow generated by v, i.e. we have
∂
∂tφt(x) = v(φt(x), t), φ0(x) = x, so that for every t the map φt is a diffeomorphism on R

d

satisfying φ(x+ k, t) = k + φ(x, t), for all x ∈ R
d, k ∈ Z

d.
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For small ε consider the truncated Bianchini semi-norm ([2]) defined by

Bε[f ] =

∫ 1/4

ε

∫

Q

∣∣∣f(x)− \

∫

Br(x)
f(y)dy

∣∣∣ dx dr
r
.

Let A be a measurable subset of Rd which is invariant under translation by vectors in Z
d (thus

A+ Z
d can be identified with a measurable subset of Td). Let A∁ = R

d \ A.

A calculation ([22]) shows that

(1.5) Bε[1φT (A)]−Bε[1A] =

V −1
d

∫ T

0

∫

Q
f(x, t)

∫

ε≤|x−y|≤1/4

〈x− y,~b(x, t)−~b(y, t)〉

|x− y|d+2
f(y, t) dy dx dt

where Q = [0, 1)d, f(y, t) = 1
2(1φt(A) − 1φt(A)∁) and Vd is the volume of the unit ball in R

d.

This calculation leads to an alternative approach to a result by Crippa and DeLellis [12].
One has the following estimate involving general (a priori) smooth vector fields x 7→ v(x) on
R
d satisfying div(v) = 0. Let Dv denote its total derivative. Then for 1 < p1, p2, p3 ≤ ∞,∑3
i=1 p

−1
i = 1,

(1.6)
∣∣∣
∫∫

ε<|x−y|<N

〈v(x) − v(y), x− y〉

|x− y|d+2
f(y)g(x) dy dx

∣∣∣ . ‖Dv‖p1‖f‖p2‖g‖p3 .

Here the implicit constant is independent of ε and N . One can think of (1.6) as a trilinear
form acting on f , g and Dv; due to the assumption of zero divergence, the entries are not
independent and one can reduce to the estimation of d2 − 1 trilinear forms. In fact, (1.6) can
be derived from the case n = 1 of Theorem 1.1, using the choices of

(1.7)

κij(x) =
xixj
|x|d+2

, i 6= j,

κi(x) =
x2i − x2d
|x|d+2

, 1 ≤ i < d.

The case with f , g being characteristic functions of sets with finite measure and Dv ∈ Lp1 with
p1 near 1 is of particular interest. Steve Hofmann (personal communication) has suggested that
estimates such as (1.6) can also be obtained from the isotropic version of his off-diagonal T1
theorem [26].

Previous results. We list some previous results on the n+ 2-linear form ΛCJ in (1.3), including
many in dimension d = 1, covering the classical Calderón commutators.

(i) The first estimates of the form (1.4), for the case d = 1 and n = 1 were proved in the
seminal paper by A.P. Calderón [5].

(ii) More generally, still in dimension d = 1, Coifman, McIntosh and Meyer [10] proved
estimates of the form (1.4) for arbitrary n, with p1 = · · · = pn = ∞ and polynomial bounds
C(n) = O(n4) as n → ∞. This allowed them to establish the L2 boundedness of the Cauchy
integral operator on general Lipschitz curves. See also [8] for other applications to related
problems of Calderón. Christ and Journé [7] were able to improve the Coifman-McIntosh-Meyer
bounds to C(n) = O(n2+ε) (and to O(n1+ε) for odd kernels κ).

(iii) Duong, Grafakos and Yan [14] developed a rough version of the multisingular integral
theory in [21] to cover the estimates (1.4) with general exponents for d = 1, however their
arguments yield constants C(n) which are of exponential growth in n.
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One should note that [14] also treats the higher Calderón commutators C[f1, . . . , fn], with
target space Lp where p > 1/2. For the bilinear version this had been first done by C.P. Calderón
[6]. It would be interesting to obtain appropriate similar results for the d-commutators.

(iv) Muscalu [31] recently developed a new approach for proving (1.4) in dimension d = 1,
see also [32, Theorem 4.11]. An explicit bound for the constant as A(n, ℓ) where ℓ is the number
of indices j such that pj 6= ∞ and, for fixed ℓ, n 7→ A(n, ℓ) is of polynomial growth. However,
by using complex interpolation (as in §15) to the case when pj = ∞ for all but two j, one
may remove the dependance of A on ℓ. This yields polynomial bounds for all admissible sets of
exponents, as in our results.

(v) As mentioned above, crucial results for d ≥ 2 were obtained by Christ and Journé [7]
who established (1.4) for p1 = · · · = pn = ∞ and C(n) = O(n2+ε). Several ideas in our proof
can be traced back to their work.

(vi) Hofmann [25] obtained estimates (1.4) for operators with rougher kernels κ, and an
extension to weighted norm inequalities; however the induction argument in [25] only gives
exponential bounds as n→ ∞.

(vii) For the special case that κ is an odd and homogeneous singular convolution kernel,
estimates of the form (1.4) for d ≥ 2 and n = 1 have been obtained by using the method
of rotation. In [14], Duong, Grafakos and Yan use uniform results on the bilinear Hilbert
transforms ([20], [37]) to obtain such estimates under the additional restriction min(p1, p2, p3) >
3/2, see also the survey [18].

We note that one can modify the argument in [14] to remove this restriction, and also to obtain
a version for n ≥ 2. Indeed let κΩ(x) = |x|−dΩ(x/|x|) with Ω ∈ L1(Sd−1) and Ω(θ) = −Ω(−θ).
Let

CΩ[f1, . . . , fn]fn+1(x) =

∫
κΩ(x− y)fn+1(y)

n∏

i=1

∫ 1

0
fi((1− si)x+ siy)dsi dy;

then

(1.8) CΩ[f1, . . . , fn]fn+1(x) =
1

2

∫

Sd−1

Ω(θ) Cθ[f1, . . . , fn, fn+1](x) dθ

where

Cθ[f1, . . . , fn+1](x) = p.v.

∫ ∞

−∞
fn+1(x− sθ)

( n∏

i=1

∫ 1

0
fi(x− usθ)du

)ds
s

Now if e1 = (1, 0, . . . , 0) and Rθ is a rotation with Rθe1 = θ we have

Cθ[f1, . . . , fn+1](x) = Ce1 [f1◦Rθ, . . . , fn+1◦Rθ](R
−1
θ x)

and thus the operator norms of Cθ are independent of θ. One notices that

Ce1 [f1, . . . , fn+1](x1, x
′) = p.v.

∫ ∞

−∞

1

x1 − y1
fn+1(y1, x

′)
n∏

i=1

(∫ 1

0
fi((1− u)x1 + uy1, x

′)du
)
dy1 ,

the Calderón commutator acting in the first variable. The one-dimensional results for the
commutators in [5], [14] can now be applied to show that for

∑n+2
i=1 pi

−1 = 1, pi > 1,

∣∣∣
∫

CΩ[f1, . . . , fn]fn+1(x)fn+2(x)dx
∣∣∣ . C(p1, . . . , pn+2)‖Ω‖L1(Sd−1)

n+2∏

i=1

‖fi‖Lpi .

Note that the assumption κ odd is crucial in formula (1.8) and thus the argument does not
seem to be applicable to the d-commutators associated with the convolution kernels in (1.7).
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(viii) When n = 1 it is known that the Christ-Journé commutator C[a] (with a ∈ L∞) is
of weak type (1, 1). This has been shown by Grafakos and Honzík [19] in two dimensions and
by one of the authors [34] in all dimensions. It is an open problem whether the higher degree
d-commutators (n ≥ 2) are of weak type (1, 1) in dimension d ≥ 2.

1.3. Towards a more general result. In order to prove Theorem 1.1 it suffices to prove
estimate (1.4) for the cases where two of the exponents, say pi, pj , 1 ≤ i < j ≤ n + 2 belong
to (1,∞) and the other n exponents are equal to ∞. Equivalently, if ̟ is a permutation of
{1, . . . , n+ 2} and

Λ̟
CJ(f1, . . . , fn+2) = ΛCJ(f̟(1), . . . , f̟(n+2))

one has to show, for 1 < p <∞, the inequalities

(1.9) Λ̟
CJ[f1, . . . , fn+2]

∣∣ ≤ Cδ,pn
2(log n)3‖κ‖CZ(δ)(

n∏

i=1

‖fi‖∞)‖fn+1‖p‖fn+2‖p′ ,

uniformly in ̟.

Formally the operator Λ̟
CJ takes the form

(1.10) Λ̟
CJ(f1, . . . , fn+2) =

∫∫∫
K̟(α, x − y)fn+2(x)fn+1(y)

n∏

i=1

fi(x− αi(x− y)) dα dx dy.

The case ̟ = id in (1.9) is covered already by the original result of Christ and Journé. Thus by
the symmetry in {1, . . . , n} and essential symmetry in {n+1, n+2} (with a change of variable
αj 7→ (1− αj)) two cases remain of particular interest:

• If ̟i is the permutation that interchanges i and n+1 and leaves all k /∈ {i, n+1} fixed

then the kernel K̟i
is given by

K̟i
(α, v) =

{
|αi|

d−n−1κ(αiv) if αi ≥ 1, 0 ≤ αj ≤ αi, j 6= i,

0 otherwise.

• If 1 ≤ i, j ≤ n, i 6= j and ̟ij is the permutation with ̟ij(i) = n + 1, ̟ij(j) = n + 2

and ̟ij(k) = k for k /∈ {i, j, n + 1, n+ 2} then the kernel K̟ij
is given by

K̟ij
(α, v) = |αi − αj |

d−n−1κ((αi − αj)(x− y))

either if αi ≤ 0, αj ≥ 1, αi ≤ αk ≤ αj for k 6= i, j;

or if αj ≤ 0, αi ≥ 1, αj ≤ αk ≤ αi for k 6= i, j;

K̟ij
(α, v) = 0 otherwise.

Once (1.9) is proved for ̟ = id, ̟ = ̟i, ̟ = ̟ij, the general result follows by complex
interpolation for multilinear operators, see [1, Theorem 4.4.1].

Thus we want to study multilinear forms of the type

(1.11) Λ[K](b1, . . . , bn+2) =

∫∫∫
K(α, x− y)bn+2(x)bn+1(y)

n∏

i=1

bi(x− αi(x− y)) dα dx dy,

where x ∈ R
d, α ∈ R

n, and K(α, x) is a Calderón-Zygmund kernel in the x variable which
depends on a parameter α ∈ R

n. We will impose some regularity conditions on the α variable.
The basic example, corresponding to the Christ-Journé multilinear forms, is

K(α, x) = 1

[0,1]n
(α)κ(x)

where κ is a regular Calderón convolution kernel satisfying the conditions (1.1).

Our goal is to
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• To introduce a reasonably general class Kε of kernels K(α, x), for which linear forms of
type (1.11) are closed under adjoints. If ̟ is a permutation of {1, . . . , n+ 2}, then the
multilinear form Λ[K](b̟(1), . . . , b̟(n+2)) should be written as Λ[K̟](b1, . . . , bn+2) for
a suitable K̟, with appropriate bounds on K̟ in the class Kε.

• To prove estimates for this same class of kernels that cover the estimates for the d-
commutators in Theorem 1.1.

Roughly the class of admissible kernels consists of those K for which the norm ‖ · ‖Kε defined
in (2.3), (2.4) below is finite; see §2 for further discusion of the spaces of distributions on which
this definition is made. The extension to the class Kε allows us to substantially extend the
class of allowable convolution kernels κ in the definition of the d-commutators, see Example 2.2
below.

Let p1, . . . , pn+2 ∈ (1,∞] with
∑n+2

j=1 p
−1
j = 1, and let p0 = min1≤j≤n+2 pj . For bj ∈ Lpj(Rd)

we shall prove the inequality

(1.12) |Λ[K](b1, . . . , bn+2)| ≤ Cp0,d,ε‖K‖Kεn
2 log3(2 + n)

n+2∏

i=1

‖bi‖pi .

The expression on the left hand side makes a priori sense at least for K supported in a compact
subset of R

N × (Rd \ {0}) (and this restriction does not enter in the estimate). The kernels
in Kε can be thought of sums of dilates of functions in a weighted Besov space; this will be
made precise in §3. These weighted Besov spaces are closely related to Besov spaces of forms
on RPn+d. This motivated some of the considerations in §3 and §4.

A key point of the Kε norms is that they depend on n in a natural way so that the term
n2 log3(2 + n) in (1.12) does not become trivial. We shall derive a stronger version in the
next section in Theorem 2.10 below in which dependence on the Kε occurs in a very weak
(logarithmic) way. In fact one can define an endpoint space K0 which contains the union of the
spaces Kε, so that the inequality

(1.13) |Λ[K](b1, . . . , bn+2)| ≤ Cp0,d,ε‖K‖K0
n2 log3

(
2 + n

‖K‖Kε
‖K‖K0

) n+2∏

i=1

‖bi‖pi .

holds. A crucial point about the classes Kε is that if K belongs to Kε then all K̟ in (1.10)
belong to some Kǫ′ class with polynomial bound in n. One can then see that if inequality (1.13)
holds for (p1, . . . , pn+2) = (∞, . . . ,∞, p0, p

′
0) then the same is true for the kernels K̟. This

invariance under adjoints will be discussed in §4.

The strategy of proving (1.13) for p1 = · · · = pn = ∞ then follows Christ and Journé [7],
with the main inequalities outlined in §5. The subsequent sections contain the details of the
proofs.

Selected Notation

• We use the notation A . B to denote A ≤ CB, where C is a constant independent of
any relevant parameters. C is allowed to depend on d and ε, but not on n.

• For two nonnegative numbers a, b we occasionally write a ∧ b = min{a, b} and a ∨ b =
max{a, b}

• The Euclidean ball in R
d of radius r and with center x is denoted by Bd(x, r).

• For a function g on R
d we define dilation operators which leave the L1(Rd) norm invari-

ant by

g(t)(x) := tdg(tx).
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• For a function ς on R
n × R

d we define dilation operators in the x-variable by

ς(t)(α, x) := tdς(α, tx).

• For a kernel K on R
d × R

d we define dilated versions by

DiltK(x, y) := tdK(tx, ty) .

• Given Banach spaces E1, E2 we denote by L(E1, E2) the Banach space of bounded linear
operators from E1 to E2.

• We denote by C∞
0 (Rd) the space of compactly supported C∞ functions. The subspace

C∞
0,0(R

d) consists of all f ∈ C∞
0 (Rd) with

∫
f(x)dx = 0.

• Let V be an index set, and for each ν ∈ Z, let {Σν
N} be a sequence of operators in

L(E1, E2). We say that Σν
N converges in the strong operator topology to Σν ∈ L(E1, E2),

with equiconvergence with respect to V, if for every f ∈ E1 and every ε > 0 there exists
a positive integer N(ε, f) such that ‖Σν

Nf −Σνf‖E2
< ε for all N > N(ε, f), ν ∈ V.

Given bounded operators T ν
j ∈ L(E1, E2), j ∈ Z, we say that

∑
j T

ν
j converges in

the strong operator topology, with equiconvergence with respect to V, if the sequence of
partial sums ΣN =

∑N
j=−N T

ν
j converges in the strong operator topology with equicon-

vergence with respect to V.

• Given bounded k-linear operators L, LN , defined on a k-tuple (A1, . . . , Ak) of normed
spaces with values in a normed space B, we say that LN converges to L in the strong
operator topology (as N → ∞) if ‖LN (a1, . . . , ak) − L(a1, . . . , ak)‖B → 0 for all
(a1, . . . , ak) ∈ A1 × · · · × Ak. When B = C or R then there is no difference between
strong and weak operator topologies, and we omit the word strong.

• The spaces LS(Rn × R
d) are defined in §2.1.

• The operators Pk, Qk, Qk and Qk[u] are introduced in §6 (although Qk is already used
in earlier sections). The class U is defined in Definition 6.2.

• The semi-norms ‖ · ‖Kε,i , i = 1, 2, 3, 4, 5 and the spaces Kε are defined in §2.1. The
related spaces Kε are defined in §2.2.

• The semi-norms ‖ · ‖Bε,i , i = 1, 2, 3, 4, and the spaces Bε are defined in §2.2.

• The Schur classes Int1, Int∞, Int1ε, Int∞ε and the regularity classes Reg1ε,lt, Reg∞ε,lt,

Reg1ε,rt, Reg
∞
ε,rt are defined in §8.1.1.

• The singular integral classes SI, SI1ε, SI
∞
ε and annular integrability classes Ann1, Ann∞,

Annav are defined in §8.1.2.

• The Carleson condition for operators and norm ‖ · ‖Carl is given in Definition 8.14. The
atomic boundedness condition, with norm ‖ · ‖At is given in Definition 8.15.

• The Opǫ, Op0 norms are defined in §8.3.

• The notion of a Carleson function and the norm ‖ · ‖carl is given in definition 11.2.

2. Statements of the main results

2.1. The classes Kε. We first introduce certain classes of tempered distributions on R
n × R

d

which satisfy integrability properties in the first (α-)variable and contain all kernels allowable
in (1.11). For each N ∈ N0 consider the space MS ′

N (Rn × R
d) defined as normed spaces of

tempered distributions K on R
n × R

d for which there is C > 0 so that for all f ∈ S(Rn × R
d)

(2.1) |〈K, f〉| ≤ C sup
α∈Rn,x∈Rd

∑

|γ|≤N

(1 + |x|)N |∂γxf(α, x)|.
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Here 〈K, f〉 denotes the pairing between distributions and test functions and the minimal C
in (2.1) is the norm in MS ′

N (Rn × R
d). The space MS′(Rn × R

d) is the space of tempered

distributions K on R
n×R

d for which (2.1) holds for some N ∈ N. Note that MS ′(Rn×R
d) can

be seen as an inductive limit of the normed spaces MS ′
N (Rn×R

d), and this gives MS ′(Rn×R
d)

the structure of a locally convex topological vector space. A net {fı}i∈I is Cauchy in this
topology if there exists an N so that all fı belong to MS ′

N (Rn × R
d) for some fixed N and so

that fı is Cauchy in the norm topology of MS ′
N (Rn ×R

d). It is easy to see the normed spaces

MS ′
N (Rn ×R

d) are complete and thus MS ′(Rn ×R
d) is complete. Let M(Rn) be the space of

bounded Borel measures on R
n. K ∈ MS ′(Rn × R

d) gives rise to a continuous linear operator
βK : S(Rd) →M(Rn) defined by

〈βK(φ2), φ1〉 := 〈K,φ1 ⊗ φ2〉 for φ1 ∈ S(Rn), φ2 ∈ S(Rd).

Let LS ′(Rn ×R
d) be the subspace of MS ′(Rn ×R

d) consisting of those K for which βK(φ2) ∈
L1(Rn), for all φ2 ∈ S(Rd). LS ′(Rn × R

d) is a closed subspace of MS ′(Rn × R
d) and inherits

its complete locally convex topology.

We now define the Banach space Kε used in (1.12). For K ∈ LS ′(Rn × R
d) and η ∈ S(Rd)

it makes sense to write K(α, ·) ∗ η for the convolution of K and η in the x-variable. This yields
an L1 function in the α variable, which depends smoothly on x. For K ∈ L1

loc(R
n × R

d), let

K(t)(α, x) := tdK(α, tx)

and we extend this to LS ′(Rn × R
d) by continuity in the usual way. Fix η ∈ S(Rd) satisfying

(2.2) inf
θ∈Sd−1

sup
τ>0

|η̂(τθ)| > 0,

where η̂ denotes the Fourier transform of η.

Definition 2.1. Let η be as in (2.2), and 0 < ε ≤ 1.

(i) Define five semi-norms by

‖K‖Kηε,1 := sup
1≤i≤n
t>0

∫
(1 + |αi|)

ε‖η ∗K(t)(α, ·)‖L2(Rd) dα,(2.3a)

‖K‖Kηε,2 := sup
1≤i≤n
t>0

0<h≤1

h−ε

∫
‖η ∗ [K(t)(α+ hei, ·)−K(t)(α, ·)]‖L2(Rd) dα,(2.3b)

‖K‖Kε,3 := sup
1≤i≤n
R>0

∫∫

R≤|x|≤2R

(1 + |αi|)
ε|K(α, x)| dx dα,(2.3c)

‖K‖Kε,4 := sup
1≤i≤n
R>0

0<h≤1

h−ε

∫∫

R≤|x|≤2R

|K(α+ hei, x)−K(α, x)| dx dα,(2.3d)

‖K‖Kε,5 := sup
R>2
y∈Rd

Rε

∫∫

|x|≥R|y|

|K(α, x− y)−K(α, x)| dx dα .(2.3e)

(ii) The space Kε is the subspace of LS ′(Rn × R
d) consisting of those K for which the norm

(2.4) ‖K‖Kε := ‖K‖Kηε,1 + ‖K‖Kηε,2 + ‖K‖Kε,3 + ‖K‖Kε,4 + ‖K‖Kε,5

is finite.
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The definition of ‖ · ‖Kε depends on a choice of η ∈ S(Rd) satisfying (2.2). However, the
equivalence class of the norm does not depend on the choice, and the constants in the equiv-
alences of different choices of η will not depend on n. This is made explicit in Lemma 3.1
below.

Example 2.2. Let ǫ ∈ (0, 1) and let κ ∈ S ′(Rd) ∩ L1
loc(R

d \ {0}) be a convolution kernel in R
d

satisfying

(2.5) ‖κ̂‖∞ ≤ C

and

(2.6) sup
R≥2

Rǫ sup
y∈Rd

∫

|x|≥R|y|
|κ(x− y)− κ(x)|dx ≤ C.

Let

K(x, α) = χ[0,1]n(α)κ(x) .

Then K ∈ Kδ(R
n × R

d) for δ < ǫ and

(2.7) ‖K‖Kδ .δ,ǫ C.

The details of (2.7) are left to the reader.

We state a preliminary version of our boundedness result (see Theorem 2.8 below for a more
definitive version).

Theorem 2.3. Let ε > 0, δ > 0 and η as in (2.2).

(i) There is a constant C = C(d, δ, ε, η) such that the following statement holds a priori for
all kernels in Kε which also belong to L1(Rn × R

d). The multilinear form

Λ[K](b1, . . . , bn+2) =

∫∫∫
K(α, x− y)bn+2(x)bn+1(y)

n∏

i=1

bi(x− αi(x− y)) dα dx dy,

satisfies

(2.8) |Λ[K](b1, . . . , bn+2)| ≤ Cn2 log3(1 + n)‖K‖Kε

n+2∏

i=1

‖bi‖pi ,

for all bi ∈ L
pi(Rd), 1 + δ < pi <∞,

∑n+2
i=1 p

−1
i = 1.

(ii) The multilinear form (K, b1, . . . , bn+2) 7→ Λ[K](b1, . . . , bn+2) extends to a bounded multi-
linear form on Kε × Lp1 × · · · × Lpn+2 satisfying (2.8) for all K ∈ Kε.

The proof of Theorem 2.3 we will heavily rely on a decomposition theorem for the class Kε,
to which we now turn. This decomposition will specify further part (ii) of the theorem, i.e.
describe how to extend the result from part (i) to all kernels in Kε.

2.2. Decomposition of kernels in Kε. In the following definition e1, . . . , en will denote the
standard basis of Rn.
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Definition 2.4. For n, d ∈ N and 0 ≤ ε ≤ 1 we define four (semi-)norms

‖ς‖Bε,1 := max
1≤i≤n

∫∫
(1 + |αi|)

ε|ς(α, v)| dα dv,(2.9a)

‖ς‖Bε,2 := sup
0<h≤1
1≤i≤n

h−ε

∫∫
|ς(α+ hei, v)− ς(α, v)| dα dv,(2.9b)

‖ς‖Bε,3 := sup
0<|h|≤1

|h|−ε

∫∫
|ς(α, v + h)− ς(α, v)| dα dv,(2.9c)

‖ς‖Bε,4 :=

∫∫
(1 + |v|)ε|ς(α, v)| dα dv.(2.9d)

Let Bε(R
n ×R

d) be the space of those ς ∈ L1(Rn × R
d) such that the norm

(2.10) ‖ς‖Bε := ‖ς‖Bε,1 + ‖ς‖Bε,2 + ‖ς‖Bε,3 + ‖ς‖Bε,4

is finite.

For 0 < ε < 1 the space Bǫ is a type of Besov space, hence the notation. See also §4.5 below.
Recall the notation ς(t)(α, x) := tdς(α, tx).

Definition 2.5. (i) Let φ ∈ C∞
0 (Rd) such that

∫
φ(x)dx = 1, let Qj denote the operator

of convolution with 2jdφ(2j ·) − 2(j−1)dφ(2j−1·). When acting on K ∈ LS′(Rn × R
d), we

define QjK by taking the convolution in R
d.

(ii) Set

(2.11) ςj [K] := (QjK)(2
−j ).

(iii) For K ∈ LS′(Rn × R
d) let

(2.12) ‖K‖K0
= sup

j∈Z
‖ςj [K]‖L1(Rn×Rd) .

(iv) Let Kε be the space of all K ∈ LS′(Rn × R
n) such that

‖K‖Kε := sup
j∈Z

‖ςj [K]‖Bε(Rn×Rd)

is finite.

The relation between the spaces Kε and Kε is given in the following theorem.

Theorem 2.6. (i) A distribution K ∈ LS ′(Rn ×R
d) belongs to

⋃
0<ε<1Kε if and only if there

exists an ε > 0 and a bounded set {ςj : j ∈ Z} ⊂ Bε(R
n × R

d) satisfying
∫
ςj(α, v) dv = 0

for all j, α and

K =
∑

j∈Z

ς
(2j)
j ,

holds with convergence in the topology on LS ′(Rn ×R
d) (and thus also in the sense of distribu-

tions).

(ii) Let K ∈ Kε. Then for δ < ε,

‖K‖Kδ ≤ Cδ,ε,d‖K‖Kε .

(iii) Let K ∈ Kǫ. Then for δ < ǫ/2

‖K‖Kδ ≤ Cδ,ε,d‖K‖Kǫ .
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2.3. Boundedness of multilinear forms. For any ς ∈ Bε(R
n×R

d) and for bi ∈ Lpi(Rd) with∑n+2
i=1 p

−1
i = 1 the multilinear form

Λ[ς](b1, . . . , bn+2) =

∫∫∫
ς(α, x − y)bn+2(x)bn+1(y)

n∏

i=1

bi(x− α1(x− y)) dx dy dα

is well defined; more precisely we have

Lemma 2.7. Let ς ∈ L1(Rn×R
d). Suppose for 1 ≤ l ≤ n+2, bi ∈ Lpi(Rd) with

∑n+2
i=1 p

−1
i = 1.

Then, for all j ∈ Z,

∣∣Λ[ς(2j )](b1, . . . , bn+2)
∣∣ ≤ ‖ς‖L1(Rn×Rd)

n+2∏

i=1

‖bi‖pi .

Proof. This follows easily by Hölder’s inequality. �

Theorem 2.6 suggests to define the form Λ[K], for K ∈ Kε, as the limit of partial sums

(2.13)

N∑

j=−N

Λ[ς
(2j )
j ](b1, . . . , bn+2)

as N → ∞.

Our main boundedness result (a sharper version of Theorem 2.3) is

Theorem 2.8. Let 0 < δ < 1, let p1, . . . , pn+2 ∈ [1 + δ,∞] with
∑n+2

l=1 p
−1
l = 1.

(i) Let I be a finite subset of Z and let {ςj : j ∈ I} be a subset of Bε(R
n × R

d) so that for
every j ∈ I,

∫
ςj(α, x) dx = 0 for almost all α ∈ R

n. Let

KI =
∑

j∈I

ς
(2j )
j .

Then for bl ∈ Lpl(Rd) we have

|Λ[KI](b1, . . . , bn+2)| ≤ Cǫ,d,δn
2
(
sup
j∈Z

‖ςj‖L1(Rn+d)

)
log3

(
2 + n

supj∈Z ‖ςj‖Bǫ
supj∈Z ‖ςj‖L1

) n+2∏

l=1

‖bl‖pl

where the constant Cǫ,d,δ is independent of n and I.

(ii) Let K ∈ Kε so that K =
∑

j∈Z ς
(2j)
j in LS ′(Rn × R

n) with
∫
ςj(α, x)dx = 0 for almost

all α ∈ R
n. Let supj ‖ςj‖Bε < ∞, b1 ∈ Lp1, ..., bn+2 ∈ Lpn+2. Then

∑∞
j=−∞ Λ[ς

(2j)
j ] converges

in the operator topology of (n+ 2)-linear functionals to a limit Λ[K] satisfying

|Λ[K](b1, . . . , bn+2)| ≤ Cp0,ǫ,dn
2‖K‖K0

log3
(
2 + n

‖K‖Kε
‖K‖K0

) n+2∏

l=1

‖bl‖pl .

We now turn to the multilinear forms defined by adjoint operators. More generally, given a
permutation ̟ on {1, . . . , n+ 2} we define the multilinear form Λ̟[ς] by

(2.14) Λ̟[ς](b1, . . . , bn+2) = Λ[ς](b̟(1), . . . , b̟(n+2)) .

We have the following crucial result which will be proved in §4. It shows that operators of
the form (2.13), and their limits as N → ∞, are closed under adjoints.
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Theorem 2.9. Let ǫ > 0. There exists ǫ′ ≥ c(ǫ) (independent of n) such that for any permu-
tation ̟ of {1, . . . , n + 2} there exists a bounded linear transformation ℓ̟ : Bǫ(R

n × R
d) →

Bǫ′(R
n × R

d) with

(ℓ̟ς)
(t) = ℓ̟(ς

(t)), t > 0,

and

Λ̟[ς] = Λ[ℓ̟ς] ,

such that

‖ℓ̟ς‖Bǫ′ . n2‖ς‖Bǫ

and

‖ℓ̟ς‖L1 = ‖ς‖L1 .

Furthermore, if
∫
ς(α, v) dv = 0 a.e. then also

∫
ℓ̟ς(α, v) dv = 0 a.e.

In light of Theorem 2.9, the result in Theorem 2.8 is closed under taking adjoints, and
therefore follows from the following result and complex interpolation (see §15).

Theorem 2.10. Let δ > 0, b1, . . . , bn ∈ L∞(Rd), p ∈ [1 + δ, 2], and let p′ = p/(p − 1). For

bn+1 ∈ Lp(Rd), bn+2 ∈ Lp′(Rd) we have

|Λ[K](b1, . . . , bn+2)| ≤ Cǫ,d,δn
2 sup
j∈Z

‖ςj‖L1 log3
(
2+n

supj∈Z ‖ςj‖Bǫ
supj∈Z ‖ςj‖L1

)( n∏

l=1

‖bl‖∞

)
‖bn+1‖p‖bn+2‖p′ .

The structure of the proof of Theorem 2.10 will be discussed in §5, and the details of the
proof will be given in subsequent sections.

2.4. Remarks on Besov spaces.

2.4.1. Equivalent norms. In Definition 2.4 we chose a particular form of the norm ‖ · ‖Bǫ which
is well suited for our goal to prove estimates with polynomial growth in n. There are other
equivalent norms which could be used, for instance, one might replace the expression

sup
0<h≤1
1≤i≤n

h−ǫ

∫∫
|ς(α+ hei, v)− ς(α, v)| dα dv

with

sup
0<|h|≤1

|h|−ǫ

∫∫
|ς(α+ h, v) − ς(α, v)| dα dv

and one ends up with a comparable norm. These two choices differ by a factor which is polyno-
mial in n. Fortunately, the result in Theorem 2.8 only involves ‖ςj‖Bǫ through the expression

log3(2 + n
supj∈Z ‖ςj‖Bǫ
supj∈Z ‖ςj‖L1

).

Thus, if one changes supj∈Z ‖ςj‖Bǫ by a factor which is polynomial in n, this only changes the
bound in Theorem 2.8 by a constant factor, and therefore does not change the result in Theorem
2.8. In this way, one can use any one of a variety of equivalent norms when defining ‖ · ‖Bǫ (as
long as one only changes the norm by a factor which is bounded by a polynomial in n) – we
picked out the choice which is most natural for our purposes.
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2.4.2. The role of projective space. Though it may not be apparent from the above definitions,
the space RPn plays a key role in the intuition behind our main results. In this section, we
exhibit a special case where the role of RPn is apparent, and we return to a more general version
of these ideas in §4.5.

Recall that RPn is defined as R
n+1 \ {0} modulo the equivalence relation where we identify

α, β ∈ R
n+1 \ {0} if there exists c ∈ R \ {0} with α = cβ. This sees RPn has an n-dimensional

manifold. Traditionally, there are n + 1 standard coordinate charts on RPn. For these, we
consider those points in α = (α1, . . . , αn+1) ∈ R

n+1 \ {0} with αj 6= 0. Under the equivalence

relation, α is equivalent to α−1
j α = (α−1

j α1, . . . , α
−1
j αj−1, 1, α

−1
j αj+1, . . . , α

−1
j αn+1). This iden-

tifies such points with a copy of Rn and yields a coordinate chart on RPn–every point in RPn

lies in the image of at least one of these charts. This sees a copy of Rn inside of RPn given by
(α1, . . . , αn) 7→ (α1, . . . , αj−1, 1, αj+1, . . . , αn).

Functions on RPn can be identified with functions f : Rn+1 \ {0} → C such that f(cα) =
f(α)–i.e., functions which are homogeneous of degree 0 and are even. Suppose we are given
f : RPn → C. We obtain a function f0 : R

n → C by viewing R
n →֒ RPn via the map

(α1, . . . , αn) 7→ (α1, . . . , αn, 1). Thus, given an even function f : R
n+1 \ {0} → C which

is homogeneous of degree 0, we obtain a function f : RPn → C, and therefore a function
f0 : R

n → C (and f0 uniquely determines f off of a set of lower dimension in RPn).

We consider here the special case when

K(α, v) = γ(α)κ(v)

and κ is a classical Calderón-Zygmund kernel which is homogeneous of degree −d and smooth
away from v = 0. For α ∈ R

n and functions b1, . . . , bn+2, consider

F0(α) =

∫∫
κ(x− y)bn+2(x)bn+1(y)

n∏

i=1

bi(x− αi(x− y)) dx dy

=

∫∫
κ(v)bn+2(x)bn+1(x− v)

n∏

i=1

bi(x− αiv) dx dv.

(2.15)

The multilinear form we wish to study (in this special case) is given by
∫
γ(α)F0(α) dα.

One main aspect of our assumptions is that this operator should be of the same form when
we permute the roles of b1, . . . , bn+2. Many of these permutations are easy to understand:
permuting the roles of b1, . . . , bn merely permutes the variables α1, . . . , αn. Switching the roles
of bn+1 and bn+2 changes α to (1−α1, . . . , 1−αn). Thus, the major difficulty in understanding
adjoints can be reduced to understanding the question of switching the roles of bj (1 ≤ j ≤ n)
and bn+1 (as every permutation of {1, . . . , n + 2} can be generated by the these three types of
permutations).

Define a new function F : Rn+1 \ {0} → C by

F (α1, . . . , αn+1) =

∫∫
κ(v)b1(x− α1v) · · · bn(x− αnv)bn+1(x− αn+1v)bn+2(x) dx dv .

Because of the homogeneity of κ, we see (for c ∈ R \ {0}), F (cα) = F (α). By the above
discussion, F defines a function on RPn, and therefore induces a function F0 : Rn → C as
above. This induced function F0 is exactly the function of the same name from (2.15). Thus,
we have defined F0 in a way which is symmetric in b1, . . . , bn+1.
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F (α) defines a function on RPn, and therefore if γ(α)dα were a measure on RPn, it would
make sense to write ∫

γ(α)F (α) dα.

Indeed, our main assumptions in this special case are equivalent to assuming that γ(α)dα is a
density which lies in the space

⋃
0<ε<1B

ǫ
1,∞(RPn) (where Bǫ

1,∞(RPn) denotes a Besov space of

densities on RPn, see §4.5 for a proof of this remark). When we write the expression as
∫
γ(α)F0(α) dα,

we are merely choosing the coordinate chart Rn →֒ RPn denoted above. With this formulation,
the operator ∫

γ(α)F (α) dα

clearly remains of the same form when b1, . . . , bn+1 are permuted, and from here it is easy to
see that the class of operators is “closed under adjoints.”

Remark. In our more general setting, K(α, v) is not homogeneous in the v variable, and therefore
we cannot define a function F on RPn as was done above. Nevertheless, these ideas play an
important role in our proofs, see §4.5 below.

3. Kernels

In this section, we prove various results announced in Section 2. We first show the indepen-
dence of the space Kε of the particular choice of η satisfying (2.2) and then give the proof of
Propositions 3.2 and 3.3.

3.1. Independence of η. The following lemma shows that Kε does not depend on the choice
of η ∈ S(Rd) satisfying (2.2).

Lemma 3.1. Let η, η′ ∈ S(Rd) and η be as in (2.2). Let 0 < ε ≤ 1. There exists C = C(η, η′)
such that for all K ∈ Kε

‖K‖
K
η′
ε
≤ C‖K‖Kηε

The constant C is independent of n.

Proof. Let K ∈ Kε. Only two of the terms of the definition of ‖K‖Kε depend on the choice of
η. Thus, the result will follow once we prove the following two estimates.

(3.1) sup
1≤i≤n
t>0

∫
(1+|αi|)

ε‖η′∗K(t)(α, ·)‖L2(Rd)dα ≤ C sup
1≤i≤n
t>0

∫
(1+|αi|)

ε‖η∗K(t)(α, ·)‖L2(Rd)dα,

and

(3.2) sup
1≤i≤n
t>0

0<h≤1

h−ε

∫
‖η′ ∗ [K(t)(α+ hei, ·)−K(t)(α, ·)]‖L2(Rd) dα

≤ C sup
1≤i≤n
t>0

0<h≤1

h−ε

∫
‖η ∗ [K(t)(α+ hei, ·)−K(t)(α, ·)]‖L2(Rd) dα.

The proofs of these two equations are nearly identical, so we prove only (3.1).

Let χ ∈ C∞
0 (Rd) be supported in {ξ : 1

2 < |ξ| < 2} with the property that
∑

k∈Z[χ(2
−kξ)]2 =

1, for ξ ∈ R
d \ {0}. Since η′ ∈ S(Rd), we have ‖χ(2−k·)η̂′(·)‖L∞ ≤ CN min{2−kN , 1}. By (2.2)
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and the compactness of {ξ : 1
2 ≤ |ξ| ≤ 2} there is a finite index set Θ and real numbers τν > 0

such that ∑

ν∈Θ

|η̂(τνξ)|
2 ≥ c > 0 for

1

2
≤ |ξ| ≤ 2.

Let

mν(ξ) =
η̂(τνξ)χ(ξ)∑
ν̃∈Θ |η̂(τν̃ξ)|2

;

then ‖mν‖L∞ ≤ Cν and we have

η̂′(ξ) =
∑

k∈Z

χ(2−kξ)η̂(ξ)
∑

ν∈Θ

mν(2
−kξ)η̂(2−kτνξ).

Hence,

‖η′ ∗K(t)(α, ·)‖L2(Rd) .
∑

k∈Z

min{2−kN , 1}
∑

ν∈Θ

‖mν‖∞‖η̂(2−kτν ·)K̂(t)(α, ·)‖L2(Rd),

where the implicit constant depends on N . Note

‖η̂(2−kτν ·)K̂(t)(α, ·)‖L2(Rd) = (2k/τν)
d/2‖η ∗K(2−kτν t)(α, ·)‖L2(Rd),

and so taking N > d/2 we obtain
∫

(1 + |αi|)
ε‖η′ ∗K(t)(α, ·)‖L2(Rd) dα

.
∑

k∈Z

min{2−k(N−d/2), 2kd/2}
∑

ν∈Θ

Cν

∫
(1 + |αi|)

ε‖η ∗K(2−kτν t)(α, ·)‖L2(Rd) dα

. sup
r>0

∫
(1 + |αi|)

ε‖η ∗K(r)(α, ·)‖L2(Rd) dα,

which completes the proof of (3.1). �

3.2. Proof of Theorem 2.6. The theorem follows from two propositions. In the first we prove

an estimate for the ςj as in (2.11), which arise in the decomposition of K =
∑

j ς
(2j )
j .

Proposition 3.2. Suppose ε ∈ (0, 1], 0 < δ < ε. For every K ∈ Kε, let

ςj = (QjK)(2
−j).

Then {ςj : j ∈ Z} is a bounded subset of Bδ(R
n × R

d) satisfying
∫
ςj(α, v) dv = 0,

for all j and almost every α ∈ R
n and

sup
j∈Z

‖ςj‖Bδ ≤ Cδ,ε,d‖K‖Kε ,

and such that

K =
∑

j∈Z

ς
(2j)
j ,

with the sum converging in the sense of the topology on LS ′(Rn × R
d).

The second proposition provides Kδ-estimates for kernels that are given as sums
∑

j ς
(2j)
j ,

with uniform Bε-estimates for the ςj .
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Proposition 3.3. Let ε ∈ (0, 1], and 0 < δ < ε/2. Suppose {ςj : j ∈ Z} ⊂ Bε(R
n × R

d) is a
bounded set satisfying

∫
ςj(α, v) dv = 0, for all j. Then the sum

K(α, v) :=
∑

j∈Z

ς
(2j)
j (α, v)

converges in the sense of the topology on LS ′(Rn × R
d), and K ∈ Kδ. Furthermore,

‖K‖Kδ ≤ Cδ,ε,d sup
j∈Z

‖ςj‖Bε .

The proofs of these propositions will be given in §3.2.1 and §3.2.2

3.2.1. Proof of Proposition 3.2. We need several lemmata.

Lemma 3.4. Let ε > 0. Then, there exists δ = δ(ε, d) > 0 such that for ς ∈ Bε(R
n × R

d), we
have ∫∫

|v|−δ|ς(α, v)| dα dv ≤ Cε,d‖ς‖Bε .

Proof. Clearly
∫∫

|v|>1 |v|
−δ|ς(α, v)| dα dv . ‖ς‖L1 ≤ ‖ς‖Bε , so it suffices to prove

(3.3)

∫∫

|v|≤1
|v|−δ|ς(α, v)| dα dv . ‖ς‖Bε .

By a weak version of the Sobolev embedding theorem (see [35] or [39]), there exists p = p(ε, d) >
1 such that ∫ (∫

|ς(α, v)|p dv
) 1

p
dα . ‖ς‖Bε .

Let p′ be dual to p and let δ < 1/p′. We have, by Hölder’s inequality, and then Minkowski’s
inequality,

∫∫

|v|≤1
|v|−δ |ς(α, v)| dα dv ≤

( ∫

|v|≤1
|v|−δp′ dv

) 1

p′
(∫ ( ∫

|ς(α, v)| dα
)p
dv

) 1

p
dα

.
(∫ ( ∫

|ς(α, v)| dα
)p
dv

) 1

p
dα . ‖ς‖Bε .

This shows (3.3) and completes the proof of the lemma. �

Lemma 3.5. Let {ςj : j ∈ Z} ⊂ Bε(R
n × R

d) be a bounded set with
∫
ςj(α, v) dv = 0, for all

j ∈ Z. The sum
∑

j∈Z

ς
(2j )
j (α, v)

converges in the sense of the topology on LS ′(Rn ×R
d) (and a fortiori in the sense of tempered

distributions).

Proof. Let f ∈ S(Rn × R
d). We will show, for some δ > 0,

∣∣∣
∫
ς
(2j)
j (α, v)f(α, v) dα dv

∣∣∣ . 2−|j|δ sup
α∈Rn,x∈Rd

∑

|γ|≤1

(1 + |x|)|∂γxf(α, x)|,

and the result will follow by the completeness of LS ′.
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First we consider the case j ≥ 0. In this case, we have
∣∣∣
∫∫

ς
(2j)
j (α, v)f(α, v) dα dv

∣∣∣ =
∣∣∣
∫∫

ς
(2j )
j (α, v)[f(α, v) − f(α, 0)] dα dv

∣∣∣

.
(

sup
α∈Rn,x∈Rd

∑

|γ|≤1

|∂γxf(α, x)|
) ∫∫

|ς
(2j)
j (α, v)||v|ε dv dα

. 2−jε
(

sup
α∈Rn,x∈Rd

∑

|γ|≤1

|∂γxf(α, x)|
)
‖ςj‖Bε ,

as desired.

We now turn to j < 0. Take δ > 0 as in Lemma 3.4. We have
∣∣∣
∫∫

ς
(2j )
j (α, v)f(α, v) dα dv

∣∣∣ ≤
(

sup
α∈Rn,x∈Rd

|x|δ|f(α, x)|
) ∫∫

|ς
(2j)
j (α, v)| |v|−δ dα dv

=
(

sup
α∈Rn,x∈Rd

|x|δ|f(α, x)|
)
2jδ

∫∫
|ςj(α, v)| |v|

−δ dα dv

.
(

sup
α∈Rn,x∈Rd

|x|δ|f(α, x)|
)
2jδ‖ςj‖Bε ,

where in the last line we have used our choice of δ and Lemma 3.4. �

Let φ ∈ C∞
0 (Bd(1/2)) be a radial, non-negative function with

∫
φ = 1. For j ∈ Z let

φ(2
j)(v) = 2jdφ(2jv). Let ψ(x) = φ(x) − 1

2φ(x/2) ∈ C∞
0 (Bd(1)). Let Qjf = f ∗ ψ(2j ). Note

that f =
∑

j∈ZQjf for f ∈ S(Rd) with convergence in the sense of tempered distributions.

The heart of the proof of Proposition 3.2 is the following lemma.

Lemma 3.6. Suppose 0 < ε ≤ 1, 0 < δ < ε and let K ∈ Kε. Let

ς(α, v) = Q0K(α, v).

Then, ς ∈ Bδ(R
n × R

d) and

‖ς‖
Bδ

≤ Cδ,ε,d‖K‖Kε .

Proof of Proposition 3.2 given Lemma 3.6. Since K(2j) is of the same form as K, the lemma

also yields, with ςj := (QjK)(2
−j),

sup
j∈Z

∥∥ςj
∥∥
Kε

≤ Cδ,ε,d‖K‖Kε .

As
∫
ςj(α, x)dx = 0 for all j it follows from standard estimates that K =

∑
j∈Z ς

(2j )
j , in the sense

of tempered distributions. Since we know
∑

j∈Z ς
(2j )
j converges in the sense of the topology on

LS ′(Rn×R
d) it follows that the sum can be taken in that sense as well. The result now follows

from Lemma 3.6. �

Proof of Lemma 3.6. Note that, in light of Lemma 3.1, we may replace the test function η with
ψ in the definition of ‖K‖Kε .

We begin by bounding ‖ς‖Bδ,1 as in (2.9a) and split, for fixed 1 ≤ i ≤ n,
∫∫

(1 + |αi|)
δ |ς(α, x)| dx dα =

∫∫

|x|≤1

+

∫∫

1<|x|≤1+|αi|

+

∫∫

|x|>1+|αi|

=: (I) + (II) + (III).
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For (I), we apply the Cauchy-Schwarz inequality to see

(I) =

∫∫

|x|≤1
(1 + |αi|)

δ |ς(α, x)| dx dα .

∫
(1 + |αi|)

δ
(∫

|ψ ∗K(α, x)|2 dx
) 1

2

dα ≤ ‖K‖
K
ψ
ε,1
.

For (II), we have

(II) =

∫∫

1<|x|≤1+|αi|

(1 + |αi|)
δ |ς(α, x)| dx dα .

∑

k≥0

∫∫

1+|αi|>2k

2k≤|x|≤2k+1

(1 + |αi|)
δ|ψ ∗K(α, x)| dx dα

.
∑

k≥0

2k(δ−ε)

∫∫

2k−1≤|x|≤2k+3

(1 + |αi|)
ε|K(α, x)| dx dα . ‖K‖Kε,3

For (III), we use that
∫
ψ = 0 and supp(ψ) ⊂ Bd(0, 1) to see

(III) =

∫∫

|x|>1+|αi|

(1 + |αi|)
δ|ς(α, x)| dx dα

.

∫∫

|x|>1+|αi|
(1 + |αi|)

δ
∣∣∣
∫
ψ(y)[K(α, x − y)−K(α, x)]

∣∣∣ dx dα

.
∑

k≥0

2kδ
∫

|ψ(y)|

∫∫

2k≤|αi|≤2k+1

|x|>2k

|K(α, x − y)−K(α, x)| dx dα dy

.
∑

k≥0

2kδ
∫

|y|≤1

∫∫

|x|>2k
|K(α, x − y)−K(α, x)| dx dα dy

.
∑

k≥0

2k(δ−ε)‖K‖Kε,5 . ‖K‖Kε,5 ,

as desired. Combining the estimates for (I), (II), (III) gives

‖ς‖Bδ,1 . ‖K‖
K
ψ
ε,1

+ ‖K‖Kε,3 + ‖K‖Kε,5 . ‖K‖Kε .

We turn to bounding ‖ς‖Bδ,2 . Let 1 ≤ i ≤ n and 0 < h ≤ 1 and split

∫∫
|ς(α + hei, x)− ς(α, x)| dx dα =

∫∫

|x|≤2

+

∫∫

2≤|x|≤10h−1

+

∫∫

|x|<10h−1

=: (IV ) + (V ) + (V I).

Our goal is to show (IV ), (V ), (V I) . hδ‖K‖Kε . We have, by the Cauchy-Schwarz inequality,

(IV ) =

∫∫

|x|≤2

|ς(α+ hei, x)− ς(α, x)| dx dα

.

∫ (∫
|ψ ∗ [K(α+ hei, ·)−K(α, ·)](x)|2 dx

) 1

2

dα ≤ hε‖K‖
K
ψ
ε,2
.
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For (V ), we have

(V ) =

∫∫

2<|x|≤10h−1

|ς(α + hei, x)− ς(α, x)| dx dα

.
∑

1≤2k≤10h−1

∫∫

2k−1≤|x|≤2k+2

|K(α+ hei, x)−K(α, x)| dx dα

.
∑

1≤2k≤10h−1

hε‖K‖Kε,4 . hε log(2 + h−1)‖K‖Kε,4 .

For (V I), we use that
∫
ψ = 0 and supp(ψ) ⊂ Bd(0, 1) and obtain

(V I) =

∫∫

|x|≥10h−1

|ς(α + hei, x)− ς(α, x)| dx dα ≤ 2

∫∫

|x|>10h−1

|ψ ∗K(α, x)| dx dα

.

∫∫

|x|>10h−1

∣∣∣
∫
ψ(y)[K(α, x − y)−K(α, x)] dy

∣∣∣ dx dα

.

∫
|ψ(y)|

∫∫

|x|≥10h−1

|K(α, x− y)−K(α, x)| dx dα dy

. hε‖K‖Kε,5 .

Combining the estimates for (IV ), (V ), (V I) we get

‖ς‖Bδ,2 . ‖K‖
K
ψ
ε,2

+ ‖K‖Kε,4 + ‖K‖Kε,5 . ‖K‖Kε .

We now turn to bounding ‖ς‖Bδ,3 . Fix h ∈ R
d with 0 < |h| ≤ 1. Using that

∫
ψ = 0, we have

∫∫
|ς(α, x + h)− ς(α, x)| dx dα

≤

∫∫

|x|≤10

∣∣∣
∫ 1

0
〈h,∇xψ ∗K(α, x+ sh)〉ds

∣∣∣ dx dα

+
∑

8≤2k≤10|h|−1

∫∫

2k≤|x|≤2k+1

∣∣∣
∫ 1

0
〈h,∇xψ ∗K(α, x+ sh)〉 ds

∣∣∣ dx dα

+ 2

∫∫

|x|≥9|h|−1

∣∣∣
∫
ψ(y)[K(α, x − y)−K(α, x)] dy

∣∣∣ dx dα

=: (V II) + (V III) + 2(IX).

We need to show (V II), (V III), (IX) . |h|δ‖K‖Kε .
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We begin with (V II) and use the Cauchy-Schwarz inequality to see

(V II) =

∫∫

|x|≤10

∣∣∣
∫ 1

0
〈h,∇xψ ∗K(α, x+ sh)〉 ds

∣∣∣ dx dα

≤ |h|

∫∫

|x|≤11
|∇ψ ∗K(α, x)| dx dα

. |h|

∫ ( ∫
|∇ψ ∗K(α, x)|2 dx

) 1

2

dα

. |h|‖K‖
K

∇ψ
ε,1

.

For (V III) we have

(V III) =
∑

8≤2k≤10|h|−1

∫∫

2k≤|x|≤2k+1

∣∣∣
∫ 1

0
〈h,∇xψ ∗K(α, x + sh)〉 ds

∣∣∣ dx dα

≤ |h|
∑

8≤2k≤10|h|−1

∫∫

2k−1≤|x|≤2k+2

|∇ψ ∗K(α, x)| dx dα

. |h|
∑

8≤2k≤10|h|−1

∫∫

2k−2≤|x|≤2k+3

|K(α, x)| dx dα

. |h|
∑

8≤2k≤10|h|−1

‖K‖K0,3
. |h| log(2 + |h|−1)‖K‖K0,3

.

For (IX) we use supp(ψ) ⊂ Bd(0, 1) and estimate

(IX) =

∫∫

|x|≥9|h|−1

∣∣∣
∫
ψ(y)[K(α, x − y)−K(α, x)] dy

∣∣∣ dx dα

≤

∫
|ψ(y)|

∫∫

|x|≥9|h|−1

|K(α, x− y)−K(α, x)| dx dα dy

. hε‖K‖Kε,5 ,

as desired. Summarizing,

‖ς‖Bδ,3 . ‖K‖
K

∇ψ
ε,1

+ ‖K‖K0,3 + ‖K‖Kε,5 . ‖K‖Kε

where in the last inequality we have used Lemma 3.1.

Finally we estimate ‖ς‖Bε,4 and split

∫∫
(1 + |x|)δ|ς(α, x)| dα dx =

∫∫

|x|≤10

+

∫∫

|x|>10

=: (X) + (XI).

We have, by the Cauchy-Schwarz inequality,

(X) =

∫∫

|x|≤10
(1 + |x|)δ|ς(α, x)| dx dα .

∫ ( ∫
|ψ ∗K(α, x)|2 dx

) 1

2

dα . ‖K‖
K
ψ
ε,1
.
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Using that
∫
ψ = 0 and supp(ψ) ⊂ Bd(0, 1), we have

(XI) =

∫∫

|x|>10
(1 + |x|)δ |ς(α, x)| dx dα

.
∑

k≥3

2kδ
∫∫

2k≤|x|≤2k+1

∣∣∣
∫
ψ(y)[K(α, x − y)−K(α, x)] dy

∣∣∣ dx dα

.
∑

k≥3

2kδ
∫

|ψ(y)|

∫∫

|x|≥2k
|K(α, x − y)−K(α, x)| dx dα dy

.
∑

k≥3

2k(δ−ε)‖K‖Kε,5 . ‖K‖Kε,5 .

Hence
‖ς‖Bε,4 . ‖K‖

K
ψ
ε,1

+ ‖K‖Kε,5 . ‖K‖Kε .

This completes the proof. �

3.2.2. Proof of Proposition 3.3. We begin with a preparatory lemma. Let Φ ∈ S(Rd) satisfy∫
Φ(x)dx = 1, and let Ψ(x) = Φ(x)− 1

2Φ(
x
2 ). Define Qjf = f ∗Ψ(2j).

Lemma 3.7. Let ε > 0 and ς ∈ Bε(R
n × R

d). Then, for l > 0,

(3.4)

∫∫
|Qlς(α, x)| dx dα+ 2−l

∫∫
|∇xQlς(α, x)| dx dα . 2−lε‖ς‖Bε ,

(3.5)

∫∫

|x|≥R

|Qlς(α, x)| dx dα+ 2−l

∫∫

|x|≥R

|∇xQlς(α, x)| dx dα . R−ε‖ς‖Bε ,

and for |h| ≤ 1,

(3.6)

∫∫

|x|≥R

∣∣Qlς(α, x + h)−Qlς(α, x)
∣∣ dx dα . min{2l|h|, 1}min{2−lε, R−ε}‖ς‖Bε .

Let 0 < δ < ε. Then for R ≥ 0, i = 1, . . . n,

(3.7)

∫∫

|x|≥R
(1 + |αi|)

δ |Qlς(α, x)| dx dα . min{2−l(ε−δ), R−(ε−δ)}‖ς‖Bε ,

and for all 0 < |τ | ≤ 1, j = 1, . . . , n,

(3.8) |τ |−δ

∫∫

|x|≥R

∣∣Qlς(α + τej , x)−Qlς(α, x)
∣∣ dx dα . min{2−l(ε−δ), R−(ε−δ)}‖ς‖Bε .

Proof. First observe that (3.4) is an immediate consequence of the definitions. Next, for the
proof of (3.5) we may assume R ≥ 1. Also, observe, for every N ∈ N,∫∫

|x|≥R

|Qlς(α, x)| dx dα+ 2−l

∫∫

|x|≥R

|∇xQlς(α, x)| dx dα

≤ CN

∫∫∫

|x|≥R

2ld

(1 + 2l|y|)N
|ς(α, x − y)| dx dα dy

= CN

∫∫∫

|x|≥R
|y|≤R/2

+CN

∫∫∫

|x|≥R
|y|>R/2

=: CN

(
(I) + (II)

)
.
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For (I) we have

(I) . R−ε

∫∫∫

|x|≥R
|y|≤R/2

2ld

(1 + 2l|y|)N
(1 + |x− y|)ε|ς(α, x − y)| dx dα dy . R−ε‖ς‖B

ε,4
.

For (II), taking N ≥ d+ 1, we have

(II) . ‖ς‖L1

∫

|y|>R/2

2ld

(1 + 2l|y|)N
dy . (2lR)−1‖ς‖L1 ≤ R−ε‖ς‖B

0,4
,

and (3.5) follows. (3.6) follows by combining (3.4) and (3.5).

We now turn to (3.7) and we separate the proof into two cases, R ≤ 2l and R ≥ 2l. For
R ≤ 2l we have, by (3.4),

∫∫

|x|≥R

(1 + |αi|)
δ|Qlς(α, x)| dx dα ≤

∫∫

|αi|≤2l

+

∫∫

|αi|>2l

=: (III) + (IV ).

For (III), we apply (3.4) to see

(III) . 2lδ
∫∫

|Qlς(α, x)| dx dα . 2−l(ε−δ)‖ς‖Bε .

Also, we have

(IV ) . 2−l(ε−δ)

∫
(1 + |αi|)

ε

∫
|Qlς(α, x)| dx dα

. 2−l(ε−δ)

∫∫
(1 + |αi|)

ε|ς(α, x)| dx dα . 2−l(ε−δ)‖ς‖Bε .

In the second case, R ≥ 2l, we have
∫∫

|x|≥R

(1 + |αi|)
δ|Qlς(α, x)| dx dα ≤

∫∫

|αi|≤R
|x|≥R

+

∫∫

|αi|>R

=: (V ) + (V I).

Using (3.5),

(V ) . Rδ

∫∫

|x|≥R
|Qlς(α, x)| dx dα . Rδ−ε‖ς‖Bε .

And,

(V I) . Rδ−ε

∫

|αi|>R
(1 + |αi|)

ε

∫
|Qlς(α, x)| dx dα

. Rδ−ε

∫∫
(1 + |αi|)

ε|ς(α, x)| dx dα . Rδ−ε‖ς‖Bε ,

which completes the proof of (3.7).

Finally, we turn to (3.8). This we separate into four cases. In the first case, R ≤ 2l, τ ≥ 2−l,
we have

|τ |−δ

∫∫

|x|≥R
|Qlς(α + τej , x)−Qlς(α, x)| dx dα . 2lδ

∫∫
|Qlς(α, x)| dx dα . 2−l(ε−δ)‖ς‖Bε .
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In the second case, R ≤ 2l, |τ | ≤ 2−l, we have

|τ |−δ

∫∫

|x|≥R
|Qlς(α+ τej , x)−Qlς(α, x)| dx dα

. 2−l(ε−δ)|τ |−ε

∫∫
|ς(α+ τej , x)− ς(α, x)| dx dα . 2−l(ε−δ)‖ς‖Bε .

In the third case, R ≥ 2l, |τ | ≥ R−1, we have

|τ |−δ

∫∫

|x|≥R
|Qlς(α + τej, x)−Qlς(α, x)| dx dα . Rδ

∫∫

|x|≥R
|Qlς(α, x)| dx dα . Rδ−ε‖ς‖Bε ,

where in the last inequality we have used (3.5). In the last case, R ≥ 2l, |τ | ≤ R−1,

|τ |−δ

∫∫

|x|≥R
|Qlς(α+ τej , x)−Qlς(α, x)| dx dα

. Rδ−ε|τ |−ε

∫∫
|ς(α+ τej , x)− ς(α, x)| dx dα . Rδ−ε‖ς‖Bε ,

as desired. This completes the proof. �

Proof of Proposition 3.3, conclusion. Let ςj be as in the statement of the proposition. By

Lemma 3.5 we already know the sum
∑

j∈Z ς
(2j)
j converges in the topology on LS ′(Rn×R

d). Our

goal is to show convergence of the sum ‖
∑

j∈Z ς
(2j)
j ‖Kδ in Kδ for 0 < δ < ε/2. Fix j1, j2 ∈ Z,

j1 < j2. Define K =
∑

j1≤j≤j2
ς
(2j )
j . We will show ‖K‖Kδ . supj ‖ςj‖Bε , with the implicit

constant independent of j1, j2. The result then follows y a limiting argument. In what follows,
summations in j are taken over the range j1 ≤ j ≤ j2. We assume, without loss of generality,

sup
j

‖ςj‖Bε = 1.

Let χ0 ∈ S(Rd) be so that χ̂0(ξ) = 1 for |ξ| ≤ 1 and χ̂0 is supported in {ξ : |ξ| ≤ 2}. For

l ≥ 1 let χl = χ
(2l)
0 − χ

(2l−1)
0 , so that supl∈Z χ̂l(ξ) = 1 for ξ 6= 0. We write

K =
∑

j

ς
(2j)
j =

∑

l≥0

∑

j

ς
(2j )
j,l ,

where
ςj,l(α, ·) = χl ∗ ςj(α, ·)

and the convolution is in R
d. Let

Kl =
∑

j

ς
(2j )
j,l .

The proof will be complete once we have shown ‖Kl‖Kδ . 2−l(ε−2δ).

Our first goal is to show, for 1 ≤ i ≤ n, t ∈ R,

(3.9)

∫
(1 + |αi|)

δ‖η ∗K
(t)
l ‖L2(Rd) dα . (1 + l)2−l(ε−δ)

which gives ‖Kl‖Kηδ,1
. (1 + l)2−l(ε−δ). To prove (3.9), we will show

(3.10)

∫
(1 + |αi|)

δ
∥∥η ∗ ς(2

jt)
j,l (α, ·)

∥∥
2
dα .





(2l(ε−δ)2jt)−
ε−δ

1+ε−δ if 2jt ≥ 2l,

2−l(ε−δ) if 2−2l ≤ 2jt ≤ 2l,

(2l+jt)d/2 if 2jt ≤ 2−2l.

Summing (3.10) in j yields (3.9), so we focus on (3.10).
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First we consider the case when 2jt ≥ 2l. Letting r ∈ [1, 2jt] be chosen later, we use that∫
ςj,l(α, x) dx = 0 to see

∫
(1 + |αi|)

δ
∥∥η ∗ ςj,l(α, ·)(2

j t)
∥∥
2
dα

.

∫
(1 + |αi|)

δ
( ∫ ∣∣∣

∫
[η(x− y)− η(x)](2jt)dςj,l(α, 2

jty) dy
∣∣∣
2
dx

) 1

2

dα

.

∫
(1 + |αi|)

δ

∫
|ςj,l(α, v)|‖η(· −

v
2jt

)− η(·)‖L2(Rd) dv dα

.

∫∫
(1 + |αi|)

δ|ςj,l(α, v)|min{ |v|
2jt
, 1} dv dα

=

∫∫

|v|≤r
+

∫∫

|v|>r
=: (I) + (II).

We have, using (3.7) with R = 0,

(I) .
r

2jt

∫∫
(1 + |αi|)

δ |ςj,l(α, v)| dv dα .
r

2jt
2−l(ε−δ).

Using (3.7) with R = r,

(II) .

∫∫

|x|≥r
(1 + |αi|)

δ|ςj,l(α, v)| dv dα . r−(ε−δ).

We choose r so that r1+ε−δ = 2l(ε−δ)2jt; this yields (3.10) in the case 2jt ≥ 2l under considera-
tion.

For 2−2l ≤ 2jt ≤ 2l we use the trivial L1 → L2 bound for convolution with η and a change
of variables, combined with (3.7) (with R = 0) to see

∫
(1 + |αi|)

δ‖η ∗ ς
(2jt)
j,l (α, ·)‖2 dα .

∫
(1 + |αi|)

δ‖ςj,l(α, ·)‖1 dα . 2−l(ε−δ),

as desired.

Now assume 2jt ≤ 2−l. Let u ∈ S(Rd) be such that û(ξ) = 1 for |ξ| ≤ 2, so that û(2−l·) = 1

on the support of ς̂j,l. We then have, using ‖û(2−j−lt−1·)η̂(·)‖2 . (2j+lt)d/2,
∫

(1 + |αi|)
δ‖η ∗ ς

(2jt)
j,l (α, ·)‖2 dα .

∫
(1 + |αi|)

δ‖η ∗ u(2
j+lt)‖2‖ςj,l(α, ·)‖1 dα

.

∫
(1 + |αi|)

δ‖û(2−j−lt−1·)η̂(·)‖2‖ςj,l(α, ·)‖1 dα . (2j+lt)d/2.

This completes the proof of (3.10) and therefore of (3.9).

A simple modification of the above proof, using (3.8) in place of (3.7), gives for |τ | ≤ 1,

∫ ∥∥η ∗ [ς(2
j t)

j,l (α+ τej , ·)− ς
(2jt)
j,l (α, ·)]

∥∥
2
dα . |τ |δ ·





(2jt)−(ε−δ) if 2jR ≥ 2l,

2−l(ε−δ) if 2−2l ≤ 2jR ≤ 2l,

(2l+jR)d if 2jR ≤ 2−2l.

Summing in j shows that for 0 < h ≤ 1,

h−ε

∫ ∥∥η ∗ [K(t)
l (α+ hei, ·)−K

(t)
l (α, ·)]

∥∥
2
dα . (1 + l)2−l(ε−δ)

and hence ‖Kl‖Kηδ,2
. (1 + l)2−l(ε−δ).
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Next we wish to show ‖Kl‖Kδ,3 . (1 + l)2−l(ε−δ), that is, for 1 ≤ i ≤ n, R > 0,

(3.11)

∫∫

R≤|x|≤2R

(1 + |αi|)
δ|Kl(α, x)| dx dα . (1 + l)2−(ε−δ)l.

To prove (3.11) we will show

(3.12)

∫∫

R≤|x|≤2R

(1 + |αi|)
δ |ς

(2j )
j,l (α, x)| dx dα .





(2jR)−(ε−δ) if 2jR ≥ 2l,

2−l(ε−δ) if 2−2l ≤ 2jR ≤ 2l,

(2l+jR)d if 2jR ≤ 2−2l.

Summing (3.12) in j yields (3.11). Now, applying (3.7),
∫∫

R≤|x|≤2R

(1 + |αi|)
δ|ς

(2j )
j,l (α, x)| dx dα ≤

∫∫

2jR≤|x|

(1 + |αi|)
δ |ςj,l(α, x)| dx dα

.

{
(2jR)−(ε−δ) if 2jR ≥ 2l,

2−l(ε−δ) if 2jR ≤ 2l.

Thus, to complete the proof of (3.12) we need only consider the case when 2jR ≤ 2−2l. We
have ∫∫

R≤|x|≤2R

(1 + |αi|)
δ |ς

(2j )
j,l (α, x)| dx dα =

∫∫

2jR≤|x|≤2j+1R

(1 + |αi|)
δ |ςj,l(α, x)| dx dα

. (2jR)d
∫

(1 + |αi|)
δ‖ςj,l(α, ·)‖L∞(Rd) dα . (2jR)d2ld

∫
(1 + |αi|)

δ‖ςj(α, ·)‖L1(Rd) dα

. (2j+lR)d,

competing the proof of (3.12) and therefore of (3.11).

A simple modification of the above yields, for 0 < |τ | ≤ 1,

∫∫

R≤|x|≤2R

|ς
(2j)
j,l (α+ τei, x)− ς

(2j )
j,l (α, x)| dx dα . |τ |δ ·





(2jR)−(ε−δ) if 2jR ≥ 2l,

2−l(ε−δ) if 2−2l ≤ 2jR ≤ 2l,

(2l+jR)d if 2jR ≤ 2−2l.

Summing in j yields, for 0 < h ≤ 1, R > 0,

h−δ

∫∫

R≤|x|≤2R

|Kl(α+ hei, x)−Kl(α, x)| dx dα . (1 + l)2−(ε−δ)l

and hence ‖K‖Kε,4 . (1 + l)2−(ε−δ)l.

Finally, we wish to show, for R ≥ 2, y ∈ R
d,

(3.13) Rδ

∫∫

|x|≥R|y|

|K(α, x− y)−K(α, x)| dx dα . 2−l(ε−2δ).

First, estimate

Rδ

∫∫

|x|≥R|y|

|ς
(2j )
j,l (α, x− y)− ς

(2j )
j,l (α, x)| dx dα = Rδ

∫∫

|x|>2j |y|R

|ςj,l(α, x − 2jy)− ςj,l(α, x)| dx dα

. Rδ min{1, 2j+l|y|}min{2−lε, (2j |y|R)−ε} =: E(j, l, R).
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Here we applied (3.6) with 2j |y| in place of |h| and 2j |y|R in place of R. Note the left hand
side of (3.13) is bounded by

∑
j E(j, l, R).

In the case R ≥ 22l, we estimate
∑

j

E(j, l, R) .

∑

2j |y|≥2−l

Rδ−ε(2j |y|)−ε +
∑

2l/R≤2j |y|≤2−l

2l(2j |y|)1−εRδ−ε +
∑

2j |y|≤2l/R

Rδ(2j |y|)2l(1−ε).

The first two sums are O(Rδ−ε2lε), and the third sum is O(Rδ−12(2−ε)l); here we used R ≥ 22l.

In the case R ≤ 22l we have∑

j

E(j, l, R) .
∑

2j |y|≥2l/R

Rδ−ε(2j |y|)−ε +
∑

2−l≤2j |y|≤2l/R

Rδ2−lε +
∑

2j |y|≤2−l

Rδ2j |y|2l(1−ε).

The first sum is O(Rδ2−lε), the second sum is O(Rδ2−lε log(1 + 22l/R)), and since R ≤ 22l the

third sum is O(Rδ2−lε). In both cases we obtain
∑

j E(j, l, R) . 2−l(ε−2δ). This completes the

proof of (3.13). Combining all of the above inequalities completes the proof of the proposition.
�

4. Adjoints

This section is devoted to studying the space Bε ; in particular will give the proof of Theorem
2.9. It will be advantageous to work with a variant of this class, for functions on R

N , with
N = n+ d.

Definition 4.1. Fix ε > 0 and N ∈ N. We define a Banach space Bε(R
N ) to be the space of

measurable functions γ : RN → C such that the norm

‖γ‖Bε := max
1≤i≤N

∫
(1 + |si|)

ε|γ(s)| ds+ sup
0<h≤1
1≤i≤N

h−ε

∫
|γ(s+ hei)− γ(s)| ds,

is finite. Here e1, . . . , eN denotes the standard basis of RN .

Remark 4.2. The spaces Bε(R
n+d) and Bε(R

n ×R
d) coincide; indeed, for ς ∈ Bε(R

n ×R
d), we

have the equivalence
‖ς‖Bε ≈ ‖ς‖Bε ,

with implicit constants depending only on d. In this section we find it more useful to use the
space Bε as it treats the α and x variables symmetrically.

The following two propositions involve operations on functions in Bε involving inversions and
multiplicative shears. They are the main technical results needed for the proof of Theorem 2.9.

Proposition 4.3. Let ε > 0 and δ < ε/3. Let γ ∈ Bε(R
N ) and

J1γ(s1, . . . , sN ) := s−2
1 γ(s−1

1 , s2, . . . , sN ),

γ ∈ Bε(R
N ). Then J1γ ∈ Bδ(R

N ) and

‖J1γ‖Bδ . ‖γ‖Bε .

Proposition 4.4. Let ε > 0 and δ < ε/3. Let γ ∈ Bε(R
N ), n ∈ {1, . . . , N} and set

Mγ(s1, . . . , sN ) := sn−1
1 γ(s1, s1s2, . . . , s1sn, sn+1, sn+2, . . . , sN ).

Then Mγ ∈ Bε′(R
N ) and

‖Mγ‖Bδ . n‖γ‖Bε .
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For later use in §4.5 we state these results in a different form:

Corollary 4.5. Let 1 ≤ n ≤ N . For γ ∈ Bε(R
N ) define two functions

Γ1(s1, . . . , sN ) := s−n−1
1 γ(s−1

1 , s−1
1 s2, . . . , s

−1
1 sn, sn+1, . . . , sN ),

Γ2(s1, . . . , sN ) := s
−(n−1)
1 γ(s1, s

−1
1 s2, . . . , s

−1
1 sn, sn+1, . . . , sN ).

There exists ε′ = ǫ′(ε) > 0 (depending neither on N nor n) such that

‖Γ1‖Bε′ + ‖Γ2‖Bε′ ≤ Cε,ε′n‖γ‖Bε .

Proof. Notice that Γ1 = J1Mγ, Γ2 = J1MJ1γ where J1 and M are as in the propositions
above. �

4.1. Proof of Theorem 2.9. We assume Proposition 4.3 and Proposition 4.4 and deduce
Theorem 2.9. If ς ∈ L1(Rn × R

d) and ̟ is a permutation of {1, . . . , n+ 2}, we shall show

Λ[ς](b̟(1), . . . , b̟(n+2)) = Λ[ℓ̟ς](b1, . . . , bn+2),

such that ‖ℓ̟ς‖L1 = ‖ς‖L1 and such that there exists ε′ > cε, with c independent of ̟, and

‖ℓ̟ς‖B
ε′

. n2‖ς‖Bε

for ς ∈ Bε.

Every permutation of {1, . . . , n + 2} is a composition of at most four permutations of the
following three forms, with the permutation in (iii) occuring at most twice.

(i) A permutation of {1, . . . , n}, leaving n+ 1 and n+ 2 fixed.
(ii) The permutation which switches n+ 1 and n+ 2, leaving all other elements fixed.
(iii) The permutation which switches n+ 1 and 1, leaving all other elements fixed.

Case (i) If ̟ is a permutation of {1, . . . , n}, leaving n+1 and n+2 fixed, then it is immediate
to verify

(4.1) ℓ̟ς(α, v) = ς(α̟−1(1), . . . , α̟−1(n), v),

and thus ‖ℓ̟ς‖Bε = ‖ς‖Bε and ‖ℓ̟ς‖L1 = ‖ς‖L1 .

Case (ii). If ̟ is the permutation which switches n+1 and n+2, leaving all other elements
fixed, then it is immediate to verify that

(4.2) ℓ̟ς(α, v) = ς(1− α1, . . . , 1− αn, v).

We have ‖ς̟‖Bε ≈ ‖ς‖Bε and ‖ς̟‖L1 = ‖ς‖L1 .

In both of the above cases, if
∫
ς(α, v) dv = 0 ∀α then

∫
ς̟(α, v) dv = 0 ∀α.

Case (iii). We compute

Λ[ς](bn+1, b2, . . . , bn, b1, bn+2)

=

∫∫∫
ς(α, v)bn+1(x− α1v)

( n∏

i=2

bi(x− αiv)
)
b1(x− v)bn+2(x) dv dx dα

=

∫∫∫
|α1|

−dς(α,α−1
1 w)bn+1(x− w)

( n∏

i=2

bi(x− αiα
−1
1 w)

)
b1(x− α−1

1 w)bn+2(x) dx dw dα

=

∫∫∫
βd−n−1ς(β−1

1 , β−1
1 β2, . . . , β

−1
1 βn, β1w)

n∏

i=1

bi(x− βiv)bn+1(x− w)bn+2(x)dx dw dβ
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where we have first changed variables v = α−1
1 u, then interchanged the order of integration,

and changed variables α1 = β−1
1 , αi = βiβ

−1
1 for i = 2, . . . , n. Hence if ̟ is the transposition

interchanging 1 and n+ 1 and leaving 2, . . . , n, n+ 2 fixed then Λ̟[ς] = Λ[ℓ̟ς] with

(4.3) ℓ̟ς(α1, . . . , αn, v) = ς(α−1
1 , α−1

1 α2, . . . , α
−1
1 αn, α1v) .

Now if we define the inversion J , with respect to the α1 variable, and multiplicative shears

Mn−1, M̃d by

Jg(α1, . . . , αn, v) = α−2
1 g(α−1

1 , α2, . . . , αn, v)

Mn−1g(α1, . . . , αn, v) = αn−1
1 g(α1, α1α2, . . . , α1αn, v)

M̃dg(α1, . . . , αn, v) = αd
1g(α1, . . . , αn, α1v)

then it is straightforward to check that the linear transformation ℓ̟ in (4.3) can be factorized
as

(4.4) ℓ̟ = J ◦ M̃d ◦ J ◦Mn−1 ◦ J .

By Remark 4.2 the Bε(R
n × R

d) and the Bε(R
n+d) norms are equivalent with equivalence

constants not depending on n. By Proposition 4.3 we have ‖Jg‖B′
ε
. ‖g‖Bε , and by Proposition

4.4 we have ‖Mn−1g‖B′
ε
. n‖g‖Bε , and ‖Mdg‖B′

ε
. ‖g‖Bε , for ε′ < ε/3. Hence ‖ℓ̟ς‖Bδ .

n‖ς‖Bε , at least when δ < 3−5ε.

Finally if ̟ is a general permutation than we can split ̟ = ̟1 ◦̟2 ◦̟3 ◦̟4, each ̟i of
the form in (i), (ii) or (iii), with at most two of the form in (iii). Hence we get Λ̟[ς] = Λ[ℓ̟ς]
where ‖ℓ̟ς‖Bδ . n2‖ς‖Bε , at least for δ < 3−10ε. We remark that if we avoid the factorization
(4.4) and use the formula for ℓ̟ directly we should get a better range for δ but this will be
irrelevant for our final boundedness results on the forms Λ̟. �

4.2. Proof of Propositions 4.3 and 4.4. We first prove several preliminary lemmata, then
give the proof of Proposition 4.3 in §4.2.2 and the proof of Proposition 4.4 in §4.2.3.

4.2.1. Preparatory Results. We first recall a standard fact about Besov spaces Bε
1,q(R); 1 ≤ q ≤

∞. If 0 < ε < 1 then there the characterizations

(4.5a) ‖f‖Bε
1,q

≈ ‖f‖1 +
( ∫ 1

0
‖f(·+ h)− f‖q1

dh

h1+εq

)1/q
, 1 ≤ q <∞,

and

(4.5b) ‖f‖Bε
1,∞

≈ ‖f‖1 + sup
0<h<1

h−ε‖f(·+ h)− f‖1 .

Moreover there are the continous embeddings

(4.6) Bε
1,q1 ⊂ Bε

1,q2 , q1 < q2.

For (4.5) and (4.6) we refer to [35, §V.5] or [39]. As a corollary we get

Lemma 4.6. Let 0 < δ < ε < 1. Then for functions in L1(R) then there are constants c, C > 0
depending only on ε, δ such that

c‖f‖1 + c

∫

0<h<1
h−δ‖f(·+ h)− f‖1

dh

h

≤‖f‖1 + sup
0<h<1

h−ε‖f(·+ h)− f‖1

≤C‖f‖1 + C

∫

0<h<1
h−ε‖f(·+ h)− f‖1

dh

h
.
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We let ei, i = 1, . . . , N , denote the standard basis vectors in R
N and let e⊥i to be the

orthogonal complement. For g ∈ L1(RN ) and w ∈ e⊥i define

(4.7) πwi g(s) = g(sei +w);

this is defined as an L1(R) function for almost every w ∈ e⊥i , and by Fubini w 7→
∫
R
|πwi g(s)|ds

belongs to L1(e⊥i ). Moreover if g ∈ Bε(R
N ) for some ε > 0 then for almost every w ∈ e⊥i the

function h 7→
∫
R
|πwi g(s + h)− πwi g(s)|ds is continuous.

Lemma 4.7. Let 0 ≤ δ < 1. Then the following statements hold.

(i)

‖g‖Bδ(RN ) ≤ max
i=1,...,n

∫

e⊥i

∥∥πwi g
∥∥
Bδ(R)

dw .

(ii) If 0 < δ < ε ≤ 1 then there exists C = C(ε, δ) > 0 (not depending on N) such that for
all f ∈ Bε(R

N )

max
i=1,...,N

∫

e⊥i

∥∥πwi g
∥∥
Bδ(R)

dw ≤ C‖g‖Bε(RN ) .

Proof. (i) follows immediately from the definitions of Bδ(R) and Bδ(R
N ). For (ii) fix i ∈

{1, . . . , N} and split
∫
e⊥i

∥∥πwi g
∥∥
Bδ(R)

dw = I + II where

I =

∫

e⊥i

∫
(1 + |s|)δ |g(sei + w)|ds dw

II =

∫

e⊥i

sup
0≤h≤1

|h|−δ

∫
|g((s + h)ei + w)− g(sei + w)|ds dw .

It is immediate that I ≤ ‖g‖Bδ(RN ) ≤ ‖g‖Bε(RN ). For the second term we use Lemma 4.6 to
estimate

II ≤ Cδ

∫

e⊥i

∫

0≤h≤1
|h|−δ

∫
|g((s + h)ei + w)− g(sei + w)|ds

dh

h
dw

= Cδ

∫ 1

0
hε−δh−ε

∫

RN

|g(x+ hei)− g(x)|dx
dh

h

≤ Cδ(ε− δ)−1 sup
0<h<1

|h|−ε‖g(· + hei)− g‖L1(RN )

and hence II ≤ C(ε, δ)‖g‖Bε(RN ). �

Lemma 4.8. Let R ≥ 1 and let Ωi
R = {x ∈ R

N : |xi| ≥ R}. Then
∫

ΩiR

|g(x)|dx ≤ R−ε‖g‖Bε(RN ).

Proof. This is immediate from
∫

ΩiR

|g(x)| dx ≤ R−ε

∫
(1 + |xi|)

ε|g(x)| dx . �

The following lemma is a counterpart to Lemma 4.8 which is used when integrating over
sets whose projection to a coordinate axis has small measure. It can be seen as a standard
application of a Sobolev embedding theorem for functions on the real line. For measurable
J ⊂ R we denote by |J | the Lebesgue measure.



MULTILINEAR SINGULAR INTEGRAL FORMS OF CHRIST-JOURNÉ TYPE 31

Lemma 4.9. Let 0 < ε ≤ 1 and f ∈ Bε(R
N ), and let 0 < ε′ < ε. Let E ⊂ R

N and let

proji(E) = {s ∈ R : sei + w ∈ E for some w ∈ e⊥i }.

Then ∫

E
|f(x)|dx ≤ Cε,ε′|proji(E)|ε

′
‖f‖

Bε(RN )
.

Moreover for i = 1, . . . , N , δ < ε,
∫

e⊥i

∫

|xi|≤1
|xi|

−δ|f(x)|dx ≤ C(ε, δ)‖f‖Bε(RN ).

Proof. For k ≥ 0 let Ek = {x ∈ RN : 2−k−1 ≤ |xi| ≤ 2−k}. The second inequality is a
consequence of the first applied to the sets Ek.

To prove the first statement pick p = (1 − ε′)−1 > 1 so that ε′ = 1 − p−1. By Hölder’s
inequality, ∫

E
|f(x)|dx ≤ |proji(E)|ε

′

∫

e⊥i

(∫
|f(sei + w)|pds

)1/p
dw .

Let πwi f(s) = f(sei + w). Let φ ∈ S(R),
∫
φ(s)ds = 1 such that the Fourier transform φ̂ is

supported in {|ξ| ≤ 1}. Let ψk = 2kφ(2k·) − 2k−1φ(2k−1·). Choose φ̃ ∈ S(R) whose Fourier

transform is equal to 1 on {|ξ| ≤ 2} and let φ̃k = 2kφ̃(2k·). Then

πwi f = φ̃ ∗ φ ∗ πwi f +
∞∑

k=1

φ̃k ∗ ψk ∗ π
w
i f

and thus, by Young’s inequality,

‖πwi f‖Lp(R) ≤ ‖φ̃‖Lp(R)‖φ ∗ πwi f‖Lp(R) +

∞∑

k=1

‖φ̃k‖Lp(R)‖ψk ∗ π
w
i f‖L1(R)

. ‖φ ∗ πwi f‖Lp(R) +

∞∑

k=1

2k(1−1/p)‖ψk ∗ π
w
i f‖L1(R).

Since
∫
ψk(s)ds = 0 we have

∣∣ψk ∗ π
w
i f(s)

∣∣ =
∣∣∣
∫
ψk(h)

[
πwi f(s− h)− πwi f(s)

]
dh

∣∣∣

.

∫
2k

(1 + 2k|h|)3
∣∣πwi f(s− h)− πwi f(s)

∣∣dh .

Using this in the above expression we get after integration in w
∫

e⊥i

(∫
|f(sei + w)|pds

)1/p
dw

. ‖f‖1 +
∞∑

k=1

2k(1−
1

p
)
∫

2k

(1 + 2k|h|)3
∣∣πwi f(s− h)− πwi f(s)

∣∣ds dw dh

. ‖f‖1 +
∞∑

k=1

∫

|h|≤1

2
k(2− 1

p
)
|h|ε

(1 + 2k|h|)3
dh sup

|u|≤1

‖f(·+ uei)− f(·)‖1
|u|ε

+
∞∑

k=1

∫

|h|≥1

2
k(2− 1

p
)

(1 + 2k|h|)3
dh ‖f‖1.

The last term is .
∑∞

k=1 2
−k(1+1/p)‖f‖1 . ‖f‖1. The middle term is .

∑∞
k=1 2

k(−ε+1−1/p)‖f‖Bε
and since 1− 1/p = ε′ < ε we obtain the required bound. �
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4.2.2. Proof of Proposition 4.3. The main lemma needed in the proof is an estimate for functions
on the real line.

Lemma 4.10. For g ∈ Bε(R) let Jg(s) = s−2g(s−1). Then for δ < ε/3

‖Jg‖Bδ(R) ≤ C(ε, δ)‖g‖Bε(R).

Proof. First observe that for ε′ < ε
∫

(1 + |σ|)ε
′
|Jg(σ)|dσ =

∫
(1 + |s|−1)ε

′
|g(s)|ds . ‖g‖Bε(R),

by Lemma 4.9. Thus, in light of Lemma 4.6 it remains to prove that for ρ ≤ 1/2,

(4.8)

∫ 2ρ

ρ

∫
|Jg(σ + h)− Jg(σ)|dσ

dh

h
. ρδ

′
‖g‖Bε ,

for any ε′ < δ′ < ε/3. Choose any β ∈ (δ′/ε, 1/3). We have by changes of variables

∫ 2ρ

ρ

∫

|σ|≤ρβ
|Jg(σ + h)| + |Jg(σ)|dσ

dh

h
.

∫

|σ|≤3ρβ
|Jg(σ)|dσ ≤

∫

|s|≥ρ−β/3
|g(s)|ds ≤ ρβε‖g‖Bε

by Lemma 4.8. Also

∫ 2ρ

ρ

∫

|σ|≥ρ−β
|Jg(σ + h)|+ |Jg(σ)|dσ

dh

h
.

∫

|σ|≤ρβ/2
|Jg(σ)|dσ ≤

∫

|s|≤2ρβ
|g(s)|ds ≤ ρβε‖g‖Bε ,

by Lemma 4.9. It remains to consider

∫ 2ρ

ρ

∫ ρ−β

ρβ
|Jg(σ + h)− Jg(σ)|dσ

dh

h
=

∫ 2ρ

ρ

∫ ρ−β

ρβ

∣∣ s−2

(s−1+h)2
g
(

1
s−1+h

)
− g(s)

∣∣ds dh
h

=

∫ 2ρ

ρ

∫ ρ−β

ρβ

∣∣ 1
(1+hs)2

g
(

s
1+hs

)
− g(s)

∣∣ds dh
h
;

here we have performed the change of variable s = σ−1. We now interchange the order of

integration and then change variables u = s
1+hs−s = − s2h

1+hs . Observe that du/dh = s2(1+hs)−2

and thus |du|
|u| = |1 + hs|−1 |dh|

|h| . Therefore for |h| ≈ ρ and ρβ < |s| ≤ ρ−β we can replace |dh|/|h|

by |du|/|u|. Also observe that h = −u(su + s2)−1 and 1 + hs = s(u + s)−1. Thus the last
displayed expression can be written as

∫

ρβ≤|s|≤ρ−β

∫ − ρs2

1+ρs

− 2ρs2

1+2ρs

∣∣(u+s
s

)2
g(s+ u)− g(s)

∣∣du
|u|
ds ≤ (I) + (II)

where

(I) :=

∫∫

ρβ≤|s|≤ρ−β

|u|≈ρs2

∣∣ (u+s)2

s2 − 1
∣∣|g(s + u)|

du

|u|
ds

(II) :=

∫∫

ρβ≤|s|≤ρ−β

|u|≈ρs2

∣∣g(s + u)− g(s)
∣∣du
|u|

ds .
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First estimate

(I) .

∫

ρβ≤|s|≤ρ−β

∫

|u|≈ρs2
|g(u+ s)|

u2 + 2|us|

s2
du

|u|
ds

.

∫ Cρ1−2β

0

∫ Cρ−β

cρβ
(ρ+ |s|−1)|g(s)|ds du

. ρ1−2β‖g‖1 +
∑

k≥0
2−k≥cρβ

2k
∫

2−k≤|s|≤21−k
|g(s)|ds

and, since by Lemma 4.9
∫
|s|≤2−k |g(s)|ds . 2−kε′′‖g‖Bε for ε′′ < ε, we get

(I) . ρ1−2β
(
‖g‖1 +

∑

k≥0
2−k≥cρβ

2k(1−ε′′)‖g‖Bε

)
. ρ1−3β+βε′′‖g‖Bε .

Finally,

(II) ≤
∑

k:2−k≤Cρ1−2β

∫

2−k≤|u|≤21−k

‖g(· + u)− g‖1
du

|u|

≤
∑

k:2−k≤Cρ1−2β

2−kε‖g‖Bε
1,∞

. ρ(1−2β)ε‖g‖Bε .

Now collect the estimates and keep in mind that β < 1/3 is chosen close to 1/3. We may choose
ε′′ above so that 3δ′ < ε′′ < ε. Then the asserted estimate (4.8) follows, and the lemma is
proved. �

Proof of Proposition 4.3, concluded. Let πwi g(s) = g(sei +w) be as in (4.7). We have

‖J1γ‖Bδ ≤ max
1≤i≤N

∫

e⊥i

‖πwi (J1g)‖Bδ(R)dw.

By Lemma 4.7 and a change of variable w1 7→ w−1
1 we obtain for 2 ≤ i ≤ n, δ1 > δ,

∫

e⊥i

‖πwi (J1g)‖Bδ(R)dw =

∫

e⊥i

‖πwi g‖Bδ(R)dw . ‖g‖Bδ1 (R
N ).

Let 3δ < ε̃ < ε. For the main term with i = 1 we use Lemma 4.10 and then Lemma 4.7 to get
∫

e⊥
1

‖πwi (J1g)‖Bδ(R)dw =

∫

e⊥
1

‖J1(π
w
i g)‖Bδ(R)dw .

∫

e⊥
1

‖πwi g‖Bε̃(R)dw . ‖g‖Bε(RN ).

This concludes the proof of the proposition. �

4.2.3. Proof of Proposition 4.4. We now turn to Proposition 4.4. Fix ε > 0, n ∈ {1, . . . , N},
γ ∈ Bε(R

N ) and recall the definition

Mγ(s) = sn−1
1 γ(s1, s1s2, . . . , s1sn, sn+1, . . . , sN ).

We separate the proof into three lemmata. The most straightforward one is

Lemma 4.11. Let 0 < ε < 1. For δ < ε/2, i = 1, . . . , N ,
∫

(1 + |si|)
δ |Mγ(s)| ds . ‖γ‖Bε .
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Proof. Let ε′ > 0 be a number, to be chosen later. If i = 1 or n + 1 ≤ i ≤ N , we have, by a
change of variable,

∫
(1 + |σi|)

ε′ |Mγ(σ)| dσ =

∫
(1 + |si|)

ε′ |γ(s)| ds . ‖γ‖Bε , ε′ ≤ ε.

Let 2 ≤ i ≤ n. We have by a change of variable
∫

(1 + |σi|)
ε′ |Mγ(σ)| dσ =

∫
(1 + |

si
s1

|)ε
′
|γ(s)| ds.

Let Ω1 = {s : |s1| ≥ 3}, Ω2 = {s : |s1| ≤ 3, |si| ≥ |s1|
−1}, Ω3 = {s : |s1| ≤ 3, |si| ≤ |s1|

−1}, and
bound the integrals over the three regions separately. First, for ε′ ≤ ε,

∫

Ω1

(1 + |
si
s1

|)ε
′
|γ(s)| ds .

∫
(1 + |si|)

ε′ |γ(s)| ds ≤ ‖γ‖Bε ,

Next, for ε′ ≤ ε/2,
∫

Ω2

(1 + |
si
s1

|)ε
′
|γ(s)| ds .

∫
(1 + |si|)

2ε′ |γ(s)| ds ≤ ‖γ‖Bε .

Finally, for the third term we use Lemma 4.9 to estimate, for ε′ < ε/2,
∫

Ω3

(1 + |
si
s1

|)ε
′
|γ(s)| ds .ε′

∫

|s1|≤3
(1 + |s1|

−2ε′)|γ(s)| ds ≤ ‖γ‖Bε .

The asserted estimate follows. �

Lemma 4.12. (i) For n+ 1 ≤ i ≤ N , ε > 0

sup
0<h≤1

h−ε‖Mγ(· + hei)−Mγ‖1 ≤ ‖γ‖Bε .

(ii) For 2 ≤ i ≤ n, δ < ε/2

sup
0<h≤1

h−δ‖Mγ(·+ hei)−Mγ‖1 . ‖γ‖Bε .

Proof. In the case n+ 1 ≤ i ≤ N a change of variables shows,
∫

RN

|Mγ(σ + hei)−Mγ(σ)| dσ =

∫

RN

|γ(s + hei)− γ(s)| ds,

and the result follows.

Now consider the case 2 ≤ i ≤ n. By Lemma 4.6 it suffices to show that for ρ ≤ 1

(4.9)

∫ 2ρ

ρ

∫

RN

|Mγ(σ + hei)−Mγ(σ)| dσ
dh

h
. ρε

′
‖γ‖Bε , ε′ ≤ ε/2.

Our assumptions are symmetric in s2, . . . , sn, and thus it suffices to prove (4.9) for i = 2. The
result is trivial for 10−2 ≤ ρ ≤ 1, so we may assume ρ ≤ 10−2. In the inner integral we change
variables, setting (s1, . . . , sN ) = (σ1, σ1σ2, . . . , σ1, σn, σn+1, . . . , σN ) and the left hand side of
(4.9) becomes

∫ 2ρ

ρ

∫

RN

|γ(s1, s2 + s1h, s1s3, . . . , sn, sn+1, . . . , sN )− γ(s)| ds
dh

h

=

∫∫

ρ≤h≤2ρ
|s1|≥ρ−β

+

∫∫

ρ≤h≤2ρ
|s1|≤ρ−β

=: (I) + (II)
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where β ∈ (0, 1) is to be determined. We have the following estimate for the first term:

(I) ≤ 2

∫∫

ρ≤h≤2ρ
|s1|≥ρ−β

|γ(s)| ds
dh

h
.

∫

|s1|≥ρ−β

|γ(s)| ds . ρβε
∫

(1 + |s1|)
ε|γ(s)| ds . ρβε‖γ‖Bε .

For the term (II) we interchange the order of integration and put for fixed s1, h̃ = s1h so that

dh̃/h̃ = dh/h. Also, on the domain of integration of (II), we have |h̃| ≤ 2ρ1−β . Thus we may
estimate

(II) ≤

∫

|h̃|≤2ρ1−β
‖γ(· + h̃e2)− γ(·)‖1|h̃|

−1dh̃ ≤ ‖γ‖Bε

∫ 2ρ1−β

0
h̃ε−1 dh̃ . ρε(1−β)‖γ‖Bε .

If we choose β = 1/2 then (4.9) follows from the estimates for (I) and (II). �

Remark. One can replace the application of Lemma 4.6 by a more careful argument to show
that (4.9) implies that the statement (ii) in the lemma holds even for the endpoint δ = ε/2.
However this is not important for the purposes of this paper.

The main technical estimate in the proof of Proposition 4.4 is an analogue of Lemma 4.12 for
regularity in the first variable, given as Lemma 4.14 below. We first give an auxiliary estimate
for functions of two variables.

Lemma 4.13. Let β < 1/2, ε′ < ε. For g ∈ Bε(R
2), and 0 < ρ ≤ 1,

∫∫∫

ρβ≤|s1|≤ρ−β

ρ≤h≤2ρ

∣∣∣
(
1 + h

s1

)
g(s1 + h, (1 + h

s1
)s2)− g(s1 + h, s2)

∣∣∣ ds1ds2
dh

h

≤ C(β, ε′)
(
ρε

′β + ρ1−2β
)
‖g‖Bε(R2) .

Proof. We may assume that ρ ≤ 10−2/β , since otherwise the bound is trivial. We wish to discard
the contributions of the integral where |s2| ≤ ρβ or |s2| ≥ ρ−β. We estimate the left hand side
by A+ I1 + I2 + II1 + II2 where

A =

∫∫∫

ρβ≤|s1|,s2≤ρ−β

ρ≤h≤2ρ

∣∣∣
(
1 + h

s1

)
g(s1 + h, (1 + h

s1
)s2)− g(s1 + h, s2)

∣∣∣ ds1ds2
dh

h
,

I1 + II1 =

∫∫∫

ρβ≤|s1|≤ρ−β

|s2|≤ρβ

ρ≤h≤2ρ

+

∫∫∫

ρβ≤|s1|≤ρ−β

|s2|≥ρ−β

ρ≤h≤2ρ

∣∣∣
(
1 + h

s1

)
g(s1 + h, (1 + h

s1
)s2)

∣∣∣ ds1ds2
dh

h
,

I2 + II2 =

∫∫∫

ρβ≤|s1|≤ρ−β

|s2|≤ρβ

ρ≤h≤2ρ

+

∫∫∫

ρβ≤|s1|≤ρ−β

|s2|≥ρ−β

ρ≤h≤2ρ

|g(s1 + h, s2)| ds1ds2
dh

h
.

To bound I1 we change (for fixed h, s1) variables as σ2 = (1 + h/s1)s2 and observe that
(1 + h/s1) ≈ 1. Thus the σ2 integration is extended over σ2 . ρβ , and we may apply Lemma
4.9. A similar argument applies to I2, and we get

I1 + I2 . ρβε
′
‖g‖Bε(R2).
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The same argument applies to the terms II1, II2, with the σ2 integration now extended over
|σ2| ≥ ρ−β − 2ρ ≥ cρ−β for c > 0. Now we apply Lemma 4.8 instead and the result is

II1 + II2 . ρβε‖g‖Bε(R2).

We now consider the term A and estimate A ≤ III + IV where

III =

∫∫∫

ρβ≤|s1|,|s2|≤ρ−β

ρ≤h≤2ρ

∣∣1 + h
s1

∣∣∣∣g(s1 + h, (1 + h
s1
)s2)− g(s1 + h, s2)

∣∣ ds1ds2
dh

h
,

IV =

∫∫∫

ρβ≤|s1|,|s2|≤ρ−β

ρ≤h≤2ρ

|h|
|s1|

|g(s1 + h, s2)| ds1ds2
dh

h
.

Since h ≈ ρ and |s1| & ρβ in the domain of integration we immediately get

IV . ρ1−β‖g‖L1(R2) .

In the estimation of III we may ignore the factor 1+h/s1 which is O(1). We make the change
of variable σ1 = s1 + h which does not substantially change the domain of integration since
1
2ρ

β ≤ |σ1| ≤ 2ρ−β for the ranges of ρ we consider here. We see that

III .

∫∫∫

1

2
ρβ≤|σ1|,|s2|≤2ρ−β

ρ≤h≤2ρ

∣∣g(σ1, (1 + h
σ1−h)s2)− g(σ1, s2)

∣∣ dσ1ds2
dh

h

We now interchange the order of integration, and then, for fixed σ1, s2 change variables u =
u(h) = hs2

σ1−h . Then observe that

∂u

∂h
=

σ1s2
(σ1 − h)2

,
du

u
=

σ1
σ1 − h

dh

h
;

moreover the range of |u| is contained in [14ρ
1+2β , 4ρ1−2β ]. Since |du|/|u| ≈ |dh|/|h| we get the

estimate

III .
∑

2−k−1≤4ρ1−2β

∫ 2−k

2−k−1

∫∫
|g(σ1, s2 + u)− g(σ1, s2)

∣∣ dσ1ds2
du

|u|

.
∑

2−k−1≤4ρ1−2β

2−kε‖g‖Bε(R2) . ρ1−2β‖g‖Bε(R2) .

We collect the estimates and obtain the desired bound. �

Lemma 4.14. For 0 < ε ≤ 1, δ < ε/3,

sup
0<h≤1

h−δ‖Mγ(·+ he1)−Mγ‖1 . n‖γ‖Bε .

Proof. Let ε̃ < ε, δ1 > δ be such that δ < δ1 < ε̃/3. By Lemma 4.6 it suffices to show for ρ ≤ 1
the inequality

(4.10)

∫ 2ρ

ρ
‖Mγ(· + he1)−Mγ‖1

dh

h
. ρδ1n‖γ‖Bε .

We let β < 1/2 to be chosen later; a suitable choice will be β ∈ (δ1/ε̃, 1/3). We may assume

ρ ≤ 10−2/β since otherwise the result is obvious. We first discard the contributions of the
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integral for |s1| ≤ ρβ or |s1| ≥ ρ−β . We estimate
∫ 2ρ

ρ
‖Mγ(·+ he1)−Mγ‖1

dh

h
. ρδ1 ≤ (A) + (I1) + (I2) + (II1) + (II2)

where

(A) =

∫ 2ρ

ρ

∫

s:ρβ≤|s1|≤ρ−β
|Mγ(s+ he1)−Mγ(s)| ds

dh

h
,

(I1) + (I2) =

∫ 2ρ

ρ

∫

s:|s1|≤ρβ
|Mγ(s + he1)| ds

dh

h
+

∫ 2ρ

ρ

∫

s:|s1|≤ρβ
|Mγ(s)| ds

dh

h
,

(II1) + (II2) =

∫ 2ρ

ρ

∫

s:|s1|≥ρ−β
|Mγ(s + he1)| ds

dh

h
+

∫ 2ρ

ρ

∫

s:|s1|≥ρ−β
|Mγ(s)| ds

dh

h
.

We make a change of variable σ = (s1+h, (s1+h)s2, . . . , (s1+h)sn, sn+1, . . . , sN ) and estimate

(I1) ≤

∫ 2ρ

ρ

∫

σ:|σ1|≤ρβ+2ρ
|γ(σ)| dσ

dh

h
. ρβε‖γ‖Bε(RN ).

where we have used Lemma 4.9. Similarly

(II1) ≤

∫ 2ρ

ρ

∫

σ:|σ1|≥ρ−β−2ρ
|γ(σ)| dσ

dh

h
. ρβε‖γ‖Bε(RN ).

by Lemma 4.8 and the estimate 2ρ ≤ 1
2ρ

−β which holds in the range of ρ under consideration.

The bound (I2) + (II2) . ρβε‖γ‖Bε(RN ) follows in the same way.

It thus remains to estimate (A). We change variables and write

(A) =

∫ 2ρ

ρ

∫

s:ρβ≤|s1|≤ρ−β

∣∣(s1 + h)n−1γ(s1 + h, (s1 + h)s2, . . . , (s1 + h)sn, sn+1, . . . , sN )

− sn−1
1 γ(s1, s1s2, . . . , s1sn, sn+1, . . . , sN )

∣∣ ds dh
h

=

∫ 2ρ

ρ

∫

s:ρβ≤|s1|≤ρ−β

∣∣(1 + h
s1

)n−1
γ(s1 + h, (1 + h

s1
)s2, . . . , (1 +

h
s1
)sn, sn+1, . . . , sN )

− γ(s1, s2, . . . , sn, sn+1, . . . , sN )
∣∣ ds dh

h
.

We split the integrand as a sum of n differences ∆k(s, h), k = 0, . . . , n− 1, where

∆0(s, h) = γ(s+ he1)− γ(s)

and, for k = 1, . . . , n − 1,

∆k(s, h) =
(
1 + h

s1

)k
γ(s1 + h, (1 + h

s1
)s2, . . . , (1 +

h
s1
)sk, (1 +

h
s1
)sk+1, sk+2 . . . , sN )

−
(
1 + h

s1

)k−1
γ(s1 + h, (1 + h

s1
)s2, . . . , (1 +

h
s1
)sk, sk+1, . . . , sN ).

Then (A) ≤
∑n−1

k=0(Ak) where

(Ak) =

∫ 2ρ

ρ

∫

s:ρβ≤|s1|≤ρ−β
|∆k(s, h)| ds

dh

h
.

It is immediate that

(A0) . ρε‖γ‖Bε .
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For the estimation of (Ak) we make a change of variable in the si variables where 2 ≤ i ≤ k;
this replaces (1 + h/s1)si by si (i.e. there is no change of variable if k = 1). This gives, for
1 ≤ k ≤ n− 1,

(Ak) =

∫ 2ρ

ρ

∫

s:ρβ≤|s1|≤ρ−β

∣∣∣
(
1 + h

s1

)
γ(s1 + h, s2, . . . , sk, (1 +

h
s1
)sk+1, sk+2 . . . , sN )

− γ(s1 + h, s2, . . . , sk, sk+1, . . . , sN )
∣∣∣ dsdh

h
.

By symmetry considerations we may assume k = 1. We may now freeze the s3, . . . , sN -variables,
apply the auxiliary Lemma 4.13 for functions of (s1, s2) and obtain for ε′ < ε̃

(Ak) .
(
ρε

′β + ρ1−2β
) ∫

· · ·

∫ ∥∥g(·, ·, s3, . . . , sN )
∥∥
Bε̃(R2)

ds3 · · · dsN .

Since ε̃ < ε this also implies, by Lemma 4.7,

(Ak) .
(
ρε

′β + ρ1−2β
)
‖g‖Bε(RN ).

We collect estimates we see that the quantity on the left hand side of (4.10) is estimated by

C(β, ε′, ε)n
(
ρβε

′
+ ρ1−2β

)
‖f‖Bε(RN )

and with the correct choice of ε′ ∈ (3δ, ε) and then β ∈ (δ/ε′, 1/3) we see that (4.10) is
established. �

4.3. A decomposition lemma. Later in the paper, we will need a decomposition result for
Bε(R

n × R
d), which we present here.

Lemma 4.15. Fix 0 < ε < 1 and 0 < δ < ε/2. If ς ∈ Bε(R
n × R

d). Then there are
ςm ∈ Bδ(R

n × R
d), m ∈ N, with supp(ςm) ⊆ {(α, v) : |v| ≤ 1/4} and

ς =
∑

m≥0

ς(2
−m)

m ,

such that

‖ςm‖Bδ . 2−m(ε−2δ)‖ς‖Bε .

Proof. Let η0 ∈ C∞
0 be supported in {|x| ≤ 1/4} such that with 0 ≤ η0 ≤ 1 and η0(x) = 1 for

|x| ≤ 1/8. Set η1(v) = η0(v) − η0(2v), so that 0 ≤ |η1| ≤ 1, supp(η1) ⊆ { 1
16 ≤ |v| ≤ 1

4} and
1 = η0(v) +

∑
m≥1 η1(2

−mv). For m ∈ N, define

ςm(v) =

{
η0(v)ς(α, v) if m = 0,

η1(v)2
mdς(α, 2mv) if m ≥ 1.

Then ςm(x) = 0 for |x| ≥ 1/4 and ς =
∑

m≥0 ς
(2−m)
m . Clearly ‖ς0‖Bε . ‖ς‖Bε . It remains to

bound ‖ςm‖Bδ for m ≥ 1.

We show∫∫
(1 + |αi|)

δ|ςm(α, v)| dα dv +

∫∫
(1 + |v|)δ |ςm(α, v)| dα dv . 2−m(ε−δ)‖ς‖Bε ,(4.11)

sup
|h|≤1

|h|−δ

∫∫
|ςm(α+ hei, v)− ςm(α, v)| dα dv . 2−m(ε−δ)‖ς‖Bε .(4.12)

We change variables and see that the left hand side of (4.11) is bounded by
∫∫

(1 + |αi|)
δ |ς(α, v)||η1(2

−mv)| dα dv +

∫∫
(1 + |2−mv|)δ |ς(α, v)||η1(2

−mv)| dα dv .
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We estimate

∫∫

|αi|≤2m

|v|≈2m

(1 + |α|)δ |ς(α, v)|dαdv . 2−m(ε−δ)

∫∫
(1 + |v|)ε|ς(α, v)|dαdv . 2−m(ε−δ)‖ς‖Bε ,

∫∫

|αi|≥2m

|v|≈2m

(1 + |α|)δ |ς(α, v)|dαdv . 2−m(ε−δ)

∫∫
(1 + |αi|)

ε|ς(α, v)|dαdv . 2−m(ε−δ)‖ς‖Bε ,

∫∫

|v|≈2m

(1 + 2−m|v|)δ |ς(α, v)|dαdv . 2−m(ε−δ)

∫∫
(1 + |v|)ε|ς(α, v)|dαdv . 2−m(ε−δ)‖ς‖Bε ,

and (4.11) follows.

Next, we consider, for |h| ≤ 1, the expression

∫∫
|ςm(α+ hei, v)− ςm(α, v)| dα dv .

∫∫
|η1(2

−mv)||ς(α + hei, v)− ς(α, v)| dα dv

and distinguish the cases 2m|h| ≤ 1 and 2m|h| ≥ 1. If 2m ≥ |h|−1 then we estimate

∫∫

|v|≈2m
|ς(α + hei, v)− ς(α, v)| dα dv . 2−mε

∫
(1 + |v|)ε|ς(α, v)| dαdv . |h|δ2−m(ε−δ)‖f‖Bε

and if 2m ≤ |h|−1,

∫∫

|v|≈2m
|ς(α + hei, v)− ς(α, v)| dα dv . |h|ε‖ς‖Bε . |h|δ2−m(ε−δ)‖f‖Bε .

Now (4.12) follows. Note that so far we have only used δ < ε.

For our last estimate we need δ < ε/2, and we need to show

(4.13)

∫∫
|ςm(α, v + h)− ςm(α, v)|dαdv . |h|δ2−m(ε−2δ)‖ς‖Bε .

The left hand side is estimated by (I) + (II) where

(I) =

∫∫
|η(v + h)− η(v)|2md|ς(α, 2m(v + h))| dα dv ,

(II) =

∫∫
|η(v)|2md|ς(α, 2m(v + h))− ς(α, 2mv)| dα dv .

Note that |η(v + h)− η(v)| . χ{ 1

32
≤|v|≤ 1

2
}|h| and so the first term is estimated as

(I) . |h|

∫∫

1

64
≤|v|≤1

2md|ς(α, 2mv)| dα dv = |h|

∫∫

2m−8≤|v|≤2m

|ς(α, v)| dα dv

. 2−mε|h|

∫∫
(1 + |v|)ε|ς(α, v)| dα dv . |h|2−mε‖ς‖Bε
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which is a better bound than the one in (4.13). More substantial is the estimate for (II). Here
we first consider the case |h| ≥ 2−2m and bound

(II) .

∫∫

2−4≤|v|≤2−2

2md|ς(α, 2m(v + h))− ς(α, 2mv)| dα dv ≤ 2

∫∫

2−8≤|v|≤2−1

2md|ς(α, 2mv)| dα dv

.

∫∫

2m−8≤|v|≤2m−1

|ς(α, v)| dα dv . 2−mε

∫∫
(1 + |v|)ε|ς(α, v)| dα dv

. 2−mε‖ς‖Bε . |h|δ2−m(ε−2δ)‖ς‖Bε .

Finally for the case |h| ≤ 2−2m we get

(II) .

∫∫
|ς(α, v + 2mh)− ς(α, v)| dα dv . (2m|h|)ε‖ς‖Bε . |h|δ2−m(ε−2δ)‖ς‖Bε .

This yields (4.13) and the proof is complete. �

4.4. Invariance properties. We state certain identities concerning the behavior of our mul-
tilinear forms with respect to scalings and translations. These will be used repeatedly. The
straightforward proofs are omitted.

Lemma 4.16. Let ς ∈ L1(Rn × R
d), and ς(2

j)(α, ·) = 2jdς(α, 2j ·). Let bi ∈ Lpi(Rd), for
i = 1, . . . , n+ 2. Then

(i) Let τhf = f(· − h). Then

Λ[ς](τhb1, . . . , τhbn+2) = Λ[ς](b1, . . . , bn+2) .

(ii)

Λ[ς(2
j )](b1, . . . , bn+2) = 2−jdΛ[ς](b1(2

−j ·), . . . , bn+2(2
−j ·)) .

(iii)

Λ[ς(2
j )](b1, . . . , bn+2) =

∫
bn+2(x)

∫
2jdkj(2

jx, 2jy)bn+1(y) dy dx

where

kj(x, y) =

∫
ς(α, x − y)

n∏

i=1

bi(2
−j(x− αi(x− y))) dα.

(iv) If gi = 2−jd/pibi(2
−j ·) then ‖gi‖pi = ‖bi‖pi , and

Λ[ς(2
j )](b1, . . . , bn+2) = Λ[ς](g1, . . . , gn+2) if

n+2∑

i=1

p−1
i = 1 .

(v) Let κ1, . . . , κn+2 be bounded Borel measures and κ
(t)
i = tdκ(t·). Set b̃i(x) = bi(2

−jx). Then

Λ[ς(2
j )](κ1 ∗ b1, . . . , κn+2 ∗ bn+2) = 2−jdΛ[ς](κ

(2−j )
1 ∗ b̃1, . . . , κ

(2−j )
n+2 ∗ b̃n+2).

(vi)

Λ[ς(2
j )](κ1 ∗ b1, . . . , κn+2 ∗ bn+2) =

∫
2jdk̃j(2

jx, 2jy)bn+1(y) bn+2(x) dx

where

k̃j(x, y) =

∫∫
ς(α,w − z)

n∏

i=1

κ
(2−j )
i ∗ [bi(2

−j ·)](w − αi(w − z))dκn+2((x− w)dκn+1(z − y) .
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4.5. The role of projective space, revisited. A particular special case of Theorems 2.9 and
2.8 involve the case when

K(α, v) = γ0(α)K0(v),

K0 is a classical Calderón-Zygmund convolution kernel which is homogeneous of degree −d,
smooth away from 0, and γ0 ∈ Bǫ(R

n) for some ǫ > 0. We saw in Section 2.4.2 that such
operators would be closed under adjoints provided we could see the space of γ0 as a space of
densities on RPn in an appropriate way. Indeed, this is the case, and this section is devoted to
discussing that fact. These results are not used in the sequel, and are intended as motivation
for our main results.

For a measurable function f : Rn → C, and 0 < ǫ < 1, we set

‖f‖Bǫ
1,∞(Rn) := ‖f‖L1 + max

i=1,...,n
sup

0<hi≤1
|hi|

−ǫ

∫
|f(s+ hiei)− f(s)| ds,

where e1, . . . , en is the standard basis for R
n.

Let M be a compact manifold of dimension n, without boundary. Let µ be a measure on M .
Take a finite open cover V1, . . . , VL of M such that each Vj is diffeomorphic to Bn(1)–the open
ball of radius 1 in R

n. Let Φj : B
n(1) → Vj be this diffeomorphism and let φ1, . . . , φL be a C∞

partition of unity subordinate to this cover. On each neighborhood Vj , let Φ#
j µ denote the pull

back of µ via Φj. We suppose Φ#
j µ is absolutely continuous with respect to Lebesgue measure

on Bn(1) and we write dΦ#
j µ =: γj(x) dx where dx denotes Lebesgue measure.

Remark 4.17. γj is called a density, because of the way it transforms under diffeomorphisms.

Definition 4.18. For 0 < ǫ < 1 we define Bǫ
1,∞(M) to be the space of those measures µ such

that the following norm is finite:

‖µ‖Bǫ
1,∞(M) :=

L∑

j=1

‖φj ◦Φj(·)γj(·)‖Bǫ
1,∞(Rn).

Remark 4.19. The norm ‖ · ‖Bǫ
1,∞(M) depends on various choices we made: the finite open cover,

the diffeomorphisms Φj , and the partition of unity φj . However, the equivalence class of the
norm ‖ · ‖Bǫ

1,∞(M) does not depend on any of these choices, and therefore the Banach space

Bǫ
1,∞(M) does not depend on any of these choices.

We now turn to the case M = RPn. Given a measure µ ∈ Bǫ
1,∞(RPn), we consider the map

taking R
n →֒ RPn induced by the map R

n →֒ R
n+1 given by (x1, . . . , xn) 7→ (x1, . . . , xn, 1).

Pulling µ back via this map, we obtain a measure on R
n–since µ ∈ Bǫ

1,∞(RPn) this pulled back
measure is absolutely continuous with respect to Lebesgue measure and we write this pulled
back measure as γ0(x) dx. This induces a map taking measures in Bǫ

1,∞(RPn) to functions R
n

given by µ 7→ γ0.

Theorem 4.20. The map µ 7→ γ0 is a bijection
⋃

0<ǫ<1B
ǫ
1,∞(RPn) →

⋃
0<ǫ<1 Bǫ(R

n) in the
following sense:

(i) ∀ǫ ∈ (0, 1), ∃ǫ′ ∈ (0, ǫ], and C = C(ǫ, n) < ∞ such that ∀µ ∈ Bǫ
1,∞(RPn), γ0 ∈ Bǫ′(R

n)

and ‖γ0‖Bǫ′ ≤ C‖µ‖Bǫ
1,∞(RPn).

(ii) ∀ǫ ∈ (0, 1), ∃ǫ′ ∈ (0, ε], ∀γ0 ∈ Bǫ(R
n), there exists a unique µ ∈ Bǫ′

1,∞(RPn) with µ 7→ γ0
under this map. Furthermore, ∃C = C(ǫ, n) such that ‖µ‖

Bǫ
′

1,∞(RPn)
≤ C‖γ0‖Bǫ .

Proof. Fix ǫ ∈ (0, 1) and let µ ∈ Bǫ
1,∞(RPn). We define an open cover of RPn. For j =

1, . . . , n + 1, let Vj denote those points {(x1, . . . , xj−1, 1, xj , . . . , xn) : x ∈ R
n, |x| < 2}, written
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in homogenous coordinates on RPn. Vj is an open subset of RPn which is diffeomorphic to

Bn(2), and ∪n+1
j=1Vj = RPn.

Let φj , 1 ≤ j ≤ n+ 1 be a smooth partition of unity subordinate to the cover V1, . . . , Vn+1.
µ =

∑n
j=1 φjµ. By the assumption that µ ∈ Bǫ

1,∞(RPn), it follows that φjµ = γj(x) dx, when

written in the standard coordinates on Vj , and ‖γj‖Bǫ
1,∞(Rn) . ‖µ‖Bǫ

1,∞(RPn). Since γj has

compact support, we have ‖γj‖Bǫ . ‖γj‖Bǫ
1,∞(Rn) . ‖µ‖Bǫ

1,∞(RPn). Finally,

γ0(x) dx = γn+1(x) dx+

n∑

j=1

x−n−1
j γj(x

−1
j x1, x

−1
j x2, . . . , x

−1
j xj−1, x

−1
j xj+1, . . . , x

−1
j xn, x

−1
j ) dx .

It follows from Corollary 4.5, applied to each term of the sum, that ‖γ0‖Bǫ′ ≤ Cn‖µ‖Bǫ
1,∞(RPn),

and part (i) is proved.

Because γ0 uniquely determines µ except at those point which cannot be written in homo-
geneous coordinates as (x1, . . . , xn, 1), it follows that there is at most one µ ∈ ∪ǫ>0B

ǫ
1,∞(RPn)

which maps to a given γ0 (because such a µ is absolutely continuous with respect to Lebesgue
measure in every coordinate chart, and gives such points measure 0). Hence, given γ0 ∈ Bǫ(R

n)
there is at most one µ such that µ 7→ γ. We wish to construct such a µ.

Let φj be the coordinate charts from above. Given γ0 ∈ Bǫ(R
n) define γn+1(x) dx :=

φn+1(x)γ0(x) dx and for 1 ≤ j ≤ n,

γj(x) dx := φj(x)x
−n−1
n γ0(x

−1
n x1, . . . , x

−1
n xj−1, x

−1
n , x−1

n xj, . . . , x
−1
n xn−1) dx.

Define dµj := γj(x) dx on Vj . By Corollary 4.5, there exists ǫ′ > 0 with ‖γj‖Bǫ′ ≤ C‖γ‖Bǫ . We

set µ =
∑n+1

j=1 µj . We have ‖µ‖Bǫ′
1,∞(RPn) ≤ C ′‖γ0‖Bǫ and µ 7→ γ0, as desired. �

Remark 4.21. In this section we were not explicit about how each constant depends on n. The
above can be set up in such a way that all constants are polynomial in n, which is natural for
our purposes–see §2.4.1. In fact, it would be hard to avoid this polynomial dependance on n,
since there are naturally n+ 1 coordinate charts in the definition of RPn.

Remark 4.22. Corollary 4.5 implies that the space
⋃

ǫ>0Bǫ(R
n) (when thought of as densities

on RPn) is closed under the action of a particular diffeomorphism of RPn. Namely, if γ ∈⋃
ǫ>0Bǫ(R

n), then

s−n−1
1 γ(s−1

1 , s−1
1 s2, . . . , s

−1
1 sn) ∈

⋃

ǫ>0

Bǫ(R
n).

Theorem 4.20 tells us that more is true:
⋃

ǫ>0Bǫ(R
n) is closed under the action of any smooth

diffeomorphism of RPn (as
⋃

ǫ>0B
ǫ
1,∞(RPn) clearly is). It is not hard to see that, when taking

adjoints of our multilinear operator in the special case when K(α, x) = γ0(α)K0(x) where K0 is
a homogenous Calderón-Zygmund kernel, each permutation of b1, . . . , bn+2 corresponds to the
action of a diffeomorphism of RPn on γ0. In fact, each permutation corresponds to an action
of an element of GL(n+ 1,R) on RPn (where the action of GL(n + 1,R) on RPn is defined in
the usual way).

5. Outline of the proof of boundedness

In this section, we begin the proof of Theorem 2.10 on the boundedness of our multilinear
forms. Let φ be an even C∞

0 function supported in {|x| < 1} such that φ ≥ 0 and
∫
φ = 1.

For j ∈ Z define φ(2
j)(x) := 2jdφ(2jx) and define the operator Pjf = f ∗ φ(2

j). Furthermore,
we choose φ to be even so that P ∗

j = Pj = tPj (here P ∗
j is the adjoint of Pj and tPj is the
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transpose). There are two key facts to note about Pj . First, for all f ∈ S(Rd),

(5.1) lim
j→+∞

Pjf = f, lim
j→−∞

Pjf = 0,

with convergence in S ′. Secondly, by the nonnegativity of φ the operator norm on L∞ is
bounded by 1:

(5.2) ‖Pj‖L∞→L∞ = 1 .

In Theorem 2.10 we are given a bounded family in Bε,

(5.3) ~ς = {ςj : j ∈ Z}.

For (parts of the) proof of Theorem 2.10 we shall also need to assume the cancellation condition

(5.4)

∫
ςj(α, v) dv = 0

for all j ∈ Z. Of particular interest are the choices in Proposition 3.2, namely ςj = (QjK)(2
−j),

given K ∈ Kα for some α > ε. Theorem 2.10 concerns the sum

(5.5) Λ(b1, . . . , bn+2) = lim
N→∞

N∑

j=−N

Λ[ς
(2j )
j ](b1, . . . , bn+2),

where b1, . . . , bn ∈ L∞(Rd), bn+1 ∈ Lp(Rd), and bn+2 ∈ Lp′(Rd), with p ∈ (1, 2] and p′ ∈ [2,∞)
is the dual exponent to p. We have not yet shown that this sum converges in any reasonable
sense though it is easy to see that it converges if all bj belong to C∞

0 (Rd). One first establishes

estimates for the partial sums
∑N

j=−N Λ[ς
(2j )
j ](b1, . . . , bn+2) which are independent of N . Thus,

in order to state a priori results one should first assume that all but finitely many of the ςj are
zero. In the general case we shall establish convergence in the operator topology of multilinear
functionals (or in slightly stronger convergence modes). Throughout we take n ≥ 1, as the
result for n = 0 is classical. Our estimates will involve quantities depending on the family ~ς. It
will be convenient to use the following notation. Let

(5.6) Γε ≡ Γε[~ς ] :=
supj ‖ςj‖Bε
supj ‖ςj‖L1

,

and for n ≥ 1, ν ≥ 0 set

(5.7) Mn,ε
ν ≡ Mn,ε

ν [~ς ] := sup
j

‖ςj‖L1
logν(1 + nΓε(~ς)) .

We split the sum (5.5) into various terms which we study separately. For 1 ≤ l1 < l2 ≤ n+2,
we define

Λ1
l1,l2(b1, . . . , bn+2)

:=
∑

j∈Z

Λ[ς
(2j)
j ](b1, . . . , bl1−1, (I − Pj)bl1 , Pjbl1+1, . . . , Pjbl2−1, (I − Pj)bl2 , Pjbl2+1, . . . , Pjbn+2).

(5.8)

For 1 ≤ l ≤ n+ 2, we define

(5.9) Λ2
l (b1, . . . , bn+2) :=

∑

j∈Z

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbl−1, (I − Pj)bl, Pjbl+1, . . . , Pjbn+2).

Finally, we define

(5.10) Λ3(b1, . . . , bn+2) :=
∑

j∈Z

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+2).
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One verifies (by induction on n) that

(5.11) Λ(b1, . . . , bn+2)

=
∑

1≤l1<l2≤n+2

Λ1
l1,l2(b1, . . . , bn+2) +

∑

1≤l≤n+2

Λ2
l (b1, . . . , bn+2) + Λ3(b1, . . . , bn+2).

For b1, . . . , bn ∈ L∞(Rd) fixed, we can identify the multilinear form Λ with an operator T ≡
T [b1, . . . , bn] defined by

(5.12)

∫
g(x)T [b1, . . . , bn]f(x) dx := Λ(b1, . . . , bn, f, g).

In this way we associate operators T 1
l1,l2

, T 2
l and T 3 to the forms Λ1

l1,l2
, Λ2

l and Λ3. We shall see
that the sums defining these operators converge in the strong operator topology as operators
Lp → Lp (for fixed b1, . . . , bn ∈ L∞(Rd)), see §1.3 for the definitions.

The main estimates. We separate the proof of Theorem 2.10 into the following five parts.

Theorem 5.1. Let p ∈ (1, 2] and p′ ∈ [2,∞) with 1
p + 1

p′ = 1.

(a) Suppose that ςj = 0 for all but finitely many j. Then

(I)

∣∣Λ1
n+1,n+2(b1, . . . , bn+2)

∣∣ . M
n,ε
2 [~ς ]

( n∏

i=1

‖bi‖L∞

)
‖bn+1‖Lp‖bn+2‖Lp′ .

(II) For 1 ≤ l1 ≤ n, l2 ∈ {n+ 1, n + 2},

|Λ1
l1,l2(b1, . . . , bn+2)| . M

n,ε
5/2[~ς]

( n∏

i=1

‖bi‖∞
)
‖bn+1‖p‖bn+2‖p′ .

(III) For 1 ≤ l1 < l2 ≤ n,

|Λ1
l1,l2(b1, . . . , bn+2)| . M

n,ε
3 [~ς ]

( n∏

i=1

‖bi‖∞
)
‖bn+1‖p‖bn+2‖p′ .

(IV) Under the additional cancellation condition (5.4) we have, for 1 ≤ l ≤ n+ 2,

|Λ2
l (b1, . . . , bn+2)| . nMn,ε

3 [~ς ]
( n∏

i=1

‖bi‖∞
)
‖bn+1‖p‖bn+2‖p′ .

(V) Suppose that (5.4) holds. Then

|Λ3(b1, . . . , bn+2)| . n2Mn,ε
3 [~ς]

( n∏

i=1

‖bi‖∞
)
‖bn+1‖p‖bn+2‖p′ .

In the above inequalities the implicit constants depend only on p ∈ (1, 2], d ∈ N, and ǫ > 0.

(b) For general families ~ς = {ςj : j ∈ Z}, bounded in Bε, the sums defining the above five
functionals converge in the operator topology of multilinear functionals and the limits satisfy the
above estimates.

(c) The sums defining the operators T 1
l1,l2

[b1, . . . , bn], T
2
l [b1, . . . , bn] and T 3[b1, . . . , bn] asso-

ciated to the forms Λ1
l1,l2

, Λ2
l and Λ3 via (5.12) converge in the strong operator topology as

operators from Lp → Lp.

Summing up the estimates for the five parts yields Theorem 2.10.
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6. Some auxiliary operators

In this section, we introduce some auxiliary operators which play a role in the proof of
Theorems 2.10, 5.1. Recall that in §5 we introduced the operator Pj , which was defined as

Pjf = f ∗ φ(2
j ), where φ ∈ C∞

0 (Bd(1)) was a fixed even function with
∫
φ = 1, φ ≥ 0, and

φ(2
j)(x) = 2jdφ(2jx).

Define ψ(x) := φ(x)− 2−dφ(x/2) ∈ C∞
0 (Bd(0, 2)), and let Qkf = f ∗ ψ(2k) so that

(6.1) Qk = Pk − Pk−1 .

Note that, in the sense of distributions, we have the following identities

(6.2) I =
∑

j∈Z

Qj , Pj =
∑

k≤j

Qk, I − Pj =
∑

k>j

Qk

with convergence in the strong operator topology (as operators Lp → Lp, 1 < p <∞).

Remark 6.1. There is one subtlety that we must consider. While limj→−∞ Pjf = 0 for f ∈

C∞
0 (Rd) (or even f ∈ Lp, p 6= ∞) is it not the case that limj→−∞ Pjf = 0 for f ∈ L∞. Indeed,

this is not true for a constant function. Thus, the first two identities in (6.2) do not hold when
thought of as operators on L∞. However, the third identity does hold (with the limit taken
almost everywhere), which we shall use.

Let χ0 ∈ S(Rd) so that χ0(ξ) = 1 for |ξ| < 1/2 and χ0 is supported in {|ξ| < 1}. For j ≥ 1
let ηj be defined via

(6.3) η̂j(ξ) = χ0(2
−jξ)− χ0(2

1−jξ)

so that η̂j is supported in the annulus {ξ : 2j−2 ≤ |ξ| ≤ 2j} and
∑

j∈Z η̂j(ξ) = 1 for ξ 6= 0. Let

η̃0 be a Schwartz function so that its Fourier transform vanishes in a neighborhood of the origin

and is compactly be supported, and equal to 1 on the support of η̂0. Let η̃j = η̃
(2j)
0 . Note that

ηj , η̃j belong to S0(R
d) – the space of Schwartz functions, all of whose moments vanish. Define

(6.4) Qjf = f ∗ ηj , Q̃jf = f ∗ η̃j .

and note that

(6.5) Qj = QjQ̃j = Q̃jQj

and I =
∑

j∈ZQj =
∑

j∈ZQjQ̃j =
∑

j∈Z Q̃jQj , where this identity holds in the weak (distri-

butional sense) and also in the strong operator topology, as operators on Lp, if 1 < p < ∞.
We also have the following well known estimates for the associated Littlewood-Paley square
functions: for 1 < p <∞, f ∈ Lp(Rd),

(6.6) ‖f‖p ≈
∥∥∥
(∑

j∈Z

|Qjf |
2
) 1

2

∥∥∥
p
≈

∥∥∥
(∑

j∈Z

|Q̃jf |
2
) 1

2

∥∥∥
p

with implicit constants depending only on p and d. The same estimates hold with Qk and Q̃k

replaced by their adjoints.

We introduce a class of operators generalizing Qj , Qj , and Q̃j .

Definition 6.2. U is defined to be the space of those functions u ∈ C1(Rd) such that the norm

‖u‖U := sup
x∈Rd

(1 + |x|d+
1

2 )(|u(x)| + |∇u(x)|)

is finite and such that ∫
u(x) dx = 0.
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Definition 6.3. For u ∈ U and j ∈ Z, define Qj[u]f := f ∗ u(2
j ).

Remark 6.4. Note that ψ, η0, η̃0 ∈ U and Qj = Qj[ψ], Qj = Qj[η0], and Q̃j = Qj [η̃0].

The class U comes up through the following proposition (which is very close to a similar one
in [7]).

Proposition 6.5. If {fj}j∈Z ⊂ L2(Rd), then
∥∥∥
∑

j∈Z

Qjfj

∥∥∥
2
. sup

u∈U
‖u‖U=1

(∑

j∈Z

‖Qj[u]fj‖
2
2

) 1

2

,

in the sense that
∑

j Qjfj converges unconditionally in the L2 norm if the right hand side is
finite.

6.1. Proof of Proposition 6.5. We need several lemmata.

Lemma 6.6. For ℓ ≤ 0, φ ∈ C∞
0 (Bd(2)), u ∈ S(Rd) if we define γ−ℓ := φ ∗ u(2

−ℓ), we have

γ−ℓ ∈ U and ‖γ−ℓ‖U . 2ℓ/2.

Proof. It is clear that γ−ℓ ∈ C∞(Rd), so it suffices to prove the bound on ‖γ−ℓ‖U. Because, for

ν = 1, . . . , d, ∂xνγ−ℓ is of the same form as γ−ℓ, it suffices to show |γ−ℓ(x)| . 2ℓ/2(1+|x|d+1/2)−1.
This is evident for |x| ≤ 4, since |γ−ℓ| ≤ ‖φ‖∞‖u‖1 . 1.

Since φ(x− y) is supported on |x− y| ≤ 2, we have for |x| ≥ 4 and any m,

|γ−ℓ(x)| .

∫

|x−y|≤2
2−ℓd(1+2−ℓ|y|)−mdy ≈

∫

|x−y|≤2
2−ℓd(1+2−ℓ|x|)−mdy . 2−ℓd(1+2−ℓ|x|)−m.

Taking m = d+ 1/2, we have

|γ−ℓ(x)| . 2−ℓd(1 + 2−ℓ|x|)−d−1/2 . 2ℓ/2(1 + |x|d+1/2)−1, |x| ≥ 4,

as desired. �

Lemma 6.7. Suppose u1 ∈ S(Rd), u2 ∈ S0(R
d). For j ≥ 0, let uj := u1 ∗ u

(2j)
2 . Then, for

m = 0, 1, 2, . . . , ∑

|α|≤m

|∂αxuj(x)| . 2−jm(1 + |x|)−m.

Proof. The goal is to show, for every m, {2jmuj : j ≥ 0} ⊂ S(Rd) is a bounded set. To do this,

we show {2jmûj : j ≥ 0} ⊂ S(Rd) is a bounded set. We have, for every α,
∣∣∣∂αξ ûj(ξ)

∣∣∣ = |
∑

β+γ=α

Cβ,γ∂
β
ξ û1(ξ)∂

β
ξ û2(2

−jξ)| .
∑

β+γ=α

2−j|γ||∂βξ û1(ξ)(∂
γ
ξ û2)(2

−jξ)|

.
∑

β+γ=α

2−j|γ|(1 + |ξ|)−2m|2−jξ|m(1 + |2jξ|)−2m . 2−mj(1 + |ξ|)−m.

The result follows. �

Lemma 6.8. There exists functions ϕ1, . . . , ϕd ∈ C∞
0 (Bd(2)) such that ψ =

∑d
ν=1 ∂xνϕν .

Proof. Indeed, write

ψ(x) = φ(x)− 2−dφ(2−1x) =

d∑

ν=1

ψν(x),

where ψν(x) is given by

2−(ν−1)φ(x1/2, x2/2, . . . , xν−1/2, xν , xν+1, . . . , xd)− 2−νφ(x1/2, x2/2, . . . , xν/2, xν+1, . . . , xd).
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Letting ϕν(x) =
∫ xν
−∞ ψν(x1, . . . , xν−1, yν , xν+1, . . . , xd) dyν , the result follows. �

Lemma 6.9. For j, k ∈ Z, Q̃j+kQj = 2−|k|/2Qj[uk], where uk ∈ U and ‖uk‖U . 1.

Proof. By scale invariance, it suffices to consider the case j = 0; then uk = ψ ∗ η̃
(2k)
0 . When

k ≤ 0, we use Lemma 6.8 to see

uk(x) =

d∑

ν=1

∫
(∂xνϕν)(y)η̃

(2k)
0 (x− y) dy = −2k

d∑

ν=1

∫
ϕν(y)(∂xν η̃0)

(2k)(x− y) dy.

From here, the desired estimate follows from Lemma 6.6. For k ≥ 0, the result follows immedi-
ately from Lemma 6.7. �

Proof of Proposition 6.5, conclusion. Let {fj : j ∈ Z} ⊂ L2(Rd) and let g ∈ L2(Rd) with
‖g‖L2 = 1. Let 〈·, ·〉 denote the inner product in L2. We have, letting uk be as in Lemma 6.9,

∣∣∣
〈
g,

J2∑

j=J1

Qjfj
〉∣∣∣ =

∣∣∣
〈
g,

J2∑

j=J1

∑

k∈Z

Qj+kQ̃j+kQjfj
〉∣∣∣ ≤

∑

k∈Z

J2∑

j=J1

∣∣∣
〈
Q∗

j+kg, Q̃j+kQjfj
〉∣∣∣

.
∑

k∈Z

( J2∑

j=J1

∥∥Q∗
j+kg

∥∥2
2

) 1

2
( J2∑

j=J1

∥∥Q̃j+kQjfj
∥∥2
2

) 1

2

.
∑

k∈Z

2−|k|/2
( J2∑

j=J1

∥∥Qj[uk]fj
∥∥2
2

) 1

2

.

The result follows easily. �

6.2. A decomposition result for functions in U. The proof of the following result follows
closely a similar result in [33].

Proposition 6.10. Let u ∈ U. Then there exists uj ∈ C1
0 (B

d(14)) with ‖uj‖C0 . ‖u‖U,∫
uj = 0, and

u =
∑

j≤0

2j/2u
(2j)
j .

Proof. Let χ0 ∈ C∞
0 , supported in {|x| ≤ 1/4}. with 0 ≤ χ0 ≤ 1 and χ0(x) = 1 for |x| ≤ 1/8.

For j ≥ 1 define χj(x) = χ0(2
−jx) − χ0(2

1−jx) so that that for j ≥ 1, supp(χj) ⊆ {2j−4 ≤
|x| ≤ 2j−2}, and

1 =
∞∑

j=0

χj(x).

Observe that

(6.7)

∫
χj(x) dx = (2jd − 1)

∫
χ0(x)dx & 2jd.

Also let

χ̃j(x) =
χj(x)∫
χj(y) dy

.

Set aj =
∫
u(x)χj(x) dx and Aj =

∑
k≥j ak = −

∑
0≤k<j ak (where the second equality follows

from the fact that
∑
aj =

∫
u = 0).

Note |a0| . 1, and for j ≥ 1,

(6.8) |aj | ≤

∫
|u(x)||χj(x)| dx ≤

∫

2j−4≤|x|≤2j−2

(1 + |x|d+1/2)−1 dx‖u‖U . 2−j/2‖u‖U.
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Thus,

(6.9) |Aj | ≤
∑

k≥j

|ak| . 2−j/2‖u‖U.

Notice, A0 = 0. We have,

u(x) =
∑

j≥0

u(x)χj(x) =
∑

j≥0

(u(x)χj(x)− ajχ̃j(x)) +
∑

j≥0

(Aj −Aj+1)χ̃j(x)

=
∑

j≥0

(u(x)χj(x)− ajχ̃j(x)) +
∑

j≥1

Aj(χ̃j(x)− χ̃j−1(x)) =:
∑

j≥0

Bj(x),

where Bj(x) = u(x)χj(x)−ajχ̃j(x)+ (Aj(χ̃j(x)− χ̃j−1(x)))ǫj and ǫj = 1 if j ≥ 1, ǫ0 = 0. Here
we have used A0 = 0 and limj→∞Aj = 0. Clearly

∫
Bj = 0, and supp(Bj) ⊆ {|x| ≤ 2j−2}. We

have

|Bj(x)| ≤ |u(x)χj(x)|+ |aj ||χ̃j(x)|+ |Aj |(|χ̃j(x)|+ |χ̃j−1(x)|)ǫj .

(6.7) shows |χ̃j(x)| . 2−jd. The support of χj shows |u(x)χj(x)| . 2−j(d+ 1

2
)‖u‖U. Combin-

ing this with (6.8) and (6.9) shows |Bj(x)| . 2−j(d+ 1

2
)‖ς‖U. Setting, for j ≥ 0, u−j(x) =

2jd2j/2Bj(2
jx), the result follows easily. �

7. Basic L2 estimates

7.1. An L2 estimate for rough kernels. An essential part to many of our estimates is the
following L2 estimate.

Theorem 7.1. Let u be a continuous function supported in {y ∈ R
d : |y| ≤ 1/4} such that

‖u‖∞ ≤ 1 and ∫
u(y)dy = 0.

Let Qk be the operator of convolution with u(2
k). Let 0 < ε < 1, ς ∈ Bε(R

n × R
d) and assume

that supp(ς) ⊂ {(α, v) : |v| ≤ 1/4}. Then for all k ∈ N, for bn+1, bn+2 ∈ L2(Rd), bi ∈ L∞(Rd),
i = 1, . . . , n,

|Λ[ς](b1, . . . ,Qkbn+1, bn+2)| . 2−kε/(3d+3)n‖ς‖Bε‖bn+1‖2‖bn+2‖2

n∏

i=1

‖bj‖∞.

In §7.2 below we shall prove a similar theorem without the support assumptions on ς and u.
In what follows we give the proof of Theorem 7.1.

7.1.1. Applying the Leibniz rule. We have

(7.1) Λ[ς](b1, . . . ,Qkbn+1, bn+2) =

∫∫
Fk[ς](x, y) bn+1(y)bn+2(x) dx dy,

where, using the cancellation of u we have

Fk[ς](x, y) =

∫∫
ς(α, x− z)

n∏

i=1

bi(x− αi(x− z))u(2
k)(z − y) dz dα

=

∫∫ [
ς(α, x − z)

n∏

i=1

bi(x− αi(x− z))− ς(α, x − y)

n∏

i=1

bi(x− αi(x− y))
]
u(2

k)(z − y) dz dα .

We let Tk[ς] denote the operator with Schwartz kernel Fk[ς].
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For further decomposition we use a Leibniz rule for differences

n∏

j=0

Aj −

n∏

j=0

Bj =

(A0 −B0)
( n∏

j=1

Aj

)
+

n−1∑

i=1

(( i−1∏

j=0

Bj

)
(Ai −Bi)

( n∏

j=i+1

Aj

))
+

( n−1∏

j=0

Bj

)
(An −Bn).

Thus

Fk[ς] =

n∑

i=0

Fk,i[ς]

where

Fk,0[ς](x, y) =

∫∫ [
ς(α, x − z)− ς(α, x− y)

] n∏

j=1

bj(x− αj(x− z))u(2
k)(z − y) dz dα ,

Fk,i[ς](x, y) =

∫∫
ς(α, x − y)

] i−1∏

j=1

bi(x− αi(x− y))×

(
bi(x− αi(x− z)− bi(x− αi(x− y))

) n∏

j=i+1

bj(x− αj(x− z))u(2
k)(z − y) dz dα ,

with the convention that the products
∏0

j=1 and
∏n

j=n+1 stand for the number 1. We thus have

to estimate the L2 → L2 operator norms for the operators Tk,i[ς] with Schwartz kernels Fk,i[ς].
For i = 0 we may use the standard Schur test and the condition ς ∈ Bε

sup
x

∫
|Fk,0[ς](x, y)| dy(7.2a)

≤ sup
x

n∏

j=1

‖bj‖∞

∫

|h|≤2−k
|u(2

k)(h)|

∫
|ς(α, x − y − h)− ς(α, x − y)| dy dα dh

.
n∏

j=1

‖bj‖∞ sup
|h|≤2−k

∫
‖ς(α, · − h)− ς(α, ·)‖dα . 2−kε

n∏

j=1

‖bj‖∞‖ς‖Bε

and similarly

(7.2b) sup
y

∫
|Fk,0[ς](x, y)|dx . 2−kε

n∏

j=1

‖bj‖∞‖ς‖Bε .

Hence

(7.3) ‖Tk,0[ς]‖L2→L2 . 2−kε
n∏

j=1

‖bj‖∞‖ς‖Bε .

We shall now turn to the operators Tk,i[ς], i = 1, . . . , n. We start with a trivial bound.

Lemma 7.2. For 1 ≤ p ≤ ∞

‖Tk,i[ς]‖Lp→Lp . ‖ς‖L1(Rn×Rd)

n∏

j=1

‖bi‖∞.
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Proof. This follows immediately from Schur’s test since

sup
x

∫
|Fk,i[ς](x, y)| dy + sup

y

∫
|Fk,i[ς](x, y)| dx . ‖ς‖L1(Rn×Rd)

n∏

j=1

‖bi‖∞. �

We begin with a regularization of ς, in the x and the αi variables, depending on a parameter
R to be chosen later. Here 1 ≪ R≪ 2k (we shall see that R = 2k/(3d+3) will be a good choice).

Let φ ∈ C∞(Rd) supported in {x : |x| ≤ 1/2} so that
∫
φ(x)dx = 1. Let ϕ ∈ C∞(R) be

supported in {u : |u| ≤ 1/2} so that
∫
ϕ(u)du = 1. Define

ςiR(α, v) =

∫∫
χ[−R,R](α− sei)ς(α − sei, v − z)Rϕ(Rs)Rdφ(Rz) dz ds.

Lemma 7.3. For i = 1, . . . , n,

(i)

‖ς − ςiR‖L1(Rn×Rd) . R−ε

(ii)

‖Tk,i[ς − ςiR]‖L2→L2 . R−ε‖ς‖Bε .

Proof. We expand ς − ςiR = I + II + III where

I(α, v) =

∫ [
ς(α, v) − ς(α, v − z)

]
Rdφ(Rz) dz,

II(α, v) =

∫∫ [
ς(α, v − z) − ς(α − sei, v − z)

]
Rϕ(Rs)Rdφ(Rz) dz ds,

III(α, v) =

∫∫
χ[−R,R]∁(α− sei)ς(α− sei, v − z)Rϕ(Rs)Rdφ(Rz) dz ds .

Then

‖I‖L1(Rn×Rd) .

∫
Rd|φ(Rz)|

∫∫ ∣∣ς(α, v) − ς(α, v − z)
∣∣ dα dv |Rdφ(Rz)| dz . R−ε‖ς‖Bε,3 .

For the second term,

‖II‖L1(Rn×Rd) .

∫
R|ϕ(Rs)|

∫∫ ∣∣ς(α, v) − ς(α− sei, v)
∣∣ dα dv ds . R−ε‖ς‖Bε,2 .

Finally

‖III‖L1(Rn×Rd) .

∫ ∫

[−R,R]∁
|ς(α, v)| dα dv . R−ε‖ς‖Bε,1

and part (i) follows. The second part follows from Lemma 7.2 applied to ς − ςiR, and the first
part. �

For the more regular term ςiR we shall need the inequalities

Lemma 7.4. Let 0 < ε < 1, d ≥ 2. Then

(i)
∫ (∫ ∣∣ςiR(α, v)

∣∣2dv
) 1

2

dα . R
d
2
−ε‖ς‖Bε .
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(ii) Let θ ∈ Sd−1 and let θ⊥ the orthogonal complement of Rθ. Then

∫
sup
θ

(∫

θ⊥
sup
s∈R

∣∣ςiR(α, v⊥ + sθ)|2dvθ⊥
) 1

2

dα . R
d+1

2
−ε‖ς‖Bε

and ∫
sup
θ

(∫

θ⊥
sup
s∈R

∣∣∂αiςiR(α, v⊥ + sθ)|2dvθ⊥
) 1

2

dα . R
d+3

2
−ε‖ς‖Bε .

Proof. Let β0 ∈ S(Rd) so that β̂0(ξ) = 1 for |ξ| < 1/2 and β̂0 is supported in {|ξ| < 1}.

Let β1 = β
(2)
0 − β0 and βk = β

(2k−1)
1 so that β̂k has support in an annulus {|ξ| ≈ 2k}, and

f =
∑∞

k=0 βk ∗ f in the sense of distributions. Let β̃0 ∈ S(Rd) be such that its Fourier

transform equals 1 on the support of β̂0. Let β̃1 be a Schwartz function so that its Fourier
transform vanishes in a neighborhood of the origin and is compactly be supported, and equal

to 1 on the support of β̂1. Let β̃k = β̃
(2k−1)
1 .

Let

ς̃iR(α, v) =

∫∫
χ[−R,R](α− sei)ς(α− sei, v)Rϕ(Rs) ds

so that ς̃iR(α, ·) ∗ φR = ςiR (the definition of ϕ was given right before the statement of Lemma
7.3). Then

ςiR(α, ·) =

∞∑

l=0

βl ∗ ς̃
i
R(α, ·) ∗ φR ∗ β̃l.

By Young’s inequality

‖ςiR(α, v) ∗ β̃l ∗ βl‖2 ≤ ‖ς̃iR(α, ·) ∗ βl‖1‖β̃l ∗ ΦR‖2

and it is easy to see that

‖β̃l ∗ ΦR‖2 ≤ CM2ld/2 min{1, (R2−l)M} .

Thus
∫ (∫ ∣∣ςiR(α, v)

∣∣2dv
) 1

2

dα

.
∞∑

l=0

2ld/2 min{1, (R2−l)M}

∫∫ ∣∣∣
∫
βl(v − w)ςiR(α,w)dw

∣∣∣ dv dα

.
∞∑

l=0

2ld/2 min{1, (R2−l)M}2−lε‖ς̃iR‖Bε . R
d
2
−ε‖ς‖Bε .

The first inequality in (ii) is proved similarly, except that we first use the one-dimensional
version of Young’s inequality in the θ-direction. Since the Fourier transform of βl is supported
on a set of diameter O(2l) we have, for fixed θ and almost every α,

(∫

θ⊥
sup
s∈R

∣∣βl ∗ ςiR(α, v⊥ + sθ)|2dv⊥
) 1

2

. 2l/2
(∫

θ⊥

∫ ∞

−∞

∣∣βl ∗ ςiR(α, v⊥ + sθ)|2ds dv⊥
) 1

2

.

Notice that the double integral on the right hand side is just the L2(Rd) norm of ςiR(α, ·) and
thus does not depend on θ. Take the sup over θ, then integrate in α, and sum in l. Arguing as
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above we obtain:
∫

sup
θ

( ∫

θ⊥
sup
s∈R

∣∣βl ∗ ςiR(α, v⊥ + sθ)|2dv⊥
) 1

2

dα

.
∑

l≥0

2l/2
∫ (

|βl ∗ ς
i
R(α, v)|

2dv
)1/2

dα

.
∑

l≥0

2l(d+1)/2 min{1, (R2−l)M}

∫∫
|βl ∗ ς̃

i
R(α, v)| dv dα

.
∑

l≥0

2l(d+1)/2 min{1, (R2−l)M}2−lε‖ς̃iR‖Bε . R
d+1

2
−ε‖ς‖Bε .

The second inequality in (ii) is proved in the same way. The differentiation in αi hitting the
mollifier Rϕ(R·) produces an additional factor of R. �

By the support assumptions on ς and u, we have

supp(Fk,i[ς
i
R]) ⊆ {(x, y) : |x− y| < 1}.

We shall use the following lemma to obtain the bound C(R)2−kε′ of the L2 operator norms.

Lemma 7.5. Suppose V (x, y) ∈ L1
loc(R

d × R
d) is supported in the strip {(x, y) : |x − y| ≤ 1}

and let V be the operator with Schwartz kernel V . Then,

‖V‖2L2→L2 . sup
z

∫∫
|x−z|<1
|y−z|<1

|V (x, y)|2 dx dy.

Proof. Let A denote the quantity on the right hand side. For z ∈ Z
d let qz be the cube z+[0, 1]d

and fz = χqz . Then f =
∑

z fz and for each z, V fz is supported in the union q∗z of cubes which
have a common side with qz. By Hölder’s inequality it is immediate that

‖Vfz‖2 .
(∫∫

q∗z×qz

|V (x, y)|2dx dy
)1/2

‖fz‖2 ≤ C(d)A‖fz‖2,

and then

‖Vf‖2 =
∥∥∥
∑

z

Vfz

∥∥∥
2
≤ 3d/2

(∑

z

∥∥Vfz
∥∥2
2

)1/2
≤ C ′(d)A

(∑

z

∥∥fz
∥∥2
2

)1/2
≤ C ′(d)A‖f‖2 . �

In light of Lemma 7.5 the following proposition gives a basic L2 bound for the operators
Tk,i[ςR].

Proposition 7.6. For k ≥ 0

(7.4)
(
sup
y0

∫∫
|x−y0|<1
|y−y0|<1

|Fk,i[ς
i
R](x, y)|

2 dx dy
) 1

2

. 2−k/3Rd+1
n∏

i=1

‖bi‖∞.

7.1.2. Proof of Proposition 7.6. Note that the class of operators is invariant under translations.
That is, if τaf := f(x− a), then the kernel of τaTk,i[ς

i
R]τ−a, i.e. Fk,i[ς

i
R](x− a, y − a), is of the

same form of Fk,i, with the functions bj replaced by τabj. Therefore we may take y0 = 0 in
Proposition 7.6. We may also assume

(7.5) ‖bj‖∞ ≤ 1, 1 ≤ j ≤ n .
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As in §4 we decompose α as α = αiei + α⊥
i where α⊥

i = (..., αi−1, αi+1, ...) ∈ R
n−1. We bound,

using the Cauchy-Schwarz inequality in the z-variable, and then Minkowski’s inequality in the
α⊥
i variables, as well as (7.5) for j 6= i,

∫∫

|x|<1
|y|<1

|Fk,i[ς
i
R](x, y)|

2 dx dy
) 1

2

.

∫ ( ∫∫∫

|x|,|y|≤1
|y−z|≤2−k

2kd
∣∣∣
∫
ςiR(α, x − y)

[
bi(x− αi(x− z))− bi(x− αi(x− y))

]
dαi

]2
dz dx dy

)1/2
dα⊥

i

.

∫ (
2kd

∫∫∫

|x|,|v|,|w|≤2
|v−w|≤2−k

∣∣∣
∫
ςiR(α, v)

[
bi(x− αiv)− bi(x− αiw)

]
dαi

∣∣∣
2
dv dw dx

)1/2
dα⊥

i

where for the last integral we have changed variables to v = x − z, w = x − y. The proof of
Proposition 7.6 will be complete after the following lemma is proved.

Lemma 7.7. Let ςiR be as in Proposition 7.6. Then for g ∈ L∞(Rd) and k > 0,

(
2kd

∫∫∫

|x|<2
|v|,|w|<2

|v−w|<2−k

∣∣∣
∫
ςiR(α, v)

(
g(x−αiv)− g(x−αiw)

)
dα

∣∣∣
2
dx dv dw

) 1

2

. Rd+1−ε2−kε/3‖ς‖Bε‖g‖∞.

Proof. We may and shall assume ‖g‖L∞ = 1. Let gR(x) = g(x) if |x| ≤ 2R + 2 and gR(x) = 0
if |x| > 2R + 2. We first observe that since ςiR(α, v) = 0 for |αi| ≥ R + 1 we may replace g by
gR in the above expression. Note that

(7.6) ‖gR‖2 . Rd/2.

We interchange the (v,w)- and x-integrations, then apply Plancherel’s theorem, and interchange
integrals again to get

∫ (
2kd

∫∫∫

|x|<2
|v|,|w|<2

|v−w|<2−k

∣∣∣
∫
ςiR(α, v)

(
gR(x− αiv)− gR(x− αiw)

)
dα

∣∣∣
2
dx dv dw

) 1

2

dα⊥
i

=

∫ (∫
|ĝR(ξ)|

22kd
∫∫

|v|,|w|<2
|v−w|<2−k

∣∣∣
∫
ςiR(α, v)

(
e2πıαi〈v,ξ〉 − e2πıαi〈w,ξ〉

)
dαi

∣∣∣
2
dv dw dξ

) 1

2

dα⊥
i .

For a constant U ≥ 1 (to be determined) we split the ξ-integration into the parts for |ξ| ≤ U
and |ξ| ≥ 1.
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For |ξ| ≤ U we bound |e2πıαi〈v,ξ〉−e2πıαi〈w,ξ〉| . RU2−k since |αi| ≤ (R+1) and |v−w| ≤ 2−k.
Hence we obtain

∫ ( ∫

|ξ|≤U
|ĝR(ξ)|

22kd
∫∫

|v|,|w|<2

|v−w|<2−k

∣∣∣
∫
ςiR(α, v)

(
e2πıαi〈v,ξ〉 − e2πıαi〈w,ξ〉

)
dαi

∣∣∣
2
dv dw dξ

) 1

2

dα⊥
i(7.7)

. RU2−k‖ĝR‖2

∫ (∫
|ςiR(α, v)|

2dv
)1/2

dα

. R
d+2

2
−εU2−k‖gR‖2‖ς‖Bε

where in the last inequality we have used part (i) of Lemma 7.4.

Next we consider the part when |ξ| > U . Using the symmetry in v,w we may estimate

∫ ( ∫

|ξ|≥U
|ĝR(ξ)|

22kd
∫∫

|v|,|w|<2

|v−w|<2−k

∣∣∣
∫
ςiR(α, v)

(
e2πı〈v,ξ〉αi − e2πı〈w,ξ〉αi

)
dαi

∣∣∣
2
dv dw dξ

) 1

2

dα⊥
i

≤ 2

∫ (∫

|ξ|≥U
|ĝR(ξ)|

22kd
∫∫

|v|,|w|<2
|v−w|<2−k

∣∣∣
∫
ςiR(α, v)e

2πı〈v,ξ〉αidαi

∣∣∣
2
dv dw dξ

) 1

2

dα⊥
i

.

∫ ( ∫

|ξ|≥U
|ĝR(ξ)|

2

∫ ∣∣∣
∫
ςiR(α, v)e

2πı〈v,ξ〉αidαi

∣∣∣
2
dv dξ

) 1

2

dα⊥
i .

For fixed ξ = |ξ|θ (θ ∈ Sd−1) we separate the v-integral into two parts. Let 0 < b < 1 (which
will be optimally chosen later). For fixed θ = ξ/|ξ|, α⊥

i we have v = πθ⊥v + sθ where πθ⊥v is
the projection of v to the orthogonal complement of Rθ and s = 〈θ, v〉. We split

∫ ∣∣∣
∫
ςiR(α, v)e

2πı〈v,ξ〉αidαi

∣∣∣
2
dv =

∫ ∫ ∣∣∣
∫
ςiR(α, πθ⊥v + sθ))e2πıs|ξ|αidαi

∣∣∣
2
dsdvθ⊥

=: Ib(α
⊥
i , |ξ|θ) + IIb(α

⊥
i , |ξ|θ)

where

Ib(α
⊥
i , |ξ|θ) :=

∫ ∫

[−b,b]

∣∣∣
∫
ςiR(α, πθ⊥v + sθ))e2πıs|ξ|αidαi

∣∣∣
2
dsdvθ⊥

IIb(α
⊥
i , |ξ|θ) :=

∫ ∫

[−b,b]∁

∣∣∣
∫
ςiR(α, πθ⊥v + sθ))e2πıs|ξ|αidαi

∣∣∣
2
dsdvθ⊥

so that
∫ ( ∫

|ξ|≥U
|ĝR(ξ)|

2

∫ ∣∣∣
∫
ςiR(α, v)e

2πı〈v,ξ〉αidαi

∣∣∣
2
dv dξ

) 1

2

dα⊥
i

.

∫ ( ∫

|ξ|≥U
|ĝR(ξ))|

2[Ib(α
⊥
i , ξ) + IIb(α

⊥
i , ξ)]dξ

) 1

2

dα⊥
i .

The expression Ib is estimated as

Ib(α
⊥
i , |ξ|θ)| ≤ 2b

∫
sup
|s|≤b

[ ∫
|ςiR(α, πθ⊥v + sθ))|dαi

]2
dvθ⊥
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and we get using part (ii) of Lemma 7.4
∫ ( ∫

|ξ|≥U
|ĝR(ξ))|

2Ib(α
⊥
i , ξ)dξ

) 1

2

dα⊥
i

. b1/2‖gR‖2

∫ (
sup
θ

∫
sup
s

[ ∫
|ςiR(α, πθ⊥v + sθ))|dαi

]2
dvθ⊥

)1/2
dα⊥

i

. b1/2R
d+1

2
−ε‖ς‖Bε‖gR‖2 .(7.8)

To estimate IIb(α⊥, ξ) we observe that the function αi 7→ ςiR(α, v) is smooth and compactly
supported. We use integration by parts to write∫

ςiR(α, πθ⊥v + sθ))e2πıs|ξ|αidαi = −

∫
∂αiς

i
R(α, πθ⊥v + sθ))(2πı|ξ|)−1s−1e2πısαidαi

and thus for |ξ| ≥ U

IIb(α
⊥
i , |ξ|θ)| ≤

∫ ∞

b
|ξ|−2|s|−2ds

∫
sup
t

[ ∫
|∂αiς

i
R(α, πθ⊥v + tθ))|dαi

]2
dvθ⊥

. U−2b−1

∫
sup
t

[ ∫
|∂αiς

i
R(α, πθ⊥v + tθ))|dαi

]2
dvθ⊥ .

Hence, by the second inequality in part (ii) of Lemma 7.4,
∫ ( ∫

|ξ|≥U
|ĝR(ξ))|

2IIb(α
⊥
i , ξ)dξ

) 1

2

dα⊥
i

. U−1b−1/2‖gR‖2

∫ (
sup
θ

∫
sup
t

[ ∫
|∂αiς

i
R(α, πθ⊥v + tθ)|dαi

]2
dvθ⊥

)1/2
dα⊥

i

. U−1b−1/2R
d+3

2
−ε‖ς‖Bε‖gR‖2.(7.9)

We combine (7.7), (7.8), (7.9) to deduce

(7.10)

∫ (
2kd

∫∫∫

|x|<2
|v|,|w|<2

|v−w|<2−k

∣∣∣
∫
ςiR(α, v)

(
gR(x− αiv)− gR(x− αiw)

)
dα

∣∣∣
2
dx dv dw

) 1

2

dα⊥
i

.
(
R
d+2

2
−εU2−k + R

d+1

2
−εb1/2 + R

d+3

2
−εU−1b−1/2

)
‖ς‖Bε‖gR‖2 .

We choose b, U so that the three terms are comparable, i.e. b = RU−1, U = 22k/3. The result
is that the left hand side of (7.10) is bounded by a constant times

R
d+2

2
−ε2−k/3‖ς‖Bε‖gR‖2 . Rd+1−ε2−k/3‖ς‖Bε ,

by (7.6), and the proof is complete. �

7.1.3. Proof of Theorem 7.1. By (7.3),

‖Tk,0[ς]‖L2→L2 . 2−kε‖ς‖Bε

n∏

l=1

‖bl‖∞.

By Lemma 7.3 and Proposition 7.6 we have for i = 1, . . . , n,

‖Tk,i[ς]‖L2→L2 ≤ ‖Tk,i[ς − ςiR]‖L2→L2 + ‖Tk,i[ς
i
R]‖L2→L2

. R−ε(1 + 2−k/3Rd+1)‖ς‖Bε

n∏

l=1

‖bl‖∞ .
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Choosing R = 2k/(3d+3) yields the bound

n∑

i=0

‖Tk,i[ς]‖L2→L2 . (n+ 1)2−kε/(3d+3)‖ς‖Bε

n∏

l=1

‖bl‖∞

and thus the estimates for the multilinear forms claimed in Theorem 7.1. �

7.2. Generalizations of Theorem 7.1. We shall now drop the support assumptions on x 7→
ς(α, x) and on u in Theorem 7.1. Moreover, we extend to Lp estimates and replace ς by the

scaled versions ς(2
j ) (with the scaling in the x variables).

Theorem 7.8. There exists c > 0, independent of n and ε, so that the following statement
holds for all 1 ≤ p ≤ ∞. For all ς ∈ Bε(R

n × R
d), for all j, k ∈ Z, 1 ≤ l1 6= l2 ≤ n + 2,

bl1 ∈ L2(Rd), bl2 ∈ L2(Rd), bl ∈ L∞(Rd) for l 6= l1, l2, and u ∈ U,

|Λ[ς(2
j )](b1, . . . , bl2−1, Qk[u]bl2 , bl2+1, . . . , bn+2)|

. min{n2cε(j−k)‖ς‖Bε , ‖ς‖L1}‖u‖
U

( ∏

l 6=l1,l2

‖bl‖L∞

)
‖bl1‖2‖bl2‖2 .

Proof. In light of Theorem 2.9, Theorem 7.8 follows immediately from Lemma 2.7 and the
estimate (for some c′ > 0, independent of n)
(7.11)

Λ[ς(2
j )](b1, . . . , bn, Qk[u]bn+1, bn+2) . ‖ς‖Bεn2

−c′ε(k−j)‖u‖U

( n∏

l=1

‖bl‖∞

)
‖bn+1‖2‖bn+2‖2 .

By scaling (Lemma 4.16) it suffices to prove (7.11) for j = 0. Theorem 7.1 covers the case
of ς supported in R

n × {|x| ≤ 1/4}. To cover the general case we apply Proposition 6.10 to

write u =
∑

l≥0 2
−l/2u

(2−l)
l where ul is continuous and supported in {|x| ≤ 1/4},

∫
ul = 0, and

‖ul‖C0 . ‖u‖U. We apply Theorem 4.15 to write ς =
∑

m≥0 2
−mc1ες

(2m)
m for some c1 > 0, where

ςm ∈ Bc1ε, ‖ςm‖Bc1ε . ‖ς‖Bε , and supp(ςm) ⊂ {(α, v) : |v| ≤ 1
4}. We then have

∣∣Λ[ς]
(
b1, . . . , bn, Qk[u]bn+1, bn+2

)∣∣

≤
∑

l≥0

∑

m≥0

2−l/22−mc1ε
∣∣Λ[ς(2−m)

m ]
(
b1, . . . , bn, Qk[u

(2−l)
l ]bn+1, bn+2

)∣∣

=
∑

l≥0

∑

m≥0

2−l/22−mc1ε
∣∣Λ[ςm]

(
g1, . . . , gn, Qk−l+m[ul]gn+1, gn+2

)∣∣

where gl = bl(2
m·), l = 1, . . . , n, gn+1 = 2md/2bn+1(2

m·), gn+2 = 2md/2bn+2(2
m·) (see Lemma

4.16). By Theorem 7.1 we have, for some c2 > 0

∣∣Λ[ςm]
(
g1, . . . , gn, Qk−l+m[ul](gn+1), gn+2

)∣∣

. min{1, n2−(k−l+m)c2ε}‖u‖
U

( n∏

i=1

‖gi‖∞

)
‖gn+1‖2‖gn+2‖2 .

Now
∑

l≥0

∑
m≥0 2

−l/22−mc1εmin{1, n2−(k−l+m)c2ε} . n2−kc3ε for some c3 with 0 < c3 <

min{1/2, c2} and (7.11) for j = 0 follows easily. �
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8. Some results from Calderón-Zygmund theory

In this section, we present some essentially well known results from the Calderón-Zygmund
theory which do not seem to be stated in the literature in the precise form we need them. We
begin by recalling some classical results (see [36]).

Consider kernels K ∈ D′(Rd × R
d) such that K is locally integrable on (Rd × R

d) \∆; here
∆ = diag(Rd × R

d) = {(x, x) : x ∈ R
d}. Let TK : C∞

0 (Rd) → D′(Rd) be the operator with
Schwartz kernel K. Then the expression

〈TKf, g〉 =

∫∫
K(x, y)f(y)g(x) dy dx

makes sense for bounded functions f , g with compact and disjoint supports. For such kernels
K we define the singular integral semi-norms

SI1[K] := sup
y,y′

∫

|x−y|≥2|y−y′|
|K(x, y)−K(x, y′)| dx,(8.1)

SI∞[K] := sup
x,x′

∫

|y−x|≥2|x−x′|
|K(x, y)−K(x′, y)| dy.(8.2)

Let 1 < q < ∞. It is a standard and classical theorem (see [36]) that if TK extends as a
bounded operator on Lq(Rd) and SI1[K] < ∞ then TK extends as an operator of weak type
(1, 1), as an operator mapping the Hardy space H1(Rd) to L1(Rd) and as a bounded operator
on Lp, 1 ≤ p < 2, and one has the following estimates for the operator norms (or quasi-norms).

(8.3) ‖TK‖H1→L1 + ‖TK‖L1→L1,∞ . ‖TK‖Lq→Lq + SI1[K].

We note that in order to prove the H1 → L1 result, it suffices to check ‖TKa‖1 ≤ ‖TK‖Lq→Lq +
SI1[K] for q-atoms, see [29]. Let L∞

0 be the subspace of L∞ consisting of functions with compact
support (in the sense of distributions). Then we also have for q ≥ 1

(8.4) ‖TK‖L∞
0
→BMO . ‖TK‖Lq→Lq + SI∞[K].

Furthermore (taking q = 2), by interpolation

(8.5) ‖TK‖Lp→Lp ≤ Cp,d(‖TK‖L2→L2 + ‖TK‖
2− 2

p

L2→L2(SI
1[K])

2

p
−1), 1 < p < 2,

and

(8.6) ‖TK‖Lp→Lp ≤ Cp,d(‖TK‖L2→L2 + ‖TK‖
2

p

L2→L2(SI
∞[K])1−

2

p ), 2 < p <∞.

We will apply these results to singular integral kernels given by

(8.7) K =
∑

j

Dil2jτj ≡
∑

j

2jdτj(2
j ·, 2j ·)

where τj satisfy suitable uniform Schur and regularity conditions.

8.1. Classes of kernels.

8.1.1. Schur Norms and Regularity Conditions. In what follows we consider complex-valued
locally integrable functions (x, y) 7→ k(x, y) on R

d × R
d.

We formulate conditions related to the usual Schur test, involving integrability conditions in
the x and y variables. We let Int1 be the class of kernels k ∈ L1

loc(R
d × R

d) for which

(8.8) Int1[k] = sup
y∈Rd

∫
|k(x, y)| dx
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is finite. Here and in what follows supy is used synonymously with essential supremum (or

L∞-norm). We let Int∞ be the class of kernels k ∈ L1
loc(R

d × R
d) for which

(8.9) Int∞[k] = sup
x∈Rd

∫
|k(x, y)| dy

is finite. Here the supremum is interpreted as essential supremum (i.e. the L∞ norm with
respect to y). The notation is motivated by the fact that for k ∈ Int1 the integral operator with
kernel k is bounded on L∞(Rd), with operator norm Int1[k], and for k ∈ Int∞ this operator is
bounded on L∞(Rd), with operator norm Int∞[k].

Next we need stronger conditions, which add some weights in terms of the distance of (x, y)
to the diagonal ∆. Define

Int1ε[k] := sup
y∈Rd

∫
(1 + |x− y|)ε|k(x, y)| dx,(8.10)

Int∞ε [k] := sup
x∈Rd

∫
(1 + |x− y|)ε|k(x, y)| dy.(8.11)

Let

kdual(x, y) = k(y, x)

and note that Int∞ε [k] = Int1ε[k
dual].

In Calderón-Zygmund theory we also need some variants involving regularity, in either the
left (x-) or right (y-)variable. We define

Reg1ε,lt[k] := sup
0<|h|≤1

sup
y

|h|−ǫ

∫
|k(x+ h, y)− k(x, y)| dx,(8.12)

Reg1ε,rt[k] := sup
0<|h|≤1

sup
y

|h|−ǫ

∫
|k(x, y + h)− k(x, y)| dx,(8.13)

and

Reg∞ε,lt[k] := sup
0<|h|≤1

sup
x

|h|−ǫ

∫
|k(x+ h, y)− k(x, y)| dy,(8.14)

Reg∞ε,rt[k] := sup
0<|h|≤1

sup
x

|h|−ǫ

∫
|k(x, y + h)− k(x, y)| dy,(8.15)

so that Reg∞ε,lt[k] = Reg1ε,rt[k
dual] and Reg∞ε,lt[k] = Reg1ε,rt[k

dual].

8.1.2. Singular Integral Kernels. We now consider distributions K ∈ D′((Rd × R
d) \∆) which

are locally integrable in (Rd ×R
d) \∆. We define variants of (8.1), (8.2) with more decay away

from the diagonal (here ε ≥ 0)

SI1ε[K] := sup
y,y′

sup
R≥2

Rε

∫

|x−y|≥R|y−y′|
|K(x, y)−K(x, y′)| dx ,(8.16)

SI∞ε [K] := sup
x,x′

sup
R≥2

Rε

∫

|y−x|≥R|x−x′|
|K(x, y)−K(x′, y)| dy .(8.17)

Note that for ε = 0 we recover the norms defined in (8.1), (8.2).

Remark. We shall also use the alternative notation ‖K‖SI1ε = SI1ε[K] etc. We will say K ∈ SI1ε
if SI1ε[K] <∞ etc.
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We say that K ∈ L1
loc((R

d × R
d) \ ∆) satisfies one of the uniform annular integrability

conditions Ann1, Ann∞ if the respective expressions

Ann1[K] := sup
R>0

sup
y

∫

x:R≤|x−y|≤2R
|K(x, y)| dx,(8.18)

Ann∞[K] := sup
R>0

sup
x

∫

y:R≤|x−y|≤2R
|K(x, y)| dy(8.19)

are finite.

We say that K satisfies the averaged annular integrability condition Annav if

(8.20) Annav[K] = sup
a∈Rd

sup
R>0

R−d

∫∫

|x−a|≤R
R≤|x−y|≤2R

|K(x, y)| dy dx

is finite.

The last notion will be used in §8.2 below.

Lemma 8.1. Let K ∈ L1
loc((R

d × R
d) \∆}). Then

Annav[K] ≈ Annav[K
dual].

Moreover,

Annav[K] . min{Ann1[K],Ann∞[K]} .

Proof. Immediate from the definitions. �

Lemma 8.2. Let K ∈ L1
loc((R

d × R
d) \∆). Suppose that for some ε > 0,

SI1ε[K] ≤ B, Ann[K] ≤ A.

Then

SI10[K] . A log(2 + ε−1B/A).

Proof. Fix y 6= y′ and split
∫

|x−y|≥2|y−y′|
|K(x, y)−K(x, y′)| dx = I + II

where

I =

∫

2|y−y′|≤|x−y|≤R|y−y′|
|K(x, y)−K(x, y′)| dx ,

II =

∫

|x−y|≥R|y−y′|
|K(x, y)−K(x, y′)| dx .

Then if we apply condition Ann1 with O(logR) annuli to estimate

I . A logR;

moreover we have

II . BR−ε.

If we choose R = 2 + (B/A)1/ε the assertion follows. �
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8.1.3. Integral conditions for singular integrals. We formulate a proposition which is used to
verify the condition SI1ε , SI∞ε for kernels of the form (8.7).

Proposition 8.3. Suppose that τj ∈ Int1ε ∩ Reg1ε,R and

sup
j

Int10[τj ] ≤ A,

sup
j

Int1ε[τj] + sup
j

Reg1ε,rt[τj ] ≤ B.

Then the sum (8.7) converges in the sense of L1
loc((R

d × R
d) \∆) and the limit K satisfies

(8.21) SI1ε/2[K] . B.

Moreover,

(8.22) SI10[K] . A log(2 +B/A) .

Proof. We fix y, y′ and R ≥ 0 and consider

IRj (y, y
′) =

∫

x:|x−y|≥R|y−y′|
|Dil2jτj(x, y)−Dil2jτj(x, y

′)| dx

=

∫

x:|x−2jy|≥R|2jy−2jy′|
|τj(x, 2

jy)− τj(x, 2
jy′)| dx.

Clearly IRj (y, y
′) ≤ 2A. We now give two estimates, the first valid when 2j |y − y′| ≥ 1/R, the

second valid when 2j |y − y′| ≤ 1; thus both estimates will be valid when 1/R ≤ 2j |y − y′| ≤ 1.

For 2j |y − y′| ≥ 1/R we have
∫

x:|x−2jy|≥R|2jy−2jy′|
|τj(x, 2

jy)|dx ≤

∫
|τj(x, 2

jy)|
(1 + |x− 2jy|)ε

(R2j |y − y′|)ε
dx

≤ (2j |y − y′|R)−εInt1ε[τj ] ≤ B(2j |y − y′|R)−ε.

Also note that if |x− 2jy| ≥ R|2jy − 2jy′| then also |x− 2jy′| ≥ (R− 1)|2jy − 2jy′|. Thus the
last argument also gives (for R ≥ 2)

∫

x:|x−2jy|≥R|2jy−2jy′|
|τj(x, 2

jy′)|dx ≤ B(2j|y − y′|(R− 1))−ε

and hence

IRj (y, y
′) . B(2j |y − y′|)−εR−ε if 2j |y − y′| ≥ 1/R .

For 2j |y − y′| ≤ 1 we obtain

IRj (y, y
′) ≤

∫
|τj(x, 2

jy)− τj(x, 2
jy′)| dx ≤ Reg1ε[τj](2

j |y − y′|)ε ≤ B(2j |y − y′|)ε.

Hence∑

j∈Z

IRj (y, y
′) .

∑

j:2j |y−y′|≤R−1/2

B(2j|y − y′|)ε +
∑

j:2j |y−y′|>R−1/2

B(R2j |y − y′|)−ε . BR−ε/2

and (8.21) follows. The same argument gives
∑

j∈Z

IRj (y, y
′) .

∑

j∈Z

min{A,B(2j |y − y′|)ε, B(2j |y − y′|)ε . A(log(2 +B/A))

which yields (8.22).

�
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The following proposition is useful for verifying membership in the classes Ann1, Ann∞ for
kernels of the form (8.7).

Proposition 8.4. Suppose that τj ∈ Int1ε ∩ Reg1ε,lt such that

sup
j

Int10[τj] ≤ A ,

sup
j

Int1ε[τj ] + sup
j

Reg1ε,lt[τj] ≤ B .

Then the sum K =
∑

j Dil2jτj converges in the sense of L1
loc((R

d × R
d) \∆) and

Ann1[K] . A log(2 +B/A) .

This follows from the following lemma regarding functions in L1(Rd).

Lemma 8.5. Let 0 < ε < 1, gj ∈ L
1(Rd) such that

∫
|gj(x)| dx ≤ A,

∫
|gj(x)|(1 + |x|)ε dx ≤ B1,

and

sup
|h|<1

|h|−ε

∫
|gj(x+ h)− gj(x)| dx ≤ B2 .

Then for every compact set K ⊂ R
d \ {0}, the series G(x) =

∑
j∈Z 2

jdgj(2
jx) converges in

L1(K), so that G ∈ L1
loc(R

d \ {0}). Moreover, if KR = {x : R ≤ |x| ≤ 2R},

sup
R>0

∫

KR

|G(x)|dx . A log(1 +
B1 +B2

A
) .

Proof. It suffices to consider the case K = KR. Let Gj = 2jdgj(2
j ·) then

‖Gj‖L1(KR) = ‖gj‖L1(K2jR
) ≤ A.

First assume that 2jR ≥ 1. In this case

‖gj‖L1(K2jR
) . (2jR)−εB1.

For 2jR ≤ 1 we have by Hölder’s inequality

‖gj‖L1(K2jR
) . (2jR)d/p

′
‖gj‖p,

and by Sobolev imbedding it follows ‖gj‖p . B1 provided that d/p′ < ε. Hence we obtain for
0 < ε′ < ε we get

‖G‖L1(KR) .
∑

j∈Z

min{A,B1(2
jR)−ε, B2(2

jR)ε
′
} . A log

(
1 +

B1 +B2

A

)
. �

Proof of Proposition 8.4. Apply Lemma 8.5 to the functions v 7→ K(y + v, y). �



62 ANDREAS SEEGER CHARLES K. SMART BRIAN STREET

8.1.4. Kernels with cancellation. We state a standard estimates involving the Schur test for
compositions with operators exhibiting some cancellation; this will be used when proving L2

estimates in §11.

Lemma 8.6. Fix 0 < ε ≤ 1. Let ℓ ∈ Z with ℓ ≤ 0. Suppose ρ, σℓ : R
d×R

d → C are measurable
functions satisfying

Int1[ρ] ≤ A1, Int∞ε [ρ] ≤ Aε,∞,(8.23a)

Int1[σℓ] ≤ B1, Int∞[σℓ] ≤ B∞,(8.23b)

and

(8.23c) Int∞[∇xσℓ] ≤ 2−ℓB̃∞.

Assume

(8.24)

∫
ρ(x, y) dy = 0 for almost every x ∈ R

d.

Let R, Sℓ be the integral operators with Schwartz kernels ρ(x, y), σℓ(x, y). Then

‖RSℓ‖L2→L2 . 2−ℓε/2
√
A1Aε,∞B1(B∞ + B̃∞).

Proof. Let kℓ be the Schwartz kernel of RSℓ. Then, by the cancellation assumption,

kℓ(x, y) =

∫
ρ(x, z)

(
σℓ(z, y) − σℓ(x, y)

)
dz

Clearly for a.e. y ∈ R
d

∫
|kℓ(x, y)|dx ≤

∫
|σℓ(z, y)|

∫
|ρ(x, z)|dx dz . B1A1.

Moreover, ∫
|kℓ(x, y)|dy ≤ (Ix) + (IIx)

where

(Ix) :=

∫

|x−z|≤2ℓ
|ρ(x, z)|

∫ ∣∣σℓ(z, y) − σℓ(x, y)
∣∣ dy dz,

(IIx) :=

∫

|x−z|≥2ℓ
|ρ(x, z)|

∫ (
|σℓ(z, y)|+ |σℓ(x, y)|

)
dy dz.

Now by assumption, for fixed x, z
∫

|σℓ(z, y)| dy +

∫
|σℓ(x, y)|dy . B∞

and
∫ ∣∣σℓ(z, y) − σℓ(x, y)

∣∣ dy =

∫ ∣∣∣
∫ 1

0
〈z − x,∇xσℓ((1− s)x+ sz), y〉 ds

∣∣∣ dy

≤ |x− z|

∫ 1

0

∫
|∇xσℓ((1− s)x+ sz), y)| dy dτ . B̃∞2−ℓ|x− z|.

For (Ix) we then get

(Ix) ≤ B̃∞

∫

|z−x|≤2ℓ
|ρ(x, z)|2−ℓ|x− z| dz
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and estimate (using ε ≤ 1)
∫

|z−x|≤2ℓ
|ρ(x, z)|2−ℓ|x− z| dz ≤

∫

|z−x|≤2ℓ
|ρ(x, z)|[2−ℓ|x− z|]ε dz

. 2−ℓε

∫
|ρ(x, z)(1 + |x− z|)εdz . 2−ℓεAε,∞.

Hence (Ix) . 2−ℓεB̃∞Aε,∞. For (IIx) we have

(IIx) ≤ B∞

∫

|z−x|≥2ℓ
|ρ(x, z)| dz . B∞2−ℓε

∫

|z−x|≥2ℓ
|ρ(x, z)|(1 + |x− z|)ε dz

and thus (IIx) . 2−ℓεB∞Aε,∞. Finally, we obtain by Schur’s test

‖RSℓ‖L2→L2 ≤
√

Int1[kℓ]
√

Int∞[kℓ] .
√
A1B1

√
(B∞ + B̃∞)Aε,∞2−ℓε.

The assertion is proved. �

8.1.5. On operator topologies. We finish this section by stating a version of the uniform bound-
edness principle which is used for the partial sums of operators defined by kernels of the form
(8.7).

Lemma 8.7. Let X, Y be Banach spaces and let ΣN : X → Y be bounded operators. Assume
that ΣN converges in the weak operator topology, i.e. there is a linear operator Σ : X → Y so
that for every f ∈ X and every linear functional g ∈ Y ′,

lim
N→∞

〈ΣNf, g〉 = 〈Σf, g〉.

Then Σ : X → Y is bounded, and there exists B <∞ so that

‖Σ‖X→Y ≤ sup
N

‖ΣN‖X→Y ≤ B.

Proof. We have supN ‖〈ΣNf, g〉| ≤ Cf,g < ∞ for every f,∈ X, g ∈ Y ′. By the uniform
boundedness principle this implies supN ‖ΣNf‖Y ≤ Cf < ∞ for all f ∈ X. By the uniform
boundedness principle again there is A < ∞ so that A := supN ‖ΣN‖X→Y < ∞. Thus Cf,g ≤
A‖f‖X‖g‖Y ′ . Passing to the limit we see |〈Σf, g〉| ≤ A‖f‖X‖g‖Y ′ which implies ‖Σ‖X→Y ≤
A. �

Given a formal series
∑

j∈Z Tj of bounded operators we say that
∑

j∈Z Tj converges in the

weak operator topology as operators X → Y if the partial sums ΣN =
∑N

j=−N Tj satisfy the
assumptions in Lemma 8.7.

Lemma 8.8. Let X, Y be Banach spaces, let W be a linear subspace of X which is dense in
X. Let ΣN : X → Y be bounded operators. Assume that

sup
N

‖ΣN‖X→Y ≤ A

and that for every f ∈W , and every g ∈ Y ′

lim
N→∞

〈ΣNf, g〉 = 〈Σf, g〉

where Σ : W → Y is a linear operator. Then ΣN converges to Σ in the weak operator topology
(as operators X → Y ) and we have ‖Σ‖X→Y ≤ A.

Proof. The assumptions imply that ‖Σf‖Y ≤ ‖f‖X for all f ∈ W , and Σ extends uniquely to
a bounded operator X → Y with operator norm at most A. Moreover, using ‖ΣN‖X→Y ≤ A it
follows easily that ΣN → Σ in the weak operator topology. �
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8.1.6. Consequences for sums of dilated kernels. We now formulate some consequences of the
propositions above and the boundedness result (8.5).

Proposition 8.9. Let τj ∈ Int1ε ∩ Reg1ε,rt, so that

Int10[τj] . A, Int1ε[τj ] + Reg1ε,rt[τj ] ≤ B.

Let Tj denote the integral operator with kernel Dil2jτj.

(i) Suppose that T =
∑

j∈Z Tj converges in the weak operator topology as operators L2 → L2.
Then, for 1 < p ≤ 2, T extends to an operator bounded on Lp such that

‖T‖Lp→Lp ≤ Cd,p,ǫ

(
‖T‖L2→L2 + ‖T‖

2− 2

p

L2→L2

(
A log(2 +B/A)

) 2

p
−1)

.

Moreover T extends to an operator bounded from H1 to L1 and

‖T‖H1→L1 ≤ Cd,ǫ

(
‖T‖L2→L2 +A log(2 +B/A)

)
.

(ii) Suppose that T =
∑

j∈Z Tj converges in the strong operator topology, as operators L2 →

L2. Then the sum also converges in the strong operator topology as operators Lp → Lp, 1 < p < 2
and in the strong operator topology as operators H1 → L1.

Proof. By Proposition 8.3 we have for K as in (8.7) SI10[K] ≤ log(2 + B/A) and the assertion
(i) follows from (8.5) and (8.3).

For (ii) we examine the proof of H1 → L1 boundedness. Let a be a 2-atom supported in

a cube Q with center yQ, i.e. we have ‖a‖2 ≤ |Q|−1/2,
∫
a(x)dx = 0. Let Q∗ be the double

cube with the same center. By assumption
∑N

j=−N Tja converges in L2(Q∗) and by Hölder’s

inequality in L1(Q∗). Also, by the argument in the proof of Proposition 8.3,

‖Tja‖L1(Rd\Q∗) .

∫
|a(y)|

∫

Rd\Q∗

|Dil2jτj(x, y)−Dil2jτj(x, yQ)| dx dy

. Bmin{(2jdiam(Q))ε, (2jdiam(Q))−ε}

and clearly
∑N

j=−N Tja converges in L1(Rd \Q∗) as well.

Let f ∈ H1; we need to establish convergence of
∑

j Tjf in L1. By the atomic decomposition

f =
∑∞

ν=1 cνaν where aν are 2-atoms and
∑

ν |cν | . ‖f‖H1 . Given ε > 0 take M so that∑∞
ν=M |cν | ≤ ε. Then there is C independent of M , ε so that for all N we have

∥∥∥
N∑

j=−N

T
( ∞∑

ν=M

cνaν
)∥∥∥

1
< Cε.

It is now straightforward to combine the arguments and deduce the convergence of
∑

j Tjf in

L1.

In order to prove convergence in the strong operator topology as operators Lp → Lp, 1 <

p < 2, we apply the interpolation inequality ‖h‖p ≤ ‖h‖
2

p
−1

1 ‖h‖
2− 2

p

2 to h =
∑

j∈J Tjg where

g ∈ H1 ∩ L2. This yields that
∑

j Tjg converges in Lp. Since H1 ∩ L2 is dense and since

the operator norms
∑

j∈J Tj are bounded uniformly in J , it is now straightforward to show

convergence of
∑

j Tjf for every f ∈ Lp. �

In our applications we work with the following setting. Let φ ∈ C∞
0 (Bd(1)) have

∫
φ = 1

and define Pjf = f ∗ φ(2
j). Set ψ(x) = φ(x) − 2−dφ(2−1x), and set Qjf = f ∗ ψ(2j ). We have

I =
∑

j∈ZQj , Pj =
∑

k≤j Qk and I − Pj =
∑

k>j Qk in the sense of distributions.
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Corollary 8.10. Let sj : R
d × R

d → C be a sequence of locally integrable kernels and assume
that

sup
j

Int10[sj] ≤ A, sup
j

Int1ε[sj] ≤ B .

Let Sj be the integral operator with integral kernel Dil2jsj. Suppose the sum S =
∑

j∈Z SjPj

converges in the weak operator topology as operators L2 → L2. Then, for 1 < p ≤ 2, S : Lp → Lp

is bounded and

‖S‖Lp→Lp ≤ Cd,p,ǫ

(
‖S‖L2→L2 + ‖S‖

2− 2

p

L2→L2(A log(2 +B/A))
2

p
−1).

Proof. The kernel of SjPj is equal to Dil2jτj where

τj(x, y) =

∫
sj(x, z)φ(z − y) dz .

Clearly Int1ε[τj] . Int1ε[sj] for ε ≥ 0 and in view of the regularity and support of φ we also have

Reg1δ,rt[τj] . Int10[sj ]

for δ ≤ 1. The assertion now follows from Corollary 8.9. �

Corollary 8.11. Let sj, Sj be as in Corollary 8.10 For k ∈ N define Sk :=
∑

j∈Z SjQj+k.

Suppose that this sum converges in the weak operator topology as operators L2 → L2, and
suppose that for some ε′ > 0

Dε′ := sup
k>0

2kǫ
′
‖Sk‖L2→L2 <∞.

Also define D0 := supk>0 ‖S
k‖L2→L2 . Then, for 1 < p ≤ 2,

‖Sk‖Lp→Lp ≤ Cp,d,ǫ

(
min{2−kǫ′Dǫ′ ,D0}+

(
min{2−kǫ′Dǫ′ ,D0}

)2− 2

p
(
A log(2k +B/A)

) 2

p
−1

)
.

Proof. By definition ‖Sk‖L2→L2 ≤ min{2−kǫ′Dǫ′ ,D0}. The integral kernel of SjQj+k is given
by Dil2jτj,k where

τj,k(x, y) =

∫
sj(x, z)2

kdψ(2k(z − y)) dz .

We have Int1ε[τj,k] . Int1ε[sj ] for ε ≥ 0 and now

Reg1δ,rt[τj,k] . 2kInt10[sj] . 2kA

for δ ≤ 1. The assertion follows from Corollary 8.9. �

Corollary 8.12. Let sj, Sj, S
k be as in Corollary 8.11. Define S̃ :=

∑
j∈Z Sj(I − Pj) =∑

k>0 S
k. For 1 < p ≤ 2 ,

‖S̃‖Lp→Lp ≤ Cp,d,ǫ,ǫ′

(
D0 log

(
2 +

Dǫ′

D0

)
+D

2− 2

p

0 A
2

p
−1 log

(
2 +

Dǫ′

D0

)
log

2

p
−1(2 + Dǫ′

D0
+
B

A

))
.

Proof. By Corollary 8.11, we have

‖S̃‖Lp→Lp .
∑

k>0

min{2−kǫ′Dǫ′ ,D0}+
∑

k>0

(
min{2−kǫ′Dǫ′ ,D0}

)2− 2

p
(
A log(2k +B/A))

2

p
−1.

Clearly,
∑

k>0min{2−kǫ′Dǫ′ ,D0} . D0 log(2 +Dε′/D0). Also, the second sum equals

D
2− 2

p

0 A
2

p
−1

∑

k>0

min
{
2−kǫ′Dǫ′

D0
, 1
}2− 2

p
(
log(2k +

B

A
)
) 2

p
−1
.

To conclude apply the following Lemma 8.13 with β = −1 + 2/p. �
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Lemma 8.13. Fix ǫ > 0, α > 0, β ≥ 0. Let U, V ≥ 1, then
∑

k≥0

(min{2−kǫU, 1})α logβ(2k + V ) ≤ Cǫ,α,β log(1 + U) logβ(1 + U + V ).

Proof. Let Jk(U, V ) = (min{2−kǫU, 1})α logβ(2k + V ).

We first consider the terms with 2−kε/2U ≤ 1. Observe
∑

2−kε/2U≤1
2k≤V

Jk(U, V ) . logβ(1 + V )
∑

2kε/2≤U

(U2−kε)α . logβ(1 + V )

and ∑

2−kε/2U≤1
2k>V

Jk(U, V ) .
∑

2−kε/2U≥1

(U2−kε)αkβ .
∑

k:2−kε/2U≤1

(U2−kε/2)α . 1 .

The main contribution comes from the terms with 2−kε/2U ≥ 1; here we use
∑

2−kε/2U≥1
2k≤V

Jk(U, V ) . logβ(1 + V )
∑

2kε/2≤U

1 . log(1 + U) logβ(1 + V )

and ∑

k:2−kε/2U≥1
2k≥V

Jk(U, V ) .
∑

k:2kε/2≤U

kβ . logβ+1(1 + U) .

Clearly, all four terms are . log(1 + U) logβ(1 + U + V ) and the asserted bound follows. �

8.2. On a result of Journé. For a cube Q let Q∗ be the double cube with same center.

Definition 8.14. Let T : C∞
0 (Rd) → D′(Rd) be an operator with Schwartz kernel K. We say

that T satisfies a Carleson condition if there is a constant C so that for all cubes Q and for all
bounded functions f supported in Q, Tf ∈ L1(Q∗) and the inequality

∫

Q∗

|Tf(x)|dx ≤ C|Q|‖f‖∞

is satisfied. We denote by ‖T‖Carl the best constant in the displayed inequality.

Journé [28] considered a class of operators associated with regular singular integral kernels
satisfying, say, |K(x, y)| . |x− y|−d, |∇xK(x, y)|+ |∇yK(x, y)| . |x− y|−d−1 and showed that
the following conditions are equivalent.

• T satisfies a Carleson condition.
• T maps H1 to L1.
• T maps L∞

0 to BMO.

He then used an interpolation theorem to show that each condition is equivalent with

• T maps L2 to L2.

We now give versions of Journé’s theorem for larger classes of kernels which arise in our main
result.
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Definition 8.15. (i) A integrable function is called an ∞-atom associated to a cube Q if a is
supported on Q, and satisfies ‖a‖∞ ≤ |Q|−1 and

∫
a(x)dx = 0.

(ii) A linear operator defined on compactly supported functions with integral zero satisfies
the atomic boundedness condition if

‖T‖At := sup ‖Ta‖1 <∞

where the sup is taken over all ∞-atoms.

Remark 8.16. One can also make a definition of a class At(q) where one works with q-atoms

satisfying supp(a) ⊂ Q, ‖a‖q ≤ |Q|−1+1/q and
∫
a(x)dx = 0. Define ‖T‖At(q) = sup ‖Ta‖1

where the supremum is taken over all q-atoms. For the case 1 < q < ∞ one has T ∈ At(q)
if and only if T extends to a bounded operator H1 → L1, and ‖T‖At(q) ≈ ‖T‖H1→L1 . This
is a special case of a result by Meda, Sjögren and Vallarino [29]. The equivalence may fail for
the case q = ∞, as was shown by Bownik [3]. We remark that for special classes of Calderón-
Zygmund operators the equivalence holds true even for q = ∞ (see [30, §7.2], and the proof of
Theorem 8.20 below). For most situations in harmonic analysis the use of ∞-atoms (instead of
q-atoms) does not yield a significant advantage, but in our application it will be crucial to work
with ∞-atoms.

In the following three propositions T : C∞
0 (Rd) → D′(Rd) will denote a linear operator with

Schwartz kernel K ∈ D′(Rd ×R
d) ∩L1

loc((R
d ×R

d)setminus∆). The proofs use the arguments
of Journé [28, §4.2].

Proposition 8.17. Suppose that T satisfies the atomic boundedness condition and the averaged
annular integrability condition. Then

‖T‖Carl . ‖T‖At +Annav[K] .

Proposition 8.18. Suppose that SI∞[K] <∞ , Annav[K] <∞ and that T satisfies a Carleson
condition. Then T extends to a bounded operator from L∞

0 to BMO satisfying

‖T‖L∞
0
→BMO . ‖T‖Carl + SI∞[K].

Proposition 8.19. Suppose that SI1[K] < ∞ and that T extends to a bounded operator T :
L∞
0 → BMO. Then T satisfies the atomic boundedness condition and

‖T‖At . ‖T‖L∞
0
→BMO + SI1[K].

For the convenience of the reader we give the proof of the three propositions. In what follows
Q will denote a cube, xQ its center, and as above Q∗ will be the double cube with same center.

Proof of Proposition 8.17. Let f be a bounded function supported in a cube Q. We need to
establish the estimate

(8.25)

∫

Q∗

|Tf |dx . C|Q|‖f‖∞
(
‖T‖At +Annav[K]

)
.

Let Q1 be a cube with the same sidelength of Q∗ and of distance diam(Q∗) to Q∗. Let f1 be a
function supported in Q∪Q1 so that f1(y) = f(y) for y ∈ Q, ‖f1‖∞ ≤ ‖f‖∞ and

∫
f1(y)dy = 0.

Then, if

a(x) = |Q|−1‖f‖−1
∞ f1(x)

then there is Cd > 0 so that C−1
d a is an ∞-atom. Set f2 = f − f1 so that f2 is supported in Q1

and split ∫

Q∗

|Tf |dx .

∫

Q∗

|Tf1|dx+

∫

Q∗

|Tf2|dx.
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We estimate

(8.26)

∫

Q∗

|Tf1|dx . |Q| ‖T‖At‖f‖∞.

Since dist(Q∗, Q1) ≈ diam(Q1) ≈ diam(Q∗) ≈ diam(Q) we may use the averaged annular
integrability condition and estimate

1

|Q|

∫

Q1

∫

Q∗

|K(x, y)|dy dx . Annav[K].

This yields

(8.27)

∫

Q∗

|Tf2|dx .

∫

Q∗

∫

Q1

|K(x, y)||f2(y)|dx dy . ‖f2‖∞|Q|Annav[K].

Since ‖f2‖∞ ≤ 2‖f‖∞, (8.25) follows from (8.26) and (8.27). �

Proof of Proposition 8.18. Let g ∈ L∞
0 and let Q be any cube with center xQ. We have to verify

(8.28) inf
C

\

∫

Q
|Tg(x)− C|dx ≤ ‖T‖Carl + SI∞[K]

where the slashed integral denotes the average over Q.

Let g1 = g1Q∗ , g2 = g1Rd\Q∗ , so that g = g1+g2. Since g has compact support it is immediate

by the assumed finiteness of Annav[K] that Tg2(w) is finite for almost every w in

BQ := {w : |w − xQ| ≤ (2d)−1diam(Q)}.

Now

inf
C

\

∫

Q
|Tg(x) −C|dx . \

∫

BQ

[
\

∫

Q
|Tg1(x)|dx + \

∫

Q
|Tg2(x)− Tg2(w)|dx

]
dw.

From the Carleson condition we get

\

∫

Q
|Tg1(x)|dx ≤ 4d‖T‖Carl‖g1‖∞ . ‖T‖Carl‖g‖∞ .

Moreover,

\

∫

BQ

\

∫

Q
|Tg2(x)− Tg2(w)|dx dw ≤ ‖g2‖∞ sup

w∈BQ

\

∫

Q

∫

Rd\Q∗

|K(x, y)−K(w, y)|dy dx

. SI∞[K]‖g‖∞ .

and (8.28) follows. �

Proof of Proposition 8.19. Let a be an ∞-atom, associated with the cube Q. We need to verify

(8.29) ‖Ta‖1 . ‖T‖L∞
0
→BMO + SI∞[K] .

First estimate Ta in the complement of Q∗, using the cancellation of a:
∫

Rd\Q∗

|Ta(x)| dx .

∫

Rd\Q∗

∣∣∣
∫

Q
[K(x, y)−K(x, xQ)]a(y)dy

∣∣∣ dx

≤

∫

Q
|a(y)|

∫

|x−xQ|≥2|y−xQ|

|K(x, y)−K(x, xQ)| dx dy

≤ SI1[K]‖a‖1 . SI1[K] .
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Let Q̃ be a cube which is contained in CQ∗ \ Q∗ and has distance O(diam(Q)) to Q∗, say, a
cube adjacent to Q∗ and of same sidelength. The above calculation also yields

(8.30)

∫

Q̃
|Ta(x)|dx . SI1[K] .

We choose such a cube Q̃ and estimate
∫

Q∗

|Ta(x)|dx . IQ + IIQ + IIIQ

where

IQ =

∫

Q∗

∣∣∣Ta(x)− \

∫

Q∗

Ta(y)dy
∣∣∣ dx ,

IIQ = |Q∗|
∣∣∣ \
∫

Q∗

Ta(y)dy − \

∫

Q̃
Ta(y)dy

∣∣∣ ,

IIIQ = |Q∗|
∣∣∣ \
∫

Q̃
Ta(y)dy

∣∣∣ .

Clearly

|IQ| ≤ |Q∗|‖Ta‖BMO ≤ ‖T‖L∞→BMO|Q
∗|‖a‖L∞ . ‖T‖L∞→BMO.

To estimate IIQ we let Q∗∗ be a cube containing both Q∗ and Q̃, and of comparable sidelength.
Then

∣∣∣ \
∫

Q∗

Ta(y)dy − \

∫

Q̃
Ta(y)dy

∣∣∣

≤ \

∫

Q∗

∣∣∣Ta(y)− \

∫

Q∗∗

Ta(z)dz
∣∣∣ dy + \

∫

Q̃

∣∣∣Ta(y)− \

∫

Q∗∗

Ta(z)dz
∣∣∣ dy

. \

∫

Q∗∗

∣∣∣Ta(y)− \

∫

Q∗∗

Ta(z)dz
∣∣∣ dy . ‖Ta‖BMO

and thus

|IIQ| . ‖T‖L∞
0
→BMO|Q|‖a‖∞ . ‖T‖L∞

0
→BMO|Q|‖a‖∞ . ‖T‖L∞

0
→BMO .

Finally,

|IIIQ| ≤ |Q∗|
∣∣∣ \
∫

Q̃
Ta(y)dy

∣∣∣ . ‖Ta‖L1(Q̃) . A ,

by (8.30), and the proof of (8.29) is finished. �

Theorem 8.20. Let T : C∞
0 (Rd) → D′(Rd) and assume that the Schwartz kernel K is locally

integrable in (Rd × R
d) \∆. Assume that

SI[K] := Annav[K] + SI1[K] + SI∞[K] <∞.

(i) Let 1 < q <∞. The following statements are equivalent.

• T satisfies a Carleson condition.
• T maps L∞

0 → BMO.
• T satisfies the atomic boundedness condition.
• T extends to a bounded operator H1 → L1.
• T extends to an operator bounded on Lq.
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(ii) We have the following equivalences of norms.

(8.31) ‖T‖Carl + SI[K] ≈ ‖T‖L∞
0
→BMO + SI[K] ≈ ‖T‖At + SI[K] ≈q ‖T‖Lq→Lq + SI[K].

Moreover,

(8.32) ‖T‖At ≈ ‖T‖H1→L1 .

Proof. The first three equivalences are immediate from a combination of Propositions 8.17, 8.18
and 8.19. Since ∞-atoms satisfy ‖a‖H1 ≤ C it is clear that

‖T‖At . ‖T‖H1 7→L1 .

The converse

(8.33) ‖T‖H1→L1 . ‖T‖At

is not obvious (and the inequality without the term SI[K] might not hold if we drop our as-
sumption SI[K] <∞, see [3]). By the Coifman-Latter theorem about the atomic decomposition
(see [36, §III.2]) we may write f =

∑
Q λQaQ, with

∑
Q |λQ| . ‖f‖H1 and aQ being ∞-atoms;

here the convergence of the series is understood in the L1 sense. We immediately get
∥∥∥
∑

Q

λQTaQ

∥∥∥
1
≤

∑

Q

|λQ|‖T‖At‖aQ‖1 . ‖T‖At‖f‖H1
.

However the decomposition f =
∑

Q λQaQ is not unique and in order to prove that the expres-

sion
∑

Q λQTaQ can be used as a definition for Tf we need to show the following consistency

condition for a sequence of atoms {aν}
∞
ν=1,

(8.34)
∑

Q

|cν | <∞ ,
∑

ν

cνaν = 0 =⇒
∑

ν

cνTaν = 0.

Fortunately, a version of an approximation (or weak compactness) argument in [30, §7.2] applies
to our situation. As stated above the atomic boundedness condition implies the Carleson
condition. Let φ ∈ C∞

0 be supported in a ball of radius 1/2 such that
∫
φ(x)dx = 1. Set

Pmf = φ(2
m) ∗ f . Let Km be the distribution kernel for PmTPm. Note that we have

|Km(x, y)| . 2mdAnnav[K] if |x− y| ≥ 22−m

and

|Km(x, y)| . 2md‖T‖Carl if |x− y| ≤ 22−m.

Hence Km ∈ L∞(Rd × R
d) and thus PmTPm maps L1 to L∞. This implies

∑
ν cνPmTPmaν =

PmTPm(
∑
cνaν) = 0. Now, since the Pm form an approximation of the identity, it is clear

that, for each atom aν , we have ‖PmTPmaν − Taν‖1 → 0 as ν → ∞. Taking in account
that

∑
ν |aν | < ∞, a straightforward limiting argument yields

∑
ν cνTaν = 0. Note that the

condition SI[K] < ∞ is used to establish (8.32) only in order to verify the implication (8.34)
(via the boundedness of Km); it does not enter in (8.32) itself.

We still have to show the equivalence of the first three conditions in (8.31) with the fourth
condition. Assume first that T is Lq-bounded. Then we have the standard estimates (8.3), (8.4)
and thus the H1 → L1 operator norms and L∞

0 → L∞ operator norms of T are bounded by
‖T‖Lq→Lq + SI[K]. The other direction uses the interpolation result (cf. the remarks below)

‖T‖Lq→Lq ≤ Cq‖T‖
1/q
H1→L1‖T‖

1−1/q
L∞
0
→BMO

together with the equivalence of the first three conditions in (8.31) and the equivalence (8.32).
�
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Remarks on interpolation of H1 and BMO. In the above interpolation one uses the interpo-
lation formulas [H1, BMO]θ,q = Lp,q, [H1, BMO]θ = Lp for 1 − θ = 1/p, 1 < p < ∞, or
a direct interpolation result for operators in §3.III of Journé’s monograph [28]. One also has
[L1, BMO]θ,q = Lp,q, [L1, BMO]θ = Lp for 1− θ = 1/p, 1 < p <∞.

The result for complex interpolation can be obtained from the results [H1, Lp1 ]ϑ = Lp,
1/p = 1 − ϑ + ϑ/p1, 1 < p1 < ∞, (or its respective standard counterpart [L1, Lp1 ]ϑ = Lp),
together with [Lp0 , BMO]ϑ = Lp, 1/p = (1−θ)/p0, 1 < p0 <∞ which can be found in Fefferman
and Stein [16], see also the discussion in Janson and Jones [27]. The stated interpolation
formula for H1 and BMO follows then from Wolff’s four space reiteration theorem for the
complex method [40]. One can also use the results by Fefferman, Rivière, Sagher [15] for the
real method, and then combine it with Wolff’s result [40] for the real method. From the above
remarks we also get an interpolation inequality for functions g ∈ L1 ∩BMO,

(8.35) ‖g‖p ≤ Cp‖g‖
1/p
L1 ‖f‖

1−1/p
BMO , 1 < p <∞

which will be useful in the proof of Theorem 8.22 below.

8.3. Sums of dilated kernels. We shall now formulate some corollaries for operators of the
form (8.7) or its relatives. We use norms combining the various Schur and regularity norms.

For each j ∈ Z, let τj : Rd × R
d → C be a measurable function. Let 0 < ε ≤ 1. Set, for

0 < ε ≤ 1,

‖τ‖Opε = Int1ε[τ ] + Int∞ε [τ ] + Reg1ε,lt[τ ] + Reg∞ε,lt[τ ] + Reg1ε,rt[τ ] + Reg∞ε,rt[τ ],

and set

‖τ‖Op0
:= Int10[τ ] + Int∞0 [τ ].

This means for ε > 0

‖τ‖Opε =sup
x

∫
(1 + |x− y|)ǫ|τ(x, y)| dy + sup

y

∫
(1 + |x− y|)ǫ|τ(x, y)| dx

+ sup
y

0<|h|≤1

|h|−ǫ

∫
|τ(x+ h, y)− τ(x, y)| dx+ sup

x
0<|h|≤1

|h|−ǫ

∫
|τ(x+ h, y)− τ(x, y)| dy

+ sup
y

0<|h|≤1

|h|−ǫ

∫
|τ(x, y + h)− τ(x, y)| dx+ sup

x
0<|h|≤1

|h|−ǫ

∫
|τ(x, y + h)− τ(x, y)| dy

(8.36)

and, for ε = 0,

(8.37) ‖τ‖Op0
= sup

x

∫
|τ(x, y)| dy + sup

y
|τ(x, y)| dx .

We shall consider families {τj} for which the Opε norm is uniformly bounded in j. We let Tj
be the operator with kernel Dil2jτj, i.e.

(8.38) Tjf(x) =

∫
2jdτj(2

jx, 2jy)f(y)dy .

Theorem 8.21. Suppose that supj ‖τj‖Opε ≤ Cε for some ε ∈ (0, 1) and that supj ‖τj‖Op0 ≤ C0.
Let Tj be the operator with kernel Dil2jτj and suppose that

∑
j Tj converges to an operator

T : L∞
comp → L1

loc in the sense that for compactly supported L∞ functions f and g

〈 N∑

j=−N

Tjf, g
〉
→ 〈Tf, g〉
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as N → ∞ and assume that there exists A > 0 such that for all x ∈ R
d, t > 0, N ∈ N,

(8.39)
∣∣∣
〈 N∑

j=−N

Tjf, g
〉∣∣∣ ≤ Atd‖f‖L∞‖g‖L∞ if supp(f) ∪ supp(g) ⊂ Bd(x, t).

Then T extends to an operator bounded on L2(Rd) and

‖T‖L2→L2 ≤ Cd,ǫ

(
A+ C0 log

(
1 +

Cǫ
C0

))
.

Proof. The inequality (8.39) implies ‖
∑N

j=−N Tj‖Carl . A. This inequality extends to the limit

T . Let KN , K be the Schwartz kernels of the operators
∑N

j=−N Tj and T respectively. Then

by Propositions 8.3 and 8.4, applied to both τj and its adjoint version we have SI[KN ], SI[K] .
C0 log(2 + Cε/C0) . The assertion follows now from Theorem 8.20. �

Theorem 8.22. Suppose that supj ‖τj‖Opε ≤ Cε for some ε ∈ (0, 1) and that supj ‖τj‖Op0 ≤ C0.
Let Tj be the operator with kernel Dil2jτj and suppose that the sum T =

∑
Tj converges in the

sense of distributions on C∞
0,0 (test functions with vanishing integrals), i.e. for every f ∈ C∞

0,0

and every g ∈ C∞
0 we have

(8.40) lim
N→∞

N∑

j=−N

〈Tjf, g〉 = 〈Tf, g〉.

Then the following statements hold.

(i) If supN ‖
∑N

j=−N Tj‖H1→L1 ≤ A, for some A <∞, then we also have

sup
N

∥∥∥
N∑

j=−N

Tj

∥∥∥
L2→L2

. A+ C0 log
(
1 +

Cε
C0

)
.

Moreover, T extends to a bounded operator on L2,
∑N

j=−N Tj converges to T in the weak operator

topology and ‖T‖L2→L2 . A+ C0 log
(
1 + Cε/C0

)
.

(ii) If supN ‖
∑N

j=−N Tj‖L2→L2 ≤ B, for some B <∞, then we also have

sup
N

∥∥∥
N∑

j=−N

Tj

∥∥∥
H1→L1

. B + C0 log
(
1 +

Cε
C0

)
.

Moreover T extends to an operator bounded from H1 to L1,
∑N

j=−N Tj → T converges in the

weak operator topology (as operators H1 → L1) and ‖T‖H1→L1 . B + C0 log
(
1 + Cε/C0

)
.

(iii) The sum T =
∑

j∈Z Tj converges in the strong operator topology as operators H1 → L1

if and only if it converges in the strong operator topology as operators L2 → L2.

Proof. The assertions on the operators
∑N

j=−N Tj follow immediately from Theorem 8.20. Note

that C∞
0,0 is dense in both H1 and Lp, 1 < p <∞. The uniform bounds for the operator norms

of
∑N

j=−N Tj and the convergence hypothesis (8.40) imply convergence in the respective weak
operator topologies.

Now we prove (iii). If T =
∑

j∈Z Tj converges in the strong operator topology as operators

L2 → L2 then it is immediate from Proposition 8.9 that T =
∑

j∈Z Tj converges in the strong

operator topology as operators H1 → L1.
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Vice versa assume that T =
∑

j∈Z Tj converges in the strong operator topology as operators

H1 → L1. By the interpolation inequality (8.35) we have for any finite set J ∈ Z and any
f ∈ C∞

0,0.

∥∥∥
∑

j∈J

Tjf
∥∥∥
2
≤ C

∥∥∥
∑

j∈J

Tjf
∥∥∥
1/2

1

∥∥∥
∑

j∈J

Tjf
∥∥∥
1/2

BMO
≤ C

∥∥∥
∑

j∈J

Tjf
∥∥∥
1/2

1

∥∥∥
∑

j∈J

Tj

∥∥∥
1/2

L∞→BMO
‖f‖∞

and since ‖
∑

j∈J Tj‖L∞→BMO is bounded independently of J we see that
∑

j Tjf converges in

L2 for any f ∈ C∞
0,0. Since C∞

0,0 is dense in L2 we conclude that
∑

j Tj converges in the strong

operator topology as operators L2 → L2. �

We now formulate a version of Theorem 8.21 which has a convergence statement with respect
to the strong operator topology.

Theorem 8.23. Suppose that supj ‖τj‖Opε ≤ Cε for some ε ∈ (0, 1) and that supj ‖τj‖Op0
≤

C0. Let Tj be the operator with kernel Dil2jτj. Suppose that
∑

j Tj converges to an operator

T : L∞
comp → L1

loc in the strong sense that for any compactly supported L∞ function f and for
any compact set K

lim
N→∞

∫

K

∣∣∣
N∑

j=−N

Tjf(x)− Tf(x)
∣∣∣dx = 0.

Suppose that there exists A > 0 such that for all x ∈ R
d, t > 0, N ∈ N,

(8.41)

∫

Bd(x,t)

∣∣∣
N∑

j=−N

Tjf(w)
∣∣∣ dw ≤ Atd‖f‖∞ if supp(f) ⊂ Bd(x, t).

Then the sum T =
∑

j∈Z Tj converges in the strong operator topology as operators L2 → L2 and
and

‖T‖L2→L2 ≤ Cd,ǫ

(
A+ C0 log

(
1 +

Cǫ
C0

))
.

Proof. If a is an L∞ atom supported on a cube Q and Q∗ is the double cube, we see that∑N
j=−N Ta→ Ta in L1(Q∗). Standard arguments using the cancellation of a yield

∫

Rd\Q∗

|Tja(x)| .

{
Int1ε[τj ] (2

jdiam(Q))−ε if 2jdiam(Q) ≥ 1,

Reg1ε,lt[τj] (2
jdiam(Q))ε if 2jdiam(Q) ≤ 1.

Altogether we see that
∑N

j=−N Tja → Ta in L1. By Theorem 8.21 we also have the uniform

bounds ‖Ta‖1 ≤ Cd,ǫ

(
A+C0 log

(
1+ Cǫ

C0

))
for L∞ atoms. Now, writing f ∈ H1 as f =

∑
ν cνaν

where the aν are ∞-atoms and
∑

ν |cν | < ∞, we easily derive that
∑N

j=−N Tjf → Tf in L1.

Thus we see that
∑

j Tj converges in the strong operator topology as operators H1 → L1 and
we have the uniform bound

∥∥∥
N∑

j=−N

Tj

∥∥∥
H1→H1

.
(
A+ C0 log

(
1 +

Cǫ
C0

))
.

We apply parts (i) and (iii) of Theorem 8.22 to see that that
∑

j Tj converges in the strong

operator topology as operators L2 → L2, and obtain the asserted bounds on the L2 → L2

operator norms. �
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The following lemma allows us to apply Theorems 8.21, 8.22 and 8.23 to sums of the form∑
j PjSjPj where Pjf = f ∗ φ(2

j), and Sj is an integral operator with kernel Dil2jsj, with

supj(Int
1
ε[sj ] + Int∞ε [sj]) <∞.

Lemma 8.24. Suppose that Int1ε[s] + Int∞ε [s] ≤ Cε and Int1[s] + Int∞[s] ≤ C0. Let φ ∈ C∞
0

supported in {v : |v| ≤ 10}. Let

s̃(x, y) =

∫∫
φ(x− w)s(w, z)φ(z − y) dw dz.

Then ‖s̃‖Opε . Cε and ‖s̃‖Op0 . C0.

Proof. Left to the reader. �

We also have

Lemma 8.25. Let s ∈ Opε, 0 ≤ ε ≤ 1. Let φ ∈ C1 supported in {v : |v| ≤ 10} and let

s1(x, y) =

∫
φ(x− w)s(w, y) dw,

s2(x, y) =

∫
s(x, z)φ(z − y) dz.

Then ‖s1‖Opε . ‖s‖Opε‖φ‖C1 , ‖s2‖Opε . ‖s‖Opε‖φ‖C1 .

Proof. Immediate from the definition. �

9. Almost orthogonality

We shall repeatedly use a rather standard almost orthogonality lemma which involves the
Littlewood-Paley operators Qk introduced in (6.4).

Lemma 9.1. Let I be an index set. Suppose that for each j ∈ Z, ν ∈ I, V ν
j : L2 → L2 is a

bounded operator such that for k1, k2 ∈ Z,

(9.1)
∥∥Qk1V

ν
j+k1Qj+k1+k2

∥∥
L2→L2 . Aj,k2 ,

where ∑

j,k2

Aj,k2 <∞.

Then the sum V ν :=
∑

j∈Z V
ν
j , converges in the strong operator topology (as operators on L2),

with equiconvergence with respect to I, and we have

(9.2) sup
ν∈I

‖V ν‖L2→L2 .
∑

j,k2

Aj,k2.

Proof. Recall, from §6,
∑

k Q̃kQk =
∑

k QkQ̃k = I. Let f, g ∈ L2(Rd) with ‖f‖2 = ‖g‖2 = 1.
By (6.6), we have

(∑

k

‖Q̃kf‖
2
2

) 1

2

=
∥∥∥
(∑

k

|Q̃kf |
2
) 1

2

∥∥∥
2
≈ 1,

(∑

k

‖Q̃∗
kg‖

2
2

) 1

2

=
∥∥∥
(∑

k

|Q̃∗
kg|

2
) 1

2

∥∥∥
2
≈ 1.

First observe, for integers J1 ≤ J2,
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∣∣∣ < g,

J2∑

j=J1

V ν
j f >L2

∣∣∣ =
∣∣∣ < g,

∑

k1,k2∈Z

J2∑

j=J1

Q̃k1Qk1V
ν
j Qk2Q̃k2f >L2

∣∣∣

=
∣∣∣ < g,

J2∑

j=J1

∑

k1,k2∈Z

Q̃k1Qk1V
ν
j Qk2Q̃k2f >L2

∣∣∣

≤
∑

k1∈Z

∣∣∣ < Q̃∗
k1g,

J2−k1∑

j=J1−k1

∑

k2∈Z

Qk1V
ν
j+k1Qj+k1+k2Q̃j+k1+k2f >L2

∣∣∣

≤
( ∑

k1∈Z

‖Q̃∗
k1g‖

2
2

) 1

2
( ∑

k1∈Z

∥∥∥
J2−k1∑

j=J1−k1

∑

k2∈Z

Qk1V
ν
j+k1Qj+k1+k2Q̃j+k1+k2f

∥∥∥
2

2

) 1

2

.

Now

( ∑

k1∈Z

∥∥∥
J2−k1∑

j=J1−k1

∑

k2∈Z

Qk1V
ν
j+k1Qj+k1+k2Q̃j+k1+k2f

∥∥∥
2

2

) 1

2

.
∑

j∈Z

∑

k2∈Z

( J2−j∑

k1=J1−j

∥∥Qk1V
ν
j+k1Qj+k1+k2Q̃j+k1+k2f

∥∥2
2

) 1

2

≤
∑

j∈Z

∑

k2∈Z

Aj,k2

( J2−j∑

k1=J1−j

‖Q̃j+k1+k2f‖
2
2

) 1

2

.

We take the sup over g with ‖g‖2 = 1 and obtain from the two previous displays

(9.3)
∥∥∥

J2∑

j=J1

V ν
j f

∥∥∥
2
.

∑

j∈Z

∑

k2∈Z

Aj,k2

( J2−j∑

k1=J1−j

‖Q̃j+k1+k2f‖
2
2

) 1

2

.
∑

j∈Z

∑

k2∈Z

Aj,k2‖f‖2.

The first inequality in (9.3) implies that for fixed f ∈ L2 the partial sums of Σν
Nf =

∑N
j=−N V

ν
j f

form a Cauchy sequence, more precisely, for each ε > 0 there is N(ε, f) ∈ N (independent of I)
such that ‖ΣN1

f − ΣN2
f‖2 < ε for N1, N2 > N(ε, f). By completeness of L2, Σν

Nf converge
to a limit Σνf and Σν defines a linear bounded operator on L2. Thus Σν

N → Σν in the strong
operator topology, and, by the above, we get equiconvergence with respect to I . �

10. Proof of Theorem 5.1: Part I

We are given a family ~ς = {ςj} with supj ‖ςj‖Bε < ∞. In this and the following sections we
use the notation

Γε =
supj ‖ςj‖Bε
supj ‖ςj‖L1

introduced in (5.6). Notice that always Γε ≥ 1.

Recall,

Λ1
n+1,n+2(b1, . . . , bn+2) =

∑

j∈Z

Λ[ς
(2j )
j ](b1, . . . , bn, (I − Pj)bn+1, (I − Pj)bn+2).

Given ε > 0 and ~ς , it is our goal to prove Part I of Theorem 5.1, i.e. for 1 < p ≤ 2, the estimate

(10.1) |Λ1
n+1,n+2(b1, . . . , bn+2)| ≤ Cd,p,ε(sup

j
‖ςj‖L1) log2(1+nΓε)

( n∏

l=1

‖bl‖∞

)
‖bn+1‖p‖bn+2‖p′ .
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We formulate a stronger result which will also be useful in other parts of the paper. For this,

we need some new notation. Let 1 ≤ l1 6= l2 ≤ n + 2 and let {bjl : j ∈ Z, l 6= l1, l2} ⊂ L∞(Rd)

be a bounded subset of L∞(Rd). Let k1, k2 ∈ N, and fix u1, u2 ∈ U.

Define an operator Sl1,l2
k1,k2,j

(which implicitly depends on {bjl : j ∈ Z, l 6= l1, l2}, u1, and u2)
by the formula

∫
g(x)(Sl1 ,l2

k1,k2,j
f)(x) dx

:= Λ[ς
(2j)
j ](bj1, . . . , b

j
l1−1, Qj+k1 [u1]f, b

j
l1+1, . . . , b

j
l2−1, Qj+k2 [u2]g, b

j
l2+1, . . . , b

j
n2
).

Theorem 10.1. Let 0 < ε < 1 and suppose that supj ‖ςj‖Bε <∞. Then

Sl1,l2
k1,k2

=
∑

j∈Z

Sl1,l2
k1,k2,j

converges in the strong operator topology, as bounded operators on L2. Moreover there is c > 0
such that

‖Sl1,l2
k1,k2

‖L2→L2 . ‖u1‖U‖u2‖U sup
j

‖ςj‖L1 min{1, n2−(k1+k2)ε′Γε}
( ∏

l 6=l1,l2

sup
j

‖blj‖∞
)
.

Proof that Theorem 10.1 implies inequality (10.1). For this, fix b1, . . . , bn ∈ L∞(Rd) with

(10.2) ‖bj‖∞ = 1, j = 1, . . . , n.

For k1, k2 ∈ N, define operators V, Vk1 , and Vk1,k2 by the following formulas.
∫
g(x)(Vf)(x) dx :=

∑

j

Λ[ς
(2j)
j ](b1, . . . , bn, (I − Pj)f, (I − Pj)g),

∫
g(x)(Vk1f)(x) dx :=

∑

j

Λ[ς
(2j )
j ](b1, . . . , bn, Qj+k1f, (I − Pj)g),

∫
g(x)(Vk1,k2f)(x) dx :=

∑

j

Λ[ς
(2j )
j ](b1, . . . , bn, Qj+k1f,Qj+k2g).

The estimate (10.1) is equivalent to

(10.3) ‖V‖Lp→Lp . sup
j

‖ςj‖L1 log2(1 + nΓε).

In light of (6.2), we have the following identities,

V =
∑

k1>0

Vk1 , Vk1 =
∑

k2>0

Vk1,k2 .

To see (10.3) we first use Theorem 10.1 to deduce

‖Vk1,k2‖L2→L2 . min{sup
j

‖ςj‖Bεn2
−(k1+k2)cε, sup

j
‖ςj‖L1}.

Thus, by Lemma 8.13,

‖Vk1‖L2→L2 .
∑

k1>0

min
{
sup
j

‖ςj‖Bεn2
−(k1+k2)cε, sup

j
‖ςj‖L1

}

which implies

(10.4) ‖Vk1‖L2→L2 . sup
j

‖ςj‖L1 min{nΓε2
−k2cε, log(1 + nΓε)} .
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We turn to the proof of (10.3). Define an operator Wj by

Λ[ς
(2j )
j ](b1, . . . , bn, bn+1, bn+2) =

∫
Wjbn+1(x)bn+2(x) dx.

The Schwartz kernel of Wj is Dil2jwj(x, y) where

(10.5) wj(x, y) =

∫
ςj(α, x− y)

n∏

i=1

bi(2
−j(x− αi(x− y)) dα .

We observe that Vk1 =
∑

j(I − Pj)WjQj+k1. If we set Sj = (I − Pj)Wj then the Schwartz

kernel of Sj is Dil2jsj where sj(x, y) = wj(x, y) −
∫
φ(x − x′)wl(x

′, y). It is easy to see that

Int1(sj) . ‖ς‖L1 =: A and Int1ε(sj) . ‖ς‖Bε =: B.

We wish to apply Corollary 8.12, with Sk1 ≡
∑
SjQj+k1 = Vk1 . By Lemma 10.4, we have

Dε′ . supj ‖ςj‖Bε and D0 . (supj ‖ςj‖L1) log(1+n
supj ‖ςj‖Bε
supj ‖ςj‖L1

). Plugging this into the conclusion

of Corollary 8.12, (10.3) follows, and the proof is complete. �

Proof of Theorem 10.1. In light of Theorem 2.9, it suffices to prove Theorem 10.1 in the case
l1 = n+ 1, l2 = n+ 2. We may also assume the normalizations

(10.6)
sup
j

‖blj‖∞ = 1, 1 ≤ l ≤ n,

‖u1‖U = 1 = ‖u2‖U.

With these reductions, our goal is to show

(10.7) ‖Sn+1,n+2
k1,k2

‖L2→L2 . max
{
sup
j

‖ςj‖Bεn2
−(k1+k2)cε, sup ‖ςj‖L1

}
.

To finish the proof we define, for j ∈ Z, k1, k2 ∈ N, an operator Sj,k1,k2 ≡ Sn+1,n+2
j,k1,k2

by
∫
g(x)Sj,k1,k2f(x) dx = Λ[ς

(2j )
j ](bj1, . . . , b

j
n, Qj+k1 [u1]f,Qj+k2[u2]g),

so that Sn+1,n+2
k1,k2

=
∑

j∈Z Sj,k1,k2 .

We claim that there is c > 0 such that for j, k′1, k
′
2 ∈ Z, k1, k2 ∈ N,

(10.8)
∥∥Qk′

1
Sj+k′

1
,k1,k2Qj+k′

1
+k′

2

∥∥
L2→L2

. min
{
sup
j

‖ςj‖Bεn2
−(k1+k2)cε, 2−|k2−k′

2
|−|k1+j| sup

j
‖ςj‖L1

}
.

To see this observe first that using
∥∥Qk′

1

tQj+k′
1
+k1 [u1]

∥∥
L2→L2 . 2−|k1+j|, ‖Qj+k′

1
+k2 [u2]Qj+k′

1
+k′

2
‖L2→L2 . 2−|k2−k′

2
|,

it follows from the simple Lemma 2.7 that
∥∥Qk′

1
Sj+k′

1
,k1,k2Qj+k′

1
+k′

2

∥∥
L2→L2 . 2−|k2−k′

2
|−|k1+j|‖ςj+k′

1
‖L1 .

Using ‖Qk′
1
‖L2→L2 , ‖Qj+k′

1
+k′

2
‖L2→L2 . 1, it follows from the main L2-estimate, Theorem 7.8,

that ∥∥Qk′
1
Sj+k′

1
,k1,k2Qj+k′

1
+k′

2

∥∥
L2→L2 . ‖ςj+k′

1
‖Bεn2

−(k1+k2)cε

for some c > 0 (independent of n). Inequality (10.8) follows from a combination of the two
bounds.
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To prove (10.7) we use Lemma 9.1 and inequality (10.8) to conclude

‖Sn+1,n+2
k1,k2

‖L2→L2 .
∑

j,k′
2
∈Z

min
{
sup
j′

‖ςj′‖Bεn2
−(k1+k2)cε, 2−|k2−k′

2
|−|k1+j| sup

j′
‖ςj′‖L1

}

. min
{
sup
j

‖ςj‖Bεn
1/22−(k1+k2)cε/2, sup

j
‖ςj‖L1

}
,

where we have used ‖ςj‖L1 ≤ ‖ςj‖Bε . This completes the proof (with c replaced by c/2). �

11. Proof of Theorem 5.1: Part II

This section is devoted to the boundedness of the multilinear forms Λ1
l,n+2 and Λ1

l,n+1. In

§11.1 we shall formulate and prove a crucial L2 bound for a useful generalization of the form
of Λ1

l,n+2 and then deduce the asserted estimates for Λ1
l,n+2, and Λ1

l,n+2. The proof of the main

L2 bound will be given in §11.2.

11.1. The main L2 estimate. For 2 ≤ l ≤ n, fix bounded sets {bjl : j ∈ Z} ⊂ L∞(Rd) with

sup
j

‖bjl ‖∞ ≤ 1, l = 2, . . . , n.

For b1 ∈ L∞(Rd), j ∈ Z define an operator

Wj[ςj , b1] ≡Wj [ςj, b1, b
j
2, . . . , b

j
n]

by ∫
g(x)Wj [ςj , b1]f(x) dx = Λ[ς

(2j )
j ](b1, b

j
2, . . . , b

j
n, f, g),

and we denotes its transpose by tWj [b1]:
∫
f(x) tWj[ςj , b1]g(x) dx = Λ[ς

(2j )
j ](b1, b

j
2, . . . , b

j
n, f, g),

Define an operator TN = TN [~ς, b1] by

TN =

N∑

j=−N

(I − Pj)Wj[ςj , (I − Pj)b1]Pj .

Using I − Pj =
∑

k>0Qj+k for the operator on the left we decompose TN =
∑

k>0 T
k
N where

T k
N =

N2∑

j=−N1

Qj+kWj [ςj, (I − Pj)b1]Pj .

We now state our main estimate and give the proof that it implies Part III of Theorem 5.1 in
§11.3 below.

Theorem 11.1. Let 0 < ε ≤ 1, and supj ‖ςj‖Bε < ∞. Let Γε be as in (5.6). Then T k
N

converges to an operator T k, and TN converges to an operator T , in the strong operator topology
as operators L2 → L2. Moreover,

‖T k‖L2→L2 ≤ Cd,ε‖b1‖∞ sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log

3/2(1 + nΓε)}.

and

‖T ‖L2→L2 ≤ Cd,ε‖b1‖∞ sup
j

‖ςj‖L1 log5/2(1 + nΓε).
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11.2. Proof of Theorem 11.1. For fixed k > 0, in order to bound T k we need to prove that
for f ∈ L2 the limit

N∑

j=−N

Qj+kWj[ςj , (I − Pj)b1]Pjf

exists in L2 as N → ∞ and that the estimate
(11.1)
∥∥∥

N∑

j=−N

Qj+kWj[ςj , (I − Pj)b1]Pj

∥∥∥
L2→L2

. ‖b1‖∞ sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log

3/2(1 + nΓε)}

holds uniformly in N . By Proposition 6.5, both statements are a consequence of a square-
function estimate, namely, for k > 0

(11.2)
(∑

j∈Z

∥∥Qj+k[u]Wj [ςj , (I − Pj)b1]Pjf
∥∥2
2

)1/2

. ‖b1‖∞‖f‖2‖u‖U sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log

3/2(1 + nΓε)}.

To show (11.2) one establishes the following two inequalities:

(11.3)
(∑

j∈Z

∫ ∣∣Qj+k[u]Wj [ςj , (I − Pj)b1]Pjf(x)−Qj+k[u]Wj [ςj , (I − Pj)b1]1(x) · Pjf(x)
∣∣2
)1/2

. ‖f‖2‖b1‖∞‖u‖U sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log(1 + nΓε)}.

and

(11.4)
(∑

j∈Z

∫ ∣∣Qj+k[u]Wj [ςj , (I − Pj)b1]1(x) · Pjf(x)
∣∣2
)1/2

. ‖f‖2‖b1‖∞‖u‖U sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log

3/2(1 + nΓε)}.

For the proof of (11.4) we need the notion of a Carleson function.

Definition 11.2. We say a measurable function w : Rd×Z → C is a Carleson function if there
is a constant c such that for all k ∈ Z and balls B of radius 2−k (k ∈ Z),

( 1

|B|

∫

B

∞∑

j=k

|w(x, j)|2 dx
) 1

2

≤ c <∞.

The smallest such c is denoted by ‖w‖carl .

Remark. w is a Carleson function if the measure dµ(x, t) =
∑

j∈Z |w(x, j)|
2dx dδ2−j (t) is a

Carleson measure on the upper half plane (in the usual sense) and the norm ‖w‖carl is equivalent
with the square root of the Carleson norm of µ.

Carleson measures or Carleson functions can be used to prove L2-boundedness of nonconvo-
lution operators. This idea goes back to Coifman and Meyer [11, ch. VI] and was crucial in the
proof of the David-Journé theorem [13]. One uses Carleson functions via the following special
case of the Carleson embedding theorem. A proof can be found e.g. in [28, §6.III] or [36, §II.2].
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Theorem. Let w be a Carleson function. Then,
(∑

j∈Z

∫
|Pjf(x)|

2|w(x, j)|2 dx
) 1

2

≤ Cd‖w‖carl‖f‖2.

Note that (11.4) is an immediate consequence of this theorem and the following proposition.

Proposition 11.3. The function

wk(x, j) = Qj+k[u]Wj [ςj , (I − Pj)b1]1(x)

defines a Carleson function and there is C . 1 so that for 0 < ε′ ≤ C−1ε2 we have the estimate

(11.5) ‖wk‖carl . Qj+k[u]‖b1‖∞‖u‖U sup
j

‖ςj‖L1 min{2−kε′nΓ2
ε, log

3/2(1 + nΓε)}.

Our next proposition is a restatement of the other square-function estimate (11.3), in a
slightly more general form.

Proposition 11.4. Let 0 < ε ≤ 1. There exists C . 1 so that for 0 < ε′ ≤ C−1ε

(∑

j∈Z

∫ ∣∣Qj+k[u]Wj [ςj , b
j
1]Pjf(x)−Qj+k[u]Wj [ςj, b

j
1]1(x) · Pjf(x)

∣∣2
)1/2

. ‖f‖2 sup
j

‖bj1‖∞‖u‖U sup
j

‖ςj‖L1 min{2−kε′nΓ2
ε, log(1 + nΓε)}.

We emphasize that the implicit constants in the above propositions are independent of n and

independent of the choices of bji with ‖bji‖∞ = 1.

11.2.1. Proof of Proposition 11.3. We need to prove for x0 ∈ R
d, ℓ ∈ Z,

(11.6)
( ∑

j≥−ℓ

1

|Bd(x0, 2ℓ)|

∫

Bd(x0,2ℓ)

∣∣Qj+k[u]Wj [ςj, (I − Pj)b1, b
j
2, . . . , b

j
n]1(x)

∣∣ dx
)1/2

. ‖b1‖∞‖u‖U sup
j

‖ςj‖L1 min{2−kε′nΓ2
ε, log

3/2(1 + nΓε)}.

Now

1

|Bd(x0, 2ℓ)|

∫

Bd(x0,2ℓ)

∣∣Qj+k[u]Wj [ςj , (I − Pj)b1, b
j
2, . . . , b

j
n]f(x)

∣∣ dx

=
1

|Bd(0, 1)|

∫

Bd(0,1)

∣∣Qj+k[u]Wj [ςj , (I − Pj)b1, b
j
2, . . . , b

j
n]f(x0 + 2ℓx)

∣∣ dx

and we have by changes of variables

(11.7) Qj+k[u]Wj [ςj , (I − Pj)b1, b
j
2, . . . , b

j
n]f(x0 + 2ℓx)

= Qj+ℓ+k[u]Wj+ℓ[ςj , (I − Pj+ℓ)b̃1, b̃
j
2, . . . , b̃

j
n]f̃(x)

where b̃1(x) = b1(x0+2ℓx), b̃ji (x) = bji (x0+2ℓx), f̃(x) = f(x0+2ℓx) . Applying this with f = 1
we see that it suffices to prove (11.6) with x0 = 0, ℓ = 0.

The somewhat lengthy proof will be given in a series of lemmata, partially relying on the L2

boundedness results in §7. Our first lemma is a restatement of such a result.

Lemma 11.5. Let 0 < ε < 1. There is C . 1 so that for all ε′ ≤ C−1ε we have for all k ≥ 0,
and for all u ∈ U,

‖Qj+k[u]Wj [ςj , b1]‖L2→L2 . min
{
n2−kε′‖ςj‖Bε , ‖ςj‖L1

}
‖b1‖∞‖u‖U.



MULTILINEAR SINGULAR INTEGRAL FORMS OF CHRIST-JOURNÉ TYPE 81

Proof. For f, g ∈ L2, we have
∫
g(x)(Qj+k[u]Wj[ςj , b1]f(x)) dx = Λ[ς

(2j )
j ](b1, b

j
2, . . . , b

j
n, f,

tQj+k[u]g).

From here, the result follows immediately from Theorem 7.8. �

We now give an estimate on Λ[ς(2
j )](b1, . . . , bn+2) under the assumptions that the supports

of b1 and bn+2 are separated.

Lemma 11.6. Let 0 < ε ≤ 1. For all j, k ≥ 0, ς ∈ Bε(R
n × R

d), u ∈ U, R ≥ 5, b1, . . . , bn+1 ∈
L∞(Rd), bn+2 ∈ L1(Rd), with

supp(b1) ⊆ {|v| ≥ R}, supp(bn+2) ⊆ {|v| ≤ 1},

we have

∣∣Λ[ς(2
j )

j ](b1, . . . , bn+1, Qj+k[u]bn+2)
∣∣ . ‖u‖U

( n+1∏

l=1

‖bl‖∞
)
‖bn+2‖L1 min

{
(2jR)−ε/4‖ς‖Bε , ‖ς‖L1

}
.

Proof. Without loss of generality, we take ‖bl‖L∞ = 1, 1 ≤ l ≤ n + 1, ‖bn+2‖L1 = 1, and
‖u‖U = 1. The bound

|Λ[ς
(2j )
j ](b1, . . . , bn+1, Qj+k[u]bn+2)| . ‖ς‖L1

follows immediately from Lemma 2.7, so we prove only the estimate

(11.8) |Λ[ς
(2j )
j ](b1, . . . , bn+1, Qj+k[u]bn+2)| . ‖ς‖Bε (2

jR)−ε/4.

We estimate

|Λ[ς
(2j )
j ](b1, . . . , bn+1, Qj+k[u]bn+2)|

=
∣∣∣
∫∫∫∫

ς(2
j )(α, v)

( n∏

i=1

bi(x− αiv)
)
bn+1(x− v)u(2

j+k)(x− x′)bn+2(x
′) dx dx′ dα dv

∣∣∣

≤ sup
|x′|≤1

∫∫∫
|ς(2

j )(α, v)||b1(x− α1v)||u
(2j+k)(x− x′)| dx dα dv.

Fix x′ ∈ R
d with |x′| ≤ 1. Then

∫∫∫
|ς(2

j)(α, v)||b1(x− α1v)||u
(2j+k)(x− x′)| dx dα dv

≤

∫∫∫
|ς(α, v)||b1(x− α12

−jv)|2d(j+k)(1 + 2j+k|x− x′|)−d− 1

2 dx dα dv

=

∞∑

l1=0

∞∑

l2=0

∫∫∫

2l1≤1+|v|≤2l1+1

2l2≤1+2j+k |x−x′|≤2l2+1

|ς(α, v)||b1(x− α12
−jv)|2d(j+k)(1 + 2j+k|x− x′|)−d− 1

2 dx dα dv

=
∞∑

l1=0

∑

2l2≥R2j+k−2

+
∞∑

l1=0

∑

2l2<R2j+k−2

=: (I) + (II).
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We begin with (I). We have, provided ε′ ≤ ε,

(I) ≤

∞∑

l1=0

∑

2l2≥R2j+k−2

2−l1ε′−l2/4×

∫∫∫

2l1≤1+|v|≤2l1+1

2l2≤1+2j+k|x−x′|≤2l2+1

(1 + |v|)ε
′
|ς(α, v)||b1(x− α12

−jv)|
2d(j+k)

(1 + 2j+k|x− x′|)d+
1

4

dx dα dv

.
∞∑

l1=0

∑

2l2≥R2j+k−2

2−l1ε′−l2/4‖ς‖Bε . (2j+kR)−1/4‖ς‖Bε . (2jR)−1/4‖ς‖Bε .

We now turn to (II). We have

(II) =

∞∑

l1=0

∑

2l2<R2j+k−2

2−l1ε′−l2/4 ×

∫∫∫

2l1≤1+|v|≤2l1+1

2l2≤1+2j+k |x−x′|≤2l2+1

(1 + |v|)ε
′
|ς(α, v)||b1(x− α12

−jv)|
2d(j+k)

(1 + 2j+k|x− x′|)d+
1

4

dx dα dv .

On the support of the integral, |x−α12
−jv| ≥ R (by the support of b1). Since 1+2j+k|x−x′| ≤

2l2+1, we have |x− x′| ≤ 2l2+1−j−k. Thus, |x| ≤ 2l2+1−j−k + 1 ≤ R
2 + 1 ≤ R

2 + R
5 ≤ 3

4R. Thus,

|α12
−jv| & R and therefore |α1| & 2j R

|v| & 2j−l1R. Plugging this in, we have for ε′ = ε/2,

(II) .
∞∑

l1=0

∑

2l2<R2j+k−2

2−l1ε′−l2/4(1 + 2j−l1R)−
ε′

2

∫∫∫

2l1≤1+|v|≤2l1+1

2l2≤1+2j+k|x−x′|≤2l2+1

(1 + |v|)ε
′
×

(1 + |α1|)
ε′

2 |ς(α, v)||b1(x− α12
−jv)|

2d(j+k)

(1 + 2j+k|x− x′|)d+
1

4

dx dα dv

.
∞∑

l1=0

∑

2l2<R2j+k−2

2−l1ε′−l2/4(1 + 2j−l1R)−
ε′

2 ‖ς‖Bε . (2jR)−ε′/2 .

Combine the estimates for (I) and (II) to obtain (11.8) and the proof of the lemma is complete.
�

Lemma 11.7. Let 0 < ε ≤ 1. Then for all j, k ≥ 0, u ∈ U, R ≥ 5, and b1 ∈ L∞(Rd) with
supp(b1) ⊆ {|v| ≥ R} we have

(∫

|x|≤1
|(Qj+k[u]Wj [ςj, b1]1)(x)|

2 dx
)1/2

. ‖u‖U‖b1‖∞min
{
(2jR)−ε/4‖ςj‖Bε , ‖ςj‖L1

}
.

Proof. Let B = {x : |x| ≤ 1}. We have, by the previous lemma,
( ∫

B
|(Qj+k[u]Wj [ςj , b1]1)(x)|

2 dx
)1/2

≤ sup
‖bn+2‖1=1

supp(bn+2)⊆B

∣∣Λ[ς(2
j )

j ](b1, b
j
2, . . . , b

j
n, 1,

tQj+k[u]bn+2)
∣∣

. sup
‖bn+2‖1=1

supp(bn+2)⊆B

‖u‖U‖b1‖∞‖bn+2‖1 min
{
(2jR)−ε/4‖ςj‖Bε , ‖ςj‖L1

}

and the assertion follows. �



MULTILINEAR SINGULAR INTEGRAL FORMS OF CHRIST-JOURNÉ TYPE 83

For j, k1, k2 ≥ 0 and u ∈ U, define an operator Vj,k1,k2 ≡ V
ςj ,u
j,k1,k2

by

∫
f(x)Vj,k1,k2g(x) dx =

∫
g(x) (Qj+k1 [u]Wj [ςj, Qj+k2f ]1)(x) dx

= Λ[ς
(2j )
j ](Qj+k2f, b

j
2, . . . , b

j
n, 1,

tQj+k1 [u]g).

Lemma 11.8. Let 0 < ε ≤ 1. There exists c > 0 (independent of n and ε) such that for ε′ ≤ cε,
k1, k2 ≥ 0, and for all f ∈ L2(Rd),

(∫ ∑

j≥0

|tVj,k1,k2f(x)|
2 dx

)1/2
. ‖f‖L2‖u‖U sup

j
‖ςj‖L1

min
{
1, n2−ε′(k1+k2)Γε

}
.

Proof. From Theorem 10.1 we get the bound

(11.9)
∥∥∥
∑

j≥0

Vj,k1,k2

∥∥∥
L2→L2

. ‖u‖U min
{
1, n2−ε′(k1+k2)Γε

}
.

Let δj be any sequence of ±1. Note that δjVj,k1,k2 is of the same form as Vj,k1,k2 with ςj replaced
by δjςj . Thus, by (11.9),

∥∥∥
∑

j≥0

δj
tVj,k1,k2f

∥∥∥
2
. ‖f‖L2‖u‖U min

{
1, n2−ε′(k1+k2)Γε

}
,

where the implicit constant does not depend on the particular sequence δj . By Khinchine’s
inequality

( ∫ ∑

j≥0

|tVj,k1,k2f(x)|
2 dx

)1/2
. sup

∥∥∥
∑

j≥0

δj
tVj,k1,k2f

∥∥∥
2
,

where the sup is taken over all ±1-sequences {δj}. The result follows. �

Lemma 11.9. Let 0 < ε < 1. There exists c > 0 (independent of n and ε) so that for ε′ ≤ cε2,
for all b1 ∈ L∞(Rd), for all u ∈ U,

(∑

j≥0

∫

|x|≤1

∣∣(Qj+k1 [u]Wj [ςj , (I − Pj)b1]1)(x)
∣∣2 dx

) 1

2

≤ C(ε, d)‖u‖U‖b1‖∞ sup
j

‖ςj‖L1 min{2−k1ε′nΓ2
ε, log

3/2(1 + nΓε)}.

Proof. Fix b1 ∈ L∞(Rd) and u ∈ U. We may assume ‖b1‖L∞ = 1 and ‖u‖U = 1. Fix
0 < β ≤ 1 and δ > 0 to be chosen later, see (11.11) below. Given k1, k2 ≥ 0 we decompose

b1 = bk1,k21,∞ + bk1,k21,0 where

bk1,k21,∞ (y) :=

{
b1(y) if |y| ≥ max{10, β 21+δ(k1+k2)}

0 if |y| < max{10, β 21+δ(k1+k2)}
,

bk1,k21,0 (y) := b1(y)− bk1,k21,∞ (y).

We expand I − Pj =
∑

k2
Qj+k2 and then have

(∑

j≥0

∫

B
|(Qj+k1[u]Wj [ςj , (I − Pj)b1]1)(x)|

2 dx
)1/2

≤ (I) + (II)
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where

(I) :=
∑

k2>0

(∑

j≥0

∫

B
|(Qj+k1 [u]Wj [ςj , Qj+k2b

k1,k2
1,∞ ]1)(x)|2 dx

)1/2
,

(II) :=
∑

k2>0

(∑

j≥0

∫

B
|(Qj+k1 [u]Wj [ςj , Qj+k2b

k1,k2
1,0 ]1)(x)|2 dx

)1/2
.

We begin by estimating (I). Because j, k2 ≥ 0,

supp(Qj+k2b
k1,k2
1,∞ ) ⊆ {y : |y| ≥ Rk1,k2} where Rk1,k2 := max{5, β2(k1+k2)δ},

we may apply Lemma 11.7 to see

(I) =
∑

k2>0

(∑

j≥0

∫

B
|(Qj+k1 [u]Wj [ςj, Qj+k2b

k1,k2
1,∞ ]1)(x)|2 dx

)1/2

.
∑

k2>0

(∑

j≥0

min
{
(2jRk1,k2)

−2ε/4‖ςj‖
2
Bε
, sup

j′
‖ςj′‖

2
L1

})1/2

≤ sup
j′

‖ςj′‖L1

∑

k2>0

(∑

j≥0

min{1, 2−jε/2−(k1+k2)εδ/2β−ε/2Γ2
ε

)1/2

. sup
j

‖ςj‖L1

∑

k2>0

min{1, 2−(k1+k2)εδ/4β−ε/4Γε} log
1/2(1 + β−2ε/4Γ2

ε)

. sup
j

‖ςj‖L1 min{1, 2−k1εδ/4β−ε/4Γε} log
3/2(1 + β−ε/4Γε).

We now turn to (II). We have ‖bk1,k21,0 ‖2 . R
d/2
k1,k2

‖bk1,k21,0 ‖∞ . R
d/2
k1,k2

and use Lemma 11.8 to

estimate, for some c1 ∈ (0, 1),

(II) =
∑

k2>0

(∑

j≥0

∫

B
|(Qj+k1 [u]Wj [ςj , Qj+k2b

k1,k2
1,0 ]1)(x)|2 dx

) 1

2

=
∑

k2>0

(∑

j≥0

∫

B
|tVj,k1,k2b

k1,k2
1,0 (x)|2 dx

) 1

2

. sup
j

‖ςj‖L1

∑

k2>0

‖bk1,k21,0 ‖L2 min{1, n2−c1ε(k1+k2)Γε}

. sup
j

‖ςj‖L1

∑

k2>0

(
1 + β2k1δ+k2δ

)d/2
min{1, n2−c1ε(k1+k2)Γε}

=
∑

k2>0
1<β 2k1δ+k2δ

+
∑

k2>0
1≥β 2k1δ+k2δ

=: (II1) + (II2).

(11.10)

We take

(11.11) β = (nΓε)
−1/d, δ =

c1ε

2d
.

Notice that since β 2k1δ+k2δ ≥ 1 in the sum (II1) we may replace the power d/2 by d and get,
with the choice (11.11),

(β2k1δ+k2δ)d/2(n2−ε′k1−ε′k2Γε) ≤ βdnΓε2
(k1+k2)(δd−c1ε)

≤ 2−(k1+k2)c1ε/2



MULTILINEAR SINGULAR INTEGRAL FORMS OF CHRIST-JOURNÉ TYPE 85

and thus

(II1) .
∑

k2>0

2−(k1+k2)c1ε/2 sup
j

‖ςj‖L1 . 2−k1c1ε/2 sup
j

‖ςj‖L1 .

Next,

(II2) . sup
j

‖ςj‖L1

∑

k2>0

min{1, n2−(k1+k2)c1εΓε}

. sup
j

‖ςj‖L1 ×

{
log(2 + 2−c1εk1Γεn) if 2−c1εk1Γεn ≥ 1

2−c1εk1Γεn if 2−c1εk1Γεn ≤ 1

. sup
j

‖ςj‖L1 min{2−c1εk1nΓε, log(1 + nΓε)}.

Finally we use the choice (11.11) in the above estimate for (I) and get

(I) . sup
j

‖ςj‖L1 min{1, 2−k1
c1ε

2

8d n
ε
4dΓ

1+ ε
4d

ε } log3/2(1 + n
ε
4dΓ

1+ ε
4d

ε )

. sup
j

‖ςj‖L1 min{1, 2−k1cε2nΓ2
ε} log

3/2(1 + nΓε)

with c = c1/8d. Combining this estimate with the above estimates for (II1) and (II2) yields
the assertion. �

Proof of Proposition 11.3, conclusion. The lemma is just a restatement of (11.6) for x0 = 0 and
ℓ = 0 and by (11.7) we reduced the proof of (11.6) to this special case. �

11.2.2. Proof of Proposition 11.4. We start with an elementary observation for f ∈ L∞.

Lemma 11.10. For all k ≥ 0, j ∈ Z, b1 ∈ L∞(Rd), and u ∈ U,

‖Qj+k[u]Wj [ςj , b1]f‖L∞ . ‖u‖U‖ςj‖L1‖b1‖∞‖f‖∞.

Proof. For g ∈ L1 with ‖g‖1 = 1 we have, using Lemma 2.7,
∣∣∣
∫
g(x)(Qj+k[u]Wj [b1]1)(x) dx

∣∣∣ =
∣∣Λ[ς(2

j )
j ](b1, b

j
2, . . . , b

j
n, f,

tQj+k[u]g)
∣∣

. ‖b1‖∞‖f‖∞‖tQj+k[u]g‖1‖ςj‖L1 . ‖b1‖∞‖u‖U‖ςj‖L1 ,

completing the proof. �

Lemma 11.11. There is c ∈ (0, 1) (independent of n and ε) so that for ε′ ≤ cε2, and all k ≥ 0,
j ∈ Z, u ∈ U, b1 ∈ L∞(Rd), f ∈ L2(Rd) we have

( ∫ ∣∣Qj+k[u]Wj [ςj, b1]1(x)Pjf(x)
∣∣2dx

)1/2
. ‖f‖2‖u‖U‖b1‖L∞ min{‖ςj‖L1 , n2−kε′‖ςj‖Bε}.

Proof. We may normalize and assume ‖b1‖∞ = 1. We may assume, by scale invariance of the
result, that j = 0 (see (11.7)). The assertion follows then from the inequality

(11.12)
(∫ ∣∣Qk[u]W0[ς, b1]1(x)P0f(x)

∣∣2dx
)1/2

. ‖u‖U‖b1‖∞‖f‖2 min{‖ς‖L1 , n2−kε′‖ς‖Bε}.

Because the convolution kernel of P0 is supported in Bd(0, 1), it suffices to show (11.12) for
functions supported in a ball B of radius 1. We may assume (by translating the functions bi)
that B is centered at the origin. Let B∗ be the ball of double radius.

Now ‖P0f‖∞ . ‖f‖2 for f supported in B, and therefore it suffices to show

(11.13) ‖Qk[u]W0[ς, b1]1‖L2(B∗) . ‖u‖U min{n2−kε′‖ς‖Bε , ‖ςj‖L1}.
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To show (11.13) we split 1 = 1Ωkδ +1Ω∁
kδ

where Ωkδ = {x : |x| ≤ 5 · 2kδ}, with a choice of δ ≪ ε

to be determined.

It follows from Lemma 11.5 (or directly from Theorem 7.8) that for some c > 0 (independent
of n)

‖Qk[u]W0[ς, b1]1Ωkδ‖L2(B∗) . ‖1Ωkδ‖2‖u‖U min{n2−kcε‖ς‖Bε , ‖ς‖L1}

. ‖u‖U min{n2−k(cε−dδ)‖ς‖Bε , ‖ς‖L1}(11.14)

and thus we want to choose δ ≤ cε(2d)−1.

Next we estimate the L2(B∗) norm ofQk[u]W0[ς, b1]1Ω∁
kδ

. Let ς̃(α, v) = ς(1−α1, · · · , 1−αn, v)

so that ‖ς̃‖Bε . ‖ςj‖Bε and ‖ς̃‖L1 = ‖ςj‖L1 . We have, for ‖g‖L2(B∗) = 1,

∣∣∣
∫
g(x)(Qk[u]W0[ς, b1]1Ω∁

δk
)(x) dx

∣∣∣

=
∣∣Λ[ς](b1, b02, . . . , b0n,1Ω∁

kδ
, tQk[u]g)

∣∣ =
∣∣Λ[ς̃ ](b1, b02, . . . , b0n, tQk[u]g,1Ω∁

kδ
)
∣∣

=
∣∣∣
∫∫∫∫

ς̃(α, v)b1(x− α1v)
( n∏

i=2

b0i (x− αiv)
)
1Ω∁

δk
(x)u(2

k)(y − x+ v)g(y) dx dy dv dα
∣∣∣

and this is estimated by

∫∫∫∫

|x|>5·2δk

|ς̃(α, v)||u(2
k)(y − x+ v)g(y)| dx dv dα dy

≤
∑

2l1≥2·2kδ

∞∑

l2=0

∫∫∫∫

2l1≤|x|≤2l1+1

2l2≤1+|v|≤2l2+1

|ς̃(α, v)||u(2
k )(y − x+ v)g(y)| dx dv dα dy

=
∑

2l1≥2·2kδ

∞∑

l2=(l1−3)∨0

+
∑

2l1≥2·2kδ

l1−3∑

l2=0

=: (I) + (II).

We estimate (I) .

∑

2l1≥2·2kδ

∞∑

l2=(l1−3)∨0

2−εl2

∫∫∫∫

2l1≤|x|≤2l1+1

2l2≤1+|v|≤2l2+1

(1 + |v|)ε|ς̃(α, v)||u(2
k )(y − x+ v)g(y)| dx dv dα dy

.
∑

2l1≥2·2kδ

∞∑

l2=(l1−3)∨0

2−εl2‖ς̃‖Bε‖u‖U‖g‖1 . ‖ς‖Bε‖u‖U‖g‖12
−kδε . ‖ς‖Bε‖u‖U2

−kδε,

where the last inequality uses the support of g to see ‖g‖1 . ‖g‖2 = 1.
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For (II), we use the fact that l2 ≤ l1 − 3 to see that on the support of the integral, since
|y| ≤ 1 (due to the support of g), we have |y − x+ v| ≈ 2l1 . Thus, we have

(II) .
∑

2l1≥2·2kδ

l1−3∑

l2=0

‖u‖U

∫∫∫∫

2l1≤|x|≤2l1+1

2l2≤1+|v|≤2l2+1

|ς̃(α, v)|
2kd

(1 + 2k|x− v − y|)d+
1

2

|g(y)| dx dv dy dα

.
∑

2l1≥2·2kδ

l1−3∑

l2=0

2(−k−l1)/4‖u‖U

∫∫∫∫

2l1≤|x|≤2l1+1

2l2≤1+|v|≤2l2+1

|ς̃(α, v)|
2kd

(1 + 2k|x− v − y|)d+
1

4

|g(y)| dx dv dy dα

.
∑

2l1≥2·2kδ

l1−3∑

l2=0

2(−k−l1)/4‖u‖U‖ς̃‖L1‖g‖1 . ‖u‖U‖ς‖L1‖g‖12
−k/4 . 2−k/4‖u‖U‖ς‖L1 .

Finally, we have, by Lemma 11.10 applied to f = 1Ω∁
kδ

,

∣∣∣
∫
g(x)(Qk[u]W0[b1]1Ω∁

kδ
(x) dx

∣∣∣ . ‖ς‖L1‖u‖U,

where the last inequality uses the support of g again to see ‖g‖1 . ‖g‖2 = 1. If we take
δ = cε/(4d) then a combination of the estimates for (I) and (II), and (11.14) , yields (11.13) for
ε′ ≤ cε2/(4d). This completes the proof. �

In what follows we find it convenient to occasionally use the notation

(11.15) Mult{g}f = fg

for the operator of pointwise multiplication with g.

Lemma 11.12. Let 0 < ε ≤ 1/2. Then there is c > 0 (independent of n, ε) such that for
ε′ ≤ cε2, for all k ≥ 0, j, l ∈ Z, ςj ∈ Bε, u ∈ U, b1 ∈ L∞(Rd),
∥∥Qj+k[u]Wj [ςj , b1]PjQj+l −Mult{Qj+k[u]Wj [ςj , b1]1}PjQj+l

∥∥
L2→L2

.

{
‖u‖U‖b1‖∞min{n‖ςj‖Bε2

−kε′ , 2−l‖ς‖L1} if l ≥ 0,

‖u‖U‖b1‖∞min{n‖ςj‖Bε2
lε/42−kε′ , ‖ς‖L1} if l ≤ 0.

Proof. We may assume ‖ς‖U = 1 and ‖b1‖L∞ = 1. We have

(11.16) ‖PjQj+l‖L2→L2 . min{2−l, 1} .

Now, by Lemma 11.5,

(11.17) ‖Qj+k[u]Wj [b1]‖L2→L2 . ‖ςj‖L1

and, by Lemma 11.10 and (11.16),

(11.18) ‖Mult{Qj+k[u]Wj [ςj , b1]1}PjQj+l‖L2→L2 . min{1, 2−l}‖ς‖L1 ;

moreover, by Lemma 11.11,

(11.19) ‖Mult{Qj+k[u]Wj [ςj , b1]1}PjQj+l‖L2→L2 . n2−kε′‖ς‖Bε .

A combination of (11.17), (11.18), and (11.18) immediately gives the assertion for l ≥ 0, and
also the second estimate for l < 0. It remains to show that

(11.20) ‖(Qj+k[u]Wj [ςj , b1]PjQj+l −Mult{Qj+k[u]Wj [ςj, b1]1}PjQj+l‖L2→L2

. n‖ςj‖Bε max{2lε/2, 2l/4} if l ≤ 0;
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indeed the assertion follows by taking a geometric mean of the bounds in (11.19) and (11.20).

By scale invariance (see (11.7)) it suffices to show (11.20) for j = 0, i.e.

(11.21)
∥∥(R1 −R2)Ql

∥∥
L2→L2 . n‖ςj‖Bε max{2lε/2, 2l/4} if l ≤ 0;

for R1 = Qk[u]W0[ς, b1]P0 and R2 = Mult{Qk[u]W0[ς, b1]1}P0. Let ρ1, ρ2, ρ be the Schwartz
kernels of R1, R2, R1−R2, and let σ−l be the Schwartz kernel of Ql. We wish to apply Lemma
8.6 (note the notation l = −ℓ in that lemma). It is immediate that σℓ satisfies assumptions

(8.23b) and (8.23c) with B1, B∞, B̃∞ . 1. The function ρ satisfies the crucial cancellation
condition (8.24) since

(Qk[u]W0[ς, b1]P0 −Mult{Qk[u]W0[ς, b1]1}P0)1 = 0 .

It remains to check the size conditions (8.23a). We have

|ρ1(x, y)| ≤

∫∫∫
|u(2

k)(x− x′)||ς(α, x′ − y′)||φ(y′ − y)| dx′ dα dy′

and thus clearly

sup
y

∫
|ρ1(x, y)|dx ≤ ‖u‖1‖ς‖L1‖φ‖1 . 1

since ‖u‖1 ≤ ‖u‖U. Also for some M > d+ 1,
∫

|ρ1(x, y)|(1 + |x− y|)εdy

.

∫
(1 + |x− y|)ε

∫∫∫ ∣∣∣ 2kd

(1 + 2k|x− x′|)d+
1

2

|ς(α, x′ − y′)|

(1 + |y′ − y|)M
dx′ dα dy′ dy

.

∫∫∫
|ς(α, x′ − y′)|(1 + |x′ − y′|)εω(x, x′, y′) dα dy′ dx′ ,

where

ω(x, x′, y′) =
2kd

(1 + 2k|x− x′|)d+
1

2

∫
1

(1 + |y′ − y|)M
(1 + |x− y|)ε

(1 + |x′ − y′|)ε
dy .

We have

sup
x′

∫
|ς(α, x′ − y′)|(1 + |x′ − y′|)ε dα dy′ ≤ ‖ς‖Bε

and thus it suffices to show that

(11.22) sup
x,y

∫
ω(x, x′, y)dx′ . 1.

Now by the triangle inequality (1 + |x− y|)ε ≤ (1 + |x− x′|)ε(1 + |x′ − y′|)ε(1 + |y′ − y|)ε and
hence

∫
ω(x, x′, y)dx′ ≤

∫
2kd(1 + |x− x′|)ε

(1 + 2k|x− x′|)d+
1

2

∫
1

(1 + |y′ − y|)M−ε
dy dx′

.

∫
2kd(1 + |x− x′|)ε

(1 + 2k|x− x′|)d+
1

2

dx′

and (11.22) follows easily, provided that ε < 1/2. Thus condition (8.23a) is satisfied for ρ1. By
Lemma 11.10 it is immediate that condition (8.23a) is satisfied for ρ2 as well. Thus we have
verified the assumptions of Lemma 8.6 and (11.21) follows. This completes the proof of the
lemma. �
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Proof of Proposition 11.4, conclusion. We may assume ‖u‖U = 1, ‖f‖2 = 1, and supj ‖b
j
1‖∞ =

1. For k ≥ 0, define

Rk,j := Qj+k[u]Wj [ςj, b
j
1]Pj −Mult{Qj+k[u]Wj [ςj , b

j
1]1}Pj .

The proof is complete if we can show, for k ≥ 0,

(11.23)
(∑

j

‖Rj,kf‖
2
2

)1/2
. sup

j
‖ςj‖L1 min

{
2−ε1knΓε, log(1 + nΓε)

}
.

Lemma 11.12 implies

‖Rk,jQj+l‖L2→L2 .

{
supj ‖ς‖L1 min{nΓε2

−kε′ , 2−l}, if l ≥ 0,

supj ‖ς‖L1 min{nΓε2
lε/42−kε′, 1} if l < 0.

Now
(∑

j

‖Rk,jf‖
2
2

)1/2
=

(∑

j

∥∥∥Rk,j

∑

l∈Z

Qj+lQ̃j+lf
∥∥∥
2

2

) 1

2

.
∑

l∈Z

(∑

j

∥∥∥Rk,jQj+lQ̃j+lf
∥∥∥
2

2

) 1

2

.
∑

l∈Z

sup
j′

‖Rk,j′Qj′+l‖L2→L2

(∑

j

‖Q̃j+lf‖
2
2

)1/2

. sup
j

‖ςj‖L1

[∑

l≥0

min{nΓε2
−kε′ , 2−l}+

∑

l<0

min{nΓε2
lε/42−kε′ , 1}

]

. sup
j

‖ςj‖L1 min
{
2−ε1knΓε, log(1 + nΓε)

}

for some sufficiently small ε1 > 0, and the proof is complete. �

11.3. Proof that Theorem 11.1 implies Part II of Theorem 5.1. Let 1 < p ≤ 2. The
asserted result follows from

(11.24)
∣∣∣
∑

j∈Z

Λ[ς
(2j )
j ](bj1, . . . , b

j
l−1, (I − Pj)bl, b

j
l+1, . . . , b

j
n, (I − Pj)bn+1, Pjbn+2)

∣∣∣

. sup
j

‖ςj‖L1 log5/2(1 + nΓε)
( ∏

i=1,...,n
i 6=l

sup
j

‖bji‖∞
)
‖bl‖∞‖bn+1‖p‖bn+2‖p′

and

(11.25)
∣∣∣
∑

j∈Z

Λ[ς
(2j )
j ](bj1, . . . , b

j
l−1, (I − Pj)bl, b

j
l+1, . . . , b

j
n, Pjbn+1, (I − Pj)bn+2)

∣∣∣

. sup
j

‖ςj‖L1 log5/2(1 + nΓε)
( ∏

i=1,...,n
i 6=l

sup
j

‖bji‖∞
)
‖bl‖∞‖bn+1‖p‖bn+2‖p′ .

Once (11.24) and (11.25) are established we use them for the choices bji = bi, if i < l, bji = Pjbi,
if l < i ≤ n. Now it is crucial that ‖Pj‖L∞→L∞ ≤ 1 (here φj ≥ 0, and

∫
φj = 1 are used). Hence

the two inequalities for Λ1
l,n+1 and Λ1

l,n+2 claimed in Theorem 5.1 are an immediate consequence

of (11.24) and (11.25).

In order to establish (11.24) and (11.25) we may assume without loss of generality that l = 1.
This is because we can permute the first n entries of the multilinear form and replace ςj by ℓ̟ςj
as in (4.1). We may also assume that

‖b1‖∞ ≤ 1, ‖bji‖∞ = 1, 2 ≤ i ≤ n.
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Now, in what follows let

ς̃j(α, v) = ς(1− α1, . . . , 1− αn, v)

(as in (4.2)). To prove (11.24) for l = 1 we observe

∑

j

Λ[ς
(2j )
j ]((I − Pj)b1, b

j
2, . . . , b

j
n, (I − Pj)bn+1, Pjbn+2) =

∫
bn+2(x)

tT bn+1(x)dx

where
tT =

∑

j

Pj
tWj [ςj , (I − Pj)b1](I − Pj) =

∑

j

PjWj[ς̃j , (I − Pj)b1](I − Pj).

Now we expand I − Pj =
∑

k>0Qj+k and we get tT =
∑

k>0
tT k where

tT k =
∑

j

SjQj+k, with Sj = PjWj[ς̃j , (I − Pj)b1].

The Schwartz kernel of Sj is equal to Dil2jsj where

sj(x, y) =

∫
φ(x− x′)σj(x

′, y)dy

with

(11.26) σj(x, y) =

∫
ςj(α, x − y)(I − P0)b1(2

−j(x− αi(x− y))
n∏

i=2

bi(2
−j(x− αi(x− y)) dα.

We wish to apply Corollary 8.12. It is easy to check that

Int1[sj] . sup
j

‖ςj‖L1 =: A, Int1ε[sj ] . sup
j

‖ςj‖Bε =: B.

Now ‖
∑

j SjQj+k‖L2→L2 = ‖T k‖L2→L2 and by Theorem 11.1
∥∥∥
∑

j

SjQj+k

∥∥∥
L2→L2

. sup
j

‖ςj‖L1 log3/2(1 + nΓε) := D0 ,

2ε1k‖
∑

j

SjQj+k‖L2→L2 . sup
j

‖ςj‖L1nΓ2
ε := Dε1 .

Now we easily obtain from Corollary 8.12 that
∥∥∥
∑

k>0

∑

j

SjQj+k

∥∥∥
Lp→Lp

. Cp sup
j

‖ςj‖L1 log5/2(1 + nΓε)

and (11.24) is proved.

Finally we turn to (11.25), for l = 1. The case p = 2 follows immediately from (11.24), by
duality replacing ςj with ς̃j. For p < 2 we observe that

∑

j∈Z

Λ[ς
(2j )
j ]((I − Pj)b1, b

j
2, . . . , b

j
n, Pjbn+1, (I − Pj)bn+2) =

∫
bn+2(x)SjPjbn+1(x)dx

with Sj = (I − Pj)Wj [ςj, b1]. The Schwartz kernel of Sj is equal to Dil2jsj where

sj(x, y) = σj(x, y)−

∫
φ(x− x′)σj(x

′, y)dy

with σj as in (11.26). Then sj satisfies Int1[sj] . ‖ςj‖L1 and Int1ε[sj] . ‖ςj‖Bε and (11.25) for
p < 2 follows immediately from the case p = 2 and Corollary 8.10.
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12. Proof of Theorem 5.1: Part III

Let n ≥ 2 and 1 ≤ l1 < l2 ≤ n. In this section, we consider the multilinear functional

Λ1
l1,l2(b1, . . . , bn+2) :=

∑

j∈Z

Λ[ς
(2j )
j ](b1, . . . , bl1−1, (I − Pj)bl1 , Pjbl1+1, . . . , Pjbl2−1, (I − Pj)bl2 , Pjbl2+1, . . . , Pjbn+2),

(12.1)

where, for some fixed ε > 0, ~ς = {ςj : j ∈ Z} ⊂ Bε(R
n × R

d) is a bounded set. The goal of

this section is to prove, for p ∈ (1, 2], b1, . . . , bn ∈ L∞(Rd), bn+1 ∈ Lp(Rd), bn+2 ∈ Lp′(Rd), the
inequality

∣∣Λ1
l1,l2(b1, . . . , bn+2)

∣∣ ≤ Cd,p,ε sup
j

‖ςj‖L1 log3(1 + nΓε)
( n∏

l=1

‖bl‖∞
)
‖bn+1‖p‖bn+2‖p′ ,(12.2)

together with convergence of the sum (12.1) in the operator topology of multilinear functionals.
Moreover the operator sum T 1

l1,l2
associated to Λ1

l1,l2
converges in the strong operator topology.

It will be convenient to prove a slightly more general theorem. Let {bjl : 3 ≤ l ≤ n, j ∈ Z} ⊂

L∞(Rd) be a bounded set, with supj∈Z ‖b
j
l ‖L∞ = 1, for 3 ≤ l ≤ n. For b1, b2 ∈ L∞(Rd) define

an operator Sj[b1, b2] by
∫
g(x)(Sj [b1, b2]f)(x) dx := Λ[ς

(2j )
j ]((I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, f, g).

Theorem 12.1. With the above assumptions, for 1 < p ≤ 2, the sums
∑∞

j=−∞ PjSj[b1, b2]Pj

converge to S[b1, b2], in the strong operator topology as operators Lp → Lp, and S[b1, b2] satisfies
the estimate

(12.3) ‖S[b1, b2]‖Lp→Lp ≤ Cd,p,ε sup
j

‖ςj‖L1 log3(1 + nΓε)‖b1‖∞‖b2‖∞.

Proof of (12.2) given Theorem 12.1. Using Theorem 2.9 we see that Theorem 12.1 also implies
the inequality

∣∣∣
∑

j

Λ[ς
(2j )
j ](bj1, . . . , b

j
l1−1, (I − Pj)bl1 , b

j
l1+1, . . . , b

j
l2−1, (I − Pj)b

j
l2
, bjl2+1, . . . , b

j
n, bn+1, bn+2)

∣∣∣

. sup
j

‖ςj‖L1 log3(1 + nΓε)‖bl1‖∞‖bl2‖∞
( ∏

1≤i≤n
i 6=l1,l2

‖bji‖∞
)
‖bn+1‖p‖bn+2‖p′ .

Since ‖Pjbl‖q ≤ ‖bl‖q we may replace bi by Pjbi for l1 +1 ≤ i ≤ l2 − 1, i ≥ l2 +1, and if we use
also Pj =

tPj then (12.2) follows. �

The rest of this section is devoted to the proof of Theorem 12.1. Thus, we consider sequences

bjl ∈ L∞(Rd) fixed (3 ≤ l ≤ n) with supj ‖b
j
l ‖L∞ = 1. The L2 estimates in §10 will be crucial.

We restate them as

Proposition 12.2. There is C . 1 such that for ε′ ≤ ε/C, and for all collections

{bjn+1 : j ∈ Z}, {bjn+2 : j ∈ Z} ⊂ L∞(Rd), with sup
j

‖bjn+1‖∞ = 1, sup
j

‖bjn+2‖∞ = 1,
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we have for f, g ∈ L2(Rd) and k1, k2 ∈ N,

∣∣∣
∑

j∈Z

Λ[ς
(2j )
j ](Qj+k1f,Qj+k2g, b

j
3, . . . , b

j
n+2)

∣∣∣

. ‖f‖2‖g‖2 min
{
2−ε′k1−ε′k2n sup

j
‖ςj‖Bε , sup

j
‖ςj‖L1

}
.

Let Tk1,k2 be defined by

(12.4) Λ[ς
(2j )
j ](Qj+k1f,Qj+k2g, b

j
3, . . . , b

j
n+2) =

∫
g(x)Tk1,k2,jf(x) dx.

Then
∑

j Tk1,k2,j and
∑

j
tTk1,k2,j converge in the strong operator topology as operators L2 → L2,

with equiconvergence with respect to bj3, . . . , b
j
n+2.

Proof. This follows from Theorem 10.1. �

Proposition 12.3. Let {bj1, b
j
2 : j ≤ −1} ⊂ L∞(Rd) be a bounded set with supj≤−1 ‖b

j
l ‖L∞ = 1,

l = 1, 2, and let bn+1, bn+2 be L∞ functions supported in {y : |y| ≤ 1}.

−1∑

j=−∞

∣∣Λ[ς(2
j )

j ](bj1, . . . , b
j
n, Pjbn+1, Pjbn+2)

∣∣ . ‖bn+1‖L∞‖bn+2‖L∞ sup
j

‖ςj‖L1 .

Proof. We may assume ‖bn+1‖L∞ = ‖bn+2‖L∞ = 1. Then by Lemma 2.7

∣∣Λ[ς(2
j )

j ](bj1, . . . , b
j
n, Pjbn+1, Pjbn+2)

∣∣ . sup
j

‖ςj‖L1‖Pjbn+1‖2‖Pjbn+2‖2

. sup
j

‖ςj‖L12jd‖bn+1‖1‖Pjbn+2‖1 . sup
j

‖ςj‖L12jd

where we have used ‖Pj‖L1→L2 . 2jd/2 and then the support assumption on bn+1, bn+2. Now
sum over j ≤ −1 and the proof is complete. �

Lemma 12.4. Let 0 < ε ≤ 1. For all R ≥ 5, all j ≥ 0, bn+1, bn+2 ∈ L∞ supported in
{x : |x| ≤ 4}, b1, b2 ∈ L∞(Rd) with supp(b1) ⊆ {v : |v| ≥ R}, we have

|Λ[ς
(2j )
j ](b1, b2, b

j
3, . . . , b

j
n, bn+1, bn+2)| . min

{
(2jR)−ε/2‖ςj‖Bε , ‖ςj‖L1

} ∏

l∈{1,2,n+1,n+2}

‖bl‖∞.

Proof. We may assume ‖bl‖L∞ = 1, l = 1, 2, n + 1, n + 2. The bound

(12.5) |Λ[ς
(2j )
j ](b1, b2, b

j
3, . . . , b

j
n, bn+1, bn+2)| . ‖ςj‖L1

follows immediately from Lemma 2.7 and the assumptions on the supports of bn+1 and bn+2.



MULTILINEAR SINGULAR INTEGRAL FORMS OF CHRIST-JOURNÉ TYPE 93

In order to establish the bound (2jR)−ε/2‖ςj‖Bε we estimate, using the assumption on
supp(b1),

∣∣Λ[ς(2
j )

j ](b1, b2, b
j
3, . . . , b

j
n, bn+1, bn+2)

∣∣

=
∣∣∣
∫∫∫

ς
(2j )
j (α, v)b1(x− α1v)b2(x− α2v)

( n∏

i=3

bji (x− α3v)
)
bn+1(x− v)bn+2(x) dx dα dv

∣∣∣

≤

∫

|x|≤4

∫

|v|≤8

∫

|α1|≥
R−|x|
|v|

|ς
(2j )
j (α, v)||b1(x− α1v)| dα dv dx

.

∫

|w|≤2j+3

∫

|α1|≥
R−|4|

2−j |w|

|ςj(α,w)| dα dw ;

here we have used R ≥ 5. Let m ≤ j + 3. Clearly

(12.6)

∫

2m−1≤|w|≤2m

∫

|α1|≥
R−|4|

2−j |w|

|ςj(α,w)| dα dw . (2j−mR)−ε‖ςj‖Bε,1 . 2mε(2jR)−ε‖ςj‖Bε .

Also

(12.7)

∫

2m−1≤|w|≤2m

∫

|α1|≥
R−|4|

2−j |w|

|ςj(α,w)| dα dw . 2−mε‖ςj‖Bε,4 . 2−mε‖ςj‖Bε .

We use (12.6) for 2m < (2jR)1/2 and (12.7) for 2m ≥ (2jR)1/2, and sum. The assertion
follows. �

Lemma 12.5. For l = 1, 2, n + 1, n + 2, let {bj,k1,k2l : j, k1, k2 ∈ N} ⊂ L∞(Rd) be bounded sets

with supj,k1,k2 ‖b
j,k1,k2
l ‖L∞ = 1. Let β > 0, δ > 0 and assume

(12.8) supp(bj,k1,k21 ) ⊆
{
v : |v| ≥ max{5, β2k1δ+k2δ}

}
, ∀j, k1, k2 ∈ N

and for l = n+ 1, n + 2,

supp(bj,k1,k2l ) ⊆ {v : |v| ≤ 4}, ∀j, k1, k2 ∈ N.

Then ∑

j,k1,k2∈N

|Λ[ς
(2j )
j ](bj,k1,k21 , bj,k1,k22 , bj3, . . . , b

j
n, b

j,k1,k2
n+1 , bj,k1,k2n+2 )| . sup

j
‖ςj‖L1 log3(1 + β−1Γε).

Here the implicit constant depends on δ, but not on β. The same result holds if instead of (12.8)
we have

(12.9) supp(bj,k1,k22 ) ⊆
{
|v| ≥ max{5, β2k1δ+k2δ}

}
, ∀j, k1, k2 ∈ N.

Proof. Because our definitions are symmetric in b1 and b2, the result with (12.9) in place of
(12.8) follows from the result with (12.8). Thus, we may focus only on the proof with the
assumption (12.8). Applying the previous lemma, we have

∑

j,k1,k2∈N

∣∣Λ[ς(2
j )

j ](bj,k1,k21 , bj,k1,k22 , bj3, . . . , b
j
n, b

j,k1,k2
n+1 , bj,k1,k2n+2 )

∣∣

.
∑

j,k1,k2∈N

min
{
2−jε/2

(
max{5, β2k1δ+k2δ}

)−ε/2
sup
j

‖ςj‖Bε , sup
j

‖ςj‖L1

}

. sup
j

‖ςj‖L1 log3(1 + β−1Γε),

completing the proof. �
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Proposition 12.6. Let b1, b2, bn+1, bn+2 ∈ L
∞(Rd). Let Sj be defined by

(12.10) Λ[ς
(2j )
j ]((I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2) =

∫
bn+2(x)Sjbn+1(x) dx.

Consider Sj as a bounded operator mapping L∞ functions supported in Bd(0, 1) to L1(Bd(0, 1)).

Then the sum
∑

Sj converges in the strong operator topology as bounded operators L∞(Bd(0, 1))

to L1(Bd(0, 1)) and we have for supp(bn+1), supp(bn+2) ⊆ {y : |y| ≤ 1},
∣∣∣
∑

j∈Z

Λ[ς
(2j )
j ]((I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣∣

. sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l∈{1,2,n+1,n+2}

‖bl‖∞.

Proof. We may assume ‖bl‖L∞ = 1, l = 1, 2, n + 1, n + 2.

By Proposition 12.3 the required estimate holds for the sum over negative j and thus we only
bound

(12.11)
∣∣∣
∑

j≥0

Λ[ς
(2j )
j ]((I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣∣

. sup
j

‖ςj‖L1 log3(1 + nΓε).

Let 0 < β ≤ 1, 0 < δ < 1 be constants, to be chosen later (see (12.14)). Implicit constants
below are allowed to depend on δ, but do not depend on β. For l = 1, 2 and k1, k2 > 0 define

bk1,k2l,∞ (v) :=

{
bl(v) if |v| > max{10, β · 2k1δ+k2δ+1}

0 otherwise

and
bk1,k2l,0 (v) := bl(v)− bk1,k2l,∞ (v).

We have, by (6.2) and Remark 6.1,
∣∣∣
∑

j≥0

Λ[ς
(2j )
j ](I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2

∣∣∣

=
∣∣∣

∑

k1,k2>0

∑

j≥0

Λ[ς
(2j )
j ](Qj+k1b1, Qj+k2b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣∣ ≤ (I) + (II) + (III)

where

(I) :=
∑

k1,k2>0

∑

j≥0

∣∣Λ[ς(2
j )

j ](Qj+k1b
k1,k2
1,∞ , Qj+k2b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣ ,

(II) :=
∑

k1,k2>0

∑

j≥0

∣∣Λ[ς(2
j)

j ](Qj+k1b
k1,k2
1,0 , Qj+k2b

k1,k2
2,∞ , bj3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣ ,

(III) :=
∑

k1,k2>0

∣∣∣
∑

j≥0

Λ[ς
(2j )
j ](Qj+k1b

k1,k2
1,0 , Qj+k2b

k1,k2
2,0 , bj3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣∣ .

Because j, k1, k2 ≥ 0, and by the supports of the functions in question, we have

supp(Qj+k1b
k1,k2
1,∞ ), supp(Qj+k2b

k1,k2
2,∞ ) ⊆

{
v : |v| > max{5, β · 2k1δ+k2δ}

}
,

and
supp(Pjbn+1), supp(Pjbn+2) ⊆ {v : |v| ≤ 4} .
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Lemma 12.5 applies to show

(12.12) |(I)| + |(II)| . sup
j

‖ςj‖L1 log3(1 + β−1Γε).

We now apply the L2 result in Proposition 12.2. Let Tk1,k2,j be as in (12.4). Then
∑

j≥0 Tk1,k2,j
converges in the strong operator topology as operators L2 → L2, with equiconvergence with
respect to bounded choices of bn+1, bn+2 ∈ L∞(Bd(0, 1)), moreover the operator norms involve

some exponential deacy in k1, k2. If we apply this to bk1,k21,0 , bk1,k22,0 , we may replace the L2 norms
with L∞-norms. Hence if we define operators Sk1,k2,j by

∫
bn+2(x)Sk1,k2,jbn+1(x) dx = Λ[ς

(2j )
j ](Qj+k1b1, Qj+k2b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

we see that
∫ ∑

j bn+2(x)Sk1,k2,jbn+1(x)dx converges with equiconvergence in the choice of bn+2

with ‖bn+2‖∞ ≤ 1 and supp(bn+2) ⊂ Bd(0, 1). Thus we get convergence of
∑∞

j=0Sk1,k2,j in

the strong operator topology as operators L∞(Bd(0, 1)) → L1(Bd(0, 1)). For the quantitative

estimates we apply the L2 result in Proposition 12.2 and use the supports of bk1,k21,0 , bk1,k22,0 to get

for ε′ < cε2

(III) .
∑

k1,k2>0

max
{
2−ε′k1−ε′k2n sup

j
‖ςj‖Bε , sup

j
‖ςj‖L1

}
‖bk1,k21,0 ‖2‖b

k1,k2
2,0 ‖2

.
∑

k1,k2>0

max
{
2−ε′k1−ε′k2n sup

j
‖ςj‖Bε , sup

j
‖ςj‖L1

}
(max{5, β · 2k1δ+k2δ})2d.

(12.13)

Set

(12.14) δ =
ε′

4d
, β = (nΓε)

− 1

2d .

Note that

(β · 2k1δ+k2δ)2d(2−ε′k1−ε′k2n sup
j

‖ςj‖Bε ) = 2−ε′k1/2−ε′k2/2 sup
j

‖ςj‖L1 .

Using this in (12.13), we obtain

(III) . sup ‖ςj‖L1

∑

k1,k2>0

max{2−ε′k1−ε′k2nΓε, 1}(1 + β · 2k1δ+k2δ)2d

. sup
j

‖ςj‖L1 log2(1 + nΓε).

Plugging the choice of β into (12.12) completes the proof of (12.11).

Finally, we reexamine the proof to get the asserted convergence in the strong operator topol-
ogy. This is immediate for the sums corresponding to the terms (I), (II) in view of the decay
estimates in the proof of Lemma 12.5. For (III) we easily get the assertion from the above state-
ments about convergence of

∑
j≥0Sk1,k2,j and the exponential decay estimates in k1, k2. �

Proof of Theorem 12.1, conclusion. We shall apply Theorem 8.23. We need to verify that for
every ball Bd(x0, r), bn+1 ∈ L∞(Bd(x0, r)), ‖bn+1‖∞ = 1,

∫

Bd(x0,r)

∣∣∣
∑

|j|>N

PjSj [b1, b2]Pjbn+1(x)
∣∣∣dx→ 0
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as N → ∞ and

(12.15) sup
N
r−d

∫

Bd(x0,r)

∣∣∣
∑

|j|≤N

PjSj [b1, b2]Pjbn+1(x)
∣∣∣ dx

. sup
j

‖ςj‖L1 log3(1 + nΓε)‖b1‖∞‖b2‖∞ .

For x0 = 0 and r = 1 these statements follow from Proposition 12.6. We argue by rescaling

to obtain the same statement for other balls. Let ℓ be such that 2ℓ−1 ≤ r ≤ 2ℓ. Let b̃i(x) =

bi(x0 + 2ℓx), i = 1, 2, n + 1, n + 2 and b̃ji (x) = bj−ℓ
i (x0 + 2ℓx), 3 ≤ i ≤ n. Then by changes of

variables
∫
bn+2(x)Sj [b1, b2]bn+1(x) dx

= 2ℓdΛ[ς(2
j+ℓ)]

(
(I − Pj+ℓ)̃b1, (I − Pj+ℓ)̃b2, b̃

j+ℓ
3 , . . . , b̃j+ℓ

n , b̃n+1, b̃n+2

)
.

We use the fact that the functions b̃n+1, b̃n+2 are supported in the unit ball centered at the
origin. Then the result follows immediately from the statement for x0 = 0, r = 1.

In order to verify the Opε-assumptions in Theorem 8.23 we use Lemma 8.24 with C0 .
supj ‖ςj‖L1 and Cε . supj ‖ςj‖Bε . Now Theorem 8.23 yields

‖S[b1, b2]‖L2→L2 . ‖b1‖L∞‖b2‖L∞(sup
j

‖ςj‖L1) log3(1 + nΓε).

Finally we combine this inequality with Corollary 8.10, with the choices A . supj ‖ςj‖L1 and
B . supj ‖ςj‖Bε . This yields the asserted Lp bound. �

13. Proof of Theorem 5.1: Part IV

Let 1 ≤ l ≤ n+ 2. In this section, we consider the multilinear form

Λ2
l (b1, . . . , bn+2) :=

∑

j∈J

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbl−1, (I − Pj)bl, Pjbl+1, . . . , Pjbn+2),

where J ⊂ Z is a finite set, and, given some fixed ǫ > 0, ~ς = {ςj : j ∈ Z} ⊂ Bǫ(R
n × R

d) is a
bounded set with

∫
ςj(α, v) dv = 0, ∀α, j. Our task is to show that for p ∈ (1, 2],

(13.1) |Λ2
l (b1, . . . , bn+2)| ≤ Cd,p,ǫn sup

j
‖ςj‖L1 log3(1 + nΓε)

[ n∏

i=1

‖bi‖∞
]
‖bn+1‖p‖bn+2‖p′

where the implicit constant is independent of J . Moreover we wish to show that the sum
defining the operator T 2

l associated to Λ2
l via (5.12) converges in the strong operator topology

as operators bounded on Lp. The heart of the proof lies in the next theorem which we shall
prove first. Let Γε ≡ Γε(~ς) be as in (5.6).

Theorem 13.1. Let b1, . . . , bn ∈ L∞(Rd), bn+1, bn+2 ∈ L2(Rd). Then,

lim
N→∞

N∑

j=−N

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbl−1, (I − Pj)bl, Pjbl+1, . . . , Pjbn+2) = Λ2

n+2(b1, . . . , bn+2)

and Λ2
n+2 satisfies

|Λ2
n+2(b1, . . . , bn+2)| ≤ Cd,ǫn(sup

j
‖ςj‖L1) log3(1 + nΓε)

[ n∏

m=1

‖bm‖L∞

]
‖bn+1‖L2‖bn+2‖L2 .
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Moreover the sums defining the operator T 2
n+2 associated with Λ2

n+2 converge in the strong

operator topology as operators L2 → L2.

The full proof of (13.1) will be given in §13.3 below.

13.1. Outline of the proof of Theorem 13.1. We give an outline of the steps and refer to
§13.2 for some technical details.

We first describe the basic decomposition of Λ2
n+2(b1, . . . , bn+2) which is derived from a de-

composition of Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2, for fixed j. Write

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2)

= lim
M→∞

(
Λ[ς

(2j )
j ](Pj+MPjb1, . . . , Pj+MPjbn+1, (I − Pj)bn+2)

− Λ[ς
(2j)
j ](Pj−MPjb1, . . . , Pj−MPjbn+1, (I − Pj)bn+2)

)

= lim
M→∞

M∑

m=−M+1

(
Λ[ς

(2j )
j ](Pj+mPjb1, . . . , Pj+mPjbn+1, (I − Pj)bn+2)

− Λ[ς
(2j)
j ](Pj+m−1Pjb1, . . . , Pj+m−1Pjbn+1, (I − Pj)bn+2)

)

and use the multilinearity to obtain the decomposition

(13.2)

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+1,(I − Pj)bn+2)

=

n+1∑

l=1

∞∑

m=−∞

Λ[ς
(2j )
j ]

(
Pj+m−1Pjb1, . . . , Pj+m−1Pjbl−1, Qj+mPjbl,

Pj+mPjbl+1, . . . , Pj+mPjbn+1, (I − Pj)bn+2

)
.

The terms for l = 1, . . . , n are handled in a similar fashion, in fact the estimates can be reduced
to the case l = 1 by using Theorem 2.9, permuting the first and the lth entry, and accordingly
changing the family {ςj}.

Now let

(13.3) Xi
k ∈ {Pk, Pk−1}.

Then we need to show

(13.4)
∣∣∣

N∑

j=−N

∞∑

m=−∞

Λ[ς
(2j )
j ](X1

j+mPjb1,X
2
j+mPjb2, . . . , Qj+mPjbn+1, (I − Pj)bn+2)

∣∣∣

. sup
j

‖ςj‖L1 log2(1 + nΓε)
( n∏

i=1

‖bi‖∞
)
‖bn+1‖2‖bn+2‖2

and

(13.5)
∣∣∣

N∑

j=−N

∞∑

m=−∞

Λ[ς
(2j )
j ](Qj+mPjb1,X

2
j+mPjb2, . . . ,X

n+1
j+mPjbn+1, (I − Pj)bn+2)

∣∣∣

. sup
j

‖ςj‖L1 log2(1 + nΓε)
( n∏

i=1

‖bi‖∞
)
‖bn+1‖2‖bn+2‖2

with implicit constants uniform in N ; moreover we need to show the existence of the limits
as N → ∞, for the corresponding operator sums in the strong operator topology. By another
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application of Theorem 2.9 (this time permuting the entries (1, n+1)), with the corresponding
change of the family {ςj}), we see that (13.4) can be deduced from

(13.6)
∣∣∣

N∑

j=−N

∞∑

m=−∞

Λ[ς
(2j )
j ](Qj+mPjb1,X

2
j+mPjb2, . . . ,X

n+1
j+mPjbn+1, (I − Pj)bn+2)

∣∣∣

. sup
j

‖ς‖L1 log2(1 + nΓε)
( n+1∏

i=2

‖bi‖∞
)
‖b1‖2‖bn+2‖2.

It remains to prove (13.5), (13.6). We shall also decompose further using (I − Pj)bn+2 =∑
m2∈N

Qj+m2
bn+2. This leads to the following definition.

Definition 13.2. Let m,m1 ∈ Z, m2 > 0.

For bn+1 ∈ L∞(Rd) the operators Sm1,m2

j [bn+1] are defined by

(13.7)

∫
g(x)Sm1 ,m2

j [bn+1]f(x) dx

:= Λ[ς
(2j )
j ](Qj+m1

Pjg,X
2
j+m1

Pjb2, · · · ,X
n
j+m1

Pjbn,X
n+1
j+m1

Pjbn+1, Qj+m2
f).

For b1 ∈ L∞(Rd) the operators Tm1,m2

j [b1] are defined by

(13.8)

∫
g(x)Tm1,m2

j [b1]f(x) dx

:= Λ[ς
(2j )
j ](Qj+m1

Pjb1,X
2
j+m1

Pjb2, · · · ,X
n
j+m1

Pjbn,X
n+1
j+m1

Pjg,Qj+m2
f).

We formulate an auxiliary result. It gives bounds in the Op(ε)-classes defined in (8.36)
for suitable normalizing dilates of the operators Sm1,m2

j [bn+1], T
m1,m2

j [b1]. We use the same
notation for these operators and their Schwartz kernels.

Proposition 13.3. Let

(13.9) σm1,m2

j =

{
Dil2−j(S

m1,m2

j [bn+1]) if m1 ≥ 0,

Dil2−j−m1 (S
m1,m2

j [bn+1]) if m1 < 0,

and

(13.10) τm1,m2

j =

{
Dil2−j (T

m1,m2

j [b1]) if m1 ≥ 0,

Dil2−j−m1 (T
m1,m2

j [b1]) if m1 < 0.

There exists ε′ > c(ε) (independent of n) such that, for m2 > 0,

(13.11)

∥∥σm1,m2

j

∥∥
Opε

. 2−ε′(|m1|+m2)n2‖ςj‖Bε‖bn+1‖∞,
∥∥σm1,m2

j

∥∥
Op0

. ‖ςj‖L1‖bn+1‖∞,

and

(13.12)

∥∥τm1,m2

j

∥∥
Opε

. 2−ε′(|m1|+m2)n2‖ςj‖Bε‖b1‖∞,∥∥τm1,m2

j

∥∥
Op0

. ‖ςj‖L1‖b1‖∞ .

The proof will be given in §13.2 below. Note that we have the trivial estimate ‖·‖Op0
≤ ‖·‖Opε ,

and therefore the Op0 bounds stated in Proposition 13.3 will only be used for 2ε(|m1|+m2) . n2Γε.

The estimates (13.5), (13.6) and the asserted existence of the limits follow easily from the
following Proposition.
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Proposition 13.4. Let b2, . . . , bn ∈ L∞(Rd), with ‖bi‖∞ ≤ 1, i = 2, . . . , n. Let ~ς = {ςj} be a

bounded family in Bε, J ⊂ Z
d with #J <∞ and let m1 ∈ Z, m2 ∈ N.

Then there exist ε′ > 0 so that the following estimates hold, uniformly in J .

(i) If bn+1 ∈ L∞(Rd),

(13.13)
∥∥∥
∑

j∈J

Sm1,m2

j [bn+1]
∥∥∥
L2→L2

. min
{
2−ε′(|m1|+m2)n2 sup

j
‖ςj‖Bε , sup

j
‖ςj‖L1

}
‖bn+1‖∞.

(ii) We have limN→∞
∑N

j=−N S
m1,m2

j [bn+1] = Sm1,m2 [bn+1] in the strong operator topology

(as operators L2 → L2) and the bound (13.13) remains true for the limit Sm1,m2 .

(iii) We have
∑

m1∈Z

∑
m2>0 S

m1,m2 [bn+1] → S[bn+1] with absolute convergence in L(L2, L2).

Also
∑N

j=−N Sj[bn+1] converges to an operator S[bn+1] in the strong operator topology as oper-

ators L2 → L2 and

‖S[bn+1]‖L2→L2 . sup
j

‖ςj‖L1 log2(1 + nΓε) ‖bn+1‖∞.

(iv) In (ii), (iii) the convergence in the strong operator topology is equicontinuous with respect
to {bn+1 : ‖bn+1‖∞ ≤ 1}.

Proof of Proposition 13.4, given Proposition 13.3. For the proof of (i) we apply the almost or-
thogonality Lemma 9.1. To this end we need to derive the estimate

(13.14)
∥∥Qk1S

m1,m2

j+k1
[bn+1]Qj+k1+k2

∥∥
L2→L2

. Am1,m2

j,k2
:= min ‖bn+1‖∞

{
2−ε1(|m1|+m2)n2 sup

j
‖ςj‖Bε , 2

−|j+m1|−|m2+k2| sup
j

‖ςj‖L1

}

for some ε1 > 0. To see this we note that the bound

∥∥Sm1,m2

j+k1
[bn+1]

∥∥
L2→L2 . min ‖bn+1‖∞

{
2−ε1(|m1|+m2)n2 sup

j
‖ςj‖Bε

}

(and hence the corresponding estimate for Qk1S
m1,m2

j+k1
[bn+1]Qj+k1+k2) follows from Proposition

13.3. The bound

∥∥Qk1S
m1,m2

j+k1
[bn+1]Qj+k1+k2

∥∥
L2→L2 . 2−|j+m1|−|m2+k2| sup

j
‖ςj‖L1

follows from the fact that ‖QkQl‖L2→L2 , ‖QlQk‖L2→L2 . 2−|k−l|, the definition of Sm1,m2

j+k , and

Lemma 2.7.

We now observe that for Am1,m2

j,k2
as in (13.14) we have

∑

j,k2

Am1,m2

j,k2
. ‖bn+1‖∞min

{
sup
j

‖ςj‖L1 , 2−ε1(|m1|+m2)(|m1|+m2)
2n2 sup

j
‖ςj‖Bε

}
.

By an application of Lemma 9.1 this yields (13.13) and the convergence result in (ii), with
equiconvergence with respect to bn+1 in the unit ball of L∞(Rd). Summing in m1,m2 yields
(iii). �

Proposition 13.5. Let b2, . . . , bn ∈ L∞(Rd), with ‖bi‖∞ ≤ 1, i = 2, . . . , n. Let ~ς = {ςj} be a

bounded family in Bε, J ⊂ Z
d with #J <∞ and let m1 ∈ Z, m2 ∈ N.
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(i) If b1 ∈ L∞(Rd),

(13.15)
∥∥∥
∑

j∈J

Tm1,m2

j [b1]
∥∥∥
L2→L2

. min
{
2−ε′|m1|−ε′m2n2 sup

j
‖ςj‖Bε , sup

j
‖ςj‖L1 log(1 + n2Γε)

}
‖b1‖∞.

(ii) We have limN→∞
∑N

j=−N T
m1,m2

j [b1] = Tm1,m2 [b1] in the strong operator topology (as

operators L2 → L2) and the bound (13.15) remains true for the limit Tm1,m2 .

(iii) We have
∑

m1∈Z

∑
m2>0 T

m1,m2 [b1] → T [b1] with absolute convergence in L(L2, L2).

Moreover
∑N

j=−N Tj [b1] converges to an operator T [b1] in the strong operator topology as oper-

ators L2 → L2 and

‖T [b1]‖L2→L2 . sup
j

‖ςj‖L1 log3(1 + nΓε) ‖b1‖∞.

Proof. Use Propositions 13.4 and 13.3, together with Theorem 8.22 to deduce that Sm1,m2 [bn+1] =∑
j S

m1,m2

j [bn+1] converges in the strong operator topology as operators H1 → L1, with unifor-

mity in bn+1, ‖bn+1‖∞ ≤ 1, and we get the estimate

∥∥Sm1,m2 [bn+1]
∥∥
H1→L1 . sup ‖ςj‖L1 min

{
log(1 + n2Γε), 2

−ε′(|m1|+m2)n2Γε

}
‖bn+1‖∞

Now for b1 ∈ L∞, bn+1 ∈ L∞ we have by (13.7), (13.8)
∫
b1(x)S

m1,m2

j [bn+1]f(x) dx =

∫
bn+1(x)T

m1,m2

j [b1]f(x) dx .

The uniformity with respect to bn+1 in the strong operator convergence of
∑

j S
m1,m2

j [bn+1] now

implies that Tm1,m2 [b1] =
∑

j T
m1,m2

j [b1] converges in the strong operator topology as operators

H1 → L1 and we have the estimate
∥∥Tm1,m2 [b1]

∥∥
H1→L1 . ‖b1‖∞ sup ‖ςj‖L1 min

{
log(1 + n2Γε), 2

−ε′(|m1|+m2)n2Γε

}
.

From Theorem 8.22 we then get

∥∥Tm1,m2 [b1]
∥∥
L2→L2 . ‖b1‖∞ sup ‖ςj‖L1 min

{
log(1 + n2Γε), 2

−ε′(|m1|+m2)n2Γε

}

which is (ii). Statement (iii) follows after summing in m1,m2. �

13.2. Opε-bounds and the proof of Proposition 13.3.

Lemma 13.6. Let ε > 0, φ0 ∈ C1, supported in {y : |y| ≤ 10}, ς ∈ Bǫ(R
n × R

d). For ℓ ≥ 0
define

Fℓ(x, y) :=

∫∫∫

|x−v−y|≤100

|ς(2
ℓ)(α, v)||φ0(y − α1v − y′)− φ0(y − y′)| dv dα dy′.

Then,

sup
x

∫
(1 + |x− y|)ε/2|Fℓ(x, y)| dy + sup

y

∫
(1 + |x− y|)ε/2|Fℓ(x, y)| dx . 2−ℓε/2‖φ0‖C1‖ς‖Bε .
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Proof. We may assume ‖φ‖C1 = 1. We estimate, for each y,
∫

(1 + |x− y|)ε/2|Fℓ(x, y)| dx

=

∫∫∫∫

|x−v−y|≤100

(1 + |x− y|)ε/2|ς(2
ℓ)(α, v)||φ0(y − α1v − y′)− φ0(y − y′)| dv dα dy′ dx

.

∫∫∫
(1 + |v|)ε/2|ς(2

ℓ)(α, v)||φ0(y − α1v − y′)− φ0(y − y′)| dv dα dy′

.

∫∫
(1 + |v|)ε/2|ς(2

ℓ)(α, v)|min{1, |α1v|
ε/2} dv dα

.

∫∫
|v|ε/2|ς(2

ℓ)(α, v)| dv dα+

∫∫
|α1v|

ε/2|ς(2
ℓ)(α, v)| dv dα .

Now
∫∫

|v|ε/2|ς(2
ℓ)(α, v)| dα dv = 2−ℓε/2

∫∫
|v|ε/2|ς(α, v)| dα dv . 2−ℓε/2‖ς‖Bε/2 . 2−ℓε/2‖ς‖Bε ,

and
∫∫

|α1v|
ε/2|ς(2

ℓ)(α, v)| dα dv = 2−ℓε/2

∫∫
|α1v|

ε/2|ς(α, v)| dα dv

≤ 2−ℓε/2

∫∫
(|α1|+ |v|)ε|ς(α, v)| dα dv . 2−ℓε/2‖ς‖Bǫ .

This completes the proof that supy
∫
(1 + |x− y|)ε/2|Fℓ(x, y)| dx . 2−ℓε/2‖ς‖Bǫ .

Next we estimate for x ∈ R
d,

∫
(1 + |x− y|)ε/2|Fℓ(x, y)| dy

=

∫∫∫∫

|x−v−y|≤100

(1 + |x− y|)ε/2|ς(2
ℓ)(α, v)||φ0(y − α1v − y′)− φ0(y − y′)| dv dα dy′ dy

.

∫∫∫∫

|x−v−y|≤100

(1 + |v|)ε/2|ς(2
ℓ)(α, v)|min{1, |α1v|

ε/2}1{|y−α1v−y′|≤10 or |y−y′|≤10} dv dα dy
′ dy

.

∫∫∫

|x−v−y|≤100

(1 + |v|)ε/2|ς(2
ℓ)(α, v)|min{1, |α1v|

ε/2} dv dα dx

.

∫∫
(1 + |v|)ε/2|ς(2

ℓ)(α, v)|min{1, |α1v|
ε/2} dv dα

and above the last quantity has already been shown to be . 2−ℓε/2‖ς‖Bǫ . This completes the
proof of the lemma. �

Lemma 13.7. Let ǫ > 0. For φ ∈ C1, supported in {y : |y| ≤ 10}, ς ∈ Bε(R
d × R

n), j ≥ 0, let

gj(x, y) =

∫
|ς(2

j )(α, v)||φ(x − v − y)− φ(x− y)| dα dv.

Then

sup
x

∫
gj(x, y) dy + sup

y

∫
gj(x, y) dx . 2−εj‖ς‖Bε ‖φ‖C1 .
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Proof. We may assume ‖φ‖C1 = 1. For any x, we have
∫∫∫

(1 + |x− y|)ε|ς(2
j )(α, v)||φ(x − v − y)− φ(x− y)| dα dv dy

.

∫∫∫
(1 + |x− y|)ε|ς(2

j )(α, v)|min{1, |v|ε}χ{|x−v−y|≤10 or |x−y|≤10} dα dv dy

.

∫∫
(1 + |v|)ε|ς(2

j )(α, v)|min{1, |v|ε} dα dv

.

∫∫
|v|ε|ς(2

j)(α, v)| dα dv . 2−jǫ‖ς‖Bε ,

where the last inequality has already been used in the proof of Lemma 13.6. By symmetry we
also get the corresponding second inequality with the roles of x and y reversed. �

Lemma 13.8. For ǫ > 0 there is ε′ > 0 such that the following holds. Let φ1, . . . , φn+1 ∈ C2

supported in {y : |y| ≤ 10} and such that for all but at most two l, φl ≥ 0 and
∫
φl = 1. For

k ∈ Z set Y l
kf = f ∗ φ

(2k)
l . For b1, . . . , bn ∈ L∞(Rd), ς ∈ Bǫ(R

n × R
d) with

(13.16)

∫
ς(α, v) dv = 0,

and define a kernel Kj,k ≡ Kj,k[b1, . . . , bn] by
∫
g(x)

∫
Kj,k(x, y)f(y) dy dx = Λ[ς(2

j )](Y 1
k b1, . . . , Y

n
k bn, Y

n+1
k g, f).

Then, for j ≥ k,

‖Dil2−kKj,k‖Opε′ . 2−ǫ′(j−k)n‖ς‖Bǫ

n∏

i=1

‖bi‖∞,

‖Dil2−kKj,k‖Op0 . ‖ς‖L1

n∏

i=1

‖bi‖∞.

Here, the implicit constants may depend on max
i1,i2,i3,i4∈{1,...,n+1}

‖φi1‖C2‖φi2‖C2‖φi3‖C2‖φl4‖C2 .

Proof. The bound for the Op0 norm is immediate so we focus only on the bound for the Opε-
norms. Note that by scaling (see Lemma 4.16)

Λ[ς(2
j )](Y 1

k b1, . . . , Y
n
k bn, Y

n+1
k g, f) = 2−kdΛ[ς(2

j−k)](Y0b
k
1 , . . . , Y0b

k
n, Y0g

k, fk)

where bki = bi(2
−k·), fk = f(2−k·), gk = g(2−k·). This leads to

Kj,k[b1, . . . , bn](x, y) = 2kdKj−k,0[b
k
1 , . . . , b

k
n](2

kx, 2ky).

Now ‖bki ‖∞ = ‖bi‖∞, i = 1, . . . , n, and hence after replacing the functions bi by bki , i =
1, . . . , n, it suffices to check the case k = 0. That is, we need to prove, for ℓ ≥ 0,

(13.17) ‖Kℓ,0[b1, . . . , bn]‖Opε . 2−ε′ℓn‖ς‖Bε

n∏

i=1

‖bi‖∞.

In what follows we may assume ‖bi‖L∞ = 1, i = 1, . . . , n. We will prove, under the assumption
that all but at most three of the φi satisfy φi ≥ 0,

∫
φi = 1 we have

(13.18) sup
x

∫
(1 + |x− y|)ε

′
|Kℓ,0(x, y)| dy+ sup

y

∫
(1 + |x− y|)ε

′
|Kℓ,0(x, y)| dx . 2−ε′ℓn‖ς‖Bε ,



MULTILINEAR SINGULAR INTEGRAL FORMS OF CHRIST-JOURNÉ TYPE 103

where the implicit constant is allowed to depend on the C1 norms of up to three of φi (instead
of the C2 norms).

First we see why (13.18) yields the result. The explicit formula for the kernel is

(13.19) Kℓ,0(x, y) =

∫
φn+1(y − v − x)

∫
ς(2

ℓ)(α, v)
n∏

i=1

Y i
0 bi(y − αiv) dα dv.

It implies that ∂xmKℓ,0(x, y) is a term of the form covered by (13.18) (with φn+1 replaced by
−∂xmφn+1). Moreover, ∂ymKℓ,0(x, y) is a sum of n + 1 terms of the form covered by (13.18),
indeed differentiating (13.19) yields (setting bn+1 := g)

∫
bn+1(x)

∫
∂ymKℓ,0(x, y)f(y) dy dx

=

n+1∑

i=1

Λ[ς(2
ℓ)](Y 1

0 b1, . . . , Y
i−1
0 bi−1, ∂xmY

l
0bi, Y

i+1
0 bi+1, . . . , Y

n+1
0 bn+1, f).

Thus, ∂xmKℓ,0(x, y) is a sum of n+1 terms of the form covered by (13.18). From these remarks,
it follows, given (13.18), that the expressions

sup
y

0<|h|≤1

|h|−1

∫
|Kℓ,0(x, y + h)−Kℓ,0(x, y)| dx,

sup
x

0<|h|≤1

|h|−1

∫
|Kℓ,0(x, y + h)−Kℓ,0(x, y)| dy,

sup
y

0<|h|≤1

|h|−1

∫
|Kℓ,0(x+ h, y)−Kℓ,0(x, y)| dx,

sup
x

0<|h|≤1

|h|−1

∫
|Kℓ,0(x+ h, y)−Kℓ,0(x, y)| dy

are all bounded by a constant times 2−ℓε′n‖ς‖Bǫ .

It remains to prove (13.18). We first compute, with ς̃(α, v) = ς(1− α1, . . . , 1− αn, v),

Λ[ς(2
ℓ)](Y 1

0 b1, . . . , Y
n
0 , Y

n+1
0 g, f) = Λ[ς(2

ℓ)](Y 1
0 b1, . . . , Y

n
0 , f, Y

n+1
0 g)

=

∫∫∫
ς̃(2

ℓ)(α,w − y)f(y)

∫
φn+1(w − x)g(x)dx

n∏

i=1

Y i
0 bi(w(1 − αi) + αiy) dα dw dy

=

∫∫
g(x)f(y)

∫∫
ς̃(2

ℓ)(α, v)φn+1(y + v − x)

n∏

i=1

Y i
0 bi(y + (1− αi)v) dv dα dx dy

and changing variable in α again we get

Kℓ,0(x, y) =

∫∫
ς(2

ℓ)(α, v)φn+1(y + v − x)
n∏

i=1

Y i
0 bi(y + αiv) dv dα

=

∫∫
ς(2

ℓ)(α, v)
[
φn+1(y + v − x)

n∏

i=1

Y i
0 bi(y + αiv)− φn+1(y − x)

n∏

i=1

Y i
0 bi(y)

]
dv dα;

here we have used the cancellation condition (13.16). Now

|Kℓ,0(x, y)| ≤ I(x, y) +
n∑

i=1

IIi(x, y)
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where

I(x, y) =

∫∫
|ς(2

ℓ)(α, v)||φn+1(y + v − x)− φn+1(y − x)| dv dα ,

IIi(x, y) =

∫∫
|ς(2

ℓ)(α, v)||φn+1(y − x)|

∫
|φi(y + αiv − w)− φi(y − w)|dw dv dα .

Now apply Lemma 13.6 to the expessions IIi and Lemma 13.7 to I, and (13.18) follows. This
completes the proof. �

Proof of Proposition 13.3, conclusion. We focus on the estimates for Sm1,m2

j [bn+1] as the es-

timates for Tm1,m2

j [b1] are analogous (switch the roles of b1 and bn+1). We may assume

‖bn+1‖∞ = 1.

In what follows we identify operators with their Schwartz kernels. For an operator R we
denote by ∂xµR the operator with Schwartz kernel ∂xµR(x, y).

We use Lemma 6.8 to write Qj+m2
=

∑d
µ=1 2

−(j+m2)∂xµR
µ
j+m2

, where Rµ
j+m2

= f ∗ φ̃
(2j+m2 )
µ ,

and φ̃l ∈ C∞
0 supported in {x : |x| ≤ 2}. Now

Λ[ς
(2j)
j ](Qj+m1

Pjb1,X
2
j+m1

Pjb2, . . . ,X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= 2−(j+m2)
d∑

µ=1

∫∫
ς
(2j )
j (α, v)

∫
∂xµR

µ
j+m2

f(x)Xn+1
j+m1

Pjbn+1(x− v)×

Qj+m1
Pjb1(x− α1v)

n∏

i=2

Qj+m1
Pjbi(x− αiv) dx dv dα .

Integrating by parts we see that this expression equals

(13.20) − 2−(j+m2)
d∑

µ=1

(
Λ[ς

(2j )
j ](∂xµQj+m1

Pjb1,X
2
j+m1

Pjb2, . . . ,X
n+1
j+m1

Pjbn+1, R
µ
j+m2

f)

+

n+1∑

ν=2

Λ[ς
(2j )
j ](Qj+m1

Pjb1,X
2
j+m1

Pjb2, . . . , ∂xµX
ν
j+m1

Pjbν . . . ,X
n+1
j+m1

Pjbn+1, R
µ
j+m2

f)

)
.

We distinguish the cases m1 ≤ 0 and m1 ≥ 0.

For m1 ≤ 0 we write (13.20) as

Λ[ς
(2j )
j ](Qj+m1

Pjb1,X
2
j+m1

Pjb2, . . . ,X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= − 2−m2+m1

d∑

µ=1

n+1∑

ν=1

Λ[ς
(2j )
j ](Y 1,µ,ν

j+m1,j
b1, . . . , Y

n+1,µ,ν
j+m1,j

bn+1, R
µ
j+m2

f)

where, for m1 ≤ 0, the operators Y i,µ,ν
j+m1,j

are given by

Y 1,µ,ν
j+m1,j

=

{
2−j−m1∂xµ(Qj+m1

Pj) if ν = 1,

Qj+m1
Pj if ν ∈ {2, . . . , n + 1}

if i = 1, and by

Y i,µ,ν
j+m1,j

=

{
2−j−m1∂xµ(Pj+m1

Pj) if ν = i,

Pj+m1
Pj if ν ∈ {1, . . . , n+ 1} \ {i}

if 2 ≤ i ≤ n+ 1.
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Hence for m1 ≤ 0

Λ[ς
(2j )
j ](Qj+m1

Pjb1,X
2
j+m1

Pjb2, . . . ,X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= 2−m2+m1

d∑

µ=1

n∑

ν=1

∫
bn+1(x)K

µ,ν
j+m1,j

(x, y)Rµ
j+m2

f(y)dy

and by Lemma 13.8
‖Dil2−j−m1K

µ,ν
j+m1,j

‖Opε′
. ‖ςj‖Bε

for some ε′ ≤ ε. This, together with Lemma 8.25, implies the asserted bound (13.11), for
m1 ≤ 0.

We now consider the case m1 > 0. Now use the cancellation and support properties of Qj+m1

to write
Qj+m1

Pj = 2−m1Zj,m1

where Zj,m1
= f ∗ υ

(2j)
j,m and {υj,m : j ∈ Z,m1 ∈ N} is a bounded family of C∞

c functions

supported in {y : |y| ≤ 2}.

We now write (13.20) as

Λ[ς
(2j )
j ](Qj+m1

Pjb1,X
2
j+m1

Pjb2, . . . ,X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= − 2−m2−m1

d∑

µ=1

n+1∑

ν=1

Λ[ς
(2j )
j ](Y 1,µ,ν

j+m1,j
b1, . . . , Y

n+1,µ,ν
j+m1,j

bn+1, R
µ
j+m2

f)

where (now for m1 > 0)

Y 1,µ,ν
j+m1,j

=

{
2−j∂xµZj,m1

if ν = 1,

Zj,m1
if ν ∈ {2, . . . , n + 1},

and for 2 ≤ i ≤ n+ 1

Y i,µ,ν
j+m1,j

=

{
2−j∂xµ(Pj+m1

Pj) if ν = i,

Pj+m1
Pj if ν ∈ {1, . . . , n + 1} \ {i} .

We see, using Lemma 13.8, that for m1 > 0

Λ[ς
(2j )
j ](Qj+m1

Pjb1,X
2
j+m1

Pjb2, . . . ,X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= 2−m2−m1

d∑

µ=1

n∑

ν=1

∫
bn+1(x)K

µ,ν,m1

j (x, y)Rµ
j+m2

f(y) dy

with ∥∥Dil2−jK
µ,ν,m1

j

∥∥
Opε

. ‖ςj‖Bε .

Using also Lemma 8.25 we obtain the asserted bound (13.11), for m1 > 0. �

13.3. Proof of the bound (13.1), concluded. The following proposition will conclude the
proof of part IV in Theorem 5.1.

Proposition 13.9. Let 1 ≤ l1 6= l2 ≤ n+ 2. Then, for p ∈ (1, 2] and p′ = p/(p− 1)

|
∑

j∈Z

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2)|

≤ Cd,p,ǫn(sup
j

‖ςj‖L1) log3(1 + nΓε)
( ∏

l 6=l1,l2

‖bl‖∞
)
‖bl1‖p‖bl2‖p′ .
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Proof. By symmetry of the roles of b1, . . . , bn+1, via Theorem 2.9, it suffices to prove the result
for three cases: (l1, l2) = (n+ 1, n+ 2), (l1, l2) = (n+ 2, n + 1), and (l1, l2) = (1, n + 1).

We begin with the case (l1, l2) = (n + 1, n + 2). For this we define an operator S1,j ≡
S1,j[b1, . . . , bn] by

∫
g(x)(S1,j [b1, . . . , bn]f)(x) dx := Λ[ς

(2j )
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2).

It is straightforward to verify the inequalities

‖Dil2−jS1,j‖Opε . n(sup
j∈Z

‖ςj‖Bε

n∏

i=1

‖bi‖∞,

‖Dil2−jS1,j‖Op0
. (sup

j∈Z
‖ςj‖L1)

n∏

i=1

‖bi‖∞;

here ε ≤ 1 and the Opε, Op0 norms are as in (8.36), (8.37).

Theorem 13.1 shows
∥∥∥
∑

j∈Z

S1,j[b1, . . . , bn]
∥∥∥
L2→L2

. n(sup
j

‖ςj‖L1) log3(1 + nΓε)

n∏

i=1

‖bi‖∞.

with convergence in the strong operator topology. By Proposition 8.9 we get, for 1 < p ≤ 2,

∥∥∥
∑

j∈Z

S1,j[b1, . . . , bn]
∥∥∥
Lp→Lp

≤ Cd,p,ǫn(sup
j

‖ςj‖L1) log3(1 + nΓε)

n∏

i=1

‖bi‖∞,

and ∥∥∥
∑

j∈Z

tS1,j[b1, . . . , bn]
∥∥∥
Lp→Lp

≤ Cd,p,ǫn(sup
j

‖ςj‖L1) log3(1 + nΓε)
n∏

i=1

‖bi‖∞,

which are equivalent to the statement of the proposition in the cases (l1, l2) = (n + 1, n + 2)
and (l1, l2) = (n+2, n+1), respectively. The convergence is in the sense of the strong operator
topology (as operators bounded on Lp).

We now turn to the case (l1, l2) = (1, n + 1). If we apply Theorem 8.22 to
∑

tS1,j we also
get an H1 → L1 bound

∥∥∥
∑

j∈Z

tS1,j [b1, . . . , bn]
∥∥∥
H1→L1

. n(sup
j

‖ςj‖L1) log3(1 + nΓε)

n∏

i=1

‖bi‖L∞ .

This means that for b1, . . . , bn ∈ L∞(Rd), bn+2 ∈ L∞(Rd), bn+1 ∈ H1(Rd), we have

(13.21)
∣∣∣
∑

j∈Z

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2)

∣∣∣

. n(sup
j

‖ςj‖L1) log3(1 + nΓε)
( n∏

i=1

‖bi‖∞
)
‖bn+1‖H1‖bn+1‖∞.

For j ∈ Z, define an operator S2,j [b2, . . . , bn, bn+2] by
∫
g(x)(S2,j [b2, . . . , bn, bn+2]f)(x) dx := Λ[ς

(2j )
j ](g, Pjb2, . . . , Pjbn, f, (I − Pj)bn+2).

Since tPj = Pj the case (l1, l2) = (1, n + 1) is equivalent to the inequality

(13.22)
∥∥∥
∑

j∈Z

PjS2,j[b2, . . . , bn, bn+2]Pj

∥∥∥
Lp→Lp

. n sup
j

‖ς‖L1(1 + nΓε)
∏

l∈{2,...,n,n+2}

‖bl‖∞.
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To show (13.22) we first observe that by Theorem 2.9, there is a c > 0 (independent of n) such
that for ε′ < cε there are ς̃j ∈ Bε′(R

n × R
d) with ‖ς̃j‖Bε′ . n‖ς‖Bε and ‖ς̃j‖L1 = ‖ςj‖L1 such

that∫
b1(x)(S2,j [b2, . . . , bn, bn+2]bn+1)(x) dx = Λ[ς̃

(2j )
j ](Pjb2, . . . , Pjbn, (I − Pj)bn+2, b1, bn+1).

If we apply (13.21) with the family {ς̃j} in place of {ςj} and ε′ in place of ε) we get
∣∣∣
∑

j∈Z

Λ[ς̃
(2j )
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2)

∣∣∣

. n(sup
j

‖ςj‖L1) log3
(
1 + n

supj ‖ς̃j‖Bε
supj ‖ς̃j‖L1

)( n∏

i=1

‖bi‖∞
)
‖bn+1‖H1‖bn+1‖∞

. n(sup
j

‖ςj‖L1) log3(1 + nΓε)
( n∏

i=1

‖bi‖∞
)
‖bn+1‖H1‖bn+1‖∞

which (in view of tPj = Pj) can be rephrased as
∥∥∥
∑

j

PjS2,j[b2, . . . , bn, bn+2]Pj

∥∥∥
H1→L1

. n(sup
j

‖ςj‖L1) log3(1 + nΓε)
∏

l∈{2,...,n,n+2}

‖bl‖∞.

We wish to apply Lemma 8.24 to the kernels σj = Dil2−jS2,j. Observe that the Schur integra-
bility norms for these kernels satisfy the uniform estimates

Int1ε[σj ] + Int∞ε [σj ] . ‖ς̃j‖B
ǫ′

∏

l∈{2,...,n,n+2}

‖bl‖L∞ . n sup
j

‖ςj‖Bǫ

∏

l∈{2,...,n,n+2}

‖bl‖∞,

and

Int1ε[σj] + Int∞ε [σj] . ‖ς̃j‖L1

∏

l∈{2,...,n,n+2}

‖bl‖∞ ≤ sup
j

‖ςj‖L1

∏

l∈{2,...,n,n+2}

‖bl‖∞.

Now Theorem 8.22 in conjunction with Lemma 8.24 applies to show
∥∥∥
∑

j

PjS2,j[b2, . . . , bn, bn+2]Pj

∥∥∥
L2→L2

. n(sup
j

‖ςj‖L1) log3(1 + nΓε)
∏

l∈{2,...,n,n+2}

‖bl‖∞,

with convergence in the strong operator topology. Finally (13.22) follows by interpolation (see
Corollary 8.10). This completes the proof. �

14. Proof of Theorem 5.1: Part V

In this section, we consider the multilinear form

Λ3(b1, . . . , bn+2) :=
∑

j

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+2),

where the summation is a priori extended over a finite subset of Z, and where, for some fixed
ǫ > 0, {ςj : j ∈ Z} ⊂ Bǫ(R

n × R
d) is a bounded set with

∫
ςj(α, v) dv = 0, for all j and almost

every α. To prove part V of Theorem 5.1 we need to establish for 1 < p ≤ 2 the inequality

(14.1) |Λ3(b1, . . . , bn+2)| ≤ Cd,p,ǫn
2(sup

j
‖ςj‖L1) log3(1 + nΓε)

( n∏

i=1

‖bi‖∞
)
‖bn+1‖p′‖bn+2‖p.

As in the previous section the heart of the proof lies in the case p = 2 which we state as a
theorem.
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Theorem 14.1. Let b1, . . . , bn ∈ L∞(Rd) and bn+1, bn+2 ∈ L
2(Rd). Then,

lim
N→∞

N∑

j=−N

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+2) = Λ3(b1, . . . , bn+2)

and Λ3 satisfies

|Λ3(b1, . . . , bn+2)| ≤ Cd,ǫn
2 sup

j
‖ςj‖L1 log3(1 + nΓε)

( n∏

i=1

‖bi‖∞
)
‖bn+1‖2‖bn+1‖2.

The sum defining the operator T 3[n1, . . . , bn] associated to Λ3 converges in the strong operator
topology as bounded operators L2 → L2.

Proof of (14.1) given Theorem 14.1. We may assume ‖bl‖L∞ = 1, l = 1, . . . , n. For j ∈ Z

define the operator Tj by
∫
g(x)Tjf(x) dx := Λ[ς

(2j )
j ](Pjb1, . . . , Pjbn, Pjg, f).

Theorem 14.1 is equivalent to

∥∥∥
∑

j∈Z

TjPj

∥∥∥
L2→L2

. n2 sup
j

‖ςj‖L1 log3(1 + nΓε)

n∏

i=1

‖bi‖p

Corollary 8.10 applies since supj Int
1
ε[Dil2−jTj] . supj ‖ςj‖Bε , supj Int

1
0[Dil2−jTj ] . supj ‖ςj‖L1 .

This completes the proof. �

We now turn to the proof of Theorem 14.1. The argument is analogous to the arguments in
the previous section and therefore we shall be brief.

14.1. Basic decompositions. We argue as in §13.1 and decompose

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+2)

= lim
M→∞

(
Λ[ς

(2j )
j ](Pj+MPjb1, . . . , Pj+MPjbn+1, Pj+MPjbn+2)

− Λ[ς
(2j )
j ](Pj−MPjb1, . . . , Pj−MPjbn+1, Pj−MPjbn+2)

)

= lim
M→∞

M∑

m=−M+1

(
Λ[ς

(2j)
j ](Pj+mPjb1, . . . , Pj+mPjbn+2)

− Λ[ς
(2j )
j ](Pj+m−1Pjb1, . . . , Pj+m−1Pjbn+1, Pj+m−1Pjbn+2)

)

and thus

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+2) =

n+1∑

l=1

∞∑

m=−∞

Λ[ς
(2j )
j ](Pj+m−1Pjb1, . . . , Pj+m−1Pjbl−1, Qj+mPjbl, Pj+mPjbl+1, . . . , Pj+mPjbn+2).

We repeat the same procedure to each term and write, for fixed m ∈ Z

Λ[ς
(2j )
j ](Pj+m−1Pjb1, . . . , Pj+m−1Pjbl−1, Qj+mPjbl, Pj+mPjbl+1, . . . , Pj+mPjbn+2)
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as the limit (as M → ∞) of the differences

Λ[ς
(2j )
j ]

(
Pj+MPj+m−1Pjb1, . . . , Pj+MPj+m−1Pjbl−1,

Pj+MQj+mPjbl, Pj+MPj+mPjbl+1, . . . , Pj+MPj+mPjbn+2

)

−Λ[ς
(2j)
j ](Pj−MPj+m−1Pjb1, . . . , Pj−MPj+m−1Pjbl−1,

Pj−MQj+mPjbl, Pj−MPj+mPjbl+1, . . . , Pj−MPj+mPjbn+2) .

We continue as above, writing each difference as a collapsing sum, and than expanding each
summand using the multilinearity of the functionals. The limit of the expressions in the last
display becomes

Λ[ς
(2j )
j ](Pjb1, . . . , Pjbn+2) =

∑

(l1,l2)
1≤l1 6=l2≤n+2

∑

(m1,m2)∈Z2

λm1,m2

j,l1,l2
(b1, . . . , bn+2)

where, for l1 < l2,

λm1,m2

j,l1,l2
(b1, . . . , bn+2) :=

Λ[ς
(2j )
j ]

(
Pj+m2−1Pj+m1−1Pjb1, . . . , Pj+m2−1Pj+m1−1Pjbl1−1,

Pj+m2−1Qj+m1
Pjbl1 , Pj+m2−1Pj+m1

Pjbl1+1, . . . , Pj+m2−1Pj+m1
Pjbl2−1,

Qj+m2
Pj+m1

Pjbl2 , Pj+m2
Pj+m1

Pjbl2+1, . . . , Pj+m2
Pj+m1

Pjbn+2

)
.

For l1 > l2 there is an obvious modification.

There are (n+2)(n+1) = O(n2) terms in the sum
∑

1≤l1 6=l2≤n+2. It is therefore our task to
show that

(14.2)
∣∣∣
∑

m1,m2

∑

j

λm1,m2

j,l1,l2
(b1, . . . , bn+2)

∣∣∣ . sup
j

‖ςj‖L1 log3(1 + nΓε)
( n∏

i=1

‖bi‖∞
)
‖bn+1‖2‖bn+2‖2;

then summing the O(n2) terms will complete the proof.

14.2. Proof of the bound (14.2). For k ∈ Z, 1 ≤ l ≤ n+ 2, let

X1,l
k ,X2,l

k ∈ {Pk, Pk−1}.

For 1 ≤ l1, l2 ≤ n+ 2, j, k1, k2 ∈ Z, define the operator
∫
bl1(x)T

m1,m2

j,l1,l2
bl2(x) dx

:= Λ[ς
(2j )
j ](X1,1

j+m1
X2,1

j+m2
Pjb1, . . . ,X

1,n
j+m1

X2,n
j+m2

Pjbn,X
1,n+1
j+m1

Qj+m2
Pjbn+1, Qj+m1

Pjbn+2),

where we have suppressed the dependance of Tm1,m2

j,l1,l2
on bl, l 6= l1, l2.

Lemma 14.2. Let ρj,m1,m2
= min{2j , 2j+m1 , 2j+m2}. There is a c > 0 (independent of n so

that for ε′ > cε

(14.3)
∥∥Dilρ−1

m1,m2,j
Tm1,m2

j,l1,l2

∥∥
Opε′

. min{2−ε′|m1|, 2−ε′|m2|}n2‖ςj‖Bǫ

∏

l 6=l1,l2

‖bl‖L∞ ,

and

‖Dilρ−1

m1,m2,j
Tm1,m2

j,l1,l2
‖Op0

. ‖ςj‖L1

∏

l 6=l1,l2

‖bl‖∞ .
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Proof. The bound for ‖Dilρ−1

m1,m2,j
Tm1,m2

j,l1,l2
‖Op0 , and, equivalently, for ‖Tm1,m2

j,l1,l2
‖Op0 is immediate,

so we focus only on the bound for ‖Dilρ−1

m1,m2,j
Tm1,m2

j,l1,l2
‖Opε′ . Fix l1, l2. We may assume ‖bl‖L∞ =

1, l 6= l1, l2. We distinguish the cases (i) m1,m2 ≥ 0, (ii) m1 ≤ min{0,m2}, (iii) m2 ≤
min{0,m1}.

(i) The case m1,m2 ≥ 0. Now ρj,m1,m2
= 2j . One uses that, for m ≥ 0, Qj+mPj = 2−mXm,j ,

where Xm,jf = f ∗ φ
(2j)
m,j and {φm,j : m ≥ 0} is a bounded subset of C∞ functions supported in

{|y| ≤ 2}. Then the bound
∥∥Dil2−jT

m1,m2

j,l1,l2

∥∥
Opε1

. 2−m1−m2‖ςj‖Bǫ

follows quickly. (14.3) follows in this case.

(ii) The case m1 ≤ min{0,m2}, that is, ρj,m1,m2
= 2j+m1 . Lemma 13.8 (combined with

Theorem 2.9) shows that we have
∥∥Dil2−j−m1T

m1,m2

j,l1,l2

∥∥
Opε2

. 2−ǫ2m1n2‖ςj‖Bǫ .

Using thatX1,n+1
j+m1

Qj+m2
= 2−(m2−m1)Xj,m1,m2

f , whereXj,m1,m2
f = f∗φ

(2j+m1 )
j,m1,m2

and {φj,m1,m2
:

m2 ≥ m1} ⊂ C∞
0 (Bd(2)) is a bounded set, the bound

∥∥Dil2−j−m1T
m1,m2

j,l1,l2

∥∥
Opε3

. 2−(m2−m1)‖ςj‖Bǫ

follows easily. Combining these two estimates, (14.3) follows.

(iii) The case m2 ≤ min{0,m1}, that is ρj,m1,m2
= 2j+m2 . Now we use an integration by

parts argument as in the proof of Proposition 13.3 to obtain
∥∥Dil2−j−m2T

m1,m2

j,l1,l2

∥∥
Opε4

. 2−(m1−m2)‖ςj‖Bǫ .

Using Lemma 13.8 (combined with Theorem 2.9), as above, we have
∥∥Dil2−j−m2T

m1,m2

j,l1,l2

∥∥
Opε5

. 2−ǫ′m1n2‖ςj‖Bǫ .

Combining these two estimates yields (14.3) in this last case and the proof is complete. �

Proposition 14.3. For each m1,m2,
∑

j∈Z T
m1,m2

j,n+1,n+2 converges in the strong operator topology

as operators L2 → L2 (with equiconvergence with respect to the {(b1, . . . , bn) : ‖‖bi‖∞ ≤ C})
and the estimates

(14.4)
∥∥∥
∑

j∈Z

Tm1,m2

j,n+1,n+2

∥∥∥
L2→L2

. min
{
2−ε′(|m1|+|m2|)nM sup

j
‖ςj‖Bε , sup

j
‖ςj‖L1

} n∏

i=1

‖bi‖∞,

for suitable M . 1, and

(14.5)

∞∑

m1=−∞

∞∑

m2=−∞

∥∥∥
∑

j∈Z

Tm1,m2

j,n+1,n+2

∥∥∥
L2→L2

. sup
j

‖ςj‖L1 log2(1 + nΓε)

n∏

i=1

‖bi‖∞.

hold.

Proof. With Lemma 14.2 in hand, (14.4) is based on almost orthogonality (Lemma 9.1) and
follows just as in the proof of Proposition 13.4. (14.5) follows after summing in m1, m2. �

We combine the above results with several applications of Theorem 8.22 to prove our last
proposition.
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Proposition 14.4. For 1 ≤ l1, l2 ≤ n+ 2,

∥∥∥
∑

j,m1,m2

Tm1,m2

j,l1,l2

∥∥∥
L2→L2

. sup
j

‖ςj‖L1 log3(1 + nΓε)

n∏

i=1

‖bi‖∞.

The sum converges in the strong operator topology, with equiconvergence with respect to {(b1, . . . , bn) :
‖bi‖∞ ≤ C}.

Proof. For r ∈ Z define

Sr,l1,l2 :=
∑

j,m1,m2:
min{j,j+m1,j+m2}=r

Tm1,m2

j,l1,l2
.

Note that
∑

r∈Z Sr,l1,l2 =
∑

j,m1,m2∈Z
Tm1,m2

j,l1,l2
, and Lemma 14.2 shows

(14.6)
∥∥Dil2−rSr,l1,l2

∥∥
Op′ε

. nM sup
j

‖ςj‖Bǫ

∏

l 6=l1,l2

‖bl‖∞,

and

(14.7)
∥∥Dil2−rSr,l1,l2

∥∥
Op0

. log2(1 + nΓε) sup
j

‖ςj‖L1

∏

l 6=l1,l2

‖bl‖∞.

By Proposition 14.3,

∥∥∥
∑

r∈Z

Sr,n+1,n+2

∥∥∥
L2→L2

. sup
j

‖ςj‖L1 log2(1 + nΓε)

n∏

i=1

‖bi‖∞

and using (14.6), (14.7), Theorem 8.22 shows

∥∥∥
∑

r∈Z

Sr,n+1,n+2

∥∥∥
H1→L1

. (sup
j

‖ςj‖L1) log3(1 + nΓε)

n∏

i=1

‖bi‖∞.

Here we have convergence in the strong operator topology (as operators H1 → L1), with
equicontinuity with respect to b1, . . . , bn in bounded subsets of L∞(Rd). Using the definition of
Sr,l1,l2 , this is equivalent to

∥∥∥
∑

r∈Z

Sr,l2,n+2

∥∥∥
H1→L1

. sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l 6=l2,n+2

‖bl‖∞,

with convergence in the strong operator topology (as operators H1 → L1) with equicontinuity
with respect to bl, l /∈ {l2, n + 2}, in bounded subsets of L∞(Rd). This argument will now
be used repeatedly. Using this L1 → L1 result together with (14.6) and (14.7), Theorem 8.22
shows ∥∥∥

∑

r∈Z

Sr,l2,n+2

∥∥∥
L2→L2

. sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l 6=l2,n+2

‖bl‖∞.

Taking transposes, this shows
∥∥∥
∑

r∈Z

Sr,n+2,l2

∥∥∥
L2→L2

. sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l 6=l2,n+2

‖bl‖∞.

Using this, (14.6) and (14.7), Theorem 8.22 shows
∥∥∥
∑

r∈Z

Sr,n+2,l2

∥∥∥
H1→L1

. sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l 6=l2,n+2

‖bl‖∞.
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Using the definition of Sr,l1,l2 , this is equivalent to
∥∥∥
∑

r∈Z

Sr,l1,l2

∥∥∥
H1→L1

. sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l 6=l1,l2

‖bl‖∞.

Finally, using this again with (14.6) and (14.7), one last application of Theorem 8.22 completes
the proof of the proposition. �

15. Interpolation

We use complex interpolation to show that the Lp1 × · · · × Lpn+2 estimates in Theorem 2.8
follow from the special case in Theorem 2.10, together with Theorem 2.9.

Let K =
∑

j ς
(2j)
j be as in the assumption of Theorem 2.8 with sup ‖ςj‖Bε <∞. Define for a

permutation ̟ of {1, . . . , n+ 2}

Λ̟[K](b1, . . . , bn+2) = Λ[K](b̟(1), . . . , b̟(n+2))

so that Λ̟[K] = Λ[K̟] with

K̟ =
∑

j

(ℓ̟ςj)
(2j )

where ℓ̟ is as in Theorem 2.9. There is ε′ > c(ε), B ≥ 1, both independent of n, such that for
all permutations ‖ℓ̟σ‖Bε′ ≤ Bn2‖ς‖Bε and ‖ℓ̟σ‖L1 = ‖ς‖L1 . As a consequence we get for any
pair l1, l2 ∈ {1, . . . , n+ 2}, l1 6= l2 the estimate

|Λ[K](b1, . . . , bn+2)|

≤ Cε′,d,δn
2 sup
j∈Z

‖ςj‖L1 log3
(
2 + n

Bn2 supj∈Z ‖ςj‖Bǫ
supj∈Z ‖ςj‖L1

)( ∏

l /∈{l1,l2}

‖bl‖∞

)
‖bl1‖p‖bl2‖p′

≤ A
( ∏

l /∈{l1,l2}

‖bl‖∞

)
‖bl1‖p‖bl2‖p′(15.1)

where 1 + δ ≤ p ≤ 2 and

A := 33BCǫ′,d,δn
2 sup
j∈Z

‖ςj‖L1 log3
(
2 + n

supj∈Z ‖ςj‖Bǫ
supj∈Z ‖ςj‖L1

)
.

Let R be the set of points (p−1
1 , . . . , p−1

n+2) ∈ [0, 1]n+2 for which the inequality

(15.2) |Λ[K](b1, . . . , bn+2)| ≤ A
n+2∏

i=1

‖bi‖pi

holds for all (b1, . . . , bn+2) ∈ Lp1(Rd)× · · · × Lpn+2(Rd).

We note that if P0 = (p−1
1,0, . . . , p

−1
n+2,0) and P1 = (p−1

1,1, . . . , p
−1
n+2,1) both belong to R then, by

complex interpolation for multilinear functionals, we also have for 0 ≤ ϑ ≤ 1

|Λ[K](b1, . . . , bn+2)| ≤ A

n+2∏

i=1

‖bi‖[Lpi,0 ,Lpi,1 ]ϑ

where [·, ·]θ denotes Calderón’s complex interpolation method, see Theorem 4.4.1 in [1]. By
Theorem 5.1.1 in [1] (a version of the Riesz-Thorin theorem) we have the identification of the
complex interpolation norm with the standard Lp norm:

‖f‖[Lpi,0 ,Lpi,1 ]ϑ = ‖f‖Lp , p−1 = (1− ϑ)p−1
i,0 + ϑp−1

i,1 .
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We conclude that the set R is convex. Denote by ei, i = 1, . . . , n + 2, the standard basis in
R
n+2. By (15.1), R contains all points in R

n+2 of the form

Pi,j(δ) =
δ

1 + δ
ei +

1

1 + δ
ej , i 6= j.

Let

Pδ =
{
x ∈ R

n+2 :
n+2∑

i=1

xi = 1, 0 ≤ xj ≤ (δ + 1)−1, j = 1, . . . , n+ 2
}
.

Pδ is a compact convex subset of Rn+2, of dimension n+1. It is easy to see that {Pi,j(δ) : i 6= j}
is the set of the extreme points of Pδ. By Minkowski’s theorem (see e.g. Theorem 2.1.9 in [24])
every point in Pδ is a convex combination of (at most n + 2 of) the extreme points Pi,j(δ).
Thus we can conclude

Pδ ⊂ R,

and we have verified (15.2) for all (n + 2)-tuples of exponents pi, with
∑n+2

i=1 p
−1
i = 1 and

1 + δ ≤ pi ≤ ∞. This completes the proof. �
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