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1.1. The d-commutators. Let 0 < ¢ < 1 and let k € S'(RY) N LL _(R?\ {0}) be a regu-
lar Calderon-Zygmund convolution kernel on R? satisfying the standard size and regularity

assumptions,
1.1a k(z)] < Clz|™¢, =z #£0,
(
|h° 2]
. — < < —
(1.1b) (@ + 1) — n(a)| < Clr, @ £0, | < L

and the L? boundedness condition

(1.1c)

7]l < C < oo.

Let |[r]lcz() be the smallest constant C' for which the three inequalities (1.1) hold simulta-
neously. For convenience, in order to a priori make sense of some of the expressions in this

introduction the reader may initially assume that & is compactly supported in R%\ {0}.

For a € Llloc(Rd) let m, ya be the mean of a over the interval connecting x and v,

1
My @ = / a(sz + (1 — s)y)ds.
0
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For every y € R? this is well defined for almost all = € R%. Given L*-functions ai,...,a, on
R? the nth order d-commutator associated to a1, ..., an, is defined by

Clai,...,an]f(x) = /ﬂ(m — y)(mevyai)f(y)dy.
i=1

One may consider € as an (n + 1)-linear operator acting on ay,...,a,, f. Pairing with another
function and renaming a; = f;, i < n, f = fn+1 one obtains the Christ-Journé multilinear form

defined by
(1.2) Acy(fi,- s fot2) = // k(@ = y) (][ mawti) s ) frsa(@) dedy.
i=1

In dimension d = 1 this operator reduces to the Calderén commutator. However the emphasis
in this paper is on the behavior in dimension d > 2 where the Schwartz kernels are considerably
less regular. Christ and Journé [7] showed that for a; with ||a;||c < 1 the operator Clay, ..., ay]
is bounded on LP, 1 < p < oo, with operator norm O(n®), for a > 2. More precisely,

(1.3) [Acs(fis- s far2)| < Cpeal Koz n® (T I filloo) | fasilpll fusalrs o >2.
i=1

For related results on Calderéon commutators for d = 1 see the discussion of previous results in
§1.2 below.

The form Acj is not symmetric in f;, ¢ = 1,...,n+ 2, (see the discussion in §1.3 below) and
it is natural to ask whether the analogous estimates hold for f; € LP:i, for other choices of p;.
The problem has been proposed for example in [14] and [18], see also §1.2 for our motivation.
Homogeneity considerations yield the necessary condition 2?212 pi_1 = 1. In this paper we shall
establish the following estimate, as a corollary of a more general result stated as Theorem 2.8

below.

Theorem 1.1. Suppose thatd > 1,1 <p; <oo,i=1,...,n+2, and Z?pri_l =1. Lete >0
and min{py, ..., ppnt2} > 14+ 0. Then for A as in (1.2)

n+2

(1.4) [Acs(fis-- - far2)| < CO)mllozn®log® (2 +n) TT il -
i=1

Our main interest lies in the higher dimensional cases with d > 2. Polynomial bounds are
known for d = 1, although the precise form of Theorem 1.1 may not have been observed before;
see the discussion about previous results in §1.2.

1.2. Background and historical remarks.

Motivation. Our original motivation for considering estimates (1.4) for p; # oo for i < n came
from Bressan’s problem ([4]) on incompressible mixing flows. A version of the approach chosen
by Bianchini [2| leads in higher dimensions to the problem of bounding a trilinear singular
integral form with even homogeneous kernels x. One considers a smooth, time-dependent
vector field (z,t) — b(z,t) which is periodic, i.e. b(x + k,t) = b(x,t) for all (z,t) € R x R,

k € Z%, and divergence-free, Z?:l 321 = 0. Let ¢ be the flow generated by v, i.e. we have

%(bt(x) = v(¢s(x),t), do(x) = z, so that for every ¢ the map ¢; is a diffeomorphism on R?
satisfying ¢(x + k,t) = k + ¢(z, 1), for all 2 € R?, k € Z7.
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For small ¢ consider the truncated Bianchini semi-norm ([2]) defined by

nis= [ Ll swm]a

Let A be a measurable subset of R? which is invariant under translation by vectors in Z? (thus
A+ 7% can be identified with a measurable subset of T%). Let AL = R4\ A.
A calculation (|22]) shows that

(15)  Be[Lyp(a)l — Be[La] =
7 (z —y,b(x, ) — by, t))
Vy /0 /Qf(a:,t) /E<|:c—y|<1/4 T—r fy,t) dy da dt

where Q = [0,1)¢, f(y,t) = %(]]‘¢t(A) — 14,(ae) and Vg is the volume of the unit ball in R4,

This calculation leads to an alternative approach to a result by Crippa and DeLellis [12].
One has the following estimate involving general (a priori) smooth vector fields x — v(z) on

R satisfying div(v) = 0. Let Dv denote its total derivative. Then for 1 < pi,ps,p3 < o0,

3 1 _
i=1P; =

1
wey | [ e o) dyda] S 1D 1ol

‘LL’ _ y‘d+2

Here the implicit constant is independent of e and N. One can think of (1.6) as a trilinear
form acting on f, g and Dv; due to the assumption of zero divergence, the entries are not
independent and one can reduce to the estimation of d? — 1 trilinear forms. In fact, (1.6) can
be derived from the case n = 1 of Theorem 1.1, using the choices of

’fij($):|$|ZT_z27 i # J,

(1.7) 2 .2

The case with f, g being characteristic functions of sets with finite measure and Dv € LP* with
p1 near 1 is of particular interest. Steve Hofmann (personal communication) has suggested that
estimates such as (1.6) can also be obtained from the isotropic version of his off-diagonal T'1
theorem [26].

Previous results. We list some previous results on the n + 2-linear form Acjy in (1.3), including
many in dimension d = 1, covering the classical Calderéon commutators.

(i) The first estimates of the form (1.4), for the case d = 1 and n = 1 were proved in the
seminal paper by A.P. Calderon [5].

(ii) More generally, still in dimension d = 1, Coifman, McIntosh and Meyer [10] proved
estimates of the form (1.4) for arbitrary n, with p; = --- = p, = oo and polynomial bounds
C(n) = O(n*) as n — co. This allowed them to establish the L? boundedness of the Cauchy
integral operator on general Lipschitz curves. See also [8] for other applications to related
problems of Calderén. Christ and Journé [7] were able to improve the Coifman-McIntosh-Meyer

bounds to C(n) = O(n?*) (and to O(n'*¢) for odd kernels ).

(iii) Duong, Grafakos and Yan [14] developed a rough version of the multisingular integral
theory in [21] to cover the estimates (1.4) with general exponents for d = 1, however their
arguments yield constants C'(n) which are of exponential growth in n.
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One should note that [14] also treats the higher Calderéon commutators C[fi,..., f,], with
target space LP where p > 1/2. For the bilinear version this had been first done by C.P. Calderon
[6]. It would be interesting to obtain appropriate similar results for the d-commutators.

(iv) Muscalu [31] recently developed a new approach for proving (1.4) in dimension d = 1,
see also [32, Theorem 4.11]|. An explicit bound for the constant as A(n, £) where £ is the number
of indices j such that p; # oo and, for fixed ¢, n +— A(n,!) is of polynomial growth. However,
by using complex interpolation (as in §15) to the case when p; = oo for all but two j, one
may remove the dependance of A on £. This yields polynomial bounds for all admissible sets of
exponents, as in our results.

(v) As mentioned above, crucial results for d > 2 were obtained by Christ and Journé |7]
who established (1.4) for p; = -+ = p, = oo and C(n) = O(n?*¢). Several ideas in our proof
can be traced back to their work.

(vi) Hofmann [25] obtained estimates (1.4) for operators with rougher kernels k, and an
extension to weighted norm inequalities; however the induction argument in [25] only gives
exponential bounds as n — oo.

(vii) For the special case that x is an odd and homogeneous singular convolution kernel,
estimates of the form (1.4) for d > 2 and n = 1 have been obtained by using the method
of rotation. In [14], Duong, Grafakos and Yan use uniform results on the bilinear Hilbert
transforms ([20], [37]) to obtain such estimates under the additional restriction min(py, p2, p3) >
3/2, see also the survey [18].

We note that one can modify the argument in [14] to remove this restriction, and also to obtain
a version for n > 2. Indeed let ko (z) = |z|~%Q(x/|2|) with Q € L}(S9!) and Q(0) = —Q(—0).
Let

n
Calfts - fulfari(z) = /’m(!E =) fnr1(y) E/O fil(1 = si)x + s;y)ds; dy;

then
(1.9 Colfi. o Sulfun(@) = 5 [ QOC-. fu fin]()d0
where

Colf1s--- s fnr1](z pv/ frnt1(z — s6) H/ flx—usﬁdu)d

Now if ey = (1,0,...,0) and Ry is a rotation with Rpe; = 6 we have

Colfis- -y far1](x) = Cey[fioRag, ..., fuy10Re)(Ry ')

and thus the operator norms of Cy are independent of §. One notices that

o0

Ce1[f17 oo 7fn+1](51717$/) :p.v./

—00

n 1
wsstona) [L( 00—+ i)

rr—y

the Calderén commutator acting in the first variable. The one-dimensional results for the

commutators in [5], [14] can now be applied to show that for Z"_*'f pi =1, p > 1,

n+2

| [ €altiee Sl (@) fusa(e)da] £ Coree s @0 sy T 1l

=1

Note that the assumption x odd is crucial in formula (1.8) and thus the argument does not
seem to be applicable to the d-commutators associated with the convolution kernels in (1.7).
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(viii) When n = 1 it is known that the Christ-Journé commutator Cla] (with a € L) is
of weak type (1,1). This has been shown by Grafakos and Honzik [19] in two dimensions and
by one of the authors [34] in all dimensions. It is an open problem whether the higher degree
d-commutators (n > 2) are of weak type (1,1) in dimension d > 2.

1.3. Towards a more general result. In order to prove Theorem 1.1 it suffices to prove
estimate (1.4) for the cases where two of the exponents, say p;,p;, 1 <1i < j < n+ 2 belong
to (1,00) and the other n exponents are equal to co. Equivalently, if w is a permutation of
{1,...,n+2} and

A%J(fl) cee 7fn+2) = ACJ(fw(l)v s 7fw(n+2))

one has to show, for 1 < p < oo, the inequalities

(1.9) A&Lf1s- s Favel] < Copn®(ogn)?(lkllcze) ([T Ifilloo) st llpll fasally
i=1
uniformly in w.

Formally the operator AE; takes the form

(110) AZy(freoo oe) = [[[ K= (@00 = ) fusala)fua() [ il - sl = ) devd dy.
i=1

The case w = id in (1.9) is covered already by the original result of Christ and Journé. Thus by
the symmetry in {1,...,n} and essential symmetry in {n+1,n + 2} (with a change of variable
a; — (1 — a;)) two cases remain of particular interest:

o If ' is the permutation that interchanges i and n+ 1 and leaves all k ¢ {i,n+ 1} fixed
then the kernel K@ is given by

Kwi(a,v) = {
e If1<i,j<mn,i#jand w? is the permutation with w® (7) =n+1, @ (j) =n+2
and w (k) = k for k ¢ {i,j,n + 1,n + 2} then the kernel K®" is given by
K™ (a,0) = |a; — | 7" r(( — ) (@ — )
either if a; <0, a; > 1, oy < oy < v for k # 4, 55
orif a; <0, 05 > 1, aj <o, < o for k # 4, 55

K=" (v, v) = 0 otherwise.

|ai|d_"_1/€(04iv) ifa; > 1, 0< (&7 <aj 7& i,
0 otherwise.

Once (1.9) is proved for w = id, @w = @', @ = w", the general result follows by complex
interpolation for multilinear operators, see [1, Theorem 4.4.1].

Thus we want to study multilinear forms of the type
(111) ARG bs) = [ [ [ Klwn = pbosatelbn ) [[ e - asle = ) dade dy,
=1

where 2 € RY, o € R”, and K(a, ) is a Calderén-Zygmund kernel in the z variable which
depends on a parameter o € R®. We will impose some regularity conditions on the « variable.
The basic example, corresponding to the Christ-Journé multilinear forms, is

K(a,z) = 1[0,1]”(a)5(x)

where & is a regular Calderén convolution kernel satisfying the conditions (1.1).

Our goal is to
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e To introduce a reasonably general class K. of kernels K («, z), for which linear forms of
type (1.11) are closed under adjoints. If w is a permutation of {1,...,n + 2}, then the
multilinear form A[K](bg(1),- - -, bem(nt2)) should be written as A[K](b1,. .., byy2) for
a suitable K%, with appropriate bounds on K® in the class X..

e To prove estimates for this same class of kernels that cover the estimates for the d-
commutators in Theorem 1.1.

Roughly the class of admissible kernels consists of those K for which the norm || - ||%_ defined
n (2.3), (2.4) below is finite; see §2 for further discusion of the spaces of distributions on which
this definition is made. The extension to the class K. allows us to substantially extend the
class of allowable convolution kernels x in the definition of the d-commutators, see Example 2.2

below.

Let p1,...,pnt2 € (1,00] with Z;LJFE p] =1, and let py = minj<;j<,42p;. For b; € LPi(R?)

we shall prove the inequality

n+2
(1.12) AL (brs - - bs2)| < Cop a1 . n1og? (2 + ) T] Nl

i=1
The expression on the left hand side makes a priori sense at least for K supported in a compact
subset of RY x (R?\ {0}) (and this restriction does not enter in the estimate). The kernels
in K. can be thought of sums of dilates of functions in a weighted Besov space; this will be
made precise in §3. These weighted Besov spaces are closely related to Besov spaces of forms
on RP"t4 This motivated some of the considerations in §3 and §4.

A key point of the K. norms is that they depend on n in a natural way so that the term
n?log®(2 4+ n) in (1.12) does not become trivial. We shall derive a stronger version in the
next section in Theorem 2.10 below in which dependence on the XK. occurs in a very weak
(logarithmic) way. In fact one can define an endpoint space £y which contains the union of the
spaces K., so that the inequality

n+2
Ke
(L13)  AL]br e biso)] < Gl K g log® (24 i) ) L il

holds. A crucial point about the classes K. is that if K belongs to KE then all K% in (1.10)
belong to some K class with polynomial bound in n. One can then see that if inequality (1.13)
holds for (pi1,...,pnt2) = (00,...,00,p0,p,) then the same is true for the kernels K®. This
invariance under adjoints will be discussed in §4.

The strategy of proving (1.13) for p; = -+ = p, = oo then follows Christ and Journé [7],
with the main inequalities outlined in §5. The subsequent sections contain the details of the
proofs.

SELECTED NOTATION

We use the notation A < B to denote A < CB, where C is a constant independent of
any relevant parameters. C' is allowed to depend on d and €, but not on n.

e For two nonnegative numbers a, b we occasionally write a A b = min{a, b} and a V b =
max{a, b}
e The Euclidean ball in R of radius » and with center z is denoted by B%(x,r).

e For a function g on R? we define dilation operators which leave the L'(R?%) norm invari-
ant by

99 (x) := t'y(tx).
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For a function ¢ on R™ x R? we define dilation operators in the z-variable by
¢, z) =t (a, tx).
For a kernel K on R? x R? we define dilated versions by
Dil, K (x,y) = t K (tz, ty) .

Given Banach spaces E1, Fy we denote by L(E7, E9) the Banach space of bounded linear
operators from F; to Es.

We denote by C§° (R9) the space of compactly supported C°° functions. The subspace
C’&"O(Rd) consists of all f € C§°(RY) with [ f(z)dz = 0.
Let V be an index set, and for each v € Z, let {¥};} be a sequence of operators in
L(E1, Ey). We say that X% converges in the strong operator topology to X% € L(E, E»),
with equiconvergence with respect to V, if for every f € E1 and every € > 0 there exists
a positive integer N (e, f) such that || X% f — XV f||g, <eforall N > N(e, f), v e V.
Given bounded operators 17 € L(E1,Es), j € Z, we say that Zj T} converges in
the strong operator topology, with equiconvergence with respect to V, if the sequence of
partial sums XYy = Z;V:_ n I} converges in the strong operator topology with equicon-
vergence with respect to V.
Given bounded k-linear operators L, Ly, defined on a k-tuple (Ay,..., Ax) of normed
spaces with values in a normed space B, we say that Ly converges to L in the strong
operator topology (as N — oo) if ||Ly(ai,...,ar) — L(ai,...,ax)||lp — 0 for all
(a1,...,a) € Ay X -+ X Ap. When B = C or R then there is no difference between
strong and weak operator topologies, and we omit the word strong.

The spaces LS(R™ x RY) are defined in §2.1.

The operators Py, Qg, Qk and Q[u] are introduced in §6 (although Qy is already used
in earlier sections). The class U is defined in Definition 6.2.

The semi-norms || - [|x.,, i = 1,2,3,4,5 and the spaces K. are defined in §2.1. The
related spaces K. are defined in §2.2.

i1 =1,2,3,4, and the spaces B, are defined in §2.2.

The Schur classes Int!, Int>™, Intl, Int> and the regularity classes Regélt, RegZ
Reg;rt, RegZy are defined in §8.1.1.

The singular integral classes SI, SIg, SIZ° and annular integrability classes Ann', Ann®,
Ann,, are defined in §8.1.2.

The semi-norms | - ||z

e,1)

The Carleson condition for operators and norm || - ||cay is given in Definition 8.14. The
atomic boundedness condition, with norm || - ||a¢ is given in Definition 8.15.

The Op,, Op, norms are defined in §8.3.

The notion of a Carleson function and the norm || - ||cqr is given in definition 11.2.

2. STATEMENTS OF THE MAIN RESULTS

2.1. The classes K.. We first introduce certain classes of tempered distributions on R™ x R
which satisfy integrability properties in the first (a-)variable and contain all kernels allowable
in (1.11). For each N € Ny consider the space MSh(R" x R?) defined as normed spaces of
tempered distributions K on R™ x R? for which there is C' > 0 so that for all f € S(R" x R%)

(K. Hl<C sup > (1+[z)N07 f(a2)].

n d
QER 7CCER |7|SN
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Here (K, f) denotes the pairing between distributions and test functions and the minimal C
in (2.1) is the norm in MSH(R™ x R%). The space MS'(R™ x R?) is the space of tempered
distributions K on R" x R? for which (2.1) holds for some N € N. Note that MS’(R™ x R?) can
be seen as an inductive limit of the normed spaces M Sy (R x R?), and this gives M S'(R" x R?)
the structure of a locally convex topological vector space. A net {f,};c5 is Cauchy in this
topology if there exists an N so that all f, belong to MSH (R™ x R%) for some fixed N and so
that f, is Cauchy in the norm topology of M S} (R™ x R%). It is easy to see the normed spaces
MSh (R x R?) are complete and thus MS'(R™ x R?) is complete. Let M(R") be the space of
bounded Borel measures on R". K € MS'(R™ x R%) gives rise to a continuous linear operator
Br : S(RY) — M (R™) defined by

(B (¢2), ¢1) == (K, d1 @ @) for ¢ € S(R™), ¢2 € S(RY).

Let LS'(R™ x R?) be the subspace of MS'(R” x R?) consisting of those K for which Bx (¢2) €
LYR™), for all ¢ € S(RY). LS’ (R™ x RY) is a closed subspace of MS'(R" x R?) and inherits
its complete locally convex topology.

We now define the Banach space K. used in (1.12). For K € LS'(R” x R%) and n € S(R?)
it makes sense to write K («, ) *n for the convolution of K and 7 in the xz-variable. This yields
an L' function in the o variable, which depends smoothly on z. For K € Ll (R"™ x R?), let

loc
K9 (o, z) :=tK (o, tz)
and we extend this to LS’ (R™ x R?%) by continuity in the usual way. Fix n € S(R?) satisfying

(2.2) f 1sup\ﬁ(7'9)\ > 0,

in
0cSd=1 >0
where 7) denotes the Fourier transform of 7.
Definition 2.1. Let n be as in (2.2), and 0 < e < 1.

(i) Define five semi-norms by

(2.3a) 1K lxen = sup | (1+ |l ) [lm KO (e, )| 2 ey dov,
ol 1<i<n
>0
(2.3b) K g, == s W [ I+ (KO (a+ hey, ) = KO (a,)] | 2 (gay dav,
>0
0<h<1
23) Kl = sw [0 Ko do da,
<i<n
1Fz>‘0 R<|z|<2R
(2.3d) |Kls., == sup h™° // |K(a+ hej,x) — K(o, x)| dz de,
S R<|z|<2R
0<h<1
(2.3¢) | K|lx. 5 := sup R* / |K(a,z —y) — K(a,z)| do do .
R>2

yeR?  |z|>R|y|
(ii) The space K. is the subspace of LS’ (R" x R%) consisting of those K for which the norm
(2:4) K e := 1K llxn | + (1K e, 4 [ flace s+ 1B Nloce o+ 1o 5

is finite.
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The definition of || - [|%. depends on a choice of n € S(R?) satisfying (2.2). However, the
equivalence class of the norm does not depend on the choice, and the constants in the equiv-
alences of different choices of 1 will not depend on n. This is made explicit in Lemma 3.1
below.

Ezample 2.2. Let € € (0,1) and let x € S'(RY) N L}

loc

(R%\ {0}) be a convolution kernel in R?

satisfying

(2.5) K]l < C

and

(2.6) sup R¢ sup / |k(z —y) — k(x)|dx < C.
k22 yeR? J]z|2Rly|

Let

K(z,a) = X[o,l}n(a)“(fﬂ) .
Then K € Ks(R™ x R?) for § < ¢ and
(2.7) [ lac; So.e C-
The details of (2.7) are left to the reader.

We state a preliminary version of our boundedness result (see Theorem 2.8 below for a more
definitive version).

Theorem 2.3. Let £ >0, 6 >0 and n as in (2.2).

(i) There is a constant C' = C(d,d,e,n) such that the following statement holds a priori for
all kernels in K. which also belong to L*(R™ x RY). The multilinear form

n

A[K](by, ... ,bpt2) = /// K(a,x — y)bpyo(x)bpii1(y) Hb,(x — ai(x —y)) da dzx dy,

i=1
satisfies
n+2
(2.8) JA[K(b1, -, bps2)| < Cn®log™(1 +n) | Kl T 103l
i=1

for all b; € LPi(RY), 1 +6 < p; < oo, Z?:fpi_l =1.
(1i) The multilinear form (K, by, ..., byy2) — A[K](b1,...,byt2) extends to a bounded multi-
linear form on Ko x LPY x --- x LPr+2 satisfying (2.8) for all K € X..

The proof of Theorem 2.3 we will heavily rely on a decomposition theorem for the class K.,
to which we now turn. This decomposition will specify further part (i) of the theorem, i.e.
describe how to extend the result from part (i) to all kernels in X..

2.2. Decomposition of kernels in X.. In the following definition ey, ..., e, will denote the
standard basis of R".
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Definition 2.4. For n,d € N and 0 < e <1 we define four (semi-)norms

(2.99) Il o= [ [0+ el (e o) dac o
(2.9b) ISlls = sup 17 [ [5G+ heivo) = slavo)| dacdo
0<h<1
1<i<n
(2.9¢) lsllB..s = sup ]h\ E/ ls(a, v 4+ h) — ¢(a,v)| da do,
(2.9d) lsllB..q // (1 + |v])¥s(,v)| dex dw.
Let B.(R™ x R?) be the space of those ¢ € L*(R" x RY) such that the norm
(2.10) Islls. = llslis. +llslis. o + lsllB. s + sl .
is finite.

For 0 < € < 1 the space B, is a type of Besov space, hence the notation. See also §4.5 below.
Recall the notation ¢()(a, z) := t%(a, tz).

Definition 2.5. (i) Let ¢ € C5°(RY) such that [¢(x)dz = 1, let Q; denote the operator
of convolution with 27¢¢(27.) — 20=Dd$(20-1.), When acting on K € LS’ (R™ x R%), we
define (); K by taking the convolution in R,

(i) Set
(2.11) GIK] = (Q;K)*)
(iii) For K € LS'(R™ x R?) let
(2.12) 1K 50 = sup lls; [K]l| £ e ey -
JEZL

(iv) Let & be the space of all K € LS’(R™ x R™) such that
KI5 := sup [l (K]l 5. @ xra
JEZ
is finite.

The relation between the spaces K. and K. is given in the following theorem.

Theorem 2.6. (i) A distribution K € LS'(R™ x R?) belongs to Uy .., K- if and only if there
erists an € > 0 and a bounded set {j : j € Z} C B(R" x RY) satisfying

/Gj(a,v) dv=0

K= Z§](-2j),

JEZ

for all j, a and

holds with convergence in the topology on LS'(R™ x RY) (and thus also in the sense of distribu-
tions).
(ii) Let K € X.. Then for d < ¢,
1K lss < Coeal Kllsc.. -
(111) Let K € R.. Then for § < ¢/2
K |55 < Cse,all K5, -



12 ANDREAS SEEGER CHARLES K. SMART BRIAN STREET

2.3. Boundedness of multilinear forms. For any ¢ € B.(R" x R%) and for b; € LPi(RY) with
Z"+12 P, = 1= 1 the multilinear form

Alg](b1, ..., bpyo) = ///g(a,x — Y)bpt2()bpt1(y) H bi(x — a1 (x —y)) de dy da

i=1
is well defined; more precisely we have
Lemma 2.7. Let ¢ € L'(R" xRY). Suppose for 1 <1< n+2,b; € LPi(RY) with Z"+2 =1,
Then, for all j € Z,

n+2

[ALPN(b, - br2)| < <l @y [T 100l
i=1

Proof. This follows easily by Holder’s inequality. O

Theorem 2.6 suggests to define the form A[K], for K € K., as the limit of partial sums

(2.13) Z Al Ny, ... bpsa)

j=—N
as N — oo.

Our main boundedness result (a sharper version of Theorem 2.3) is

Theorem 2.8. Let 0 < 6 < 1, let p1,...,ppnt2 € [1 + 0, 00] with Zn+2 -1_q

(i) Let 3 be a finite subset of Z and let {g; : j € T} be a subset of B-(R" x RY) so that for
every j €7, [gj(a,z)dx =0 for almost all o € R™. Let

Kj = Z gj(»2j) .
jed
Then for by € LPH(RY) we have

n+2

Supjcyz H%”B
IA[KS) (b1, . bps2)| < Ceasn®(sup ||| o1 ggn-a log3<2+n J ) 1]
" (jGZ TR )) SuijZH§]|’L1 H P

where the constant C, g 1s independent of n and J
(it) Let K € X° so that K =3,y gj(-zj) in LS’ (R™ x R™) with [ j(a,z)dz = 0 for almost

all a € R™. Let sup; [|sjllg. < 00, by € LPY, ..., byyo € LP+2. Then 3702 Al @

19 )] converges
in the operator topology of (n + 2)-linear functionals to a limit A[K] satzsfymg

J

n+2

oK s
ATKI(Br - bs2)] < Concan?| Ky log? (2 4+ ™) 1 e
Ro
We now turn to the multilinear forms defined by adjoint operators. More generally, given a
permutation w on {1,...,n + 2} we define the multilinear form A¥[s] by
(214) A" [g](bh s 7bn+2) = A[g](bw(l)v s 7bw(n+2)) :

We have the following crucial result which will be proved in §4. It shows that operators of
the form (2.13), and their limits as N — oo, are closed under adjoints.
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Theorem 2.9. Let € > 0. There exists € > c(e) (independent of n) such that for any permu-
tation @ of {1,...,n + 2} there exists a bounded linear transformation ly : B.(R" x RY) —
B (R™ x RY) with

(Ewg)(t) = EW(g(t))a t>0,

and
AZ[¢] = Allzs],
such that
1€eclls, < n°ll<lls,
and

sl = [lslize-
Furthermore, if [ ¢(a,v) dv =0 a.e. then also [Lzc(a,v) dv =0 a.e.

In light of Theorem 2.9, the result in Theorem 2.8 is closed under taking adjoints, and
therefore follows from the following result and complex interpolation (see §15).

Theorem 2.10. Let § > 0, by,...,b, € L¥[RY), p € [1 +6,2], and let o' = p/(p —1). For
bpi1 € LP(RY), b1 € LY (RY) we have

supjez lIsjlls, | / 1
AIKI(br - buso)] < Cognsup s log? (2n =2t e (T e ) b bl
Je =1

supjez [l L1

The structure of the proof of Theorem 2.10 will be discussed in §5, and the details of the
proof will be given in subsequent sections.

2.4. Remarks on Besov spaces.

2.4.1. Equivalent norms. In Definition 2.4 we chose a particular form of the norm || - |5, which
is well suited for our goal to prove estimates with polynomial growth in n. There are other
equivalent norms which could be used, for instance, one might replace the expression

sup h_e/ |s(a + hej,v) — ¢(a,v)| da dv
0<h<1
1<i<n

with

sup |h|™¢ // ls(a + h,v) — s(a,v)| da dv
0<|h|<1
and one ends up with a comparable norm. These two choices differ by a factor which is polyno-
mial in n. Fortunately, the result in Theorem 2.8 only involves ||s;[|, through the expression

supjez |55,

log®(2+n : :
Supjez [Sill e

Thus, if one changes sup;cy llsjlls, by a factor which is polynomial in n, this only changes the
bound in Theorem 2.8 by a constant factor, and therefore does not change the result in Theorem
2.8. In this way, one can use any one of a variety of equivalent norms when defining || - ||5, (as
long as one only changes the norm by a factor which is bounded by a polynomial in n) — we
picked out the choice which is most natural for our purposes.
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2.4.2. The role of projective space. Though it may not be apparent from the above definitions,
the space RP™ plays a key role in the intuition behind our main results. In this section, we
exhibit a special case where the role of RP™ is apparent, and we return to a more general version
of these ideas in §4.5.

Recall that RP™ is defined as R™™!\ {0} modulo the equivalence relation where we identify
a, B € R\ {0} if there exists ¢ € R\ {0} with a = ¢3. This sees RP™ has an n-dimensional
manifold. Traditionally, there are n + 1 standard coordinate charts on RP™. For these, we
consider those points in a = (a1, ..., an41) € R*™\ {0} with a; # 0. Under the equivalence
relation, « is equivalent to aj_loz = (aj_loq, ... ,aj_lozj_l, 1,04]-_104]-“, . ,a;lanﬂ). This iden-
tifies such points with a copy of R"™ and yields a coordinate chart on RP"—every point in RP"
lies in the image of at least one of these charts. This sees a copy of R" inside of RP" given by
(Oél, e ,Oén) — (Oél, cee G, 1, Qi1 .- ,Oén).

Functions on RP™ can be identified with functions f : R**1\ {0} — C such that f(ca) =
f(a).e., functions which are homogeneous of degree 0 and are even. Suppose we are given
f : RP" — C. We obtain a function fy : R® — C by viewing R"™ < RP” via the map
(a1,...,an) + (ai,...,a,,1). Thus, given an even function f : R"*!\ {0} — C which
is homogeneous of degree 0, we obtain a function f : RP™ — C, and therefore a function
fo:R" = C (and fy uniquely determines f off of a set of lower dimension in RP™).

We consider here the special case when
K(a,v) = y(a)k(v)

and k is a classical Calderon-Zygmund kernel which is homogeneous of degree —d and smooth
away from v = 0. For a € R™ and functions by, ..., b,o, consider

n

// RT —Y n+2 n+1 H 33—041517_ ))dxdy

(2.15) =

// n+2 n+1x_UH a:—ozl dl’d'l)

The multilinear form we wish to study (in this special case) is given by

[ @@ da.

One main aspect of our assumptions is that this operator should be of the same form when

we permute the roles of by,...,b,19. Many of these permutations are easy to understand:
permuting the roles of by, ..., b, merely permutes the variables a1, ..., a,. Switching the roles
of by +1 and b, 42 changes « to (1 —aq,...,1—ay). Thus, the major difficulty in understanding

adjoints can be reduced to understanding the question of switching the roles of b; (1 < j < n)
and b,41 (as every permutation of {1,...,n + 2} can be generated by the these three types of
permutations).

Define a new function F: R"*1\ {0} — C by

Flag,...,an41) = // K(v)bi(x — a1v) - - bp(x — apv)bp1 (2 — apg10)bppo(x) do do .

Because of the homogeneity of x, we see (for ¢ € R\ {0}), F(ca) = F(a). By the above
discussion, F' defines a function on RP”, and therefore induces a function Fy : R® — C as
above. This induced function Fj is exactly the function of the same name from (2.15). Thus,
we have defined Fjy in a way which is symmetric in by, ..., by 1.
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F(«) defines a function on RP™, and therefore if 7(a)da were a measure on RP”, it would
make sense to write

/’y(a)F(a) do.

Indeed, our main assumptions in this special case are equivalent to assuming that v(a)da is a
density which lies in the space | Jy_..| B o(RP") (where Bf  (RP") denotes a Besov space of
densities on RP™, see §4.5 for a proof of this remark). When we write the expression as

[ @Ry da,

we are merely choosing the coordinate chart R™ < RP™ denoted above. With this formulation,
the operator

/’y(a)F(a) do

clearly remains of the same form when by,...,b,41 are permuted, and from here it is easy to
see that the class of operators is “closed under adjoints.”

Remark. In our more general setting, K (c, v) is not homogeneous in the v variable, and therefore
we cannot define a function ' on RP" as was done above. Nevertheless, these ideas play an
important role in our proofs, see §4.5 below.

3. KERNELS

In this section, we prove various results announced in Section 2. We first show the indepen-
dence of the space K. of the particular choice of n satisfying (2.2) and then give the proof of
Propositions 3.2 and 3.3.

3.1. Independence of 1. The following lemma shows that K. does not depend on the choice
of n € S(RY) satisfying (2.2).

Lemma 3.1. Let 1,1 € S(R?) and n be as in (2.2). Let 0 < e < 1. There exists C = C(n,1)
such that for all K € X,
1K g < ClHE |2

The constant C is independent of n.

Proof. Let K € X.. Only two of the terms of the definition of ||K||x. depend on the choice of
1. Thus, the result will follow once we prove the following two estimates.

(3.1) sup /(1+!az’\)€Hn’*K@(a,~)|!L2(Rd>daSC sup /(1+\ai!)€lln*K“)(a,-)HLz(Rd>da,
1<i<n 1<i<n
>0 >0

(32) sup h™° / 7 [K® (a + he;, ) — KW (a, M 2 (ray dov

<C sup h° [ |In* [KD(a+ he;,-) — KO (a, M2 mey dav.
1<i<n

t>0
0<h<1
The proofs of these two equations are nearly identical, so we prove only (3.1).

Let x € C§°(R?) be supported in {€ : 1 < |¢| < 2} with the property that >, ,[x(27%¢)]* =
"

1, for £ € R?\ {0}. Since ¥ € S(R?), we have ||x(27%)n/()||p~ < Cxmin{27%¥ 1}. By (2.2)
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and the compactness of {¢ : & < |¢| < 2} there is a finite index set © and real numbers 7, > 0

such that .
D lirg)? > e>0 for o <f¢f <2.
veO

Let

e
) = S AR

then ||my ||z~ < C, and we have

7€) =D x@F)nE) > mu(27F)R2 Fn8).

keZ rved

Hence,

I % KO () g2y S D min{27 V11~ flmy [loo |72 7 ) KO (o, )| 2 e

kEZ ve®

where the implicit constant depends on IN. Note

—

o~y — 7k:7_u
Q2 7 ) KO ()| g2@ay = (25 /1) I+ KO0 (0, )| 2 e,

and so taking N > d/2 we obtain

/ L+ o) * KO (0, ) 2 g da

<> min{27KVTAR) k2N " O, /(1 + e )7l + K@ 9 (a M2 rey do

keZ vE®
S sup / (L -+ o)l * K0 ()l gy dov,
T

which completes the proof of (3.1).

O

3.2. Proof of Theorem 2.6. The theorem follows from two propositions. In the first we prove

an estimate for the ¢; as in (2.11), which arise in the decomposition of K =3,

Proposition 3.2. Suppose € € (0,1], 0 < 6 < e. For every K € K., let

G = (QK)*™.
Then {s; : j € Z} is a bounded subset of Bs(R™ x RY) satisfying

/gj(a,v) dv =0,
for all j and almost every a € R™ and

sup [|5jll8; < Cse.all K|lx.,
JEZ

and such that

K=Y"¢")

JEZ.

with the sum converging in the sense of the topology on LS'(R™ x R%).

The second proposition provides Kgs-estimates for kernels that are given as sums Zj S

with uniform B.-estimates for the ;.

5

()

2%

)
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Proposition 3.3. Let ¢ € (0,1], and 0 < § < /2. Suppose {sj : j € Z} C B-(R™ x R?) is a
bounded set satisfying [ g;(c,v) dv =0, for all j. Then the sum

K(a,v) = Z g](-zj)(oz, v)

JEZL
converges in the sense of the topology on LS'(R™ x RY), and K € Ks. Furthermore,
1K l5cs < Cs.e.asup s,
JEZL

The proofs of these propositions will be given in §3.2.1 and §3.2.2

3.2.1. Proof of Proposition 3.2. We need several lemmata.

Lemma 3.4. Let ¢ > 0. Then, there exists 6 = 6(g,d) > 0 such that for ¢ € B.(R™ x R?%), we
have

[ 175t dado < el
Proof. Clearly ff\v\>1 w7 s(a, v)| da dv < <]l < [Is]|s., so it suffices to prove

(3.3) / /| _ Il docde 5 s
v|<1

By a weak version of the Sobolev embedding theorem (see [35] or [39]), there exists p = p(e,d) >

1 such that
1
[ ([ Kaop av)” da 5 el

Let p’ be dual to p and let § < 1/p/. We have, by Holder’s inequality, and then Minkowski’s

inequality,
/|v|<1 o™ dv>ﬁ </ (/ (e, v)] da>p dv)% dov

// \U\_‘S]g(a,v)] dadv <
jvl<1
da < <5, -

< (/(/\g(a,v)\da)pdv>

This shows (3.3) and completes the proof of the lemma. O

"= TN

Lemma 3.5. Let {; : j € Z} C B-(R" x R?) be a bounded set with [ ¢;(c,v) dv =0, for all
j €7Z. The sum

Zgj(‘zj)(a’v)

JEZ

converges in the sense of the topology on LS (R™ x RY) (and a fortiori in the sense of tempered
distributions).

Proof. Let f € S(R"® x R?). We will show, for some § > 0,

‘/gj@j)(a,v)f(a,v) dado| S279°  sup ST (14 [2])|0] f(a, @),

n d
QER 7CCER |7|S1

and the result will follow by the completeness of LS’.
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First we consider the case j > 0. In this case, we have

[ @t daa] = | [ avisen - o) dads

( sup Z 10 f(a, x) / \gj(»w)(a,v)Hv\a dv do

d
(XER” z€eR ‘ ‘<1

27 s S jonsf(@)) I ls.
a€R? zcRe <1
as desired.
We now turn to j < 0. Take 6 > 0 as in Lemma 3.4. We have

‘/ §](-2j)(a,v)f(a,v)da dv‘ < < sup \x!‘s\f(a,x)\) // ’§](-2j)(a,fu)Hv‘_5 dov dv

acR™ zeR4
—( swp [eflf(ana)) 2 / i )] [o] das do
acR™ xcR4

6 19
SO osup 2] f (e, 2)]) 2°l55l8. »
aER™ xcR4

where in the last line we have used our choice of § and Lemma 3.4. O

Let ¢ € C3°(B4(1/2)) be a radial, non-negative function with [¢ = 1. For j € Z let
o) (v) = 29p(2v). Let p(x) = d(z) — 2o(x/2) € C(BU1)). Let Q;f = f+»®). Note
that f=>5" jen Qjf for fes8 (RY) with convergence in the sense of tempered distributions.

The heart of the proof of Proposition 3.2 is the following lemma.

Lemma 3.6. Suppose 0 <e<1,0<d<e andlet K € X.. Let
S(a,v) = QoK (a,v).

Then, s € Bs(R" x RY) and
Iells, < Coeallllx. -

Proof of Proposition 3.2 given Lemma 3.6. Since K®') is of the same form as K, the lemma
also yields, with ¢; := (Q;K)? ™),

sup [|gj|5. < Coeal Kllx. -
JEZ

As [¢j(a, z)dz = 0 for all j it follows from standard estimates that K = ZjeZ gj(?j), in the sense
(27)

of tempered distributions. Since we know > jezSj ~ converges in the sense of the topology on

LS'(R™ x RY) it follows that the sum can be taken in that sense as well. The result now follows
from Lemma 3.6. U

Proof of Lemma 3.6. Note that, in light of Lemma 3.1, we may replace the test function n with
1 in the definition of || K||«..

We begin by bounding [[s[|s,, as in (2.9a) and split, for fixed 1 <7 < n,

//(1+|oz2|) Is(a, 2 |dxda—// // // — (1) + (IT) + (IT]).

lz|<1  1<|z|<1+|as|  |x|>14]|cu]
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For (I), we apply the Cauchy-Schwarz inequality to see

_ ny ny %
=[] @+l dedas sl ([0 Ko dr) do < K,

For (1), we have

// (1 + Jag)) \g(aa:]dxda<z // (1 + |ag| )| * K (o, )| da dev

1<[af <1+ ol P2t
2k || <2kt
<Y 9k // (1+ [ )*| K (a, 2)| da da S | K s,
k>0

2k =1 p|<2k+3

For (I1I), we use that [t = 0 and supp(y)) C B4(0,1) to see

(IIT1) // (14 |ei))ls (e, )| dz dex

|2|>1+|al

< f[ L axled] fowiios -y - ko) @ do
<Z2k5/\w // |K(a,x —y) — K(a, x)| de da dy

k>0 9k < g <2F 1

|| >2F

<Z2k5/ // K(a,z —y) — K(a,x)| do da dy
ly|<1 |z|>2F

k>0

S 2Kk, s SIK x50
k>0

as desired. Combining the estimates for (I), (II), (II1) gives

Ishsn < 1K g + 1Kl + 1Kl S 1K,

We turn to bounding |[<[|s,,. Let 1 <i<mnand 0 <h <1 and split
/ \g(a+hei,x)—g(a,az)]dmdaz//—i— // + // = (IV)+ (V)+(VI).
|z|<2 2<|z|<10A~! |z|<10h—1

Our goal is to show (IV), (V),(VI) < h9||K||x.. We have, by the Cauchy-Schwarz inequality,

/ ls(a+ he;, x) — ¢(a, x)| do da

|x|<2

5/(/;% [K(a—khei,')—K(a,-)](m)ﬁdw)é dor < 1 Ko
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For (V'), we have

(V)= // ls(a + hej, ) — ¢(a, )| de da

2<|z|<10h~1

< Z |K (o + hej, ) — K(a, z)| do do
1S2kS10h712k71S‘w‘S2k+2
S D KUKk, Sk log2+h K], -

1<2k<10n—1

For (VI), we use that [ = 0 and supp(¢)) C B4(0,1) and obtain

(V1) = // (e + hes, ) — ol 7)| da da < 2 // 0+ K (o, )| da da

|z|>10h—1 |z|>10h—1
5 // ‘/w(y)[K(a,x —y) —K(a,x)] dy‘ d do
|z|>10h—1
< [l [ e =) - Kol e dady
|z|>10n—1
S PN K |l 5-

Combining the estimates for (IV), (V), (VI) we get

Iellzsa S WK, + 1Kl s + 1K e S 1K .
We now turn to bounding ||<[|;,- Fix h € R with 0 < |a| < 1. Using that [¢ =0, we have

/ ls(a,x 4+ h) —¢(o, z)| do dox

g//(/01<h,vx¢*K(a,x+sh)>ds(da;da

|| <10

Y // ‘/Ol(h,vmw*K(a,:n+sh)>ds‘dmda

8<2k<10|h| ! 2k < || <2+

i //|m|29|h1 /w(y)[K(a, z —y) — Ko, z)] dy‘ dx do
=: (VII) + (VIII) +2(IX).

We need to show (VII),(VIIT),(IX) < |h]°||K||x..
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We begin with (VII) and use the Cauchy-Schwarz inequality to see

(VH)://‘/;(h,vxzﬁ*[((a,x—i-sh))ds‘dxdoz

|2[<10

<ibl [ VoK) doda
|z|<11

<\h!/ /\vw*Ka a;)]zda;>éd

< |hl|| K .
S i) e,
For (VIII) we have
1
vin= Y ( / (h, Vot * K (o, + sh)) ds| d do
< |h| Z / Vi« K(o, x)| do do

8§2k§10‘h|71 2k—1§‘x‘§2k+2

Sl Y | (o, 2)| der doy

8§2k§10‘h|71 2k—2§‘x‘§2k+3

Sl > 1Ky S hllog(2 + A IE [l 5 -
8<2k<10[h| 1

For (I1X) we use supp(y)) C B4(0,1) and estimate

(IX) N /ac>9h|1

/Wy’ / K(a,z —y) — K(o, z)| de da dy
|[>9|h| 1
S P 55

[0l e —3) = K(a,2) dy| de do

as desired. Summarizing,

ISllss S MK 0w + 11K lx0 + 1K 5. 5 S (K lac.
g,1

where in the last inequality we have used Lemma 3.1.
Finally we estimate |[c[|5., and split

//(1—|—|:17|)6|§(a,:17)|dad:1:://—I—// . (X) + (XD).
2]<10 |z|>10

We have, by the Cauchy-Schwarz inequality,

_ / /Ix|<10(1+|:E|)5|§(oz,:n)|d:nda§ / ( / 0 » K (0, 2)? d$>% o < 1Kl

21
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Using that [ ¢ = 0 and supp(¢) C B%0,1), we have

(XI) = //belo(l + |2])%|s (e, )| da dav
DI // (/1/; Ko,z —y) — K(a,2)] dy| dz da

k>3

2k < |g|<2k+1
<22k6/|1[) )| / K(a,z —y) — K(a,z)| de da dy
k>3 |lz[>2
5 Z2k(6_6)“KH 55 ~ HK”K55
k>3
Hence
Ishoes S MK le + 1K ., S 1K
This completes the proof. O

3.2.2. Proof of Proposition 3.3. We begin with a preparatory lemma. Let ® € S(RY) satisfy
[ @(z)dx =1, and let U(z) = ®(z) — 1®(%). Define Q;f = f = v,

Lemma 3.7. Let ¢ > 0 and ¢ € B.(R" x R%). Then, forl >0,

(3.4 [ 1@tz dar 2! [[19.Qusta.0)] deda £ 27 .

(3.5) / |Qis (e, x)| do do + 2_l/ |VeQis(a, )| do da S R™[< ]|,
lz|>R |z]>R

and for |h| <1,

(3.6) / !ng(a,m +h) — Qm(a,m)! dr do < min{2l\h], 1}min{2_l€,R_€}H§HBE.
|z|>R

Let0<d<e. Then for R>0,i=1,...n
(37 St )] e do 5 minga €0, RO
and for all0 < |7| <1,j=1,...,n,

(3.8) Ul // |Qis(a+ Tej, 2) — Qus(a, z)| da da < min{2779), R—(a—é)}”gHBE_
|z|>R

Proof. First observe that (3.4) is an immediate consequence of the definitions. Next, for the
proof of (3.5) we may assume R > 1. Also, observe, for every N € N,

// |Qis(a, )| dx da + 2_l/ |V.Qis(a, x)| de da

|z|>R lz|>R
2ld
<Cn ///W‘g(aax —y)| dz do dy
|[z|>R
—CN///+CN// :Cn () + (I1)).
|[z|>R |[z|>R

ly|<R/2 ly[>R/2
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For (I) we have

2ld
< p—e€ e . € . < p—e¢
027 [[] e e =l oo )l do dady £ Rl

|z|>R
ly|<R/2

For (I1), taking N > d + 1, we have

dy < (2R) el < Blslls, -

2ld
1D < el / B
B s rye (L+2y))N

and (3.5) follows. (3.6) follows by combining (3.4) and (3.5).

We now turn to (3.7) and we separate the proof into two cases, R < 2! and R > 2!. For
R < 2! we have, by (3.4),

//1+yaz! !ng(ax\dxda<// // (IIT) + (IV).

|z|>R || <2 Jou|>2!

For (IIT), we apply (3.4) to see

(I11) < 2 / / Qs )] di dov < 271 5.

Also, we have
(IV) < 2-1(e=9) / 1+ Jas))* / Qrs(, 2)| dar dov
< 97led) / / (1+ o) e 2)| de dax < 274D o]l

In the second case, R > 2!, we have

//(1—1—|ai|)6|Qz§(0z,x)|d:ﬂda§ //+// — (V) + (V).

|z|>R lai| <R oy |>R
|z|>R
Using (3.5),
(V) <R / / 1Qus (e 2)| dar dov S R[],
|z|>R
And,

vnsr [ .|>R(1+\ai\)e/\ng(a,x)]da: do

SR // (1+ [oi)*[s(ev, )| d dov S B |ls]ls,

which completes the proof of (3.7).

Finally, we turn to (3.8). This we separate into four cases. In the first case, R < 2!, 7 > 27,
we have

I~ //I | |Qis(a + Tej,7) — Qis(a, z)| dr da S 2l6/ |Qis (e, )| d dae S 271 [g] |5,
z|>R
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In the second case, R < 2!, |7| < 27!, we have
|2 / [ 1Qusta+ res.) = Quslao)] do da
|[z|>R

e €/ [s(a+7ej,2) = s(, )| dz da S 27 g5,
In the third case, R > 2!, |7| > R™!, we have
77 [ sta e - Qe deda S B[] (Qustaso)] doda S Bl
|z|>R |z|>R
where in the last inequality we have used (3.5). In the last case, R > 2!, |7| < R™!,

7| //x>R |@us(a + 7ej,2) — Qis(a, 2)] do dor

S R‘s_a\ﬂ_a/ [s(a +7ej, 2) — (o, )| dr da S R[], ,
as desired. This completes the proof. O

Proof of Proposition 3.3, conclusion. Let ¢; be as in the statement of the proposition. By

Lemma 3.5 we already know the sum ez g(-zj) converges in the topology on LS’ (R" x R%). Our

goal is to show convergence of the sum || E]eZC ||3<5 in K5 for 0 < 6 < ¢/2. Fix ji,j2 € Z,

J1 < j2. Define K =37, . . §J(2J). We will show [|K||x, < sup; ||sjll5., with the implicit

constant independent of j1, jo. The result then follows y a limiting argument. In what follows,
summations in j are taken over the range j; < j < jo. We assume, without loss of generality,

sup [|s;]l5, = 1.
J

Let xo € S(R?) be so that xo(&) = 1 for |¢] < 1 and Xp is supported in {¢ : [¢] < 2}. For
[>1let x; = X(()2) - X(()2l R , so that sup;cz x1(§) =1 for £ # 0. We write
_ (2%) (27)
K=" =235
J >0 j

where
Gila, ) = xi % gj(a, )

-3
j?
J

The proof will be complete once we have shown ||K|s, < 271729,
Our first goal is to show, for 1 < ¢ < n, t € R,

and the convolution is in R%. Let

(39) /(1 + ’az’)éHn * Kl(t)HLZ(Rd) do S (1 4 1)2—[(5_5)
which gives ||Kl||j<gl < (1 + 12719 To prove (3.9), we will show

. e—9 .
(2UEe=0)2it) " Tre=s  if 27t > 21,
(3.10) /(1 + Jo])?||m * s (2%) (a,9)], da < { 27Ue0) if 272 < 27t < 9l
(21+7)d/2 if 20t < 272

Summing (3.10) in j yields (3.9), so we focus on (3.10).
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First we consider the case when 27¢ > 2!, Letting » € [1,27t] be chosen later, we use that
[ i, z) dz = 0 to see

/(1 + ’az")(sHU * ¢ji(a, ')(2“)H2 da

< Jaria?([] [ - - n@iente 2 af @) o

< / (1 + o))’ / (@l = ) — () s dv do
< / / (1+ Jo])?lsja(en o) min{ 2L 1} do do

//'”|<7” //> + ().

We have, using (3.7) with R =0,

< " 9-i(e=0),
2]75//14—|0z2| Ij.1(a,v)| dv da S 2”2

Using (3.7) with R = r,
(1)< // (1 + e ])®lsj(c, v)] dv da S 7=,
|z[=r

We choose 7 so that r1te=% = 21(e=9)27¢; this yields (3.10) in the case 27t > 2! under considera-
tion.

For 272 < 27t < 2! we use the trivial L' — L2 bound for convolution with n and a change
of variables, combined with (3.7) (with R = 0) to see

/ (1+Jai) [ *57 V(a )|2 da S / (1+ ) llsjae, )1 dov S 2749,

as desired.

Now assume 2/t < 271, Let u € S(R?) be such that u(¢) = 1 for [¢] < 2, so that 7(27!) =1
on the support of $j;. We then have, using [|@(277=%"1)7(-) |2 < (27“15)‘”2

/ (1 + o)+ f3 V(e, )|2 da S / (1 + |ea)?lm # u® D alsj4(a, )1 da

S/(lﬂai!) a7~ )a0) allgjaes )l da S (27072,

This completes the proof of (3.10) and therefore of (3.9).
A simple modification of the above proof, using (3.8) in place of (3.7), gives for |7| <1,

_ ‘ (27)==0) if 27 R > 2L,
/ Hn * [gﬁjt)(oz +Tej,) — cﬁjt)(oz, )]H2 da <[]0 - { 271(==9) if 2720 < 2R < 2!,
(2HIR)  if 2R <272,

Summing in j shows that for 0 < h <1,
/ % K (@ + hey, ) — K (a, )], da S (1 +1)271ED)

and hence HKl”ch2 < (141)271E9),
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Next we wish to show [|Kj|ls;, < (1+ 1)2-4==9) that is, for 1 <i < n, R > 0,

(3.11) // (1 + || Ky (0, )| das dex < (1 + 1)2-E=0,
R<|z|<2R
To prove (3.11) we will show
_ (27R)~(==0) if 29 R > 2!,
(3.12) // (1+ |ai|)6|§}33)(a,$)| dx doa < { 2749 if 272 < 2R < 2,
R<|z|<2R (24 R)d if 27R < 272,

Summing (3.12) in j yields (3.11). Now, applying (3.7),

// (14 |a4)) |§l (o, )| dx da < // (1+Jai))?sjule, )| dz da

R<|z|<2R 27 R< ||
S J@R)TED it YR > 2,
~ ) 2-ke=9) if 27R < 2%,

Thus, to complete the proof of (3.12) we need only consider the case when 2/R < 272, We
have

// (1 + laa])162 (@, 2)] do da = // (1 + las])sju(a, z)| de da

R<|z|<2R 2 R<|z|<2+1R
< (PR / (14 [aal) 1632000 ) oo ey dr S (27 R)221 / (1 o) (0 s gy dos
< (@R,

competing the proof of (3.12) and therefore of (3.11).
A simple modification of the above yields, for 0 < |7| < 1,

_ (27R)~(==0) if 29 R > 2t
// | (o + Tej,x) — gﬁ”(a,xﬂ dz do < |7]° - { 27UE==0) if 2720 < 27R < 2,
R<[z[<2R (27 R)? if 2R <272,

Summing in j yields, for 0 < h <1, R > 0,
// Ko+ hes, z) — Ky, 2)| do da < (14 1)2- )
R<|e|<2R
and hence || K||x,. , < (1 + 1)2- (==,
Finally, we wish to show, for R > 2, y € RY,
(3.13) R? // |K (a2 —y) — K(a,z)| do dow < 271720,
|z|>Rly|
First, estimate
]g(?lj)(a,x —y) — g( (ov, )| da do = R® STCRE 27y) — Gjila,x)| dx do
-]7
|z|>Rly| |z[>27]y| R
< R’ min{1, 2y} min{27", (2/|y|R)~} =: £(j,1, R).
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Here we applied (3.6) with 27|y| in place of |h| and 2/|y|R in place of R. Note the left hand
side of (3.13) is bounded by >, £(j, 1, R).

In the case R > 2%, we estimate

Y EGLR) S
J
>oORTE@ T+ Y 2@ TR Y Ry

27[y] >2-1 21/R<2i[y| <2~ 29]y|<2!/R
The first two sums are O(R%~2!), and the third sum is O(R%~12(~9)!); here we used R > 2%,
In the case R < 2% we have
D EGLR)S D> RTE@h T+ > R4 Y ROyt
J 2|y|=2!/R 271<27|y|<2!/R 2y|<2

The first sum is O(R?27%), the second sum is O(R’27%log(1 + 2% /R)), and since R < 2% the
third sum is O(R%27'). In both cases we obtain > EGLR) S 271e=29)  This completes the

proof of (3.13). Combining all of the above inequalities completes the proof of the proposition.
O

4. ADJOINTS

This section is devoted to studying the space B,; in particular will give the proof of Theorem
2.9. It will be advantageous to work with a variant of this class, for functions on RV, with
N=n+d.

Definition 4.1. Fix ¢ > 0 and N € N. We define a Banach space B.(R”") to be the space of
measurable functions v : RY — C such that the norm

7]l := max /(1 +[si)*[v(s)l ds 4+ sup h™° [ |y(s 4 he;) —~(s)| ds,
1<isN 0<h<1
1<i<N
is finite. Here ey, ..., ey denotes the standard basis of RYV.
Remark 4.2. The spaces B, (R"9) and B.(R" x R%) coincide; indeed, for ¢ € B.(R™ x R?), we
have the equivalence
Isllss. = lI<lls, ,
with implicit constants depending only on d. In this section we find it more useful to use the
space B, as it treats the a and x variables symmetrically.

The following two propositions involve operations on functions in 93, involving inversions and
multiplicative shears. They are the main technical results needed for the proof of Theorem 2.9.
Proposition 4.3. Let ¢ >0 and 6 < /3. Let v € B(RY) and

J1y(s1, .., 8N) = 31_27(31_1, 89, .-y SN),
v € B(RN). Then Jiy € Bs(RY) and
117llss < 117l
Proposition 4.4. Let ¢ >0 and § < /3. Let v € B.(RN), n € {1,...,N} and set
M~y(s1,...,8N) == s?_lfy(sl, S182y -+ yS15n, Snt1y Sn+2y -+, SN)-

Then M~y € B.(RY) and
[MAls5 < nllyllss..-



28 ANDREAS SEEGER CHARLES K. SMART BRIAN STREET

For later use in §4.5 we state these results in a different form:

Corollary 4.5. Let 1 <n < N. For vy € B.(RY) define two functions

o oemm—l —1 -1 —1
Li(st,...,sn) =87 y(s] ,8] 52,--+,5] SnySntls---»SN),

(1) -1 -1
Co(s1,...,sN) =5 V(81,87 82,351 SnySntls---3SN)-

There exists € = €'(¢) > 0 (depending neither on N nor n) such that
ITills,, + T2lls,, < Ceenllyls..

Proof. Notice that I'y = JiM~, I's = J M Jyy where J; and M are as in the propositions
above. O

4.1. Proof of Theorem 2.9. We assume Proposition 4.3 and Proposition 4.4 and deduce
Theorem 2.9. If ¢ € L'(R™ x R?) and w is a permutation of {1,...,n + 2}, we shall show

A[g](bw(l)a s 7bw(n+2)) = AMWC](bl, <o 7bn+2)7

such that ||[€zs|[z1 = |Is|lz: and such that there exists ¢’ > ce, with ¢ independent of o, and
le=clis, < n2llsls.

for ¢ € B..

Every permutation of {1,...,n 4 2} is a composition of at most four permutations of the
following three forms, with the permutation in (iii) occuring at most twice.

(i) A permutation of {1,...,n}, leaving n+ 1 and n + 2 fixed.
(ii) The permutation which switches n + 1 and n + 2, leaving all other elements fixed.
(i) The permutation which switches n 4 1 and 1, leaving all other elements fixed.

Case (i) If w is a permutation of {1,...,n}, leaving n+1 and n+2 fixed, then it is immediate
to verify
(4.1) los(,v) = S(Qg1(1)s - -+ A1), V),

and thus [|(=c][5, = [[<|[s, and [[f=s]zr = ll<]z1-

Case (11). If w is the permutation which switches n+ 1 and n + 2, leaving all other elements
fixed, then it is immediate to verify that
(4.2) los(a,v) =¢(1 —aq,...,1 — ap,v).

We have [lsw |5, = [[sll5, and [[sollzr = [[s]lzr-
In both of the above cases, if [ ¢(a,v) dv =0 Va then [ ¢ (a,v) dv =0 Vo
Case (iii). We compute

A[ ] n+17b27” bn7b17bn+2)

/// a,v)bpr1(z — alv)(Hb (x — @;v))bi (z — )by ya(x) dv dz do

= // lar| "% (a, a7 w) by g1 (x — w)(H bi(x — aial_lw))bl (2 — a7 'w)byia(2) de dw da
=2
= [[[ 513 8 57 ) [T il = B0l = w)hsa(a)ds o d

1=1
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where we have first changed variables v = al_lu, then interchanged the order of integration,
and changed variables a; = 51_1, o = ﬁlﬁfl for i = 2,...,n. Hence if w is the transposition
interchanging 1 and n + 1 and leaving 2,...,n,n + 2 fixed then A%[¢] = A[fs] with

(4.3) los(aq, ..., an,v) = g(al_l, al_lag, - ,al_lan,alv) .

Now if we define the inversion J, with respect to the «y variable, and multiplicative shears
Mn—17 Md by

Jglaq, ..., an,v) = a1_2g(a1_1,a2, ey Qi V)
My_1g9(aq,...,an,v) = o/f_lg(oq, 0109, ..., 010y, V)
Mag(aq, ..., an,v) = o/lig(al, ey Q)

then it is straightforward to check that the linear transformation ¢, in (4.3) can be factorized
as

(4.4) (o =JoMgoJoM, 10.J.

By Remark 4.2 the B.(R" x R?) and the B.(R"*%) norms are equivalent with equivalence
constants not depending on n. By Proposition 4.3 we have ||./g[|z. < |g]|5., and by Proposition
4.4 we have [|Mp gz, < nlglls., and [|[Maglls, < llglls., for € < &/3. Hence |[lzslls; S
nls||s., at least when § < 37%.

Finally if w is a general permutation than we can split w = w; o wy o w3 o wy, each w; of
the form in (i), (ii) or (iii), with at most two of the form in (iii). Hence we get A¥[¢] = A[¢x]
where [|[(xs||5; < n2lls|s., at least for 6 < 370, We remark that if we avoid the factorization

(4.4) and use the formula for ¢, directly we should get a better range for § but this will be
irrelevant for our final boundedness results on the forms A®. O

4.2. Proof of Propositions 4.3 and 4.4. We first prove several preliminary lemmata, then
give the proof of Proposition 4.3 in §4.2.2 and the proof of Proposition 4.4 in §4.2.3.

4.2.1. Preparatory Results. We first recall a standard fact about Besov spaces iq(]R); 1<¢<
oo. If 0 < € < 1 then there the characterizations

1
dh \1/4
(4.5) s, ~ 10+ ([ W6+ m = flizs) " 1<a<oa
and
(4.5b) £l _ ~ I fll+ sup A5l f(-+R) — £l
’ 0<h<1
Moreover there are the continous embeddings
(46) iql - Biqy 71 < qg2.

For (4.5) and (4.6) we refer to [35, §V.5] or [39]. As a corollary we get

Lemma 4.6. Let 0 < § < ¢ < 1. Then for functions in L*(R) then there are constants ¢,C > 0
depending only on €,d such that

dh
fl+e [ niCn) = G

<Iflli+ sup AE(If(+R) = flh
0<h<1

. dh
<Clifh+C [ besCrm - S
0<h<1



30 ANDREAS SEEGER CHARLES K. SMART BRIAN STREET

We let e;, i = 1,...,N, denote the standard basis vectors in RY and let el-L to be the
orthogonal complement. For g € L'(RY) and w € e;- define

(4.7) m'g(s) = g(se; +w);

this is defined as an L'(R) function for almost every w € e, and by Fubini w — [, [1¥g(s )|ds
belongs to L!(e;i). Moreover if g € B.(RY) for some & > 0 then for almost every w € e; the
function h — fR |Tg(s + h) — m"g(s)|ds is continuous.

Lemma 4.7. Let 0 < 6 < 1. Then the following statements hold.
(1)
HQH‘&;(RN) < zf}axn/L HWZWQH%(;(R)dw'

(11) If 0 < 6 < e <1 then there exists C = C(g,8) > 0 (not depending on N ) such that for
all f € B(RY)

sy / N gllog, gyt < Clglls. ey -

Proof. (i) follows immediately from the definitions of B4(R) and Bs(RY). For (ii) fix i €
{1,...,N} and split [ | wagH(B&(R)dw = I 4+ II where

1:/ /(1+|8|)5|g(sei+w)|dsdw
e
II:/ sup \h[‘5/\g((s+h)e,~+w)—g(sei—i-w)\dsdw.

ej 0<h<1

It is immediate that I < [|gllg,@®~) < [|9]ls. y). For the second term we use Lemma 4.6 to
estimate

II< 05/ / |h|_5/|g((s+h)e¢—|—w) ~ g(sei + w)|ds T gy
<h<1 h

_05/h€5h/ g(z + he;) — ()|dx@
RN h

< Cs 6—5)_1 sup |h| 6“9( +hez) QHLl(RN)
0<h<1

and hence 1T < C(e,6)||glls. - O

Lemma 4.8. Let R > 1 and let O = {x € RN : |z;| > R}. Then
| lo@lde < B gl o
R

Proof. This is immediate from
[ ta@lds <R [+ g de. =
R

The following lemma is a counterpart to Lemma 4.8 which is used when integrating over
sets whose projection to a coordinate axis has small measure. It can be seen as a standard
application of a Sobolev embedding theorem for functions on the real line. For measurable
J C R we denote by |J| the Lebesgue measure.
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Lemma 4.9. Let 0 <e <1 and f € B.(RY), and let 0 < &’ <. Let E CRY and let
proj,(E) ={s €R:se; + w € E for some w € eiL}.
Then
[ 1#@dz < Ceclprois(BYF 11 g

Moreover fori=1,...,N, § < e,

[l 1@l < el s v
e J|zi|<1

Proof. For k > 0 let Ep = {x € RN : 2751 < |z;] < 27%}. The second inequality is a
consequence of the first applied to the sets Ej.
To prove the first statement pick p = (1 —¢’)™! > 1 so that ¢/ = 1 — p~'. By Hoélder’s

inequality,
1/p
[ 1@ < proi@) [ ([ 156sei+ wypas) M.

Let 7 f(s) = f(se; + w). Let ¢ € S(R), [ #(s)ds = 1 such that the Fourier transform ¢ is
supported in {|¢] < 1}. Let ¢y = 2k¢(2k )= 2k 1¢~(2k_1-). Choose ¢ € S(R) whose Fourier
transform is equal to 1 on {|¢] < 2} and let ¢y, = 28¢(2*.). Then

Tf =G dx T Y G r g xS

k=1

and thus, by Young’s inequality,

72 o) < I0llolld = 7 fllo) + D Ikl oy ln = 7 fll 1 (w)

k=1
Sl * m fllrw) + Z 2R =L |y s 7 f| L1y
k=1
Since [y (s)ds = 0 we have
o s m 7] =| [ [ms(s — b - 7 (5] dh]
2k w w
S /m‘% f(s—=h)—m; f(S)‘dh-

Using this in the above expression we get after integration in w
1/p
/ (/ |f(se; + w)]pds> dw
ot

= _1 2k
S \If\|1+22k<1 p)/mhff(s—h)—w}”f(s)\dsdwdh

223 )¢ IFC+ue) — FOIL S 2+23)
< + / = dh su : L / L _dh||fll,.
171 Z s R ST 2 Jpor T I

The last term is < 3232, 272 £} < || f]l1. The middle term is < S22, 2H(=s+1=1/P) || £| 5.
and since 1 — 1/p = €’ < & we obtain the required bound. O



32 ANDREAS SEEGER CHARLES K. SMART BRIAN STREET

4.2.2. Proof of Proposition 4.3. The main lemma needed in the proof is an estimate for functions
on the real line.

Lemma 4.10. For g € B.(R) let Jg(s) = s~ 2g(s™'). Then for § <¢e/3

[Tgllmsr) < C(e,)lglls. m)-

Proof. First observe that for &/ < ¢

/(1 + o)) [Jg(o)|do = /(1 + 1517 lg(s)lds < llglls. @)

by Lemma 4.9. Thus, in light of Lemma 4.6 it remains to prove that for p < 1/2,

2p dh _
(4.8) / /\Jg(0+h)—Jg(0)\d0—h S o7 llgllss.
p

for any ¢’ < ¢’ < £/3. Choose any 3 € (§'/e,1/3). We have by changes of variables

2 dh
[ vste s wi+g@ie < [ pg@ldo < [ Jgls < o gl.
p Jal<pP lo|<3p8 [s|>p=B/3

by Lemma 4.8. Also

2p dh
[ bsesnislg@lar s [ lgolde < [ jgl)lds < 0 gl
p Jlo|=p=F lo|<pf /2 |s|<2pP

by Lemma 4.9. It remains to consider

2 P I L dh
[ weteem—gg@lanGt = [T [ () ool

B

R s dh
:/p /pza [ 9 () — 9(s)|ds ==

1

here we have performed the change of variable s = a‘

. We now interchange the order of
integration and then change variables u = %= —s = 1+hs Observe that du/dh = s*(1+hs) ™2
|du] _

and thus T4 = |1+ hs|™ 1'%‘ Therefore for |h| ~ p and p” < |s| < p~? we can replace |dh|/|h|

by |du|/|u|. Also observe that h = —u(su + s?)~! and 1 + hs = s(u + s)~!. Thus the last
displayed expression can be written as

ps?

/ / -
2
pP<s|<p=f J -5

14+2ps

(“:s) (s +u) ‘md8< + (I71)

where

du
(I) := // ‘(u;s —1Ig( s—l—u)||u| ds
pP<|s|<p=?
[u|=ps?

=[] bt sl

pP<s|<p?
|u|mps?



MULTILINEAR SINGULAR INTEGRAL FORMS OF CHRIST-JOURNE TYPE 33

2

2 d

x| [ st s - 2lus] du
pP<ls|<p=8 Julrps? s |ul

Cp172,['3 Cpfﬁ )
< / / (0 + s Y)\g(s)lds du

AP+ S 2 / o(s)|ds

k k:
k>0 <|s|<21-
2~ k>cp5

First estimate

and, since by Lemma 4.9 f‘5|<2,k lg(s)|ds < 275" ||g||ss. for €” < &, we get

NS (gl + X 20 g, ) S P g,

E>0
27F>cpf

Finally,
du
i< Y / ot +) gl

k2 RSCPI20g ey <o1
k 1-2
< Y 2 gls L S oM lglle.
k:2=k<Cpl—28

Now collect the estimates and keep in mind that 8 < 1/3 is chosen close to 1/3. We may choose
¢’ above so that 30’ < ¢’ < e. Then the asserted estimate (4.8) follows, and the lemma is
proved. O

Proof of Proposition 4.3, concluded. Let m°g(s) = g(se; +w) be as in (4.7). We have

irles < x| ()

By Lemma 4.7 and a change of variable w; — wl_1 we obtain for 2 <i <mn, §; > 6,

[ gy = [ gl dw S lgls,, mv)

e’L €

Let 30 < € < e. For the main term with ¢ = 1 we use Lemma 4.10 and then Lemma 4.7 to get

| w2 g lssde = [ 8@ Dlsede S [ I gle.mdo S lols. e

€1 €1 er

This concludes the proof of the proposition. O

4.2.3. Proof of Proposition 4.4. We now turn to Proposition 4.4. Fix ¢ > 0, n € {1,..., N},
v € B.(RY) and recall the definition

M~(s) = 371‘_17(31, S182, .y 8150, Sl - -y SN)-
We separate the proof into three lemmata. The most straightforward one is

Lemma 4.11. Let 0 <e < 1. For6 <e/2,i=1,...,N,

/ (1+ 1) MA(3)] ds < [
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Proof. Let ¢ > 0 be a number, to be chosen later. If i =1 orn+1 < i < N, we have, by a
change of variable,

/(1 +loi|)* | MA(o)] do = /(1 +[si)" (s) ds S |ylle., € <e.
Let 2 < i < n. We have by a change of variable
’ S; ’
Jas ol eyl do = [+ 12 () ds

Let Q= {s:[s1| >3}, Qo = {s: [s1] < 3,|s:] > [s1]71}, Q3 = {5: [s1] < 3, si| < |s1]7!}, and
bound the integrals over the three regions separately. First, for ¢’ < ¢,

S; ’ ’
|0+ h@ds s [+ 15D )l ds < e,
1
Next, for &’ < e/2,
S; ’ ’
| 01207 b ds s [ @+ s i)l ds < Il
2
Finally, for the third term we use Lemma 4.9 to estimate, for &’ < /2,
S; ’ o
/ (L4 =) Iv(s)] ds Se / (1+ [s1] 7> Iy(s)| ds < [|yllss.
Q3 51 [s1]<3
The asserted estimate follows. ([l
Lemma 4.12. (i) Forn+1<i<N,e>0

sup h™F[[My(- + he;) — Myllr < ||7]]ss.-
0<h<1

(ii) For2<i<m, § <¢e/2

sup h70|| M (- + he;) — M|l S [1v]]s. -
0<h<1

Proof. In the case n +1 < i < N a change of variables shows,
/ Mry(o + hes) — Mr(o)| do = / (s + hes) — 1(s)| ds,
RN RN
and the result follows.
Now consider the case 2 < i < n. By Lemma 4.6 it suffices to show that for p <1

2p dh ,
(4.9) / / MA(0 + hes) — Mr(0)] do 2 < o7 Iy, & < e/2.
p JRN

Our assumptions are symmetric in g, ..., S,, and thus it suffices to prove (4.9) for i = 2. The
result is trivial for 1072 < p < 1, so we may assume p < 1072, In the inner integral we change
variables, setting (s1,...,sy) = (01,01092,...,01,0n,0n+1,--.,0n) and the left hand side of
(4.9) becomes

2 dh
/ / |7(81782+81h781337"'7STL781’L+17"'78N)_7(8)|ds_
P RN h

_ // + // = (I) + (I1)

p<h<2p p<h<2p
s1]1>p=7 |s1|<p~?
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where 5 € (0,1) is to be determined. We have the following estimate for the first term:

<2/ [v(s IdS—< / IV(S)IdSSpﬁa/(lJr|81|)E|7(8)|dS,SpﬁallvH%g-

i lexf2p77
s1|Z2p

For the term (I7) we interchange the order of integration and put for fixed sy, h = s1h so that
dh/h = dh/h. Also, on the domain of integration of (IT), we have |h| < 2p'~#. Thus we may
estimate

- S 2p1=7
< [ b —AOLBa < e, [ B RS 0
|h|<2p1—8 0

If we choose 3 = 1/2 then (4.9) follows from the estimates for (I) and (I7). O

Remark. One can replace the application of Lemma 4.6 by a more careful argument to show
that (4.9) implies that the statement (ii) in the lemma holds even for the endpoint § = /2.
However this is not important for the purposes of this paper.

The main technical estimate in the proof of Proposition 4.4 is an analogue of Lemma 4.12 for
regularity in the first variable, given as Lemma 4.14 below. We first give an auxiliary estimate
for functions of two variables.

Lemma 4.13. Let 3 < 1/2, ¢/ <e. For g € B.(R?), and 0 < p< 1,

/// (L+ &) gls1+h, (L+ f)s2) = g(s1 +h, 82)‘ dslds2d_:

pP<s1|<p=h
p<h<2p

C(8.€)(p77 + p' %) lglls. (m2) -

Proof. We may assume that p < 102/ since otherwise the bound is trivial. We wish to discard
the contributions of the integral where |so| < p? or |sa| > p~®. We estimate the left hand side
by A+ I + Iy + 111 + II; where

A= [0 By b+ £yse) — glon -+ hsa)| dsidsn T

pP<]s1],52<p™ 8
p<h<2p

L+1I = /// /// 1+ g(s1+h, (1+ )82)‘d81d82d—:,

pP<]s1|<p=F  pP<]si|<p™h
s2|<p? |sa|>p~8
p<h<2p p<h<2p

dh
Iy + 11, = /// + /// | 81—|—h82)|d81d82h

PP<s1|<p™P pP<s1|<p~h
|s2[<p” |s2|>p~ "
p<h<2p p<h<2p
To bound I; we change (for fixed h, s;) variables as o9 = (1 4+ h/s1)sy and observe that
(14 h/s1) ~ 1. Thus the oy integration is extended over oo < p”, and we may apply Lemma
4.9. A similar argument applies to I, and we get

I+ 1 S 0% |lglls. re)-
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The same argument applies to the terms 11, Ils, with the oy integration now extended over
log| > p~? —2p > cp~P for ¢ > 0. Now we apply Lemma 4.8 instead and the result is

N+ 11 5 p% gl ze)-

We now consider the term A and estimate A < III + IV where

dh
IIT = /// [T+ 2]g(s1 4+ b, (14 2)s2) — g(s1 + h, 52)] dsldsQ7 ,
pP<s1],ls2|<p™F
p<h<2p
dh
IV = %|g(81+h,82)|d81d827.
pP<|s1],|s2|<p™F
p<h<2p

Since h = p and |s1| > p? in the domain of integration we immediately get
IV g Pl_ﬁHQHLl(R% .

In the estimation of 111 we may ignore the factor 1+ h/s; which is O(1). We make the change
of variable o1 = s1 + h which does not substantially change the domain of integration since
%pﬁ < |o1| < 2p~# for the ranges of p we consider here. We see that

dh
[I[SJ /// |g(01,(1+01h_h)82)—g(01,32)‘d01d827
3P <o [sa|<2p™7
p<h<2p

We now interchange the order of integration, and then, for fixed o1, s2 change variables u =
u(h) = % Then observe that

ou J182 d_u o o1 dh

%:(Ul—h)z’ u_al—hf;

moreover the range of |u| is contained in [p'*%% 4p1=25]. Since |dul|/|u| = |dh|/|h| we get the
estimate

27" du
nrs ). / / |9(01, 52 +u) — g(o1, 52)| dordsa—
2—k—1§4p1726 2-k—1 |U|

S Y 2 glls @y S 0P lolls. ) -
2—k:71§4p1*2/3

We collect the estimates and obtain the desired bound. O
Lemma 4.14. For0 <e <1, § <¢/3,

sup 7| M~ (- + her) — Mylly S nll7v|s..-
0<h<1

Proof. Let € < e, 61 > § be such that § < §; < £/3. By Lemma 4.6 it suffices to show for p <1
the inequality

2 dh _
(4.10) 1My (- + her) = Myli== S p%nllyls.
p

We let 5 < 1/2 to be chosen later; a suitable choice will be 8 € (41/£,1/3). We may assume
p < 10~2/# since otherwise the result is obvious. We first discard the contributions of the
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integral for |s1| < p? or |s1| > p~”. We estimate

2
/ P [M~(- + her) — M’YHl_ S < (A)+ () + (I) + (IL) + (1)
p

where

2p dh
/ /" My(s + her) — M(s)] ds
p Jspf<|s1|<p=h

2p
dh
/ / \M’y(s+hel)\ds—+/ / |M~(s)|ds— ,
p tJs1]<pP h p Jsils1]<pP h
p

2 dh 20 dh
e [T )G
s1|>p—# s:ls1|>p— P

We make a change of variable o = (s1 +h, (s1 +h)sa, ..., (s1+h)Sp, Sp+1,- -, Sn) and estimate

2p
(1) < /’/ 1(0) e B < 0P|l )
\01|<p‘*+2p

where we have used Lemma 4.9. Similarly

2p dh
LR A BN o T T T
o:lo1|> -

by Lemma 4.8 and the estimate 2p < % p~ % which holds in the range of p under consideration.
The bound (I2) + (I13) < pBEH’YH%E(RN) follows in the same way.

(ITy) + (IL)

It thus remains to estimate (A). We change variables and write

2p
= / / [(s1+h)" My(s1 + h, (51 + h)s2, ..., (514 1)Sn, Snt1, .-, SN)
pP<|si|<p=F

_ dh
— st Ly (s1,5152, ., 5150, Sl - - .,SN)‘ ds W
2 n—1
:/ / ‘(1+£) /7(81+h7(1+%)827---7(1+£)Sn,8n+1,...,8]v)
p s:pB<|s1|<p—F
dh
— (81,82, -+« Sy Snt 1y - - - ,sN)‘ ds -

We split the integrand as a sum of n differences Ag(s,h), k =0,...,n — 1, where
Ao(s,h) = (s + he1) —(s)
and, for k=1,...,n —1,
Ap(s,h) =(1+ 2) (st 4+ by (14 BYsa, o, (14 BYsi, (14 B)spgr, sigz- o sw)
- (1+ ﬁ)k_lfy(sl +h(1+2)sg, o (T+ 2)siy sq1, - 88)
Then (A) < 3724 (Ax) where

2p dh
= [ [ (s, ) ds 5
p JspP<s1|<p=h

(Ao) S PlIYls. -

It is immediate that
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For the estimation of (Aj) we make a change of variable in the s; variables where 2 < i < k;

this replaces (1 + h/s1)s; by s; (i.e. there is no change of variable if k¥ = 1). This gives, for
1<k<n-1,

2p
(Ak‘) = (1 + ﬁ)’y(sl + h7 825+, 8k, (1 + £)8k+1, Sk4+2-- -5 SN)
p JspP<]s1]|<ph ° o

dh
_’Y(Sl +h7327’”73k73k+17"'7SN) ds? :
By symmetry considerations we may assume k = 1. We may now freeze the s3, ..., sy-variables,

apply the auxiliary Lemma 4.13 for functions of (s1, s2) and obtain for &/ < &

(Ar) S (P77 + p' %) // lg( - 83, 58]
Since € < ¢ this also implies, by Lemma 4.7,
(Ar) S (077 + 0722 |l glls. -
We collect estimates we see that the quantity on the left hand side of (4.10) is estimated by
C (B, ,e)n (" + o) || fllsw.eny

and with the correct choice of ¢ € (3d,¢) and then 8 € (6/¢',1/3) we see that (4.10) is
established. O

%g(Rg)dS?, -o-dsn.

4.3. A decomposition lemma. Later in the paper, we will need a decomposition result for
B-(R™ x R%), which we present here.

Lemma 4.15. Fir 0 < ¢ < 1 and 0 < § < ¢/2. If¢ € B.(R" x RY). Then there are
Sm € Bs(R™ x RY), m € N, with supp(sm) C {(a,v) : |v| < 1/4} and
=™

m>0

such that
lsmllss < 277 <],

Proof. Let ng € C§° be supported in {|z| < 1/4} such that with 0 <7y < 1 and no(z) =1 for
x| < 1/8. Set mi(v) = mo(v) — m0(2v), so that 0 < |m| < 1, supp(m) € {55 < |[v| < §} and
L=mno(v) + >, Mm(27™v). For m € N, define

no(v)s(a, v) if m =0,
§m('U - d .
1 (v)2m(a, 2™0)  if m > 1.

Then ¢p(z) = 0 for [z| > 1/4 and ¢ = 3 -, &, Clearly [|coll5. < llslls. - It remains to
bound ||¢, ||g; for m > 1.
We show

@) [fas o oldados [0+ o) dado S 277Dl
(4.12) sup ]h\_‘;/ |sm (e + hej,v) — g, v)| dadv < 2_m(5_5)|]§HBE )

|h|<1
We change variables and see that the left hand side of (4.11) is bounded by

/ / (1+ o)l (e 0)] 71 (2™0)| dax do + / [ rmelsasolin o)l dado.
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We estimate

/ / (1 + la)* (o v)]dado < 27™C) / / (1 + o))l (e v)ldado < 27 |q|ls,,

|ovi | <2
|v|az2™

/ / (1 + || (o v)]dady < 27 / / (1 + laa)ls (@, 0) dado < 27 |id]1s,.

|| >2m
|v|mz2™

/ / (1 +27™0])’l (@, v)|dado < 27 / / (04 ol le (e, v) [dado < 2|5,

|v|z2m

and (4.11) follows.
Next, we consider, for |h| < 1, the expression

/ lsm (e + hej, v) — g, v)| dadv < / In(27"0)|[s(a + hej,v) — s(a,v)| da dv
and distinguish the cases 2™|h| < 1 and 2™|h| > 1. If 2™ > |h|~! then we estimate
[ sters hewe) =sten il dado 5277 [l o) e 127 s
and if 2™ < |h|7H,
// o ls(a + hej,v) — ¢(a,v)| dadv S b ||sllB. S ’h‘52_m(€_5)\\f“& _

Now (4.12) follows. Note that so far we have only used ¢ < e.
For our last estimate we need § < /2, and we need to show

(113) J[ tontaso 4 ) = e o)ldado < P2 s
The left hand side is estimated by (I) + (IT) where
()= [ [ Inte + 1) = )2 s(a, 2" (0 + 1)) dado,
(II) = / In(v)[2™%)¢ (v, 2™ (v + R)) — ¢(a, 2™v)| da dv .

Note that |n(v +h) —n(v)| S X{L <)y <1}|| and so the first term is estimated as
32— —2

(I) < |n| // 24| (e, 2™0) | dav dv = |h| // (v, v)| dav dv

a <Iv<t 2m—8<|y|<2m

S 27 h| // (1 + [o])°ls(a v)] dadv < h127™ls]|s,
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which is a better bound than the one in (4.13). More substantial is the estimate for (I7). Here
we first consider the case |h| > 272%™ and bound

(I1) < // 246 (, 2™ (v + D)) — s(, 2™v)| da dv < 2 // 2md|¢ (o, 2™0)| dev dv

2-4<|v|<2-2 2-8<|y[<2-1

< // ¢(a,v)| dadv < 27 ma//(1+|v|)a|§(oz,v)|dozdv

9m—8<|y|<om—1
- Se—m(e—20
S 27 sl S 102272 | 5.

Finally for the case |h| < 272" we get
(1) < / (@, v +27h) = o(a,v)| dardv S (2" |R])* slls, S [RI°27C ) o],
This yields (4.13) and the proof is complete. O

4.4. Invariance properties. We state certain identities concerning the behavior of our mul-
tilinear forms with respect to scalings and translations. These will be used repeatedly. The
straightforward proofs are omitted.

Lemma 4.16. Let ¢ € LY(R" x RY), and <) (a,-) = 209%(a,27.). Let b; € LPi(RY), for
i=1,....,n+2. Then

(i) Let mi,f = f(- —h). Then
A[g](Thbl, e ,Thbn+2) == A[g](bl, e ,bn+2) .
(ii) |
AP (br, ... bpra) = 277N [¢)(b1(2774), .. Dya(2772)).
(1i1)
AP)(br, . baya) = /bn+z(w) / 2 (20,2 y)bn 41 (y) dy dv

where
k‘j(x,y):/ T —y Hb 27 (x — ay(z — y))) dav.

(iv) If g; = 2799/Pib,(279.) then ||gilp, = HbiHPu and
. n+2
AN b1, basa) = ARNg1s - gnr2) > 97 =

(v) Let Ky, ..., Kny2 be bounded Borel measures and K}Et) = t9(t-). Set bi(x) = bj(277x). Then

A[§(2j)](/£1 kb1, .oy g * byyo) = 2_jdA[§](/£§27j) by, ... ,Hg_,;;) * l;n+2).
(vi)
A[§(2j)](/£1 kb1, .oy Knpo % byyo) = /2jdEj(2jx, 299) b1 (y) bpao () dz
where

Fiw) = [ [ stavw =TI <@ 9w - astw = 2)dinsa((z = w)dsnia(z -~ ).
i=1
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4.5. The role of projective space, revisited. A particular special case of Theorems 2.9 and
2.8 involve the case when
K(a,v) =v0(a) Ko(v),

Kj is a classical Calderén-Zygmund convolution kernel which is homogeneous of degree —d,
smooth away from 0, and vy € B.(R"™) for some ¢ > 0. We saw in Section 2.4.2 that such
operators would be closed under adjoints provided we could see the space of vy as a space of
densities on RP™ in an appropriate way. Indeed, this is the case, and this section is devoted to
discussing that fact. These results are not used in the sequel, and are intended as motivation
for our main results.

For a measurable function f:R"™ — C, and 0 < € < 1, we set

1£lBs @y = (I fllr + max  sup |hi|_€/|f(8 + hiei) — f(s)] ds,
’ ? <h;<1

where ey, ..., e, is the standard basis for R".

Let M be a compact manifold of dimension n, without boundary. Let u be a measure on M.
Take a finite open cover Vi,...,Vy of M such that each Vj is diffeomorphic to B"(1)-the open
ball of radius 1 in R™. Let ®; : B"(1) — V; be this diffeomorphism and let ¢1,...,¢r be a C>

partition of unity subordinate to this cover. On each neighborhood Vj, let @fa denote the pull
back of u via ®;. We suppose @?ﬁ 1 is absolutely continuous with respect to Lebesgue measure

on B™(1) and we write d@fﬂ =: vj(x) dor where dx denotes Lebesgue measure.
Remark 4.17. «; is called a density, because of the way it transforms under diffeomorphisms.

Definition 4.18. For 0 < e < 1 we define Bf (M) to be the space of those measures p such
that the following norm is finite:

L
liallss _ary =D Nidg © @50 ()llss_cmy-
j=1

Remark 4.19. The norm [| - || _(as) depends on various choices we made: the finite open cover,

the diffeomorphisms ®;, and the partition of unity ¢;. However, the equivalence class of the

norm || - || BS (M) does not depend on any of these choices, and therefore the Banach space

€
1,00

(M) does not depend on any of these choices.

We now turn to the case M = RP". Given a measure u € Bj ,(RP"), we consider the map
taking R" < RP" induced by the map R™ — R"*! given by (z1,...,2,) + (z1,...,7p,1).
Pulling p back via this map, we obtain a measure on R"-since u € By (RP™) this pulled back
measure is absolutely continuous with respect to Lebesgue measure and we write this pulled
back measure as yo(z) dr. This induces a map taking measures in Bf . (RP") to functions R"
given by u — 7.

Theorem 4.20. The map p+— o is a bijection Jy o1 Bf oo(RP™) = Uyccg Be(R™) in the
following sense:

(i) Ve € (0,1), 3¢" € (0,¢], and C = C(e,n) < oo such that Yu € Bf (RP"), 7o € B (R")
and [|v0lls, < Cllpllss  wpn)-

(it) Ve € (0,1), 3¢’ € (0,¢], Vyo € B(R™), there exists a unique p € Bf:OO(RP") with 1 — 7o
under this map. Furthermore, 3C = C(e,n) such that H”HBiM(RP") < Clvol|ss. -

Proof. Fix € € (0,1) and let u € Bf (RP"). We define an open cover of RP". For j =
1,...,n+1, let V; denote those points {(x1,...,zj-1,1,2j,...,2,) : € R, |z| < 2}, written
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in homogenous coordinates on RP™. V; is an open subset of RP"™ which is diffeomorphic to
B"(2), and U/ V; = RP™.

Let ¢;, 1 S j <n+1 be asmooth partition of unity subordinate to the cover Vi,..., V,11.
= 2?21 ¢ju. By the assumption that pu € Bf  (RP"), it follows that ¢;u = v;(z) dz, when
written in the standard coordinates on Vj, and H’Y]”Be ®) S HNHBE (rpny- Since 7; has
compact support, we have s, < [lla; g < lulls; pn)- Finally

-1 -1 ~1 -1 -1
Yo(x) dz = ypi1(x) de + E T x] :El,l‘] Loy s Ty Tj1,T) Tjgd, - T Ty T ) dx .

It follows from Corollary 4.5, applied to each term of the sum, that [|yos,, < Cn ||,U||B€ (RP7);

and part (i) is proved.

Because 7y uniquely determines p except at those point which cannot be written in homo-
geneous coordinates as (z1,...,Zn, 1), it follows that there is at most one yu € UesoB] o (RP™)
which maps to a given 7y (because such a pu is absolutely continuous with respect to Lebesgue
measure in every coordinate chart, and gives such points measure 0). Hence, given vy € B.(R")
there is at most one p such that p — . We wish to construct such a p.

Let ¢; be the coordinate charts from above. Given 79 € B(R") define v,11(z) dr =
¢Gnt1(x)y0(x) dr and for 1 < j < n,

(@) dx = ¢j(x)z, " oy ey, my wy, ay w ) da
Define dp; := v;j(x) dz on Vj. By Corollary 4.5, there exists ¢ > 0 with ||v;|ls_, < Cly|ls,.. We
set u = E;Hll . We have H,uHBe _®pmy < C'|volls, and w70, as desired. O

Remark 4.21. In this section we were not explicit about how each constant depends on n. The
above can be set up in such a way that all constants are polynomial in n, which is natural for
our purposes—see §2.4.1. In fact, it would be hard to avoid this polynomial dependance on n,
since there are naturally n + 1 coordinate charts in the definition of RP™.

Remark 4.22. Corollary 4.5 implies that the space (.-, B(R™) (when thought of as densities
on RP") is closed under the action of a particular diffeomorphism of RP™. Namely, if v €
Ueso Be(R™), then

n—1

s (st s sa, ., 87 Msn) U B(R"™).

e>0
Theorem 4.20 tells us that more is true: [ J .y Be(R") is closed under the action of any smooth
diffeomorphism of RP"™ (as (J .o Bf o (RP") clearly is). It is not hard to see that, when taking
adjoints of our multilinear operator in the special case when K (o, x) = vo(a) Ko(x) where Kj is
a homogenous Calderén-Zygmund kernel, each permutation of by, ..., b,12 corresponds to the
action of a diffeomorphism of RP™ on 7. In fact, each permutation corresponds to an action
of an element of GL(n + 1,R) on RP™ (where the action of GL(n + 1,R) on RP" is defined in
the usual way).

5. OUTLINE OF THE PROOF OF BOUNDEDNESS

In this section, we begin the proof of Theorem 2.10 on the boundedness of our multilinear
forms. Let ¢ be an even C§° function supported in {|z| < 1} such that ¢ > 0 and [¢ = 1.
For j € Z define $(¥')(z) := 279$(27z) and define the operator Pif = f=x #?). Furthermore,
we choose ¢ to be even so that P = P; = P; (here P? is the adjoint of P; and 'P; is the
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transpose). There are two key facts to note about P;j. First, for all f € S(R?),
(5.1) lim Pjf=/f, lim Pjf=0,
j——o0

j—r+o0
with convergence in &’. Secondly, by the nonnegativity of ¢ the operator norm on L is
bounded by 1:
(5.2) [Pillzeo—s e = 1.
In Theorem 2.10 we are given a bounded family in B.,
(5.3) d={g:JeZ}

For (parts of the) proof of Theorem 2.10 we shall also need to assume the cancellation condition
(5.4) /gj(a, v)dv =0

for all j € Z. Of particular interest are the choices in Proposition 3.2, namely ¢; = (Q; K )(2 7 ,
given K € K, for some o > ¢. Theorem 2.10 concerns the sum

(5.5) A(by, - bos2) = lim Z Al N1, ... basa),

where by,...,b, € L®(RY), b,y € LP(R%), and b, o € LP (R?), with p € (1,2] and p’ € [2, 00)
is the dual exponent to p. We have not yet shown that this sum converges in any reasonable
sense though it is easy to see that it converges if all b; belong to Cg° (R4). One first establishes

estimates for the partial sums E;V:_ NAls (23)](b1, ..y bnt2) which are independent of N. Thus,
in order to state a priori results one should first assume that all but finitely many of the ; are
zero. In the general case we shall establish convergence in the operator topology of multilinear
functionals (or in slightly stronger convergence modes). Throughout we take n > 1, as the
result for n = 0 is classical. Our estimates will involve quantities depending on the family ¢’ It
will be convenient to use the following notation. Let

sup; |l
(5.6) T, =T = —21 75
sup; 1571,
and for n > 1, v > 0 set
(5.7) e = N[ 1= sup I |, Tog”(1 +n (<))
J

We split the sum (5.5) into various terms which we study separately. For 1 <1y <ly <n+2,
we define

(5.8)
Allth (b17 R bn+2)
= ZA[§J(2J)](Z)17 R 7bll—17 (I - Pj)bl17pjbl1+17 o 7ijl2—17 (I - Pj)blga ijl2+17 s 7ijn+2)-
JEZ
For 1 <1 <n+ 2, we define
(5.9) A2(b1,. .., bpyo) ZA N(Piby,..., Pibi_y, (I — Py)by, Pibisy,. .., Pibyyo).
JEZL
Finally, we define

(5.10) N1 bure) == S AR (P, ..., Pibasa).
JEZ
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One verifies (by induction on n) that
(5.11)  A(by,. .., bny2)
= Z Alll,lz(bl"“ n+2 Z Al bi,... n+2)—|—A (bl,...,bn+2).

1<l <la<n+2 1<i<n+2

For by,...,b, € L®(R?) fixed, we can identify the multilinear form A with an operator T' =
T[by,...,by] defined by

(5.12) /g(aj) T, ..., by)f(x)dx := A(by,...,bpn, f,9)-

In this way we associate operators Tll1 Iy Tl2 and T° to the forms A}

o Al2 and A%. We shall see
that the sums defining these operators converge in the strong operator topology as operators
LP — LP (for fixed by, ..., b, € L®(R%)), see §1.3 for the definitions.

The main estimates. We separate the proof of Theorem 2.10 into the following five parts.

Theorem 5.1. Let p € (1,2] and p' € [2,00) with 1 —|— =1.
(a) Suppose that ¢; = 0 for all but finitely many ], Then

(1)

Ao (b bns2)| S ST 10illzoe) Bna 2o Bng2 Lo -
=1

(II) For1 <13 <n,ly € {n+1,n+ 2},

|All (bl’ i bn+2)| 5/261 HHb Hoo an+1Hp||bn+2Hp
i=1

(III) For1 <1l <ly <m,

(AL 1, (0, ba) | S T (T 10ilo0) 1B llplbrs2l-

(IV) Under the additional cancellation condition (5.4) we have, for 1 <1 <n+2,

n

A7 (01, be2)| S [ (T H0illoo) 1041 1 l1Br+2l,-
i=1

(V) Suppose that (5.4) holds. Then

(A% (b1, bas2)| S 0 DT (T 10ilo0) bt B2l
i=1

In the above inequalities the implicit constants depend only on p € (1,2], d € N, and € > 0.

or general families ¢ = {¢; : j € Z}, bounded in B., the sums defining the above five
b) F l il y 7}, bounded in B, th d he ab
unctionals converge in the operator topology of multilinear functionals and the limits satisfy the
jonal ge in the op pology Itili jonal d the limi isfy th

above estimates.

(¢c) The sums defining the operators Tllhl2 (b1, ... bnl, TPb1,. .. by and T3[by, ..., b,] asso-
ciated to the forms Al o Al2 and A3 wvia (5.12) converge in the strong operator topology as
operators from LP — LP.

Summing up the estimates for the five parts yields Theorem 2.10.
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6. SOME AUXILIARY OPERATORS

In this section, we introduce some auxiliary operators which play a role in the proof of
Theorems 2.10, 5.1. Recall that in §5 we introduced the operator P;, which was defined as

Pif = f* ¢(2j), Where ¢ € C°(B%(1)) was a fixed even function with [¢=1,¢ >0, and
6@ () = 24¢(2x).

Define ¥(z) := ¢(z) — 27%¢(x/2) € C(B4(0,2)), and let Qi f = f * 2 5o that
(6.1) Qr =Py — Py
Note that, in the sense of distributions, we have the following identities
(6.2) I=%Q; P=YQrn I-P=) Q

JEZ k<j k>j

with convergence in the strong operator topology (as operators LP — LP, 1 < p < 00).
Remark 6.1. There is one subtlety that we must consider. While lim;_, o, P;f = 0 for f €
C3°(R?) (or even f € LP, p # o) is it not the case that lim;_, o Pjf =0 for f € L*>. Indeed,
this is not true for a constant function. Thus, the first two identities in (6.2) do not hold when

thought of as operators on L>°. However, the third identity does hold (with the limit taken
almost everywhere), which we shall use.

Let xo € S(RY) so that xo(£) = 1 for [¢] < 1/2 and xq is supported in {|¢| < 1}. For j > 1
let n; be defined via

(6.3) 75(€) = x0(277¢) = x0(2'7¢)
so that 7; is supported in the annulus {¢ : 2772 < [¢] < 27} and > jenj(§) =1 for £ # 0. Let
7o be a Schwartz function so that its Fourier transform vanishes in a neighborhood of the origin

and is compactly be supported, and equal to 1 on the support of 7y. Let 7; = %ZJ). Note that
74, 1; belong to So(R?) — the space of Schwartz functions, all of whose moments vanish. Define

(6.4) Q;f = fxmy, Qif =[xl
and note that
(6.5) Q;=Q,;9; = 9;9;

and [ = Z]EZ Q; = ZjeZ Q; éj = ZjGZ éj Q;, where this identity holds in the weak (distri-
butional sense) and also in the strong operator topology, as operators on LP, if 1 < p < oo.
We also have the following well known estimates for the associated Littlewood-Paley square
functions: for 1 < p < oo, f € LP(RY),

(6:6) 191~ (1) | =~ (1250

with implicit constants depending only on p and d. The same estimates hold with Q; and ék
replaced by their adjoints.

p

We introduce a class of operators generalizing Q;, Q;, and éj.

Definition 6.2. U is defined to be the space of those functions u € C''(R?) such that the norm

[l = S;@(l + (2] 2) (Ju(@)| + V(@)

/u(x) dz = 0.

is finite and such that
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Definition 6.3. For u € U and j € Z, define Q;[u]f := f * u®).

Remark 6.4. Note that 1,19,70 € U and Q; = @j Y], Q; = @j[no], and éj = Qj (0]

The class U comes up through the following proposition (which is very close to a similar one

in [7]).
Proposition 6.5. If {f;}jez C L*(RY), then

HZQ)JCJH SUP <Z||Q] f]”)é

=1 7€
in the sense that zj Qjf; converges unconditionally in the L? norm if the right hand side is
finite.
6.1. Proof of Proposition 6.5. We need several lemmata.

Lemma 6.6. For { < 0, ¢ € C°(B42)), u € S(RY) if we define v_¢ := ¢ x u™"), we have
¢ €U and ”"}/ gHu < 26/2

Proof. Tt is clear that y_, € C>(R%), so it suffices to prove the bound on ||y_||y. Because, for
v=1,...,d,dy,7_¢is of the same form as v_y, it suffices to show |y_(z)| < 2¢/2(14-|z|¢F1/2)~1
This is evident for |z| < 4, since |y_¢| < |||looljulr S 1.

Since ¢(x — y) is supported on |z — y| < 2, we have for |z| > 4 and any m,
[y-e(@)] S / 27 (1427 y) " dy ~ / 27 (1427 ) dy S 27 (1427 )
lz—y|<2 lz—y|<2
Taking m = d + 1/2, we have
o) S 279+ 27 )2 S 2P (U 4 [T ] > 4,
as desired. g
Lemma 6.7. Suppose u; € S(RY), ug € So(RY). For j > 0, let uj := up * uéZJ). Then, for
m=0,1,2,...,
> 105u(@)] S 277 (L 4 |=) 7"

|ar| <m

Proof. The goal is to show, for every m, {2/™u; : j > 0} C S(R?) is a bounded set. To do this,
we show {2/™4; : j > 0} C S(Rd) is a bounded set. We have, for every «,

25,0 =1 Y Coadlm©me Ol s > 20l ()@ 27
B+y=a Bty=a
S D 2l g T2 A+ [20E) TP S 2 (L 4 g
Bty=a
The result follows. O

Lemma 6.8. There exists functions ¢1,...,¢q € C(BY(2)) such that ¢ = Z O, Pu -

Proof. Indeed, write
d

b(x) = o(x) — 2762 ) = 3 (),
v=1

where v, (z) is given by
2_("_1)¢(:171/2,:172/2, e Xy 12, Ty 1y e Xg) — 27 P(21 /2,29 /2, X 2,41,y - -, Tq)-
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Letting ¢, (x f Y (T1y e Tyt Yy, T 1y - - -, Tq) dyy, the result follows. O

Lemma 6.9. For j, k € Z, Qj+ij = 2_““'/2@]-[%], where u, € U and |Jug|ly S 1.

k
Proof. By scale invariance, it suffices to consider the case j = 0; then ug = ¢ * %2 ). When
k <0, we use Lemma 6.8 to see

d . "
=Y [ @)@ e ) dy = ﬁ}j/wy 00, 10) ) (& — y) dy.
v=1

From here, the desired estimate follows from Lemma 6.6. For k£ > 0, the result follows immedi-
ately from Lemma 6.7. O

Proof of Proposition 6.5, conclusion. Let {f; : j € Z} C L*(R%) and let g € L*(RY) with
llgllz2 = 1. Let (-,-) denote the inner product in L?. We have, letting u;, be as in Lemma 6.9,

‘<9= f: ijj>‘ = ‘<g7 f: Z Qj+kéj+k@jfj>‘ < Z f: ‘<Q§+k9, éj+ijfj>‘

j=h j=J1 keZ kEZ j=J1
1 Ja _ 1 1
S (S 10al) (3 18minl2) £ X2 (S [@mlsl2)
kezZ j=J1 j=J1 keZ j=J1
The result follows easily. O

6.2. A decomposition result for functions in U. The proof of the following result follows
closely a similar result in [33].

Proposition 6.10. Let u € U. Then there ezists u; € CH(BYU(L)) with ||lujlco < |ullu,

[uj=0, and
u= Z2j/2u§-2j).
Jj<0
Proof. Let xo € C§°, supported in {|z| < 1/4}. with 0 < xo <1 and xo(z) = 1 for |z| < 1/8.

For j > 1 define x;(z) = x0(277x) — x0(2' ) so that that for j > 1, supp(y;) C {2/7* <
|z| < 2972}, and

1= x;(@)
=0

Observe that
(6.7) [ i@z =@ 1) [ xoerds 2 2

Also let
- X]( )
@) =
(e) = fX]
Set aj = [u(x)x;j(z) dz and Aj = D k> Ok = — Eogkq x (where the second equality follows
from the fact that Y a; = [u=0).
Note |ag| < 1, and for j > 1,

(6.8) |yl S/Iu(:v)llxg'(w)ldwé/} (L J2| ) el S 279 ully.
24 <z <292
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Thus,

(6.9) A1 <Y Jan] S 2772 lul.
k>3

Notice, Ag = 0. We have,
u(@) =Y u(@)xj(@) =Y (u(@)x;(@) — a;%;(2)) + (A5 — Aj1)%; (@)

5>0 §>0 7>0

— Z(u(x)xj( —a;X;j(z +ZA (@) — xj-1( ZB

7>0 i>1 >0

where Bj(z) = u(2)x; () — ;% (2) + (A; (%3 (&) — Tj1(2)))ej and 5 = 1i£ § > 1, e = 0. Here
we have used Ag = 0 and lim;_, A; :0 Clearly [ Bj =0, and supp(B;) C {|z| < 2772}, We
have

|Bj ()] < [u(@)x(@)] + laj|[x; ()] + A5 (x5 (@) + [Xj-1(2))ej-
(6.7) shows |¢;(z)| < 2774 The support of x; shows |u(z)y;(z)| < 2_j(d+%)HuHu. Combin-
ing this with (6.8) and (6.9) shows |Bj(x)| < 2_j(d+%)H§Hu. Setting, for j > 0, u_;(z) =
21921/2 B (21 ), the result follows easily. O

7. Basic L? ESTIMATES

7.1. An L? estimate for rough kernels. An essential part to many of our estimates is the
following L? estimate.

Theorem 7.1. Let u be a continuous function supported in {y € R? : |y| < 1/4} such that
lulloo <1 and

/uwwyzﬁ
Let 9y, be the operator of convolution with u®"). Let 0 < <1, ¢ € B:(R™ x RY) and assume

that supp(s) C {(a,v) : [v| < 1/4}. Then for all k € N, for by 1,bnio € L*(R?), b; € L=¥(RY),
1=1,...,n,

IAL] (b1, - - Qibnats bs2)| S 275/ O 6| g b2 )1bn2ll2 [ T 11551l
=1

In §7.2 below we shall prove a similar theorem without the support assumptions on ¢ and wu.
In what follows we give the proof of Theorem 7.1.

7.1.1. Applying the Leibniz rule. We have

(7.1) AR B bt bugs) = / / Fuls)(@,9) b1 (0)bny2 () e dy,

where, using the cancellation of v we have

[sl(z,y) = //g(a,x —2) Hb,(az —ai(r — 2)) u(2k)(z —y) dz da

= // [c(a,x —2) Hbl(:n —ai(r—2)) —¢la,z —y) Hbl(x —ai(z —vy)) u(2k)(z —y) dz da.
i=1 i=1

We let Tj[s] denote the operator with Schwartz kernel Fj[c].
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For further decomposition we use a Leibniz rule for differences

7=0 7=0
n n—1 i—1 n n—1
(4o = Bo) ([T 45) + > <( 18-y IT 45)) + (I B)(Aw - Bu).

j=1 =1 7=0 Jj=i+1 j=0

Thus
Fils] = ZFk,zk]
=0

where

Frald(e:) = [[ e = 2) = staw = )] TLbso - aya = )0 — y) dz da

7j=1

i—1
Frldl@) = [ [ sae— ) ] ite - st = ) %

Jj=1

n

n

(bile = aile = 2) = i@ —ai@ =) [ bilw = as(@ = 2)u®)(z — y) dz da,
j=i+1

with the convention that the products H?:l and H;L:n 41 stand for the number 1. We thus have

to estimate the L? — L? operator norms for the operators T ;[s] with Schwartz kernels Fj, ;[c].
For ¢ = 0 we may use the standard Schur test and the condition ¢ € B,

(r2)  sup [ 1FLols)e.0)ldy

<sw[lbilke [ W0 [ oen =y =h) —(ew o)l dydadn
j=1 <

T

S TIblle sup /H§(0<7- —h) = <(a,)llda £ 27 [T l1bjlloc 5.
j=1

|h|<2—k j=1
and similarly
n
(7.20) sup [ 1Fofel(e0)ldz 27 [T sl
y .
7j=1
Hence
n
(7.3) 1T ols]llz2—z2 S 275 T 1bslloollslls. -
j=1
We shall now turn to the operators T}, ;[c], i = 1,...,n. We start with a trivial bound.

Lemma 7.2. For1 <p< o0

n
1Tk ilslll oo S [l o2 gnscray [T 19illo-
j=1
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Proof. This follows immediately from Schur’s test since

sup/m“ xy>|dy+sup/|Fm ()| do S el sy T [Bilo 0
j=1

We begin with a regularization of ¢, in the « and the a; variables, depending on a parameter
R to be chosen later. Here 1 < R < 2% (we shall see that R = 2¥/(3+3) will be a good choice).

Let ¢ € C(R?) supported in {z : |z| < 1/2} so that [¢(x)dr = 1. Let p € C*®(R) be
supported in {u : |u| <1/2} so that [ ¢(u)du = 1. Define

(v, v) // _r,r|(a — se;)s(a — sej, v — 2)Ro(Rs)Rp(Rz) dz ds.
Lemma 7.3. Fori=1,.
(1)
I = <SkllL@nxray S R°F
(ii)

I Thils = sklllize o2 S B5lslls. -
Proof. We expand ¢ — g}z =1+ 11+ III where
I(a,v) = / [¢(a,v) — ¢(a,v — z)]Rd(b(Rz) dz
I(a,v) // 0 —2) — s(a—se;,v )]R(p(Rs)quﬁ(Rz) dzds,
I (a,v) = // X[—R,R}C(a — sej)s(a — se;, v — z2)Rp(Rs)R¢(Rz) dz ds .
Then
Ml mesee S [ RIS [ [ Islave) = slavo = )] dadv [ R6(R2)| d= S R[]
For the second term,
2oy < [ i) [ [ Islao) = sl sei )| dadvds S Rl
Finally
1 llgesan S [ [ ilesoldads £ RIsls,
—R,R"

and part (i) follows. The second part follows from Lemma 7.2 applied to ¢ — gR, and the first
part. ]

For the more regular term gf% we shall need the inequalities
Lemma 7.4. Let 0 <e <1,d > 2. Then
(i)
([ shtaaw) o 5 RElls.
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(i) Let 0 € S~ and let 6 the orthogonal complement of R6. Then
1
/sup </ sup |k (e, v +80)|2d’09L) “da < R%_‘SHCHBs
0 01 seR

and

1
/sup </ Sup |G, Sk (a, v L+ 50)| d’UeL)QdOé < R#_s\kHBE.
0

0 1 seR

Proof. Let By € S(R?) so that Bo(¢) = 1 for |¢] < 1/2 and By is supported in {|¢| < 1}.
Let 81 = ﬁ(()z) — Bo and B = B£2k71) so that f), has support in an annulus {1¢] ~ 2}, and
f = 33208k = f in the sense of distributions. Let 8y € S(RY) be such that its Fourier

transform equals 1 on the support of 30- Let 51 be a Schwartz function so that its Fourier
transform vanishes in a neighborhood of the origin and is compactly be supported, and equal

to 1 on the support of 51 Let ﬁk (2 ).
Let

Sh(a,v) = // X[-r,R] (@ — se;)s(a — se;, v) Rp(Rs) ds

so that ¢h(a,-) * ¢ = % (the definition of ¢ was given right before the statement of Lemma
7.3). Then

Zﬂz*% ) % bR * B

By Young’s inequality

sk (@, 0) * B * Bill2 < IRk (, ) * Bullal| By  ®rll2
and it is easy to see that

18, % ®gll2 < Crr2'%? min{1, (R2~HMY .

/(/kﬁg(@,@)ﬁdv)%da

S i2ld/2 min{17(R2—z)M} //‘/51(U—w)§fg(a,w)dw dv do

Thus

o0
<322 min{1, (R27)M)2 7 |G, S RECclls
=0

The first inequality in (ii) is proved similarly, except that we first use the one-dimensional
version of Young’s inequality in the #-direction. Since the Fourier transform of f; is supported
on a set of diameter O(2!) we have, for fixed § and almost every a,

1 [ 1
(/ sup | B * ch(a, vt + s0)2dvt ) < 21/2</ / |8y * ch(a, vt + s0)|2ds de) ’.
0+ seR 0+ J—co

Notice that the double integral on the right hand side is just the L?(RY) norm of ¢%(a, -) and
thus does not depend on 6. Take the sup over 6, then integrate in «, and sum in /. Arguing as
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above we obtain:

1
/SUP(/ sup | B, * sh(a, v + s0)*dvt )Qda
[% 0

L seR
l/2 7 2 1/2
<22 [ (18x shtov)Pdv) da
>0
<> 22 min{1, (R2” M}//\ﬁ,*gRa v)| dv da
>0
< S22 minf1, (R2HM Y27 |G s S BT <lls.
>0

The second inequality in (ii) is proved in the same way. The differentiation in «; hitting the
mollifier Rp(R-) produces an additional factor of R. O

By the support assumptions on ¢ and u, we have
supp(Fiilskl) € {(z,y) « |v —y| < 1}.
We shall use the following lemma to obtain the bound C'(R)2~*" of the L? operator norms.
Lemma 7.5. Suppose V(z,y) € LL (R? x RY) is supported in the strip {(z,y) : |z —y| < 1}
and let V be the operator with Schwartz kernel V. Then,

VIl72 72 S sup //w_z|<1 |V (z,9)|? dz dy.
© Myl

Proof. Let A denote the quantity on the right hand side. For 3 € Z% let q; be the cube 3+ 0, 1]¢
and f; = Xq,- Then f = Ea J; and for each 3, V f; is supported in the union ¢ of cubes which
have a common side with ¢;. By Holder’s inequality it is immediate that

1/2
Wik s (f] | WeoPira) Cisk < c@ sl
q; Xq;

and then

ok = || S va|, <3 (Ivald)” < cw (S £ <c@anfl.. o

In light of Lemma 7.5 the following proposition gives a basic L? bound for the operators
Ty ilsr)-

Proposition 7.6. For k>0

(7.4) (500 ([, sl dr ) 2 3 R T e

ly—yol<1 =1

7.1.2. Proof of Proposition 7.6. Note that the class of operators is invariant under translations.
That is, if 7,f := f(z — a), then the kernel of 7,7} ;[ck]T_q, i.e. Fiilsh](x —a,y — a), is of the
same form of Fj ;, with the functions b; replaced by 7,b;. Therefore we may take yp = 0 in
Proposition 7.6. We may also assume

(7.5) Iyl <1, 1<j<n.
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As in §4 we decompose « as a = q;e; + af where af = (cy Qj—1, Qit1,...) € R™ . We bound,
using the Cauchy-Schwarz inequality in the z-variable, and then Minkowski’s inequality in the

;- variables, as well as (7.5) for j # i,

J[ it o ae ay)*

lz|<1

lyl<1

S / ( /// 2kd‘ /cﬁ(a,x —y)[bi(z — o (x — 2)) — bi(x — iz — y))]dairdz dx dy)lmdozil
|[,|ly]<1
ly—z|<27F

. 2 1/2
< / (4 / / / | / Skl ) [br( — 050) — i — )] dows| do duw dr) " dodt
el ol ol <2
lv—w|<27F

where for the last integral we have changed variables to v = x — 2, w = ¢ — y. The proof of
Proposition 7.6 will be complete after the following lemma is proved.

Lemma 7.7. Let ¢4 be as in Proposition 7.6. Then for g € L>*(R%) and k > 0,

) 2 1
(@ [[] | [ sitao)at@am) - gt - auw)da| dedvdu)” 5 RI22 L o ]

lz|<2
|v],Jw[<2
|[v—w|<27F

Proof. We may and shall assume ||g|[z~ = 1. Let gr(x) = g(=) if |z| < 2R + 2 and gr(z) = 0
if |x| > 2R + 2. We first observe that since ¢j(a,v) = 0 for |a;| > R+ 1 we may replace g by
gr in the above expression. Note that

(7.6) lgrll2 S RV,

We interchange the (v, w)- and x-integrations, then apply Plancherel’s theorem, and interchange
integrals again to get

/de /// ‘/GRozv gr(x — v) — gr(x — qyw doz‘ dxdvdw) o

l\)\b—‘

|z|<2
[v],|w|<2
lv—w|<2~F
1
/ /‘g ’ 2kd // /gR a,v ( 2mioy (v,€) e27rzai<w,§))daz dv dw d§)2
|v],|lw[<2
|[v—w|<27F

For a constant U > 1 (to be determined) we split the ¢-integration into the parts for |£| < U
and |£] > 1.
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For |¢] < U we bound |e2™@i{v:€) — g2mai(w&)| < RIT2~F since |ay| < (R+1) and [v—w| < 27F.
Hence we obtain

@) ([ m@r2t [[ ] [ emed - mnt),

o], |lw[<2
[v—w|<27F

R : 1/2
S jU2 gl [ ( [ Ish(av)Pao) " da

a+2 _
S R U277\ ggll2<]|5.

[SIES

2
dv dw dg) dai

where in the last inequality we have used part (i) of Lemma 7.4.

Next we consider the part when || > U. Using the symmetry in v, w we may estimate

1
/ ( / Gr(&)[?2% / / ( / cﬁz(a,v)(ezmv@ai—e2’”<w’5>ai)dai‘2dvdwc@)zdaii
€=U

Jv],Jw|<2
lv—w|<27F

<o [ ([ tow@r2e [ ] [shtesvpermieooiaa,

o], |lw[<2
|[v—w|<2=F

< [( [, P [| [ sitememiosn

For fixed & = |£]0 (6 € S?~1) we separate the v-integral into two parts. Let 0 < b < 1 (which
will be optimally chosen later). For fixed 6 = £/|¢|, ai- we have v = 7p1v + s6 where myLv is
the projection of v to the orthogonal complement of R and s = (8, v). We split

. 2 . 2
/‘/ﬁg(a,v)ezm@’gmidai‘ dv ://‘/§;z(()é,7T9L'U+89))€27ms|§|aidai‘ dsdvg.
=: Iy(ag, [€]6) + T Ty (o7, [£]6)

2 1
dv dw d§> 2ot

2 1
dv d§> 2 dait .

where
. 2
I(ag, |€10) == // ‘/gﬁ(a,ﬂglv—i—s@))e%“gaidai‘ dsdvg.
[_bvb}

. 2
ITy(oj,|£16) = //[ bb}c‘/gﬁ(aﬂrgu}—k39))62””'5'0‘%@4 dsdvg .

so that

/(/5>U ’gR(éh)lz/‘/gﬁ(a’v)e%”(v’@aidaird’ud{)édag—
N / (/£>U ’/Q\R(f))’Z[[b(af_rf)+[Ib(af-,§)]d€)%daz;.

The expression I is estimated as

. 2
L(ak, €6)] < 2b / sup | / il mgu0 + s6))|da] dvg.

Is|<b
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and we get using part (ii) of Lemma 7.4

/</|§|2U |§R(£))|2Ib(o‘%’5)d5>§daL
§b1/2‘|9R||2/<Slelp/Sls1p [/|§§%(O"“9W+89))Idai]2du9L>1/2daiL

dtl_
(7.8) SOPRT . llgrll2 -

To estimate I,(cv), &) we observe that the function a; — ¢h(, v) is smooth and compactly
supported. We use integration by parts to write

/c}é(a,w%v + s6))e2m sl goy; = —/8aig}i%(oz,7rglv + 56))(2m|€]) "LsTLe? Y day

and thus for [{| > U
1 > 2 2 ] 2
(k. |¢10) g/ €[2]s| ds/sup [/\aaigg(a,mwﬂe))ydai] dvg.
b t

. 2
< U_2b_1/sup |:/|6ai§;%(a,7T9L'U+t0))|dOZi:| dvgy .
t

Hence, by the second inequality in part (ii) of Lemma 7.4,

[ ([, anenPiniat. o) ao

. 2 1/2
,EU_lb_l/zHgRH2/<s%p/s1gp [/‘8ai§;{(a,ﬂ'9l?]+t9)’daii| d'UgJ_) dog-

(19 U 1/QRM_€H<HBEHQRH2.
We combine (7.7), ) to deduce
1
/ de /// ‘/gRozv gr(r — av) — gr(x — aw ))da‘ dmdvdw)Qd Q;
lz|<2
(7.10) o], Jw|<2
lv—w|<27F

d+2 d+3

< (RFTU27F + RT Y2 4+ RTU72) |15 |lgrll2 -

We choose b, U so that the three terms are comparable, i.e. b= RU™, U = 22+/3. The result
is that the left hand side of (7.10) is bounded by a constant times

d+2 —eo—
R 27"3qs. lgrllz S BT 272 <5,

by (7.6), and the proof is complete. O

7.1.3. Proof of Theorem 7.1. By (7.3),

n
1Tkollllze -2 S 27 llslis. T 0illoc-
=1

By Lemma 7.3 and Proposition 7.6 we have for ¢ = 1,...,n,

| Tkils]ll 2=z < | Thils — sklllze—rz + [ Thilsklll L2 12

SR+ 27 PR ells. T lonlloe -
=1
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Choosing R = 2¥/(3d+3) yields the bound

n n
DI Thile]llze e S (n+ 1275 gl TT orlloc
=0 =1

and thus the estimates for the multilinear forms claimed in Theorem 7.1. O

7.2. Generalizations of Theorem 7.1. We shall now drop the support assumptions on x —
¢(a,z) and on u in Theorem 7.1. Moreover, we extend to LP estimates and replace ¢ by the

scaled versions ¢(?) (with the scaling in the z variables).

Theorem 7.8. There exists ¢ > 0, independent of n and e, so that the following statement
holds for all 1 < p < oco. For all ¢ € B-(R® x RY), for all j,k € Z, 1 < Iy # 1y < n+2,
by, € L2(RY), by, € L2(RY), by € L¥(RY) for I # 1,12, and u € U,

’A[§(2j)](bl7 .. 7bl2—17§k‘[u]bl27 bl2+17 ey bn+2)’

. i—k
< min{n2=0M¢||5_, H§||L1}Hu||u< 11 HblHL‘X’>||bl1H2Hbl2||2'
111,12

Proof. In light of Theorem 2.9, Theorem 7.8 follows immediately from Lemma 2.7 and the
estimate (for some ¢’ > 0, independent of n)
(7.11)

n
Ao, b Qb bue) S sl n2 "l TT Il ) allisallo
=1
By scaling (Lemma 4.16) it suffices to prove (7.11) for j = 0. Theorem 7.1 covers the case
of ¢ supported in R™ x {|z| < 1/4}. To cover the general case we apply Proposition 6.10 to
write u =3 g 2_1/2%(24) where 1 is continuous and supported in {|z| < 1/4}, [ =0, and
lurllco < |lullu. We apply Theorem 4.15 to write ¢ = Y~ 2-me12cl2) for some ¢; > 0, where
Sm € Beye, ||gm||5c15 < ||§||3€, and supp(¢,) C {(a,v) : |v|_§ i} We then have

‘A[g] (b17 LRI bru@k [u]bn+17 bn+2) ‘
<O 2t ParmeE| AT by s Qi st boys) |

>0 m>0

1>0 m>0
where g; = b;(27), 1 = 1,...,7m, gnge1 = 2™ 2b, 1(2™), gnio = 2™42b,5(2™") (see Lemma
4.16). By Theorem 7.1 we have, for some cg > 0

‘A[Gm] (917 s 7gn7©k—l+m[ul](9n+1)v gn+2) ‘

n
< min{1, n2~ =2l (TT llglloo ) lgn+1 1219l
=1

Now 71502 m>0 2-l/29=mere yin {1, p2~(k=ttmieaey < po—kess for some 3 with 0 < ¢3 <
min{1/2,co} and (7.11) for j = 0 follows easily. O
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8. SOME RESULTS FROM CALDERON-ZYGMUND THEORY

In this section, we present some essentially well known results from the Calderén-Zygmund
theory which do not seem to be stated in the literature in the precise form we need them. We
begin by recalling some classical results (see [36]).

Consider kernels K € D'(R? x RY) such that K is locally integrable on (R? x R?)\ A; here
A = diag(R? x RY) = {(z,2) : © € RY}. Let T : C(R?Y) — D'(RY) be the operator with
Schwartz kernel K. Then the expression

(T}, ) /K:vy ol dy dz

makes sense for bounded functions f, g with compact and disjoint supports. For such kernels
K we define the singular integral semi-norms

(8.1) SI'[K] := sup/ |K(z,y) — K(z,y)| dz,
lz—y|>2ly—y'|

(8.2) SI*[K] := sup/| _— |K(z,y) — K(2,y)| dy.
z,z’ J|y—=x r—x'

Let 1 < ¢ < oco. It is a standard and classical theorem (see [36]) that if Tx extends as a
bounded operator on LI(R?) and SI'[K] < oo then Ty extends as an operator of weak type
(1,1), as an operator mapping the Hardy space H'(R%) to L'(RY) and as a bounded operator
on P, 1 < p < 2, and one has the following estimates for the operator norms (or quasi-norms).

(8.3) ITxcll s + Tl o proe S 1Tl zas o + STHK].

We note that in order to prove the H' — L' result, it suffices to check ||Txall; < || Tk ||ne—srq +
SI'[K] for g-atoms, see [29]. Let L® be the subspace of L™ consisting of functions with compact
support (in the sense of distributions). Then we also have for ¢ > 1

(8'4) ||TKHL8°—>BMO S ||TKHLQ_>Lq + SIOO[K].

Furthermore (taking ¢ = 2), by interpolation

2

2—=2 2_
(8.5) Tkl o1 < Cpa(lTillz2z2 + [ Ti |27 2 (STHE]P 7Y, 1<p<2,
and

2 _2
(8.6) 1Tkl zr—1r < CpallTrllp2—re + 1 Tic | P, 12 (STP[K]) ' TF), 2 < p < oo.

We will apply these results to singular integral kernels given by
J J
where 7; satisfy suitable uniform Schur and regularity conditions.

8.1. Classes of kernels.

8.1.1. Schur Norms and Regularity Conditions. In what follows we consider complex-valued
locally integrable functions (z,y) — k(z,y) on R? x R?,

We formulate conditions related to the usual Schur test, involving integrability conditions in
the z and y variables. We let Int! be the class of kernels k € L%OC(Rd x R?) for which

(8.8) Int![k] = sup / |k(x,y)| dzx
y€ER4
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is finite. Here and in what follows sup, is used synonymously with essential supremum (or
L*-norm). We let Int™ be the class of kernels k € LL _(R? x RY) for which

(59 (k] = sup. [ [k(a,y)]dy

zER?
is finite. Here the supremum is interpreted as essential supremum (i.e. the L° norm with
respect to y). The notation is motivated by the fact that for k € Int! the integral operator with
kernel k is bounded on L®(R%), with operator norm Int![k], and for k € Int™ this operator is
bounded on L>®(R%), with operator norm Int*[k].

Next we need stronger conditions, which add some weights in terms of the distance of (z,y)
to the diagonal A. Define

(8.10) tutt 8] = sup [ (14 Jo =y} k()] do
y€ER4

(8.11) Int°[k] := Sulgd/(l + |z —y|)|k(z,y)| dy.
Te

Let

K () = k(y, @)
and note that Int>°[k] = Int}[kdua!].

In Calderon-Zygmund theory we also need some variants involving regularity, in either the
left (z-) or right (y-)variable. We define

(8.12) Regl [k := sup sup|h|™ / k(x + hyy) — k(z,y)] de,
0<|h|<1 ¥

(8.13) Regl, [k := sup sup|h|™ / k(z,y + h) — k(z, )] de,
0<|h|<1 ¥

and

(8.14) Reg2Sy[k] = sup suplh|™ / k(@ + hyy) — k(z,9)| dy,
0<|h|<1 =

(8.15) Reg2%[k] := sup sup|h| ™ / k(z,y + h) — k(z,y)] dy.
0<|h|<1 =

so that Reg2§,[K] = Reg?,[k""] and Reg2S, k] = Reg! [k

8.1.2. Singular Integral Kernels. We now consider distributions K € D'((R? x R?)\ A) which
are locally integrable in (R? x R?)\ A. We define variants of (8.1), (8.2) with more decay away
from the diagonal (here € > 0)

(8.16) SI}[K] := sup sup R® / |K(x,y) — K(z,9)| dx,
vy’ R>2 |z—y[>Rly—y/|

(8.17) SIZ°[K] := sup sup Ra/ |K (z,y) — K(2',y)|dy.
z,2’ R>2 ly—z|>R|z—a’|

Note that for € = 0 we recover the norms defined in (8.1), (8.2).

Remark. We shall also use the alternative notation [K|lgn = SIL[K] etc. We will say K € SI!
if SIL[K] < oo etc.
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We say that K € L _((R? x R%) \ A) satisfies one of the uniform annular integrability
conditions Ann', Ann® if the respective expressions

(8.18) Ann'[K] := sup sup/ |K (z,y)| dz,
R>0 y Jz:R<|z—y|<2R

(8.19) Ann*[K] := sup sup/ |K (z,y)| dy
R>0 = Jy:R<|z—y|<2R

are finite.

We say that K satisfies the averaged annular integrability condition Anng, if

(8.20) Ann,,[K] = sup sup R4 // |K (z,y)|dy dx
acRd R>0
|lx—al<R
R<|z—y|<2R
is finite.

The last notion will be used in §8.2 below.
Lemma 8.1. Let K € LL (R? x R%)\ A}). Then
Anng, [K] ~ Ann,, [K9@]).
Moreover,
Ann,, [K] < min{Ann'[K], Ann*>°[K]} .

Proof. Immediate from the definitions. O
Lemma 8.2. Let K € L _((R? x R%)\ A). Suppose that for some € > 0,

SI[K] < B, Ann[K] < A.
Then

SI)[K] < Alog(2 +e7'B/A).
Proof. Fix y # v and split

/ K (2y) — K(a,y)) de =T+ 11
lz—yl>2]y—y’|

where

= / K (z,9) — K (2,9)] da,
2ly—y'|<|z—y|<R|y—y'|

1T = / K (z,y) - K(,y)] de
lz—y|>Rly—y’|

Then if we apply condition Ann; with O(log R) annuli to estimate
I < AlogR;
moreover we have
IT < BR™*.
If we choose R = 2 + (B/A)Y/¢ the assertion follows. O
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8.1.3. Integral conditions for singular integrals. We formulate a proposition which is used to
verify the condition SI! | ST for kernels of the form (8.7).

Proposition 8.3. Suppose that 7; € Int; N Reg;’R and

sup Intg[7;] < A,
J
sup Intl[r;] + sup Reg;,rt [1;] < B.
i J

Then the sum (8.7) converges in the sense of Ll ((R? x RY)\ A) and the limit K satisfies

(8.21) SIL »[K] S B.
Moreover,
(8.22) SIJ[K] < Alog(2 + B/A) .

Proof. We fix y,y" and R > 0 and consider

R(y.y) = / Dilyy 75, y) — Dilys7 (2, 3/)| da
x:|lz—y|>Rly—y/|

/ g2y - 2y de.
z:|lr—29y|>R|27y—27y/|

Clearly IJR(y,y’) < 2A. We now give two estimates, the first valid when 27|y — /| > 1/R, the

second valid when 27|y — /| < 1; thus both estimates will be valid when 1/R < 27|y —3/| < 1.
For 27|y — y'| > 1/R we have

(1 + |z — 27y))°

(B2 |y — y'|)°

[ 22 [ i)
x|z —27y| > R|27y—27y/|

< (2ly —y'|R) " Inte[r] < B2y —y/|R) ™.
Also note that if |x — 27y| > R|27y — 273/| then also |z — 27y/| > (R — 1)|2/y — 27y/|. Thus the

last argument also gives (for R > 2)

/ 73,27y < B2y — o/ |(R — 1))¢
x|z —29y| > R|27y—27y/|
and hence

Iy, y) SB@ |y —y ) R =i 2|y —y/| > 1/R.

For 27|y — y'| <1 we obtain

IFy,y) < /\Tj(wﬂjy) — 7j(z,27y)| dw < Regl[r;](2|y — ¥/'|)* < B2’ |y — ¢/|)°.

Hence
Iifyy)s Y. B@y-vI+ > BRYly-y|) T SBR
JEL J:2ily—y'|[<R-1/2 §:27ly—y'|[>R-1/2

and (8.21) follows. The same argument gives
> If(y,y) S min{Ad, B2y — /)%, B2ly — y/|)° $ Alog(2 + B/A))
JEZ. JEZ

which yields (8.22).
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The following proposition is useful for verifying membership in the classes Ann', Ann® for
kernels of the form (8.7).

Proposition 8.4. Suppose that 7; € Int! N Reg;,lt such that

supIntj[r;] < A,
J

sup Int; [Tj] + sup Reg;,lt [Tj] <B
j J

Then the sum K =}, Dily;7; converges in the sense of L (RY x RY)\ A) and
Ann'[K] < Alog(2 + B/A).
This follows from the following lemma regarding functions in L'(R%).

Lemma 8.5. Let 0 <e < 1, g; € LY(R?) such that

[ 1ta)ldo < 4,

/rgj<x>\<1+\xr>€dx < B,
and

sup [1]°% [ lgy(o -+ )~ g;(0)] dx < Bo.
|h|<1

Then for every compact set K C RY\ {0}, the series G(x) = > iz 27dg,(27x) converges in
LY(K), so that G € L _(R?\ {0}). Moreover, if Kr = {z: R < |z| < 2R},

By + By

sup/ |G(x)|dx < Alog(1 + " ).
Kgr

R>0

Proof. Tt suffices to consider the case K = Kg. Let G; = 299g;(27-) then
1Gjll (k) = ||9jHL1(K2jR) <A
First assume that 2/ R > 1. In this case
1951121 (5 ) S (2 R)~*Bx.
For 2/ R < 1 we have by Holder’s inequality

195112 x5 ) S (TR |,

2JR
and by Sobolev imbedding it follows ||g;||, < B1 provided that d/p’ < e. Hence we obtain for
0 < e <ewe get
By + By

G Li ey S Y min{A, By(2’R)™, By(2R)*} < Alog (1+ y ).

JET

Proof of Proposition 8.4. Apply Lemma 8.5 to the functions v — K(y + v,y). O
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8.1.4. Kernels with cancellation. We state a standard estimates involving the Schur test for
compositions with operators exhibiting some cancellation; this will be used when proving L2
estimates in §11.

Lemma 8.6. Fiz 0 < e < 1. Let { € Z with ¢ < 0. Suppose p, o, : R xR? — C are measurable
functions satisfying

(8.23a) Int'[p] < A1,  Int®[p] < Ae oo,
(8.23D) Int'[o)] < By, Int™®[oy] < Boo,

and

(8.23¢) Int™[V,0,] < 27Bae.

Assume

(8.24) /p(az, y)dy =0 for almost every x € R%.

Let R, Sy be the integral operators with Schwartz kernels p(x,y), o¢(z,y). Then

ISl osre S 272\ A1 Au oo By (B + Buo).
Proof. Let k; be the Schwartz kernel of RSy. Then, by the cancellation assumption,
i) = [ ol 2)(0u(z00) = o) =
Clearly for a.e. y € R?

[ kwids < [l [ ot 2)ldzds < By
Moreover,

l/\wﬁuyﬂdyf§U¢)+(Ih)

where

)= [ o [l — ot v
= [ ot ) [ (o)l + et o))y

Now by assumption, for fixed x, z

/wmw@+/mmw@sm

and
/ loe(z,y) — ooz, y)| dy = / ‘ /Ol(z —,Vou((1 — s)x + sz),y) ds| dy

1 ~
<o zy/ /\vm(u )z s2),y)| dydr < Bu2 e — 2|,
0
For (I,) we then get
(1) <Bw [ lplw2)i2 e~ 2l dz

|z—z|<2¢
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and estimate (using € < 1)

|z—a| <2t
<27F / Ip(x, 2)(1 + |z — 2])°dz S 27% A, .
Hence (1) < 2_&@00145,00. For (11,) we have

(I1,) < Ba. / o, 2)|de < Bo2 " / Ip(@, 2|1+ |z — 2])° dz

|z—z|>2¢ |z—z|>2¢

and thus (1) < 2_Z€BOOA€700. Finally, we obtain by Schur’s test

I RSe|| 12— 2 < v/Inty [ke]v/Intoo[ke] S /A1 B \/ (Boo 4 Boo)Ac 0274,

The assertion is proved. O

8.1.5. On operator topologies. We finish this section by stating a version of the uniform bound-
edness principle which is used for the partial sums of operators defined by kernels of the form

(8.7).

Lemma 8.7. Let X, Y be Banach spaces and let X : X — Y be bounded operators. Assume
that X n converges in the weak operator topology, i.e. there is a linear operator ¥ : X — Y so
that for every f € X and every linear functional g € Y,

Jim (Exfg) = (X, g)-
—00
Then 3 : X — Y is bounded, and there exists B < oo so that

3] x-y < Sl]i]pHENHx_)Y < B.

Proof. We have supy [(Enf,9)] < Cpy < oo for every f,e X, g € Y. By the uniform
boundedness principle this implies supy [|[Xn flly < Cf < oo for all f € X. By the uniform
boundedness principle again there is A < oo so that A :=supy ||Xn||x—y < oo. Thus Cf g4 <
Al fllxllglly:- Passing to the limit we see [(Xf,9)| < Al fllx|lglly: which implies ||X||x—y <
A. O

Given a formal series ZjEZTj of bounded operators we say that > jez Tj converges in the
weak operator topology as operators X — Y if the partial sums Yy = Z;V:_ N T satisfy the
assumptions in Lemma 8.7.

Lemma 8.8. Let X, Y be Banach spaces, let W be a linear subspace of X which is dense in
X. Let Xy : X = Y be bounded operators. Assume that

Slj\lfp |En]xsy <A

and that for every f € W, and every g €Y'
Jim (Xnf,9) = (Xf.9)
—00

where X : W — Y is a linear operator. Then X converges to X in the weak operator topology
(as operators X —Y ) and we have ||X||x—y < A.

Proof. The assumptions imply that ||Xf[ly < |f|lx for all f € W, and ¥ extends uniquely to
a bounded operator X — Y with operator norm at most A. Moreover, using | Xy||x—y < A it
follows easily that ¥ — X in the weak operator topology. ([l
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8.1.6. Consequences for sums of dilated kernels. We now formulate some consequences of the
propositions above and the boundedness result (8.5).

Proposition 8.9. Let 7; € Int! N Reg;’rt, so that
Intg[r;] < A, Intl[7;] + Regl[r] < B.

Let T} denote the integral operator with kernel Dily;7;.

i) Suppose that T =Y ._, T; converges in the weak operator topology as operators L*> — L2.
JELZ *T
Then, for 1 < p <2, T extends to an operator bounded on LP such that

2-2 2_
1Tl o0 < Cape (1T 22 + TN 27, 12 (Alog(2 + B/A)) » 7).
L2—L
Moreover T extends to an operator bounded from H' to L' and
1Tzt < Cae(ITl| g2 2 + Alog(2 + B/A)).

(ii) Suppose that T = szZTj converges in the strong operator topology, as operators L? —

L?. Then the sum also converges in the strong operator topology as operators LP — LP, 1 < p < 2
and in the strong operator topology as operators H' — L'.

Proof. By Proposition 8.3 we have for K as in (8.7) SI}[K] < log(2 + B/A) and the assertion
(i) follows from (8.5) and (8.3).

For (ii) we examine the proof of H' — L! boundedness. Let a be a 2-atom supported in
a cube Q with center yg, i.e. we have |jallz < |Q|7Y/2, [a(z)dz = 0. Let Q* be the double
cube with the same center. By assumption Z;V: _y Tja converges in L?(Q*) and by Hélder’s
inequality in L!'(Q*). Also, by the argument in the proof of Proposition 8.3,

I Tjallp revg+) S / la(y)] RI\Q* |Dily 7 (2, y) — Dilyi 7 (2, yo) | d dy
<B min{(Zjdiam(Q))e, (deiam(Q))_s}

and clearly Z;V:_ ~ Tja converges in L'(R?\ Q*) as well.

Let f € H'; we need to establish convergence of ;T f in L'. By the atomic decomposition

f = > oo, cua, where a, are 2-atoms and Y |c,| S ||f|lgi. Given € > 0 take M so that
> o2 lew| <e. Then there is C independent of M, e so that for all N we have

H Z T( i cl,a,,)

j=—N v=M

‘ < Ce.
1

It is now straightforward to combine the arguments and deduce the convergence of > ;T f in
L.

In order to prove convergence in the strong operator topology as operators LP — LP, 1 <

2_q 9_2

p < 2, we apply the interpolation inequality [[h[, < [|B[|7 [|kll; " to h =3, 7 Tjg where
g € H' N L% This yields that Zj T;g converges in LP. Since H'N L? is dense and since
the operator norms ) jeg I are bounded uniformly in 7, it is now straightforward to show
convergence of » ;T f for every f € LP. O

In our applications we work with the following setting. Let ¢ € C'(C)’O(Bd(l)) have [o=1
and define P;f = f x ¢(*). Set 1(z) = ¢(z) — 279¢(27'x), and set Q,f = f * ¢(*'). We have
I=3%c7Qj Pj=3%<;Qrand I — P; =3 .Qy in the sense of distributions.
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Corollary 8.10. Let s; : R? x R — C be a sequence of locally integrable kernels and assume
that
supIntyfs;] < A, supTntl[s;] < B.
J J

Let S; be the integral operator with integral kernel Dily;s;. Suppose the sum S = ZjezS i Pj

converges in the weak operator topology as operators L?> — L?. Then, for1 <p <2, S :LP — L
is bounded and

2—2 2_
1112020 < Cape(I1SIlz2mr2 + 1511727, 12 (Alog(2 + B/A)» ).
Proof. The kernel of S;P; is equal to Dily;7; where

7i(z,y) = /Sj(l‘, 2)p(z —y)dz.
Clearly Int} 7] S Int! [s] for e > 0 and in view of the regularity and support of ¢ we also have
Reg;i[7j] < Intg|s;]
for § < 1. The assertion now follows from Corollary 8.9. O

Corollary 8.11. Let s;, S; be as in Corollary 8.10 For k € N define Sk = ZjeZ SiQj+k-

Suppose that this sum converges in the weak operator topology as operators L?> — L?, and
suppose that for some &' > 0

D = sup 25| S* | 12 12 < o0.
k>0

Also define Dy := supy ||S*||r2— 2. Then, for 1 <p <2,
1551515 < Cpae( ming2™ Do, Do} + (mind2 ™ Do, Do})* 7 (Alog(2" + B/A))» ).

Proof. By definition ||S*||2_,;2 < min{27%'D., Dy}. The integral kernel of S;Q;y is given
by Dily;7; 1 where

(o) = [ 550 2)2400(24 - ) dz.
We have Int}[7; ] < Intl[s;] for ¢ > 0 and now

Reg; i [7j4] S 2°Intj[s;] < 254

for § < 1. The assertion follows from Corollary 8.9. O
Corollary 8.12. Let sj, Sj, S* be as in Corollary 8.11. Define S = >jenSill — Pj) =
Spao Sk Forl<p<2,

, _2
D) 4 oAb

~ Dy 2_q Do B
1S]lLr—rr < Cpaee (DO log ( Dy )log? ™ ( Do Z))
Proof. By Corollary 8.11, we have

~ ’ ’ _2
IS]lzr—re S min{27% Dy, Do} + > (min{27F D, Do})* 77 (Alog(2F + B/A))
k>0 k>0

Clearly, > .- min{2=*'D., Dy} < Dylog(2 + D.//Dy). Also, the second sum equals

2—— 2 /D B .. 2_
D, P ADT 1Zm1n{2 ke 1} (log ok 4 A))P t
k>0
To conclude apply the following Lemma 8.13 with 8 = —1 + 2/p. O
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Lemma 8.13. Fize >0, a >0, 8>0. Let U,V > 1, then

> (min{27%U, 1})*10g{(2" + V) < Ceaplog(l + U)log’(1+ U + V).
k>0

Proof. Let Jp(U,V) = (min{27%U, 1})* log”(2¥ 4 V).
We first consider the terms with 27%¢/20/ < 1. Observe

Y R(UV)Slogh1+V) > (U279 SlogH1+ V)

27ks/2US1 2ks/2SU
2k<y

and
Yo RUV)S DD 2R S DD w2k <1

2-ke/27<1 2-ke/2U7>1 k:2—ke/2U<1
2>V

The main contribution comes from the terms with 275¢/2U > 1; here we use

> R(UV)Slogh1+V) > 15 log(l+U)log(1 + V)

27ks/2U21 2ks/2§U
2k<v

and

Yo KUMS D K Slg1+1).
k:2—ke/2U>1 k:2ke/2<U
2k>vy

Clearly, all four terms are < log(1 + U)log?(1 + U 4 V) and the asserted bound follows.

8.2. On a result of Journé. For a cube @ let Q* be the double cube with same center.

Definition 8.14. Let 7 : C§°(RY) — D'(R%) be an operator with Schwartz kernel K. We say
that T satisfies a Carleson condition if there is a constant C' so that for all cubes @ and for all

bounded functions f supported in Q, T'f € L'(Q*) and the inequality

| 1rr@ii < ciailsi

is satisfied. We denote by ||T'||car the best constant in the displayed inequality.

Journé [28] considered a class of operators associated with regular singular integral kernels
satisfying, say, | K (z,9)| < |z — y|™%, |V K (z,y)| + |V, K (2,y)| < |z —y|~91 and showed that

the following conditions are equivalent.

e T satisfies a Carleson condition.
e T maps H' to L.
e T"maps Lg° to BMO.

He then used an interpolation theorem to show that each condition is equivalent with

e T maps L? to L?.

We now give versions of Journé’s theorem for larger classes of kernels which arise in our main

result.
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Definition 8.15. (i) A integrable function is called an co-atom associated to a cube @ if a is
supported on @, and satisfies ||a|joo < |Q|™! and [ a(z)dz = 0.

(ii) A linear operator defined on compactly supported functions with integral zero satisfies
the atomic boundedness condition if
IT]| At := sup||Taljy < oo

where the sup is taken over all co-atoms.

Remark 8.16. One can also make a definition of a class At(q) where one works with g-atoms
satisfying supp(a) C @, |lall; < |Q|7*T/ and [a(x)dr = 0. Define 1T || at(q) = sup || Tallx
where the supremum is taken over all g-atoms. For the case 1 < ¢ < oo one has T' € At(q)
if and only if T' extends to a bounded operator H' — L', and ||T||a¢(q) = |7l 11 This
is a special case of a result by Meda, Sjogren and Vallarino [29]. The equivalence may fail for
the case ¢ = oo, as was shown by Bownik [3]. We remark that for special classes of Calderén-
Zygmund operators the equivalence holds true even for ¢ = oo (see [30, §7.2|, and the proof of
Theorem 8.20 below). For most situations in harmonic analysis the use of co-atoms (instead of
g-atoms) does not yield a significant advantage, but in our application it will be crucial to work
with co-atoms.

In the following three propositions 7' : C§°(R?) — D’(R?) will denote a linear operator with
Schwartz kernel K € D'(R% x R) N Ll ((R? x RY)setminusA). The proofs use the arguments
of Journé |28, §4.2].

Proposition 8.17. Suppose that T satisfies the atomic boundedness condition and the averaged
annular integrability condition. Then

1T lcart S IT']|a¢ + Anng, [K].

Proposition 8.18. Suppose that SI[K] < oo , Ann,, [K] < 0o and that T satisfies a Carleson
condition. Then T extends to a bounded operator from Lg® to BMO satisfying

1T zge—BMo S T [lcan + SIF[K].

Proposition 8.19. Suppose that SI'[K] < oo and that T extends to a bounded operator T :
Lg° — BMO. Then T satisfies the atomic boundedness condition and

IT||a¢ < |7 || 2ge— Baro + SI'[K].

For the convenience of the reader we give the proof of the three propositions. In what follows
Q@ will denote a cube, x¢ its center, and as above Q* will be the double cube with same center.

Proof of Proposition 8.17. Let f be a bounded function supported in a cube Q. We need to
establish the estimate

(8.25) 17515 CIQI o (I e+ Anma K1)

Let @1 be a cube with the same sidelength of Q* and of distance diam(Q*) to @*. Let fi be a
function supported in QU@ so that fi(y) = f(y) for y € Q, || filloo < ||flloo and [ fi(y)dy = 0.

Then, if
a(z) = 1Q| I f1I fr(x)
then there is Cy > 0 so that Cd_la is an oco-atom. Set fy = f — f1 so that f5 is supported in

and split
/ T fldr < / Tilde + / T folda
Q* Q* Q*
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We estimate
(8.26) /Q T filde < 1Q1 T ac £ lle.

Since dist(Q*, Q1) ~ diam(Q;) ~ diam(Q*) ~ diam(Q) we may use the averaged annular
integrability condition and estimate

i/ / |K(x,y)|dy de < Ann,, [K].
’Q‘ 1 *
This yields
(8.27) [ornies [ ] 1K@liwldedy S |l @lAnn. k).
Q* Q* Jh
Since || f2lloo < 2] flloo, (8.25) follows from (8.26) and (8.27). O

Proof of Proposition 8.18. Let g € Lg® and let Q be any cube with center xg. We have to verify
(8.28) inf )[ Tg(z) — Cldz < |Tllcan + SI®[K]
Q

where the slashed integral denotes the average over Q.
Let g1 = gl@+, g2 = glpa\g~, so that g = g1 +go. Since g has compact support it is immediate
by the assumed finiteness of Ann,,[K] that T'ga(w) is finite for almost every w in

Bg = {w: |w — 2g| < (2d) 'diam(Q)}.
Now
it 1rote) —Clao 5 | | ro@ds + | (Toate) - Top(u)de e

From the Carleson condition we get

){2 T (2)|dz < 4°|T||cantllgr]loo S 1T llcartllgllos -

Moreover,
[ o) - Towldedo < ool s [ K@) - Kwy)dy do
Bo JQ weBg JQ JRI\Q*
S SIZ[K|g]loo -
and (8.28) follows. O

Proof of Proposition 8.19. Let a be an oco-atom, associated with the cube Q. We need to verify
(8.29) [Tally < T Lge—Brmo + SI™[K].

First estimate T'a in the complement of Q*, using the cancellation of a:

/]Rd\Q* ‘Ta(x)’ dr 5 /Rd\Q* /Q[K(x,y) - K(x,xQ)]a(y)dy dz

< /Q ol [ Klew) - Kag)|dedy

|z—zq|>2]y—=zql
< ST'[K]|lally < STHK].
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Let Q be a cube which is contained in CQ* \ @* and has distance O(diam(Q)) to Q*, say, a

cube adjacent to Q* and of same sidelength. The above calculation also yields
(8.30) /~ Ta(z)|dz < ST'K].

Q
We choose such a cube @ and estimate

/ |Ta(z)|de S Ig+ 11+ 111G

where
Ig :/ Ta(z) — ){ Ta(y)dy‘ dzx
11 =1"|| f_ Tatay — Y Tawan].
111G = Q" f@Ta@)dy(.
Clearly

[Io| < |Q[IITallBro < T || e—Bmo|Q|||allze S ||T|| L —BMO-

To estimate I1g we let @Q** be a cube containing both Q* and @, and of comparable sidelength.

Then

( )[ Ta(y)dy — )CTa(y)dy‘

* Q
< ){ Ta(y) — ){ Ta(z)dz‘ dy + f~ Ta(y) — )[ Ta(z)dz‘ dy
* *ok Q *ok

S Jrow)— | Tat)az|dy < 17almaio

and thus
(gl S ITlLg—sumolQlllallco S T llLge—prmol@lllalloo S 1Tl Lge— B0 -
Finally,
1110l < 1" f o] 5 1Tl 1 g 4.

by (8.30), and the proof of (8.29) is finished. O

Theorem 8.20. Let T : C°(R?) — D'(RY) and assume that the Schwartz kernel K is locally
integrable in (R? x R\ A. Assume that

SI[K] := Ann,, [K] 4+ SI'[K] + SI®[K] < cc.
(i) Let 1 < q < oo. The following statements are equivalent.

T satisfies a Carleson condition.

T maps Lg° — BMO.

T satisfies the atomic boundedness condition.
T extends to a bounded operator H' — L.
T extends to an operator bounded on LY.



70 ANDREAS SEEGER CHARLES K. SMART BRIAN STREET

(1i) We have the following equivalences of norms.
(8.31) T ||carl + SI[K] ~ ”THL8°—>BMO + SI[K] =~ ||T||a¢ + SI[K] ~y T La—ra + SI[K].
Moreover,

(8.32) 1T ac = T -1 -

Proof. The first three equivalences are immediate from a combination of Propositions 8.17, 8.18
and 8.19. Since oco-atoms satisfy ||al| ;1 < C'it is clear that

1Tt S NT N grsrr -
The converse
(8.33) 1Tl s ST At

is not obvious (and the inequality without the term SI[K] might not hold if we drop our as-
sumption SI[K] < oo, see [3]). By the Coifman-Latter theorem about the atomic decomposition
(see [36, §111.2]) we may write f = > Agaq, with > 5 [Aq| < [|fllm and ag being co-atoms;
here the convergence of the series is understood in the L! sense. We immediately get

| > 2aTao| <3 PallTladlagl S T sl -
Q Q

However the decomposition f = ZQ Agagq is not unique and in order to prove that the expres-
sion ZQ AgTag can be used as a definition for T'f we need to show the following consistency
condition for a sequence of atoms {a, }>2 ,

(8.34) Z ley| < o0, cha,, =0 = Zc,,Ta,, =0.
Q v v

Fortunately, a version of an approximation (or weak compactness) argument in [30, §7.2] applies
to our situation. As stated above the atomic boundedness condition implies the Carleson
condition. Let ¢ € C§° be supported in a ball of radius 1/2 such that [ ¢(z)dz = 1. Set
P,.f= ¢(2m) x f. Let K,, be the distribution kernel for P,,TP,,. Note that we have

K (2,9)] S 2™ Ann,, [K] if |z — y| > 2277

and
Ko (2, 9)| S 2™ T | an if |2 —y| < 227

Hence K, € L®(R? x R?%) and thus P,,TP,, maps L' to L. This implies >, cwPnTPra, =
P, TP, (> cya,) = 0. Now, since the P, form an approximation of the identity, it is clear
that, for each atom a,, we have ||P,TPyna, — Ta,l[1 — 0 as v — oo. Taking in account
that ) |a,| < oo, a straightforward limiting argument yields >, ¢,Ta, = 0. Note that the
condition SI[K] < oo is used to establish (8.32) only in order to verify the implication (8.34)
(via the boundedness of K,,); it does not enter in (8.32) itself.

We still have to show the equivalence of the first three conditions in (8.31) with the fourth
condition. Assume first that 7" is L%-bounded. Then we have the standard estimates (8.3), (8.4)
and thus the H' — L' operator norms and Lg° — L™ operator norms of T" are bounded by
|T||La—ra + SI[K]. The other direction uses the interpolation result (cf. the remarks below)

1 1-1
1Tl oo < Cal T TN e Hmnno

together with the equivalence of the first three conditions in (8.31) and the equivalence (8.32).
U
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Remarks on interpolation of H' and BMO. In the above interpolation one uses the interpo-
lation formulas [H', BMO)y, = LP4, [H,BMO)y = LP for 1 — 6 = 1/p, 1 < p < o0, or
a direct interpolation result for operators in §3.IIT of Journé’s monograph [28]. One also has
[LY, BMO)p, = LP4, [L}, BMOlg = LP for 1 —0 =1/p, 1 < p < 0.

The result for complex interpolation can be obtained from the results [H!, LPl]y = LP,
I/p=1—-9+9/p;, 1 < p < oo, (or its respective standard counterpart [L', LP1]y = LP),
together with [LP°, BM O]y = LP, 1/p = (1—0)/po, 1 < py < oo which can be found in Fefferman
and Stein [16], see also the discussion in Janson and Jones [27]. The stated interpolation
formula for H' and BMO follows then from Wolff’s four space reiteration theorem for the
complex method [40]. One can also use the results by Fefferman, Riviére, Sagher [15] for the
real method, and then combine it with Wolff’s result [40] for the real method. From the above
remarks we also get an interpolation inequality for functions g € L' N BMO,

1 1-1
(8.35) lglls < Collgl 1 £ a3y 1 <p <o
which will be useful in the proof of Theorem 8.22 below.

8.3. Sums of dilated kernels. We shall now formulate some corollaries for operators of the
form (8.7) or its relatives. We use norms combining the various Schur and regularity norms.

For each j € Z, let 7; : R? x R — C be a measurable function. Let 0 < ¢ < 1. Set, for
0<e<,

I7llop, = Intz[7] + IntZ°[7] + Regz [7] + RegZ5,[7] + Regz o([7] + RegZSy[7],
and set
7 lop, = Inté[T] + Intg°[7].
This means for ¢ > 0
(8.36)

I7lop, =sup / (1 + [z — )| (, )| dy + sup / (1 + [z — )|z, y)| da
x Y

+ osup B / 7@+ hy) — m(@y)| de + sup [h] / (@ + huy) — 7(2,y)| dy

0<|h|<1 0<|h|<1

- osup B / lr(2,y + ) — 7(x,y)| e+ sup |A" / b7,y + h) — 7(z, )] dy
xT

0<|h|<1 0<|h|<1

and, for € = 0,
(8.37) I llop, = sup/\T(g;,y)y dy + sup |7(z,y)| dz
x Yy

We shall consider families {7;} for which the Op, norm is uniformly bounded in j. We let T}
be the operator with kernel Dily;7;, i.e.

(8.38) T,(0) = [ 252 a, 2y ().

Theorem 8.21. Suppose that sup; ||7;|lop, < Ce for some e € (0,1) and that sup; ||75]|op, < Co-
Let T; be the operator with kernel Dily;7; and suppose that ZJT] converges to an operator
T:L%,, — Li

comp loc

in the sense that for compactly supported L functions f and g
N

(> Tif.9) > (Tf,9)

j=—N
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as N — oo and assume that there exists A > 0 such that for allz € R4, ¢t >0, N € N,

N
(539) [ 3 Tis9)| < A fleelglie i supp(r) Usupplg) € B, 1),
j=—N

Then T extends to an operator bounded on L*(R?) and

C
T2 < Cae (A + Colos (14 57) ).
Proof. The inequality (8.39) implies || Z;V: _~nTjllcant S A. This inequality extends to the limit
T. Let Ky, K be the Schwartz kernels of the operators Z;V:_ ~y Tj and T respectively. Then

by Propositions 8.3 and 8.4, applied to both 7; and its adjoint version we have SI[Ky], SI[K] <
Colog(2 + C./Cp) . The assertion follows now from Theorem 8.20. O

Theorem 8.22. Suppose that sup, ||7j[|op, < Ce for some e € (0,1) and that sup; ||75(|op, < Co-
Let T; be the operator with kernel Dily;7; and suppose that the sum T =) T; converges in the
sense of distributions on CgY (test functions with vanishing integrals), i.e. for every f € Coo
and every g € C§° we have

N

(8.40) Jim Y (T;f.g) = (Tf.g).
j=N

Then the following statements hold.
(1) If supy || z;y:_NTj”Hl—>L1 < A, for some A < oo, then we also have

N
sw| 3 7
N -
j=—N

Moreover, T extends to a bounded operator on L?, Z;V:_
topology and ||T||r2_r2 S A+ Colog (1+C-/Co).
(1) If supy || z;y:_NTj”L2—>L2 < B, for some B < oo, then we also have

C
< £
S A+ Colog (1+—0).

L2—L2

~ Tj converges to T' in the weak operator

N
Ce
] 2 ol s mrareteg)

Moreover T extends to an operator bounded from H' to L', Z;V:_N T; — T converges in the

weak operator topology (as operators H* — L') and ||T|| g1 S B+ Colog (14 C./Co).
(iii) The sum T = ZjEZTj converges in the strong operator topology as operators H' — L!
if and only if it converges in the strong operator topology as operators L? — L?.

Proof. The assertions on the operators Z;V:_ ~ T follow immediately from Theorem 8.20. Note
that CgY is dense in both H Land LP, 1 < p < co. The uniform bounds for the operator norms
of Z;V: _n T and the convergence hypothesis (8.40) imply convergence in the respective weak
operator topologies.

Now we prove (iii). If T' = ZjEZTj converges in the strong operator topology as operators
L? — L? then it is immediate from Proposition 8.9 that 7' = ZjeZ T; converges in the strong
operator topology as operators H' — L1,



MULTILINEAR SINGULAR INTEGRAL FORMS OF CHRIST-JOURNE TYPE 73

Vice versa assume that 7' = ) ._, T; converges in the strong operator topology as operators

JEZ
H' — L'. By the interpolation inequality (8.35) we have for any finite set J € Z and any
e g%

1/2 1/2 1/2

DRI DL N DOLH KWELE UL Iy Dokt HEY

and since || > ;¢ 7 Tj[|Lee—pmo is bounded independently of J we see that 3, T; f converges in
L? for any f € Cgo- Since Cfy is dense in L? we conclude that > ; Tj converges in the strong
operator topology as operators L% — L2. O

We now formulate a version of Theorem 8.21 which has a convergence statement with respect
to the strong operator topology.

Theorem 8.23. Suppose that sup; ||7;|lop, < C: for some € € (0,1) and that sup; ||7;lop, <
Co. Let Tj be the operator with kernel Dily;7;. Suppose that Zj T; converges to an operator
T:LY,., — Llloc in the strong sense that for any compactly supported L function f and for

comp
any compact set K

N—oo

N
lim / ‘ S Tf(x) — Tf()|da = o.
Ky
Suppose that there exists A > 0 such that for allz € R%, t >0, N € N,

N
(8.4 [ Y mf@)de < At i swp() € Bt
By(w,t) N

Then the sum T =

and

jen Tj converges in the strong operator topology as operators L? — L? and

Ce
HT”L2—>L2 < Cd,e <A + Cy log (1 + C_0)>

Proof. If a is an L*° atom supported on a cube @ and Q* is the double cube, we see that
Z;V:_ yTa— Tain LY(Q*). Standard arguments using the cancellation of a yield

/ mdmg{mQﬂ@mmy@rf it Ydiam(Q) = 1,
RNQ* Reg 1¢[75] (2/diam(Q))* if 27diam(Q) < 1.

Altogether we see that Z;V:_ yTja — Ta in L'. By Theorem 8.21 we also have the uniform

bounds ||Tall; < Cye (A+Co log (1+ g—;)) for L° atoms. Now, writing f € H' as f =Y c,a,

where the a, are oo-atoms and ), |c,| < oo, we easily derive that Z;V:_N T;f — Tf in L.
Thus we see that > ; Tj converges in the strong operator topology as operators H' — L' and
we have the uniform bound

N C.
|55 8]0 (4 bzt ).

We apply parts (i) and (iii) of Theorem 8.22 to see that that ZJTJ converges in the strong

operator topology as operators L? — L2, and obtain the asserted bounds on the L? — L2
operator norms. ]
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The following lemma allows us to apply Theorems 8.21, 8.22 and 8.23 to sums of the form
Zj P;S;P; where Pjf = f * #?) . and S; is an integral operator with kernel Dily;s;, with
sup; (Int![s;] + Int2[s;]) < oo.

Lemma 8.24. Suppose that Int![s] + Int>°[s] < C. and Int'[s] + Int™®[s] < Cy. Let ¢ € C§°
supported in {v : |[v| < 10}. Let

Stavy) = [ [ oo~ wstw,2)o(: — y) dwaz,

< Co.

~

Then |[5]lop, < Ce and |[s]|op,
Proof. Left to the reader. O

We also have

Lemma 8.25. Let s € Op,, 0 < e < 1. Let ¢ € C* supported in {v : |v| < 10} and let
silavy) = [ ota —w)stw,y) do.
salavy) = [ sl 2)o(: ) de

Then |[s1llop. < llsllop. lI#llcr, llszllop. < lsllop. lI¢llcr-

Proof. Immediate from the definition. O

9. ALMOST ORTHOGONALITY

We shall repeatedly use a rather standard almost orthogonality lemma which involves the
Littlewood-Paley operators Qj introduced in (6.4).

Lemma 9.1. Let Z be an index set. Suppose that for each j € Z, v € T, Vj” L2 5 L% isa
bounded operator such that for ki,ke € Z,

(9-1) H le leii-kl Qj+k1+k2 HL2—>L2 5 Aj7k27
where

Z Aj,kg < 00.

Jik2
Then the sum VY := ZjeZ j”, converges in the strong operator topology (as operators on L?),
with equiconvergence with respect to I, and we have
(9.2) sup [V¥||p2p2 S Z Aj ks

vel Jik2

Proof. Recall, from §6, >, 0,0y = >k QrQr = I. Let f,g € L2A(R?) with || f]l2 = [|g2 = 1.
By (6.6), we have

(T 1e)” = | (T10ur2)?

First observe, for integers J; < Ja,

NI

~ 1.
2

1 (T18) = [[(X18i08)
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Jo Jo
<o > V| =|<e XD 00V Qudus >

Jj=h k1,k2€Z j=J1
Jo
= ‘ <G> D> DV, Qo f >
Jj=J1 k1,k2€Z

Jo—k1
<3 <Ghe DYV in Lk Qb 1

k1€Z j=J1—k1 ko€Z

< ( Z HéZlg”%)% ( Z H Jiﬂ Z Ok, Vi, Qj+k1+k2éj+k1+k2f
kieZ

ki1€Z j=Ji1—k1 ko€Z

)

Now

Ja—k1 _ 1
<Z H > > leVj’ﬁrklQj+k1+k2Qj+k1+k2sz)2

ki€Z  j=Ji—k1 ko2€Z
J2—j _
S Z Z ( Z Hle‘/}l:l‘kl Qj+k1+k2Qj+k1+k2fH§)
JEL ko€Z ki=J1—]
J2—j

<3 (D 19k B)

JEL ko€Z ki=Ji1—j

=

We take the sup over g with ||g|l2 = 1 and obtain from the two previous displays

Jo—j 1
CEI 5 VIS Y A X 19t 13)” S22 Ajall £l
j=J1 JEZL ko€Z ki=J1—j JEZ ko€
The first inequality in (9.3) implies that for fixed f € L? the partial sums of X% f = Z;V: NV
form a Cauchy sequence, more precisely, for each € > 0 there is N(g, f) € N (independent of 7)
such that || Xy, f — XN, fll2 < € for Ny, No > N(e, f). By completeness of L?, XX f converge
to a limit X¥f and X" defines a linear bounded operator on L?. Thus X% — XY in the strong
operator topology, and, by the above, we get equiconvergence with respect to Z. O

10. PROOF OF THEOREM 5.1: PART I

We are given a family ¢'= {¢;} with sup;, ||s;|[5. < co. In this and the following sections we
use the notation

 su; il
supy ol
introduced in (5.6). Notice that always I'c > 1.
Recall,
ALty a1 bas2) = DA (01, by (T = Pt (I = Pj)basa).

JEZ
Given € > 0 and ¢ it is our goal to prove Part I of Theorem 5.1, i.e. for 1 < p < 2, the estimate

(10.1) 1Adi1g2 (01, bus2)| < Cuge (500 sl 1) 10g2(1 4 00) (T 10nlloc ) 1Bt 121
J =1
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We formulate a stronger result which will also be useful in other parts of the paper. For this,
we need some new notation. Let 1 <1y # 1l <n+2and let {b] : j € Z, | # l1,l} C L®(R?)
be a bounded subset of L®(R%). Let ky, ks € N, and fix uy, us € U.

Define an operator S,l;l’l,iz ; (which implicitly depends on {bl7 2 J €L, # 1y, ls}, ug, and ug)
by the formula

/ g(@)(S2 f)(w) da

— ALy i D j i D j j

= A[gj 1(b1, ... ,bll_l,QjJrkl [ul] f, b 415 '7b12—17Qj+k2[u2]97 by, y1s- S b0,).
Theorem 10.1. Let 0 < e < 1 and suppose that sup; |[|5. < oo. Then

l1,l2 _ l1,l2
Slﬂ,kz - Z Sk17k27j
JEL

converges in the strong operator topology, as bounded operators on L?. Moreover there is ¢ > 0
such that

11,0 . _ '
1Se Bl e S llualluzlhesup Il min{1, n2=® 2T (T sup [[6)]lo)-
J £l 0y 7

Proof that Theorem 10.1 implies inequality (10.1). For this, fix by, ..., b, € L>(R?) with
(10.2) Ibilloo =1, j=1,...,n.
For ki, ko € N, define operators V, Vi, , and Vi, , by the following formulas.

/ @) V@) d = S AP by, by (L= P)F (T = P)g),
J
/g(l‘)(Vklf)($) dz := ZA[CJ('2j)](b1’ s 7bn7 Qj+k1fv (I - Pj)g)a

[ 9@ 0@ doi= SN b s Qe £ Qi)
J

The estimate (10.1) is equivalent to
(10.3) Vlizr—rr < suplllzs log®(1 + nl:).
J

In light of (6.2), we have the following identities,
V= Z Vi, Vi = Z Vi ko -
k1>0 ko>0

To see (10.3) we first use Theorem 10.1 to deduce

Vi o llz2 22 S minfsup g5, 027 @42, sup g 11}
J J

Thus, by Lemma 8.13,

Ve, 2oz $ Y min {sup ||jll5.n2~ ") sup || }
k1>0 J J

which implies

(10.4) 1Viy 2222 S sup (sl min{nl.27%2% log(1 4 nI.)}.
j
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We turn to the proof of (10.3). Define an operator W; by
2J
A[%(' (01, by b1, baga) = /ijn+1($)bn+2(fﬂ) dz.

The Schwartz kernel of W; is Dily;w;(z,y) where
(10.5) wyley) = [ Glae—) [ 9o — aie — ) da
i=1

We observe that Vi, = > (I — P))W;Qj,. If we set Sj = (I — P;)W; then the Schwartz
kernel of S; is Dily;s; where s;(z,y) = w;(z,y) — [ ¢(x — 2')wi(2/,y). It is easy to see that
Int!(s;) < [l<llz2 = A and Intz(s)) < [|<lls. =: B.

We wish to apply Corollary 8.12, with S* = > 8iQjtky, = Vi,- By Lemma 10.4, we have

D.r < sup; Isj]l5. and Do S (sup; [[s;llz1) log(l—HIW). Plugging this into the conclusion
J L
of Corollary 8.12, (10.3) follows, and the proof is complete. O

Proof of Theorem 10.1. In light of Theorem 2.9, it suffices to prove Theorem 10.1 in the case
li =n+1,ls =n+ 2. We may also assume the normalizations

sup HbgHoo =1, 1<i<n,
(10.6) j
Jua [y =1 = [Juz |l

With these reductions, our goal is to show

1,n+2 -
(10.7) 1Se e 2 a2 S max { sup || (|5, n2” F1H2) sup 1[0 } -
J

To finish the proof we define, for j € Z, k1, k2 € N, an operator S; i, r, = 522117};?2 by

/ 9(2) Sj o (@) dx = AP0, 0, T[] £, Qo luzlg),

n+1ln+2 .
so that Skth = ZjeZ Sj ke

We claim that there is ¢ > 0 such that for j, k], k} € Z, k1, ks € N,

(10.8)  {|Qu; Sy hr ks Dk 415

L2112
< min { sup |[g;||p, n2~F1tF)ee gkl kil qup i1}
J J
To see this observe first that using
ol — k147 Yol —|ko—K,
19 Qe (1] oy o S 271919, Q411 s (12 Qg s 2y 2 S 272 7R2l

it follows from the simple Lemma 2.7 that

< 9 lk2—ky|=lk1+il) .
2 ng—i-ki

| Qrr Sk s s Qb k| p2y 2 S 1.

Using [|Qu lz2 12, [1Qj4ay4ay l2 -2 < 1, it follows from the main L?-estimate, Theorem 7.8,
that
HB n2—(k1+k2)c€

€

| Oy Skt or e ekt ks || 2y 2 S NSjns

for some ¢ > 0 (independent of n). Inequality (10.8) follows from a combination of the two
bounds.
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To prove (10.7) we use Lemma 9.1 and inequality (10.8) to conclude

ISt e £ 3 min { sup [op s, n2~ttkales, oolbabalthdl qup o 11}
J,kLEZ J ’
1/22—(k1+k2)ca/2’ sup ||ngL1 }’

< min { sup [|5;(|5.n
J J

where we have used ||5;][z1 < [|g;||5.. This completes the proof (with c replaced by c/2). O

11. PROOF OF THEOREM 5.1: PART II

ll,n 1 In
§11.1 we shall formulate and prove a crucial L? bound for a useful generalization of the form
of All’n 4o and then deduce the asserted estimates for Allm 4o, and All’n +o- The proof of the main

L? bound will be given in §11.2.

This section is devoted to the boundedness of the multilinear forms Al1 2 and A

11.1. The main L? estimate. For 2 <[ < n, fix bounded sets {b{ :j € Z} € L>®(R?) with
sup”b{Hoo <1, 1=2,...,n.
J
For by € L®(RY), j € Z define an operator

Wilsj, b1] = Wjlsj, b1, b, ..., b
by

/ 9(@) Wilsj, i) £ (@) da = Al (b1, B, . b0, £ ),

and we denotes its transpose by ‘W;[b1]:

/f(ﬂf) th[gjv bl]g(x) dr = A[gj(?j)](bl) b%v ERE) bgn fv 9)7

Define an operator Ty = T[S, b1] by
N
Tv = Y (I = P)Wjls;, (I — Pybi]P;.
j=—N
Using I — Pj = ;.o Qj+k for the operator on the left we decompose Tn = >, T]\]? where

No

TN =Y QuWily, (I - P)bi]P;.
Jj=—N1

We now state our main estimate and give the proof that it implies Part III of Theorem 5.1 in
§11.3 below.

Theorem 11.1. Let 0 < e < 1, and sup, ||j|s. < oo. Let Tz be as in (5.6). Then Ty

converges to an operator Tk, and Ty converges to an operator T, in the strong operator topology
as operators L? — L*. Moreover,

1T* 2252 < Cacllballoo sup |55l 2 min{27**nl'Z,1og??(1 + nT'.)}.
J

and
T2 22 < Caellbrlloo sup [lgjll 11 log™ %1 + nle).
J
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11.2. Proof of Theorem 11.1. For fixed k > 0, in order to bound 7% we need to prove that
for f € L? the limit

N
Y QuWilsy, (I = P)bi]P; f
p—

exists in L2 as N — oo and that the estimate
(11.1)

N
H > QiiWilss, (I — Py)ba]
j=—N

o S Il up gl ming2 = a0, Log? (1 4 )}

holds uniformly in N. By Proposition 6.5, both statements are a consequence of a square-
function estimate, namely, for k£ > 0

(11.2) <ZHQy+k ilsi, (I — PbleH)

JEZ
S 1B lloo 1 N2 [l sup |5l min{2~=*nT2, 1og® (1 + nT.)}.
J

To show (11.2) one establishes the following two inequalities:

(113)
1/2
(X [ 1@sslalWilsss (1 = PPy ) = QysllWls (1 = Pali(a) - P (o))
JEZ
< 1 2l ol sup 1513 min {2550 log (1 + L)},
J
and

114 (T [ (@l Wiley (1 - Ppulica) - Ais )"

JEZL
S 1A ll2 001 lloolulhe sup [ls5 ] .y mind2~*nT'2, 1og?2(1 + nT2)}.
J

For the proof of (11.4) we need the notion of a Carleson function.

Definition 11.2. We say a measurable function w : R% x Z — C is a Carleson function if there
is a constant ¢ such that for all k € Z and balls B of radius 2% (k € Z),

o0 1
<é/BZ|w(x,j)|2 dx)2 <c¢ < oo.
=k

The smallest such c is denoted by ||w||ceri-

Remark. w is a Carleson function if the measure du(z,t) = >,y lw(x, §)|2dx déy—;(t) is a
Carleson measure on the upper half plane (in the usual sense) and the norm |[w||cq is equivalent
with the square root of the Carleson norm of pu.

Carleson measures or Carleson functions can be used to prove L?-boundedness of nonconvo-
lution operators. This idea goes back to Coifman and Meyer [11, ch. VI] and was crucial in the
proof of the David-Journé theorem [13]. One uses Carleson functions via the following special
case of the Carleson embedding theorem. A proof can be found e.g. in [28, §6.11I or [36, §II.2].
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Theorem. Let w be a Carleson function. Then,
1
(X [ 1@ i dr)* < Caljwlanl £
JEZL

Note that (11.4) is an immediate consequence of this theorem and the following proposition.

Proposition 11.3. The function
wi (2, §) = Qr[ulWjls;, (I — P)bi]1(z)

defines a Carleson function and there is C' < 1 so that for 0 < &/ < C~'e? we have the estimate

(11.5) lwrlcart S Qjyrlulllbrfloolullu sup s 1 min{2 ™ nlZ, log* (1 + nl.)}.
J .
J

Our next proposition is a restatement of the other square-function estimate (11.3), in a
slightly more general form.

Proposition 11.4. Let 0 < e < 1. There exists C <1 so that for 0 <&’ < C~le

(3 [ 1@l Wiler 1B ) ~ Byl W12 - P @) )

JEZ

S A1 ll2 sup 167 [loo el sup 155 21 min{2™* nT2, log(1 + nl%)}.
J J

We emphasize that the implicit constants in the above propositions are independent of n and
independent of the choices of b} with ||b][|ec = 1.

11.2.1. Proof of Proposition 11.3. We need to prove for zo € R?, ¢ € Z,
1 — j . 1/2
(11.6) < Z B0, 29| (a0 2, | Qs kUl Wiy, (I = Py)br, by, b ]1(2)] dl")
j>—t 0

S 1B floo il sup [lsj 2r min{27 nT'2,1og® (1 + nl'c)}.
J

Now
1

1Bz, 20| o @J'Jrk[u]wjkja(]—Pj)blab;,---,b%]f(fﬂ)‘dfﬂ

1
~|1BY0,1)] Jpaa
and we have by changes of variables
(11.7)  Qj[ulWjlsj, (I — Py)by, b, ..., bl] f (o + 2°)
= Qjropk[WWjtelsj, (I — Pjio)br, b, ..., b)) f()

where by () = by (xo + 20x), I;Z(x) = bg(:no +2%2), f(z) = f(zo+2‘z) . Applying this with f =1
we see that it suffices to prove (11.6) with g =0, £ = 0.

| Q[ Wjlss, (I — Py)by, b5, ... bl] f(wo + 2°2) | da

The somewhat lengthy proof will be given in a series of lemmata, partially relying on the L?
boundedness results in §7. Our first lemma is a restatement of such a result.

Lemma 11.5. Let 0 < & < 1. There is C < 1 so that for all & < C~'e we have for all k > 0,
and for oll u € U,

_ , e
1Q; 4 lul W5z, ba]ll 2 12 S min {n27* | ls,, lgjllze } 1101 lloolul.
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Proof. For f,g € L?, we have

_ 97 . X
[ @)@y dW s bl @) do = AP b1, B £ Qi)
From here, the result follows immediately from Theorem 7.8. O

We now give an estimate on A[g(zj)](bl, ..., bpt2) under the assumptions that the supports
of b1 and b, o are separated.

Lemma 11.6. Let 0 <e < 1. Forall j k>0, € B.(R" xR%), uecU, R>5, by,...,bys1 €
L®(RY), byio € LY (RY), with

supp(b1) € {|v] > R}, supp(bni2) € {Jv| < 1},

we have
o o n+1 '
AL (01, b, @ ltlbn2)| S Nl T N8ellso) Hona2ll 1 min {27 R) =/ lclls., lisll 1 }-
=1

Proof. Without loss of generality, we take ||bj||re = 1, 1 <1 < n+1, ||bpsal/;r = 1, and
||u|]lu = 1. The bound

AL b1 bt Qi) S sl
follows immediately from Lemma 2.7, so we prove only the estimate
(11.8) AL b1 b, Qaflbg)] S lislls, (27R) /1,
We estimate

AL N(b1, b, G klulbao)]

= ‘ //// c(zj)(a, v)(lljbl(x — ;0)) bpg1 (@ — v)u(2j+k)(x — 2 )bpyo(2) do dz’ da dv

< sup / / / 1<) (@, 0)||b1 (2 — 10)||[u® ) (2 — /)| da da dw.

|2[<1

Fix 2/ € R? with |2/| < 1. Then
[ 8@ @0l - arl® e - o) de da do
< // < (o, v)||b1 (2 — @12770) |20 TR (1 4 274K | — a:'])_d_% dx da dv

=>.> // s (e, v)|[br (& — a12770) 29040 (1 4 27K — o/) =973 dir dav do

h=012=0 211 <14 |v|<2l1+1
2l2 §1+2j+k ‘x_x/‘§2l2+1

:i > +§: Yo =)+ U,

11=02l2>R2i+k—2  11=02l2 < R2i+k—2
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We begin with (7). We have, provided ¢’ < ¢,

(I) S i Z 2—l18/—l2/4><

11=02l2 > R2j+k—2
, . 9d(j+k)
14+ |v))° (e, v)|]b1(x — a1 277w dzx do dv
(14 o) |s(a, v)][ba( 1 )|(1+2j+kyg;_x'\)d+i

211 <14 |v| <21+
2l2S1+2j+k‘Z‘—x/|S2l2+l

(e e]
Sy > 2R s, S @R T ells, S (PR TV, -
11=02l2 > R2j+k—2

We now turn to (/). We have

(H):i > athERA

11=02l2 <« R2I+k—2
, ) 9d(j+k)
1+ |v))° (e, v)||b1(z — 12770 dr do dv .
(el s~ 250 o

2l <1+4|v[<2li L
2l2 §1+2j+k\x—x’\§2l2+l
On the support of the integral, |z —a;277v| > R (by the support of by). Since 1+427+F|z —2'| <
2241 we have |z — 2| < 22F1797F Thus, |z] <2H170F 1 <B4 1 <B4 B < 3R Thus,
@1279v| > R and therefore |oy| > 27 & > 27-h R Plugging this in, we have for &’ = £/2,
~ ~ |’U| ~

(H)gi > 9-hie'~l2/4(1 | 9ihi R)~F /// (14 [v])* %

11=02l2 < R2I+k—2 2l <14|w|<2l+t
22 <1420k |p—g/|<2l2 1
o , 9d(j+k)
(1+ a1 ) T|s(ev, v)||b1 (z — a12790)| : - dw docdv
(14 27tk|x — /])%a

o
XX AR R s, £ @R,
=022 <R2I+hk-2

Combine the estimates for () and (I7) to obtain (11.8) and the proof of the lemma is complete.
O

Lemma 11.7. Let 0 < ¢ < 1. Then for all j,k > 0, w € U, R > 5, and by € L>®(RY) with
supp(b1) C {|v| > R} we have

0O 1/2 . y —
(/ <t (@[] Wi, ba]1) () d:c) < lullael b1 [l oo min { (29 R) /|51, 55|21 }-
Proof. Let B ={x : |x| <1}. We have, by the previous lemma,

— 1/2 j . . —
( /B (@il i) @) 2 dz) < sup AR 00, 01 Qg

lbn2ll1=1
supp(bn+2)CB

S swp o ufulbilloolbaszll min {(27R) "4 glls, llssllze }

lbr2]l1=1
supp(bn+2)CB

and the assertion follows. O
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SjHu

For j, k1, ke > 0 and u € U, define an operator Viki ks = Vj,k1,kz by

/ F(2) Vi g () dar = / 9(2) (@, W5 155, Qi 1) (&) dz

= AN Qo f V0L, 1,1Q g, [ulg).

Lemma 11.8. Let 0 < ¢ < 1. There exists ¢ > 0 (independent of n and ) such that for e’ < ce,
ki,ko >0, and for all f € L*(RY),

1/2 . o
( / S Vi@ dw) " S 1 llzzllulasup 1], min {1,n27 G, ).
J

Jj=0
Proof. From Theorem 10.1 we get the bound

(11.9) H S Vikks

>0

< |||y min {1, n2_5/(k1+k2)f‘5}.

L2112

Let 4, be any sequence of 1. Note that 0;V} j, k, is of the same form as Vj 1, r, with ¢; replaced
by ¢;¢;. Thus, by (11.9),

| 6 Vikwsat ||, S 1 e lulh min {1,n2= t1 42},
Jj=0
where the implicit constant does not depend on the particular sequence d;. By Khinchine’s
inequality
¢ 2 1/2 ¢
( > 'V ko f () dﬂ?) SSUPHZ% V},kl,kgf‘z,
=0 Jj=0

where the sup is taken over all £1-sequences {d;}. The result follows. g

Lemma 11.9. Let 0 < ¢ < 1. There exists ¢ > 0 (independent of n and €) so that for €' < ce?,
for all by € L®*(R%), for all u € U,

[NIES

(Z/ |(@j+k1 [w]Wjls;, (I — Pj)bl]l)(az)‘2 da;)

>0 lz| <1
< C(e, d)|[ullllbr]loo sup [[s; ]| . min{2 1< nT'2, log¥* (1 + nl'c)}.
J

Proof. Fix by € L®(R?) and v € U. We may assume ||b1|~ = 1 and |jully = 1. Fix
0 < B <1andd >0 to be chosen later, see (11.11) below. Given ki, ko > 0 we decompose

kiks ki
by = b7 + by ° where

phks(yy . J 01y) if Jyl = max{10, 8 gl+d(k+h2) )
oo 0 if |y| < max{10, g 2! F0(kitk2)1”

b3 (y) = bily) — b2 ().
We expand I — Pj =, Qji, and then have

(X [ 1@ lalWifes, (= PP do) ™ < 1)+ (11

J=0
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where

= 3 (X [ 1@ Wl Qe @ )

k>0 j5>0

1/2
= 3 ([ 1@l Wil Qi @) o)
ko>0 j>0

We begin by estimating (I). Because j, ko > 0,

Supp(Qﬁkzb Lk >) C{y : |yl > Ry, g, } where Ry, i, = max{5, ﬁ2(k1+k2)5},

we may apply Lemma 11.7 to see

k1,k2 2 1/2
= 3 (2 ) 1@ Wi, Qb 1)) P )
ka>0 _7>0

1/2

< 32 (o min {2 Ri) sl s sy )

ko>0 720

. 1/2

< sup oyllr Y (D min{1, 27952 ukezb/2 g=</2p2)

7’ ko>0 520
<Sup||§j||L1 > min{1, 27 kiR)=0/A gAY 1og/2(1 4+ g2/4T2)

k2>0

< sup [lgjll 1 min{1, 27F1=0/4 374D Y 1og®/2 (1 + g7/,
J

d/2

We now turn to (I7). We have ||bk1’k2||2 SR k2||bk1’k2||oo < Rk{k and use Lemma 11.8 to

estimate, for some c¢; € (0,1),

un Z Z/’ k[t [§J=Qy+k2b11’k2] )(x)Ide)

ko>0 720
1
k1,k 2
=3 ([ Wittt @) o)’
ko>0 720

(11.10) Ssupligllz 3 16157l min{1, n2= e+
ko>0

[NIES

< sup lls;ll 1 Z (1 + B2k15+k25)d/2 min{1, n2_015(k1+k2)F5}

J ko>0
_ Z + Z = (IL) + (IL).
ko>0 ko>0
1<B2k16+k26 1262k16+k26
We take
(11.11) B=(nl)" Ve, §= %.

Notice that since §2F19+k20 > 1 in the sum (I1;) we may replace the power d/2 by d and get,
with the choice (11.11),

(52k1(5+k26)d/2 (n2—5’k;1 _Elkzrg) S /Bdnra2(k1+k‘2)(6d—61€)

< 2—(k1+k2)01€/2
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and thus

(1) § 37 2 e sup g £ 2705 sup g .
ka>0 J
Next,

(I[2) < Sllp ng”Ll Z mln{l n2- (k1+k2) clar }
k2>0

S Sll_DH%’”Ll X {
J

< sup ||| 1 min{27 R nl, log(1 + nl.)}.
J

log(2 +27¢MTn) if 279Mn > 1
2—ciEkhi _p if 2—ashil p < 1

Finally we use the choice (11.11) in the above estimate for (I) and get
(I) < supH§]HL1 min{1, 27 ST n4dF 4d}log?’p(l +nidl, +4d)
S sup [lgjl|pr mind1, 2781 nT 2} og® (1 + nT.)
j
with ¢ = ¢;/8d. Combining this estimate with the above estimates for (II;) and (I13) yields
the assertion. O

Proof of Proposition 11.8, conclusion. The lemma is just a restatement of (11.6) for g = 0 and
¢ =0 and by (11.7) we reduced the proof of (11.6) to this special case. O

11.2.2. Proof of Proposition 11.4. We start with an elementary observation for f € L°.
Lemma 11.10. For all k >0, j € Z, by € L®(R?), and u € U,

Q4[] Wjlsj, balfllzee S Nlullulisgll e llbr ool flloo-

Proof. For g € L' with ||g||y = 1 we have, using Lemma 2.7,
i . . _
| [ 9@k dWs ) 1) @) d| = AP 00, Vs £, Qi aful)]
S 01lloo [l f lloo 1 Qj i [ulglla Izl S 101 oo lulhaellssll e

completing the proof. O
Lemma 11.11. There is c € (0,1) (independent of n and €) so that for €' < c£?, and all k > 0,
jEZ, uel, b € L*R?), f e L*RY) we have
2, \1/2 . e’
([ @yealadWyles )P ) ) ™ & Wl minlls v, n27+ .-

Proof. We may normalize and assume ||b1||oc = 1. We may assume, by scale invariance of the
result, that j = 0 (see (11.7)). The assertion follows then from the inequality

_ 1/2 /
(1112) ([ [@uuWols 1@ P @) dr) " < byl minlel 2 I,

Because the convolution kernel of Py is supported in B%(0,1), it suffices to show (11.12) for
functions supported in a ball B of radius 1. We may assume (by translating the functions b;)
that B is centered at the origin. Let B* be the ball of double radius.

Now || Py flloo S || fll2 for f supported in B, and therefore it suffices to show
(11.13) 1QklulWols, ba]1ll L2 (p+y S llulhemin{n2™* |lcs_, lls;ll 13-
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To show (11.13) we split 1 = Lo,, + 1, where Qs = {2 : [z < 5- 29}, with a choice of § < €
ks
to be determined.

It follows from Lemma 11.5 (or directly from Theorem 7.8) that for some ¢ > 0 (independent
of n)

1Qk[ulWols, bi]Lay,llra(se) < Loy, ll2lulhemin{n2™*|dlls.. <21}

(11.14) S Il min{n2==Diq|s., [ls]| 1}

and thus we want to choose § < cg(2d) ™!
Next we estimate the L?(B*) norm of Q [u]Wo[s, b1]1ge . Let S(a,v) = ¢(1—aq, -+, 1—an,v)
kS
so that [|<]ls. < llsjlls, and [IS][Lr = llsjll L1 We have, for [|g[|z2(p+) =1,

| / []Wols.biJ1gg () de]
|A[S](by, b3, ...,b0,1 LY ,tQk 19)| = |A[S](b1,89, ..., b0, " Qy[ulg, )\

= ‘//// a,v)by (x — aqv) Hbo Qc (x)u(zk)(y—x—kv)g(y) dz dy dv do

and this is estimated by

/ / / [S(er,0)[u®) (y — 2 + v)g(y)| da dv da dy

|| >5-29%

< Z //// (e, 0)|[u®) (y — 2 + v)g(y)| dz dv da dy

l
2122:280 =091y 2101 oty +1
2l2 <1+4|v|<2l2H!

113
Y Y Y Y-
201 >92.2k8 [3=(11—3)V0  2l1>2.2k3 I2=0

We estimate (1) <

Z Z 9l //// (1 4+ |v])°|<(a, U)Hu(2 (y —z+v)g(y)| de dv da dy

21>2.2k8 ly=(l1 —3)V 211 <Jg|<2M !
22 <14|v[<2l2HL

o
—el2||c —ké —k6
> > 2 2lls, ullullgll S lslls lulhdlgli2=* < llslis, [l *,
211 >2.2k6 l5=(11—3)V0

where the last inequality uses the support of g to see ||g|l1 < [lg]l2 = 1.
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For (II), we use the fact that lo < I3 — 3 to see that on the support of the integral, since
ly| <1 (due to the support of g), we have |y — x 4 v| =~ 2!*. Thus, we have

s Y 5 I« o la(o)| e v dy do

(14 2k|z —v —
211>2 2k 13=0 91 <|p| <+ ‘ ?J‘)
2l2 <14|v|<2l2+t

< > Saom [[ff o« ) dsdody o

(1+2F|z —v—y[)¥T1
211>2 2k6 13=0 ol || <ol 1 ‘ yl)
2l2 <1+ |v|<2l2+1

11-3

—k—1 ~ —k —k
S S S 2R A gl gl S lulhelisllz g2 S 2754 ullulls] 1.
211 >92.2k8 Io=0

Finally, we have, by Lemma 11.10 applied to f =1 ,
ks

‘/ [lWolbi]Lge () dz| S llclc llull,

where the last inequality uses the support of g again to see ||g|l1 < |lgll2 = 1. If we take
d = ce/(4d) then a combination of the estimates for (I) and (II), and (11.14) , yields (11.13) for
¢’ < c£?/(4d). This completes the proof. O

In what follows we find it convenient to occasionally use the notation

(11.15) Mult{g}f = fg
for the operator of pointwise multiplication with g.

Lemma 11.12. Let 0 < ¢ < 1/2. Then there is ¢ > 0 (independent of n,e) such that for
e <ce?, forallk >0, j,l €Z,sj € Be, u € U, by € L®(RY),

HQ]JHLC Wilsj, b1]PjQj41 — MUlt{aﬁk[u]Wj[gjvbl]l}PijJrlHLZ—>L2

< Jllulhdllbrlloo min{rlills. 274", 27 <2} if >0,
lulllibslloo min{r gl 5.2/ 427%, I<ll 2} if L <0,

Proof. We may assume |||y = 1 and [|b[|ze = 1. We have

(11.16) 1P Qjsill 22 S minf27!, 1},

Now, by Lemma 11.5,

(11.17) 1Q; 4k [ulW;[ball 222 S Nl e

and, by Lemma 11.10 and (11.16),

(11.18) Mt {Q; 4 [l Wilej, b1] 1} Py Qi p2s e S minf{L, 27"}l 15
moreover, by Lemma 11.11,

(11.19) IMWlt{Q; 4 [w] W[5, 1] 1} P Qg s 2 S 27 ]l

A combination of (11.17), (11.18), and (11.18) immediately gives the assertion for [ > 0, and
also the second estimate for [ < 0. It remains to show that

(11.20) (@5 [u]Wjlsj, b1] Py Qjy — Mult{ Q1 [u]Wjs;, b1]1} Py Qi il 2 12
< nlsj|| . max{2'5/2, 214} if | < 0
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indeed the assertion follows by taking a geometric mean of the bounds in (11.19) and (11.20).
By scale invariance (see (11.7)) it suffices to show (11.20) for j =0, i.e.

(11.21) |(R1 — R2) Q| 1>, > < nllsjlls. max{2'/2 24} if | < 0;

for Ry = Qu[u]Wo[s,b1]Py and Ry = Mult{Q[u]Wo[s,b1]1}Py. Let p1, p2, p be the Schwartz
kernels of Ry, Rs, Ry — R, and let o_; be the Schwartz kernel of Q;. We wish to apply Lemma
8.6 (note the notation ! = —/ in that lemma). It is immediate that o, satisfies assumptions

(8.23b) and (8.23¢) with Bi, Bao, Boo < 1. The function p satisfies the crucial cancellation
condition (8.24) since

(@clu]Wols,bi] Py — Mult (@, [u] Wols, ] 1} Po)1 = 0.
It remains to check the size conditions (8.23a). We have
el < [[[ W@ —a)lstans! = lioty' — o)l do’ dcdy
and thus clearly

sup / (@ p)lde < a6l < 1
Yy

since ||ulj1 < [Jully. Also for some M > d+ 1,

/ o1 )| (1 + |2 — yl)dy

ghd (a2’ = )]
< _ € 9 / /
S [asle—yl ///\(Hz%_w,bd+§ (L o dovdy dy

< / / / (e’ — y)|(L+ | — o)l ol o) dady' do’

where

okd 1 (14 |z —y|)*
w(z,2',y) = / dy .
o) = e s ] T =)™ L+ = vl

We have
sup [ Is(aa! =)+ o'~ ) davdy’ < [l
ZJ
and thus it suffices to show that
(11.22) sup/w(x,x/,y)dx/ < 1.
zy

Now by the triangle inequality (14 |z —y[)® < (1+ |z — 2/|)°(1 + |2/ —¢/|)*(1 + |¢' — y|)* and

hence
/w(az 2, y)da’ </ 29+ |z — '])° / ! dy dx’
T ) @42k — it S AF Y —yhM e

< / 2kd(1 + |z — x’|)€1 d!
(1+ 26 — 2]yt

and (11.22) follows easily, provided that ¢ < 1/2. Thus condition (8.23a) is satisfied for p;. By

Lemma 11.10 it is immediate that condition (8.23a) is satisfied for ps as well. Thus we have

verified the assumptions of Lemma 8.6 and (11.21) follows. This completes the proof of the
lemma. O
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Proof of Proposition 11.4, conclusion. We may assume ||ully = 1, ||f|l2 = 1, and sup; ||b{||OO =
1. For k > 0, define

Ry o= QyulW; 155, V1) — Mult{Q . [u] W55, M]1} P,

The proof is complete if we can show, for k > 0,

2 1/2 : —e1k
(11.23) (Z HRj,kaQ) < sup [|g;{| 1 min {275*"nI, log(1+ nI'.)}.
: J
J
Lemma 11.12 implies
sup; ||s|| 2 min{nl'.27%" 21}, itl >0,
R . O, < J /
|| k,j Q]+l||L2—>L2 ~ {Supj H§||L1 min{nF€215/42—k€ , 1} ifl <O0.
Now
1/2 ~ 2\ 1
(Z |le,ij§> = (Z HRk,y’ > Qj+le+sz2> ’
J J leZ
~ 2y 1 ~ 9\ 1/2
> (Z |ResiiQinf|)" < > sy ijHHLMLz(Z 1954171
X j’ X
S Sup lls;ll 1 [Zmln{nf 9~k o=y 4 Zmln{nf ole/dg=he! 1}]
>0 1<0
< sup || 2 min {275* 0T, log(1 + nl'.) }
J
for some sufficiently small €; > 0, and the proof is complete. O

11.3. Proof that Theorem 11.1 implies Part II of Theorem 5.1. Let 1 < p < 2. The
asserted result follows from

(11:24) | 3NN by (= P)bbyys o B (= P)bus, Pibao)|

+1° "
JEZL
S sup|lsjll 1 log®2 (1 +nTe) (- [T sup 187 lloo) 10elloo Brr1 llpl1bn-+2ll
J Z:iﬂn j
and
(11.25) ‘ SN B, b (= P)bib s b, Py, (1 — P )bn+2)‘
JEZL

Ssup [lgjllzrlog®?(1+nTe) (T sup 167 lloe) 1Belloo 1bn+1llp 1o v2ll-
J i=1,..m 7

i#l

Once (11.24) and (11.25) are established we use them for the choices bg =b;,if i <, bg = Pjb;,
if | < i <n. Now it is crucial that || Pj||pec— e <1 (here ¢; >0, and [ ¢; = 1 are used). Hence
the two inequalities for Allm 41 and Allm 4o claimed in Theorem 5.1 are an immediate consequence
of (11.24) and (11.25).

In order to establish (11.24) and (11.25) we may assume without loss of generality that [ = 1.
This is because we can permute the first n entries of the multilinear form and replace ¢; by ¢
as in (4.1). We may also assume that

010 < 1, HbZHoo =1 2<:<n.
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Now, in what follows let
fj(O[,’U) = C(l - Oél,...,l - Oén,U)
(as in (4.2)). To prove (11.24) for [ = 1 we observe

STARENT = B)bi, b, b (1 = Py, Pibsa) = /bn+2(x)fTbn+1(x)dx

where
T = B Wilsg, (1= Pybi](I = Py) = 3 PW;(5, (I = P)bal(I = F).
J J
Now we expand I — P; =3, Qj+ and we get "7 =3, “T* where
= ZSijJ’_k’ with Sj = Pjo[fj, (I - Pj)bl]
J

The Schwartz kernel of S is equal to Dily;s; where

55(o,y) = / oz — 2')o;(', y)dy

with
. n .
(11.26) oj(z,y) = /cj(oz, x—y) I — Py)bi1(277(z — ai(x — y)) H bi(277 (x — aj(x — y)) dav.
=2
We wish to apply Corollary 8.12. It is easy to check that
Int'[s;] Ssupllsjllpr =2 A, Inti[s;] < suplsjlls. =: B.
j j
Now || >2; SiQj+kllze—r2 = 7%l 2,2 and by Theorem 11.1
H Z SjQﬂ_k‘ L2 L2 S sgp llsillze 10g3/2(1 +nl'c) == Do,
j
270> " 8,Q 4kl res e S sup llsj|lpanl2 = Dy, .
- j
j

Now we easily obtain from Corollary 8.12 that
PI)ILTI
k>0 j

and (11.24) is proved.

Finally we turn to (11.25), for [ = 1. The case p = 2 follows immediately from (11.24), by
duality replacing ¢; with ¢;. For p < 2 we observe that

5/2
LP— P ’S Cp Sl;p H§j||L1 log / (1 + nfe)

ZA (I = Pj)by, b, ..., b, Pibyst, (I — Pj)bpio) = / bny2(x) S Pjbpy1(x)dz
JEZL

with S; = (I — P;)Wj[s;,b1]. The Schwartz kernel of S; is equal to Dily;s; where
si(e,) = 03(avy) — [ oo~ o)’ )iy

with o; as in (11.26). Then s; satisfies Int'[s;] < ||5;]|z1 and Int}[s;] < |lsjll5. and (11.25) for
p < 2 follows immediately from the case p = 2 and Corollary 8.10.
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12. PROOF OF THEOREM 5.1: PART III

Let n > 2 and 1 <l; < ly < n. In this section, we consider the multilinear functional

(12.1)
A}l,lg (b17 e 7bn+2) =

ZA[§J(2J)](Z)17 ... 7bl1—17 (I - Pj)bllapjbll-i-lu cee 7ijl2—17 (I - Pj)bl27pjbl2+17 o 7ijn+2)7
JEZ
where, for some fixed ¢ > 0, &= {q; : 7 € Z} C B-(R" x R?) is a bounded set. The goal of

this section is to prove, for p € (1,2], by, ..., b, € L¥(R?), byy1 € LP(RY), byyo € Lp/(]Rd), the
inequality

(122) AL (b1, bps2)| < Cape sup [lgjllzr log* (1 + ) (T 1Belloo) Bn41 llp1Bnrallpr
J =1

together with convergence of the sum (12.1) in the operator topology of multilinear functionals.
Moreover the operator sum Tll1 1, associated to All1 1, converges in the strong operator topology.
It will be convenient to prove a slightly more general theorem. Let {b{ :3<1l<n,jeL}C

L>®(R?) be a bounded set, with SUPjez Hb{HLoo =1, for 3 <1 < n. For by, by € L®(R?) define
an operator S;[bi, ba] by

/ 9(@)(S[b1,ba) ) () da := Al (T — Py)br, (I — P)ba, ..., b3, f. ).

Theorem 12.1. With the above assumptions, for 1 < p < 2, the sums Z;’i_w P;S;[b1, bo] Pj
converge to S[by,be], in the strong operator topology as operators LP — LP, and S[by, bs] satisfies
the estimate

(12.3) 151, b2] || 2o s £ < Cap.e sup [lj]l 11 log® (1 + nTe) |61 [lo|b2|o-
J

Proof of (12.2) given Theorem 12.1. Using Theorem 2.9 we see that Theorem 12.1 also implies
the inequality

2j . . . . . .
‘ SN0, 0 = Py b e B (D= BB B b ban)
J

< sup [ 1 log® (1 + nT'e) (161, llool[Bialloo ( TT 1157 1lo0) Bn1llpllbn2]l-
J 1<i<n
i#l1,l2

Since || Pjby||q < ||bi]lq we may replace b; by Pjb; for 1y +1 <14 <ly—1, i >l + 1, and if we use
also P; = 'P; then (12.2) follows. O

The rest of this section is devoted to the proof of Theorem 12.1. Thus, we consider sequences
b] € L®(R?) fixed (3 <1 < n) with sup; [|b]||zee = 1. The L? estimates in §10 will be crucial.
We restate them as

Proposition 12.2. There is C < 1 such that for ¢’ <e/C, and for all collections

{biu-l 1j € Z}7{b£+z 1JEL} C LOO(Rd)v with Sup“b£+1“oo =1, sup ”b‘ZL-‘r2”OO =1,
J J
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we have for f,g € L2(RY) and ki, ks € N,

‘ZA Q]+k1f Q]—i—kzgv 39 "7b.zz+2)‘

JEZ

. _ / _ /
S 1 l2llgllz min {275~ n sup g5, sup lls; ]|z }-
J J

Let Ti, i, e defined by

(12.4) A NQrts £ Qs B o) = [ 9(0) oo ()

Then 3, Thy karj and Y Ty ka,j COnvETge in the strong operator topology as operators L — L2,
with equiconvergence with respect to b3, ... ,bn Y

Proof. This follows from Theorem 10.1. O

Proposition 12.3. Let {b),b} : j < —1} € L®(R?) be a bounded set with Supj<_q ||b{\|Loo =1,
1 =1,2, and let by11,bpy2 be L™ functions supported in {y : |y| < 1}.

ST AR, B Pibast, Pibus2)| S Ionallzoe [baszll 2 sup [l 1.

j:—oo J

Proof. We may assume |[|b,11]|p~ = ||bn+2]|ze = 1. Then by Lemma 2.7

s Yo

27 i
A1), B, Pibnsr, Pibaa)| S sup 111 I Pyt 2l Pibaya
J

< sup (155112127 by |11 Pybnszlls S sup [lgl]7127
J J

where we have used ||P;|| 112 < 2742 and then the support assumption on by, 41, by12. Now
sum over j < —1 and the proof is complete. O

Lemma 12.4. Let 0 < ¢ < 1. For all R > 5, all j > 0, byt1,bnto € L supported in
{x |2 <4}, by, by € L®(R?) with supp(by) C {v : |v| > R}, we have

A[SE) (b1, b2, 08, b bt )| Smin {27 R) 2| ls., il [T Iillees
le{1,2,n+1,n+2}

Proof. We may assume |[|bj||f~ =1,1=1,2,n+ 1,n + 2. The bound

(12.5) AL (b1, b2, BB bt bas2)] S gl

follows immediately from Lemma 2.7 and the assumptions on the supports of b, 11 and b, 9.
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In order to establish the bound (27 R)™/?||; |5, we estimate, using the assumption on
supp(by ),
‘A[gj('2j)](b17 b27 b‘g’n L) bin bn-i—la bn+2)‘
= ‘ /// gj(-zj)(a, v)b1(z — aqv)by(z — agv)(H bl (x — @30))bp1(x — v)bpp2(z) da do dv

1=3

= / / / R—|a| |§J(2j)(avv)||b1 (x — a1v)| da dv dx
x| <4 JJv|<8 J]a1 |> 5

< ' '
- /|w§2j+3 /a12& ’%(Oé,w)]da dw;

2= |w]

here we have used R > 5. Let m < j + 3. Clearly

(12.6) / / [j (@, w)[dadw S (27" R)%|gjlls., S 2™ (27 R) %l 5.
2am—1<|w|<2m J|ay|> R—|4] ’

277wl

Also

(12.7) |Gi(e, w)| dacdw S 27" [5l|B.4 S 277l 8-
2m—1§‘w|§2m o [> R—]4 ©

277wl

We use (12.6) for 2™ < (27R)Y/? and (12.7) for 2™ > (27R)'/2, and sum. The assertion
follows. O

Lemma 12.5. Forl=1,2,n+ 1,n+ 2, let {b{’kl’k2 : g k1, ko € N} € L®(R?) be bounded sets
with SUp; g, k, ||b'177k17k2”Loo =1. Let >0, 0 >0 and assume
(12.8) supp(b{’kl’kz) C{v: v > max{5,ﬂ2k16+k26}}, Vi, ki, ke € N
and forl=n+1,n+2,
supp(b{’kl’kz) CH{v:|v| <4}, Vj, ki, ke €N

Then
27 i k1,ks 14.kiks 17 i pdki,ke g kk -
ST RPN ek b b bR bR < sup g1 log® (1 + BT,
7,k1,k2€N J

Here the implicit constant depends on 0, but not on 3. The same result holds if instead of (12.8)
we have

(12.9) supp(by**?) € {|v] > max{5, 2Rtk i by ko € N,

Proof. Because our definitions are symmetric in by and be, the result with (12.9) in place of
(12.8) follows from the result with (12.8). Thus, we may focus only on the proof with the
assumption (12.8). Applying the previous lemma, we have

ST AL @R R bl b bR )|

jyklkaEN
. —4 —e/2
< Y min {27952 (max{5, 5250521 2 sup || 1., sup sl 1}
J.k1,k2€N J J

< sup ||l 1 log® (1 + B7'T2),
J

completing the proof. O
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Proposition 12.6. Let by, ba, by41,bnt0 € LOO(]Rd). Let &; be defined by
(12.10) A[*)((I = Py)br, (I — Py)ba, b}, .. b, Pibasr, Pibpya) = /bn+2(az) & bns (2) da.

Consider &; as a bounded operator mapping L> functions supported in B%(0,1) to Ll(Bd(O 1)).
Then the sum ) &; converges in the strong operator topology as bounded operators L>(B%0,1))
to L'(B%(0,1)) and we have for supp(bp+1),supp(bnt2) C {y : Jy| <1},

S ALEI = P)br (= Py)ba, B Vs Pibu, Piba2)|
JEZ

Ssupllgjllpalog®1+nle) [ IIbillo.
J 1e{1,2,n+1,n+2}
Proof. We may assume |[|bj||f =1,1=1,2,n+1,n+ 2.
By Proposition 12.3 the required estimate holds for the sum over negative j and thus we only
bound
(12.11) ‘ZA (I = P)by, (I — Py)ba,bl, ... 0L, Pibyi1, Pibyio)
7>0

< sup (gl 11 log?(1 + nl2).
J

Let 0 < < 1,0 < 6 < 1 be constants, to be chosen later (see (12.14)). Implicit constants
below are allowed to depend on §, but do not depend on . For | = 1,2 and ki, ko > 0 define

bk () {bl(v) if |v| > max{10, B - 2k10+k20+1}

b,00 0 otherwise

lk ko ! lk ko
l})7 ( ) l(v) l,lo7o (U)
We have, by (62) and Remark 6.1,

| AR = P)oa, (= Pb b Bl Py, P

7>0
> ZA Qj+k1blan+k2b2yb37'”7b¥wan+17an+2)‘ <)+ 1)+ (I11)
k1,k2>0352>0
where
Z Z‘A Q]+k1 100 7Q]+k2b27b37"'7bzwpbn+17an+2)|
k1,k2>0352>0
Z Z‘A Qj+k1b10k27Q]+k2b]2€1£27b] "'7b1zL7an+l7an+2)|
k1,k2>0 35>0
III Z ‘ZA Q.7+k1 10 ’Q]-i-kz k17k2 bj "'7b¥z7an+17an+2)"
k1,ke>0 §>0

Because j, k1, ko > 0, and by the supports of the functions in question, we have

SuPp(Qerklbll’kz) Supp(Qerkgbkl’kz C {v:|v] > max{5, 3 - 2519k} }
and
supp(Pjbr11), supp(Pjbn12) C {v : [v] < 4}.
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Lemma 12.5 applies to show

(12.12) (D)) + 11| S sup [l 11 log®(1 + A7'T).
J

We now apply the L? result in Proposition 12.2. Let Tg, k, ; be asin (12.4). Then > 50 Thi ks j

converges in the strong operator topology as operators L? - L2, with equiconvergence with

respect to bounded choices of by, 11, b,12 € L>°(B%0,1)), moreover the operator norms involve

some exponential deacy in k1, ko. If we apply this to b]ffo’kz, bg}o’kz, we may replace the L? norms

with L®-norms. Hence if we define operators &y, i, ; by

/bn+2($) Sk kg, jbnt1(2) dz = A[gj(gj)](Qj-Hﬁbl)Qj+k2b27b§7 -, 0), Pibni1, Pibnya)

we see that [ > y br+2(2) Sk, ko, jbn+1(x)dx converges with equiconvergence in the choice of by, 12

the strong operator topology as operators L>®(B%(0,1)) — L'(B%(0,1)). For the quantitative
estimates we apply the L? result in Proposition 12.2 and use the supports of blfo’k2, bg}o’b to get

with ||bpi2llee < 1 and supp(bpi2) € B4(0,1). Thus we get convergence of 2720 Gk kayj I

for & < ce?
ek —e'k K1,k K1,k
(1D S Y- max {27 P nsup g5, sup [lgllz FIBYG™ 121105512
(12.13) Fak2>0 ’ ’
S Y max {27 R nsup ||g; |15, sup ||l 1 } (max{5, B - 2MOTR20})2d,

k1,k2>0 J J

Set
g’ 1

(12.14) 0=5 B=(nl)m2
Note that

(8- 2okt (el g s, ) = 272 2 up g .
J J

Using this in (12.13), we obtain

(I11) Ssup gl > max{2 oM =Rnl 1}(1+ g 2Mothe0)2d
k1,k2>0

< sup g 12 log?(1 + nle).
J

Plugging the choice of 5 into (12.12) completes the proof of (12.11).

Finally, we reexamine the proof to get the asserted convergence in the strong operator topol-
ogy. This is immediate for the sums corresponding to the terms (I), (IT) in view of the decay
estimates in the proof of Lemma 12.5. For (I1I) we easily get the assertion from the above state-
ments about convergence of > >0 Sk, ko,; and the exponential decay estimates in k1, ko. O

Proof of Theorem 12.1, conclusion. We shall apply Theorem 8.23. We need to verify that for
every ball B(xg,7), bpy1 € L¥(B%(x0,7)), ||bnsilloo = 1,

/ ‘ 3" PSjlb1, bl Pibya ()| dz — 0
Bawor) yji> N
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as N — oo and

(1215) supr= [ | S Pl bal P ()] d
N Bd(.CE()7 ) I]‘SN

< sup [lgjl| 1 1og® (1 + 7T ) |1 oo |b2|o -
J

For zyp = 0 and r = 1 these statements follow from Proposition 12.6. We argue by rescaling
to obtain the same statement for other balls. Let £ be such that 2671 < 7 < 2. Let 51(3:) =
bi(xg +2fx), i =1,2,n + 1,n + 2 and gﬁ(m) = bg_g(xo + 2%2), 3 <4 < n. Then by changes of
variables

/bn+2 S;ib1, b2]bpt1 () do

= 29N ((I = Pyio)br, (I — Piag)ba, 03T oo B0 bt D).

We use the fact that the functions gn+1, bn1o are supported in the unit ball centered at the
origin. Then the result follows immediately from the statement for xg =0, r = 1.

In order to verify the Op,-assumptions in Theorem 8.23 we use Lemma 8.24 with Cy <
sup; |||l and Ce < sup; |s;][5. - Now Theorem 8.23 yields

~

1S[b1, ba]ll 2252 S llby]|Loe b2l oo (sup 1G5l 1) log® (1 + nTe).
J

Finally we combine this inequality with Corollary 8.10, with the choices A < sup; [|g;/|z1 and
B < sup; ||sjlls.- This yields the asserted LP bound. O

13. PROOF OF THEOREM 5.1: PART IV
Let 1 <[ <n+ 2. In this section, we consider the multilinear form
J
AF(b1, . b)) = 3 A )(Piba, . Pty (T = Py)br, Pibisas ., Pibasa),
jeT

where J C Z is a finite set, and, given some fixed € > 0, &= {gj : j € Z} C B,(R" x R?%) is a
bounded set with [ ¢;(a,v) dv =0, Ve, j. Our task is to show that for p € (1,2],

n
(131)  [Af (b1, buy2)| < Capensup|lsllzr log® (1 +nlo) [ T 10illoo] 1on+1lpllbnally
J i=1
where the implicit constant is independent of J. Moreover we wish to show that the sum
defining the operator Tf associated to A12 via (5.12) converges in the strong operator topology

as operators bounded on LP. The heart of the proof lies in the next theorem which we shall
prove first. Let I'c =T'.(S) be as in (5.6).

Theorem 13.1. Let by, ..., b, € L®(R?), byy1,bure € L2(RY). Then,

lim > APy, Pibioy, (1= Py, Pibiga, .. Pibpga) = A2 (b1, ..., bnya)

N—oo |

and A2, satisfies

n
A7 o (b1s- s bago)] <Cden(supll<g\lu)log (L+nl) [ [T Ibmllze]l1bnsallz2llbnsall -
m=1
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Moreover the sums defining the operator T2+2 associated with An+2 converge in the strong
operator topology as operators L?> — L?.

The full proof of (13.1) will be given in §13.3 below.

13.1. Outline of the proof of Theorem 13.1. We give an outline of the steps and refer to
§13.2 for some technical details.

We first describe the basic decomposition of A% +2(()1, .+, bpy2) which is derived from a de-
composition of A[gj(-m)](ijl, ooy Pibyy1, (I — Pj)byyo, for fixed j. Write

AEN(Pby, ..., Pibysr, (I — Py)baso)
— lim (A[g§2’>](Pj+Mij1,... Py pi Piboit, (I — Py)bpis)

M—o0
— AP (ParPybrs . Piar Py, (I~ P)bn+2)>
M J
. 2
= lim_ _Eﬂjm (AL NP emPyors s PrsmPibns, (I = Py)bus)

_A[( )]( J+m 1P blv"' Py+m 1P bn—l—lv(l P)bn+2))

and use the multilinearity to obtain the decomposition

AN (Pby, ..., Pibusr, (I = Pi)bnyz)

n+1l oo
(13.2) = Z Z Als; N Pjm—1Pjb1, ..., Piym—1Pjbi—1, Qj1m Pjbi,
=1 m=—00
PiimPibist, ..., PigmPibny1, (I — Pj)bpia).
The terms for [ = 1,...,n are handled in a similar fashlon, in fact the estimates can be reduced

to the case | = 1 by using Theorem 2.9, permuting the first and the I** entry, and accordingly
changing the family {¢;}.

Now let
(13.3) Xi € {Py,Pi_1}.

Then we need to show

(13.4) (Z Z ALK Pibr, X Pibas -, Qe Pib, (I — P)bn+2)‘

— N m=—00

n
< sup g5l 21 log® (1 + nT'e) (T T 11Billoo) 1bn 12122
J i=1
and

(13.5) (Z Z AN QamPibts X2 Piba, o, X2 Py, (I — P)bn+2)‘

— N m=—00

n
< sup [lsjll 2 log? (1 + nTe) (T T 1billoo) 1br-+1112/1bnr21l2
J i=1
with implicit constants uniform in N; moreover we need to show the existence of the limits
as N — oo, for the corresponding operator sums in the strong operator topology. By another
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application of Theorem 2.9 (this time permuting the entries (1,n + 1)), with the corresponding
change of the family {¢;}), we see that (13.4) can be deduced from

(13.6) ‘ Z Z Al NQ4mPibi, XFpmPiba, o XJE L Pibny, (I — P)bn+2)‘

—N m=—o0
n+1
<SupH<HL110g (I +nl) HHb lloo) [1B1]l2[brr2]l2-

It remains to prove (13.5), (13.6). We shall also decompose further using (I — Pj)bpi2 =
> myeN @j+mabni2. This leads to the following definition.

Definition 13.2. Let m,my € Z, mo > 0.
For b,11 € L>=(R%) the operators Sjml’m2 [bp+1] are defined by

(137) [ g@)S;" bl fle) da

- A[ ](Q]—i—ml ]gaX]-Han b27 e X]+m1P bnaX;L_:_mlp bn-i—ly Qj—i—mzf)'
For by € L>®(RY) the operators ij1,m2 [b1] are defined by

(138) [ g1y "l (o) da

_A[ ](Qj—i-mlpbl,X]_i_mle%... xn

Jj+ma

Pjbu, X1 Pig, Qjvmaf).

We formulate an auxiliary result. It gives bounds in the Op(e)-classes defined in (8.36)
for suitable normalizing dilates of the operators S7""[b,11], T;""?[b1]. We use the same
notation for these operators and their Schwartz kernels.

Proposition 13.3. Let

(13.9) a;.”l’m = {
and

(13.10) T = {

There exists € > c(g) (independent of n) such that, for mg > 0,

D112 ](Sml 2 [bn+1]) ’Lf mi > 0,
D112 j—mq (S‘;nl’mz [bn_l,_l]) Zf ml < 0,

Dily-; (T} T2 [by]) if mp >0,

Dl].2 Jj—mq (ijhmz [bl]) Zf ml < O

(13 11) HO’TM,mzHOpE < 2_5’(|Tn1H—mz)n2”gjugs”bn_HHO07
| 167 o < sl o111
and
(1312) 7 o, < 27 m2 2l s, o
1757 [l op, S Nl llbrfloo -

The proof will be given in §13.2 below. Note that we have the trivial estimate ||-|op, < ||-/lop,,
and therefore the Op, bounds stated in Proposition 13.3 will only be used for ge(lmal+ma) < p2p

The estimates (13.5), (13.6) and the asserted existence of the limits follow easily from the
following Proposition.
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Proposition 13.4. Let by,...,b, € L¥(R?), with ||billec < 1,7 =2,...,n. Let = {¢;} be a
bounded family in Be, J C Z¢ with #J < oo and let mi € Z, ms € N.

Then there exist € > 0 so that the following estimates hold, uniformly in J.

(i) If bus1 € L(RY),

(13.13) | D2 87 b

JjeJ

v g S min {270 sup G s sup (122 H1bn 1 o
J J
(1) We have limpy_, Z]__ ST by 1] = S™ ™2 by 14] in the strong operator topology
(as operators L? — L?) and the bound (13.13) remains true for the limit S 2.
(ii1) We have Y, 7> .0 S "™ [bny1] = S[bnt1] with absolute convergence in L(L? L?).
Also Z;V:_N Sjlbns1] converges to an operator Slbn11] in the strong operator topology as oper-
ators L? — L? and

I1Sbn+1]ll2- 22 < sup [l 1 log?(1 + nLe) [1bnsloo-
j

(iv) In (i), (iii) the convergence in the strong operator topology is equicontinuous with respect
to {bnt1 : [|bn1lloo < 1}

Proof of Proposition 13.4, given Proposition 13.3. For the proof of (i) we apply the almost or-
thogonality Lemma 9.1. To this end we need to derive the estimate

(13.14) Hle ;T,;Tz [bn+1]Qj+k1+k2HL2_>L2

< A;ﬂé;mz — min an_H||w{2—a1(\m1|+m2)n2 sup sl 9—li+mal—|ma+ke| sup ||§j||L1}
J J

for some €1 > 0. To see this we note that the bound

Hsmhmz

4k "‘H]HL2—>L2 S min ||b”+1||00{2_61(‘m1|+m2)

n?sup |15 }
J

(and hence the corresponding estimate for Qg ;71_1,;1

13.3. The bound

[br41] Qe +k,) follows from Proposition

Hle ;n_;_lézw [bn+1]Qj+k1+k2 HL2_>L2 S 2_|j+m1‘_|m2+k2|

sup ||5; |1
j
follows from the fact that ||QrQill 12— 12, [|Qi Qx| 22 < 271! the definition of ST, and
Lemma 2.7.
We now observe that for A7 as in (13.14) we have
D AT < by [leo min { sup |||z, 275 UE2) (g | 4 mg) 0 sup s, -
3. ka J J

By an application of Lemma 9.1 this yields (13.13) and the convergence result in (ii), with
equiconvergence with respect to b,y1 in the unit ball of L>°(R?%). Summing in mq,ms yields

(iii). O

Proposition 13.5. Let by,...,b, € L®(RY), with ||billoc < 1,7 =2,...,n. Let &= {s;} be a
bounded family in B., J C Z¢ with #J < oo and let m1 € Z, mo € N.



100 ANDREAS SEEGER CHARLES K. SMART BRIAN STREET

(i) If by € L>=(RY),

(13.15) H S g [bl](

jeJ

L2—L2

< min {2777 202 sup 1 s, sup i1 1og (L + 27T } b |oo-
J J

(i) We have limpy_ oo Z;V:_N ijl’m2 [b1] = T™v™2[by] in the strong operator topology (as
operators L? — L?) and the bound (13.15) remains true for the limit T™ ™2,

(iii) We have Y. o> oo T™ ™2 [bi] — T[b1] with absolute convergence in L(L?, L?).
Moreover Z;V:_N T;[b1] converges to an operator T'[bi] in the strong operator topology as oper-
ators L? — L? and

IT ]Il 2222 S sup Il 21 log? (1 + nTe) [[b1 oo
J

Proof. Use Propositions 13.4 and 13.3, together with Theorem 8.22 to deduce that S""™2[b,, 1] =
> S;nl’mz [bns1] converges in the strong operator topology as operators H! — L!, with unifor-
mity in by41, ||brtilloo < 1, and we get the estimate

157572 b 1| 1y g S sup [l £ min { og (1 + n®Te), 27 I Hm2002T Yjb, 4 o

Now for by € L™, b,11 € L™ we have by (13.7), (13.8)

/b1 ml’m2 [brs1]f(x) do = /bn—l-l ml’mQ [b1]f (z) dax .

mi,ma2 [b

The uniformity with respect to b,1 in the strong operator convergence of » j S J n-+1] NOW

implies that 77 ™2[by] = 37, T;"""™2[b1] converges in the strong operator topology as operators
H!' — L' and we have the estimate

HTm1,m2 bl HH1—>L1 < HbluooSUP ”§JHL1 mln{log (1 +n2F ), _5/(|m1\+m2)n21ﬂ8}.
From Theorem 8.22 we then get
[T ™2 [01]|| o, 1o S 101 lloo sUp [l 22 min { log(1 + n®T), 27 (milm)p2p )

which is (ii). Statement (iii) follows after summing in mj, mo. O

13.2. Op,.-bounds and the proof of Proposition 13.3.

Lemma 13.6. Let ¢ > 0, ¢g € C, supported in {y : |y| < 10}, ¢ € B(R™ x R%). For £ > 0
define

/ / / € (0, 0) [0 (y — 010 — o) — do(y — )| dv dar dyf.

|z—v—y| <100

Then,

sup / (1+ |2 — y)* 2| Fular, )| dy + sup / (1 + |z — y)*/2 Fe(e )| dz < 272 6ol a5, -
x Y
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Proof. We may assume ||¢]|c1 = 1. We estimate, for each v,
[+ ko= ) B da

N //// (1+ |z — y))*2[c®) (, v)[|go (y — arv — ') — ¢o(y — )| dv da dy' da

|x—v—y|<100

< / / / (1 + [6)7/21c2 (0, 0)]d0(y — a10 — o) — doly — ¥')| dv da dyf’
s / / (1 + o])?[<@) (o, 0) | min{L, |y v]*/2} do dos

< //|v|€/2|§(zl)(a,v)| dv da+//|a1v|5/2|g(2€)(oz,v)| dv dov .

Now
Y4 _ _ _
/ / 0]/ (a0, 0)] dex do = 27412 / / 0725 (@, 0)] da dv < 22 5., <22 o],

and

// a1 v|/2c2) (o, v)| dov dv = 271/ // 102 [s (e, v)| da dv
<9 bl / / (loa| + [0 <, 0)| dax dv < 2/l

This completes the proof that sup, [(1+ |z — y|)*/?|Fo(z,y)| dz < 27%/2||<| 5, -

Next we estimate for z € RY,

/ (1+ |2 — )2 Fe(z,y)| dy

= ][ b= ooty — a0 ) — ooty — )| do dac ' dy

|x—v—y|<100

< //// (1+ |v|)€/2|§(2‘)(a,v)|min{l,|aw|€/2}]1{‘y_aw_y,‘glo or ly—y|<10y dv v dyf dy

|x—v—y|<100

: /// (1 4[] (o, v) [ min{1, [arv[/?} do da da

|x—v—y|<100
: //(1 + [0))/[s @) (@, v) [ min{1, |a1v[/?} dv da

and above the last quantity has already been shown to be < 27¢/2||¢|| 5, - This completes the
proof of the lemma. O

Lemma 13.7. Let € > 0. For ¢ € C', supported in {y : |y| <10}, ¢ € B(R? x R™), j >0, let

i) = [ @010t v —y) — ol )] darde
Then
sup / g5 (2, y) dy + sup / g(x,y) de < 29||slls, [ Sllen -
x Yy
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Proof. We may assume ||¢||c1 = 1. For any z, we have

///“* &=y (@, v)l|¢(x — v - y) — d(x — y)| dadv dy
S ///(1 + | — y)%e®) (a, ) min{L, [0} X 12 vyi<10 or [—y|<10) dov dv dy
S //(1 + [0])|s®) (@, v)| min{1, [v|°} da dv

< / / 0[716@) (@, v)] dev do < 279 o]l 5.

where the last inequality has already been used in the proof of Lemma 13.6. By symmetry we
also get the corresponding second inequality with the roles of z and y reversed. O

Lemma 13.8. For ¢ > 0 there is € > 0 such that the following holds. Let ¢1,...,¢py1 € C?
supported in {y : |y| < 10} and such that for all but at most two I, ¢ > 0 and [ ¢ = 1. For

keZ set Vif=fx¢>). Forby,... by LRI, € B(R" x RY) with

(13.16) /g(a,v) dv =0,
and define a kernel Kjj, = K k[b1,...,by] by

/ g(x) / Kj(z,9) f(y) dy de = A< (Ylby, ..., Y0, Y g, f).

Then, for j >k,

n
IDily K klop,, S 27U nlclls, T billoc
i=1

n
IDilo— Kkl opy < llslze T 119 loc-
=1

Here, the implicit constants may depend on max lpis |2 | Bis | o2 || Pis |2 | D1 Ml o2 -
i1,i2,i3,94€{1,...,n+1}

Proof. The bound for the Opy norm is immediate so we focus only on the bound for the Op,-
norms. Note that by scaling (see Lemma 4.16)

APy, Y, Y g, ) = 27 AR D)Yo0, - Yobl, Yogt, 1)
where b = b;(27%.), f¥ = f(27%.), ¢¥ = g(27%-). This leads to
K;lbr,...,00)(x,y) = deKj_k,o[blf, bR (2F s, 2R y).
Now |[b¥|lc = ||billscs @ = 1,...,m, and hence after replacing the functions b; by b¥, i =

1,...,n, it suffices to check the case kK = 0. That is, we need to prove, for £ > 0,
n

(13.17) 1K olbr, - balllop. < 27 nlislls. [T I1b:loo-
=1

In what follows we may assume [|b;||z = 1,7 = 1,...,n. We will prove, under the assumption
that all but at most three of the ¢; satisfy ¢; > 0, [ ¢; =1 we have

(13.18) sup / (1+ |2 — ) | Kool y)| dy + sup / (14 2 — )7 [ Keo(e,9)] do < 27 nll<]ls.
x Yy
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where the implicit constant is allowed to depend on the C! norms of up to three of ¢; (instead
of the C? norms).

First we see why (13.18) yields the result. The explicit formula for the kernel is
(13.19) Koo(z,y) = /¢n+1(y —v—ux) /c(ﬂ)(a, v) H Yibi(y — av) da dv.
i=1

It implies that 0,,, K;o(z,y) is a term of the form covered by (13.18) (with ¢,41 replaced by
—0g,, On+1). Moreover, 0y, K;o(z,y) is a sum of n 4+ 1 terms of the form covered by (13.18),
indeed differentiating (13.19) yields (setting b,41 := g)

/ bos1 () / Oy Keo(,y) f(y) dy da

n+1
= Z A[§(2Z)](}/E)lb17 s 7Y()i_1bi—l7 8Z‘mYOlbi7 Y(),H_lbi-i-h s 7}/E)n+1bn+17 f)

Thus, 0,,, K¢o(x,y) is a sum of n+1 terms of the form covered by (13.18). From these remarks,
it follows, given (13.18), that the expressions

Sup h| = [ [Keo(z,y + h) — Keo(x,y)| de,
0<|h|<1
sup |~ / |Keo(z,y+h) — Kooz, y)| dy,
0<|h|<1
sup Ihl_l/le,o(Hh,y) — Kyplz,y)| de,
0<|h|<1
sup 07 [ Kool + o) = Kol dy
0<\h|<1
are all bounded by a constant times 27%n|c||, .
It remains to prove (13.18). We first compute, with ¢(a,v) =¢(1 — a1,...,1 — ay,v),
AN b, Y8 Y g, f) = AN b, Y .Y )

— [[[ & aw =01 [ratw-2)g d:cHYo w(l — as) + avy) davdw dy
://g( // av¢n+1(y+v—xHY0 (y + (1 — i )v) dv dav d dy

=1
and changing variable in « again we get

n

Kypo(x,y) = // av¢n+1(y+v—$ HYOZbe—l-OzZ)dvdoz

n

// (a,v) ¢n+1(y+v—x HYOZbe—i-az) Gni1(ly —x HYO }dvda

=1

here we have used the cancellation condltlon (13.16). Now

|Keo(z,y)|l < I(zy) + > ITi(x,y)
=1
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where

I(e.y) = /|<<2 (0 0) st (5 + v — @) — Gy (y — 2)| dv das,

1Li(z,y) = / / 5 (0, 0)] [ (y — )] / 6i(y + v — w) — iy — w)|dw do dov.

Now apply Lemma 13.6 to the expessions II; and Lemma 13.7 to I, and (13.18) follows. This
completes the proof. O

Proof of Proposition 13.3, conclusion. We focus on the estimates for S7™"™[b,11] as the es-
timates for ijl’mQ [b1] are analogous (switch the roles of b; and b,41). We may assume

[bn+1]lo0 = 1.
In what follows we identify operators with their Schwartz kernels. For an operator R we
denote by 9., R the operator with Schwartz kernel 0., R(z,y).

We use Lemma 6.8 to write Qj1m, = EZ 127 (9+m2)8xﬂRj+m2, where R;‘+m2
and ¢; € C'(‘]X’ supported in {z : |z| < 2}. Now

[ ](Qy-‘:—mlpblv j+m1Pb2"‘ X?-:—T}npb”"'l’Qj"'me)
—(i+m 7) n
_ oG+ 2)2//%@ o /a JRE L F@) XL Pibyyi (@ —v) X
pn=1

Qj+m, Pibi(xz — aqv) H Qj+m, Pjbi(z — oyv) dz dvda .

()

)

i=2
Integrating by parts we see that this expression equals
d j
—(g+m 2 n
(13.20) —27Utm) Z(A[sﬁ (00, Qe Pib1, X2, Piba, oo, XL Piboy1, RY, )
pn=1
n+1 0
+ Z A[§]( )](Qj+m1ij1, X]2+m1ij2, ceeyOp X;j_i_mlp'by X;L_:_m P; bn+1, Ry+m2f)>
v=2

We distinguish the cases m; < 0 and mq > 0.
For m; < 0 we write (13.20) as

[ ](Qj+m1pb17 ]+m1Pb27 . X;L:mlpbn—l-vaj-i-mzf)

d n+l
—ma+m 7/1/7 "+17M7V 14
-2 ' ZZA J+m1 ]bl ""Yj-i-mhj b”+1’Rj+m2f)
p=1v=1
where, for my < 0, the operators Yfﬁn j are given by
Y'L/J'vl/ — 2_]_m1 axu (Q]+m1P7) lf V= 17
g Qj+my by ifve{2,...,n+1}

if 1 =1, and by

yhry 27970, o Biemi By) it v =1,
j+mi,j Pjym, Pj ifve{l,....n+1}\ {i}

f2<i<n+1
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Hence for m; <0

[ ](Qj+m1pb17 J+m1Pb27-- X;L.:_mlpbn-i-l)Qj—l-mzf)

= 27"t Zz/bn+l KJM-;-WH ](:E y)RéL'f‘me(y)dy

p=1lv=1

and by Lemma 13.8
|Dily—i—mi K50, illop., S llsjllse
for some ¢/ < e. This, together with Lemma 8.25, implies the asserted bound (13.11), for
mi < 0.
We now consider the case m; > 0. Now use the cancellation and support properties of @Q;1m,
to write

Qjrmi By = 27" Zjm,
where Zj,,, = f * UJ(%;) and {vj., : j € Z,m; € N} is a bounded family of C¢° functions
supported in {y : |y| < 2}.
We now write (13.20) as

27)
[( ](Qy+m1Pb17 ]+m1Pb27 . X;L_:_mlpbn-i-vaj-i-mzf)
d n+l

—m2—m1 1p,v n+1,p,v I
-2 E E A j+m1 ]bl s 7}/;+m1 J bn+17 R]+m2f)
p=1v=1

where (now for m; > 0)

1p,v
Y}'f‘ml J

2790y, Zjmy  ifv=1,
Zjmi ifve{2,...,n+1},

and for 2 <i<n+1

e [0 P Py v
7md = Py, P if ve{l,...,n+1}\ {i}.

We see, using Lemma 13.8, that for m; > 0
[ ](Qj-i—mlp b17 ]—i—mlP b27 . X;L_:_mlp bn+17 Qj—i—me)

=27 m2mm ZZ/ e (2) K (@, y) Ry, f () dy

p=1v=1
with
[Dilys K™ 5 sl
Using also Lemma 8.25 we obtain the asserted bound (13.11), for m; > 0. O

13.3. Proof of the bound (13.1), concluded. The following proposition will conclude the
proof of part IV in Theorem 5.1.

Proposition 13.9. Let 1 <1 #ly <n+2. Then, forp e (1,2] and p' =p/(p —1)
S A (Piba - Pibasr, (I = Py)boo)|
JEZL

< Cypen(sup|ls;ll 1) log® (L +nle) (T 0elloo) 151, lpl1bts [ -
J 1#l1,l2
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Proof. By symmetry of the roles of by, ..., b,+1, via Theorem 2.9, it suffices to prove the result
for three cases: (I1,l2) = (n+ 1,n+2), (I1,l2) = (n+2,n+1), and (I1,l2) = (1,n + 1).

We begin with the case (l;,l3) = (n + 1,n + 2). For this we define an operator S;; =
S1,5b1, ..., by by

/ 9(@)(Sulbr, - bal £) @) do = A (Pybr, . Prbuss (I = Py)busa).

It is straightforward to verify the inequalities

n
[Dily-; S1,5llop, S n(S_lelIZ> lsjlls. TT 1illocs
J i=1

n
[Dily-551,5llop, < (S}elg sl ze) T 11Billoos
J i=1

here € <1 and the Op,, Op, norms are as in (8.36), (8.37).
Theorem 13.1 shows

HZSl,j[bl,...,bn]

n
< n(sup |6l 1) log® (1 + nl'e) T I1billso-
JETZ J

22 ™
i=1

with convergence in the strong operator topology. By Proposition 8.9 we get, for 1 < p < 2,

HZSl,j[bl,...,bn]

n
< Capen(sup|sjl 1) log (1 +nle) [T 11billoo,
J

ez Lr—LP i1
and
n
| 2 tSustbaball| < Capentsup lgl2) 1087 (1 +n0e) TT bl
e ol = =1

which are equivalent to the statement of the proposition in the cases (I1,l2) = (n + 1,n + 2)
and (l1,l2) = (n+2,n+ 1), respectively. The convergence is in the sense of the strong operator
topology (as operators bounded on LP).

We now turn to the case (I1,l) = (1,n + 1). If we apply Theorem 8.22 to >_ %S} ; we also
get an H' — L' bound

H ZtSl,j[bl, ooy by

n
< n(sup [l z1) log®(1 + nL'e) T 1[ill e
JEZ J

Hlopl ™
i=1

This means that for b, ...,b, € L®(R?), b,1o € L¥(RY), b,y € H(R?), we have

(13.21) ‘ STARP (B, Py, (I - Pj)bn+2)‘
JEZL

S n(sup |ljlz1) log(1 + nTe) (T T 10illoo) 1Bn+1ll a1 [1Bns1 lloo-
J i=1

For j € Z, define an operator S j[b, ..., by, byta] by
/ 9(2)(S2,3[b2, -+, by b ) (@) da = Afs* (g, Pba, .. by, f,(I = P;)byya).
Since 'P; = P; the case (l1,12) = (1,n + 1) is equivalent to the inequality

(13.22) H213]-52,]-[52,...,bn,bw]PjHLP snswlldp@anry [T Il
JEZ - J 1e{2,....,n,n+2}
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To show (13.22) we first observe that by Theorem 2.9, there is a ¢ > 0 (independent of n) such
that for &’ < ce there are ¢; € Bo(R™ x R?) with [|5|l., < nllslls. and ||l = llsjllz1 such
that

/ b1(2)(Sa50b2, - by balbn 1) (@) dae = AL (Piba -, Pibn, (I = Pj)bnsa, b, butr)-
If we apply (13.21) with the family {;} in place of {¢;} and £ in place of €) we get
(27
‘ ST ARP N (Pibrs . Py, (1~ Pj)bn+2)(
JEZ
sup; |55
sup; (|55 2

) (H [1illoo ) [1bn-1 171 1brt1 [l oo
=1

< n(sup|lsjlr2)log® (1 +n
J

S n(sup [l 1) log™ (1 + nTe) (T T 1163 lloo) on1ll s 1041110
J

i=1
which (in view of ‘P; = P;) can be rephrased as
| pisaitinsbubusalBi] ), S el tog®@+ar) T e
J le{2,....,n,n+2}

We wish to apply Lemma 8.24 to the kernels o; = Dil;—;S3 ;. Observe that the Schur integra-
bility norms for these kernels satisfy the uniform estimates

Intl[o;] + IntP[o;] < 1551l IT o= Snswlgls, [T ol
16{2,771,77/-‘1‘2} J 16{277n7n+2}
and
It o] + (o] S Gl [ Iolleo <suplisille [ btllee-

J

le{2,...,n,n+2} le{2,...,n,n+2}

Now Theorem 8.22 in conjunction with Lemma 8.24 applies to show

| pisastian o bbualBr| Sl togt 1 +ars) T bl
j J 1€{2,...,n,n+2}

L2—L

with convergence in the strong operator topology. Finally (13.22) follows by interpolation (see
Corollary 8.10). This completes the proof. O

14. PROOF OF THEOREM 5.1: PART V

In this section, we consider the multilinear form

A3 (b1, b)) = Y AN (Piby, . Pibasa),
J

where the summation is a priori extended over a finite subset of Z, and where, for some fixed
€>0,{sj:j €Z} CB(R" x RY) is a bounded set with [ ¢;(a,v) dv = 0, for all j and almost
every a. To prove part V of Theorem 5.1 we need to establish for 1 < p < 2 the inequality

(14.1) A% (b1, bus2)| < Capen®(suplsllzr) log (L + nLe) (T T lbilloo) bnally 1bn-+2 -
J

i=1

As in the previous section the heart of the proof lies in the case p = 2 which we state as a
theorem.
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Theorem 14.1. Let by, ..., b, € L®°(R?) and b,y 1,byse € L2(R?). Then,

N .
im Y APy, Pibaye) = A3y, ., baga)

N—oo “

and A satisfies

A3 (b1, ... bug2)| < Caen®sup iG]l log®(1 + nLo) (T 19slloc) [bn4tll2/1Bnr1 -
J i=1

The sum defining the operator T3[n1,...,b,] associated to A3 converges in the strong operator
topology as bounded operators L?> — L?.

Proof of (14.1) given Theorem 14.1. We may assume ||bj||p= = 1,1 = 1,...,n. For j € Z
define the operator T} by

[ 9@ T35 do = Al NP Py P ).

Theorem 14.1 is equivalent to

DI

Corollary 8.10 applies since sup; Int}[Dily—; 7] < sup; [¢j |5, sup; Int§[Dily—; 7] < sup; ||l z1-
This completes the proof. O

< n? SUP sl 1 log®(1+ nl';) H [1bil
i=1

12

We now turn to the proof of Theorem 14.1. The argument is analogous to the arguments in
the previous section and therefore we shall be brief.

14.1. Basic decompositions. We argue as in §13.1 and decompose
AP (Pibrs . Pbasa)
= dim (AR NPy arPobr, s Pyar Pibast, Priar Pbuso)

— AP a Py Piar Pibags Pioar Pibas2) )

M
. Z j
- A/}linoo M1 <A[g](.2 )]( PjymPjb, ..., PjymP; bnt2)

— A[Cj(-y)](Pj—i-m—lebla oy Py 1Pjbp 1, Pj+m—1ijn+2))
and thus

Ak;”’](ijl, ey Pibpya) =
n+1l oo 2J
Z Z Als ( Pjim—1Pjb1, ... Py 1Pibi—1, Qj1m Pjby, Py Pibiy 1, - . ., Pipm Pibn2).

=1 m=—o©

We repeat the same procedure to each term and write, for fixed m € Z

AP NP1 Pibr, -, Prem—1Pibi1, Qjm Pibt, PiamPibiia, - -, Pism Pibnsa)
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as the limit (as M — o0) of the differences
j
A[c;2 )] (PjtmPjym—1Pjby, ..., Pjxns Pyym—1Pibi_1,
P mQjsmPibi, Py v Pjam Pibisa, - ., P v Pjom Pibn2)
27
—A[<(» )](Pj—MPj—i-m—lebly ooy iy Pipm—1 Pjbi—1,
Py QiymPiby, Pj_a PiymPibiyr, ..., Pi- i Py Pibry2) .

We continue as above, writing each difference as a collapsing sum, and than expanding each
summand using the multilinearity of the functionals. The limit of the expressions in the last
display becomes

2j mi,m
APy, Pibg) =Y D A b bag)
(i,l2)  (m1,m2)€Z?
1<lhi#l2<n+2

where, for 1 < [,

;717[1177?;2 (bl, . ,bn+2) =
A[gj(?])] (Pj+m2—1Pj+m1—1ij17 s ’Pj+m2—1Pj+m1—1ijl1—1’
Pj+m2—1Qj+m1ijl1’Pj+m2—1Pj+m1ijl1+l’ s ,Pj+m2—1Pj+m1ijl2—17
Qj-l-mzpj-i-nhpjblzvPj+M2Pj+M1ijlz+17 s 7Pj+m2Pj+m1ijn+2)-

For [; > [l there is an obvious modification.

There are (n +2)(n+ 1) = O(n?) terms in the sum > 1<l £ls<nto- 1t is therefore our task to
show that - -

n
(142) | 30 ST Ons s busa)| S s gl tog (1 mLe) (T il s ellonsal
mi,mz j i=1

then summing the O(n?) terms will complete the proof.

14.2. Proof of the bound (14.2). For k € Z, 1 <1 <n+2, let
XM xM e (P, Py}
For 1 <li,lo <n—+2, j,ki, ks € Z, define the operator

/% T (1) de

= A XL Py X X P X Q) Pibuc s Qo Pibasa),

where we have suppressed the dependance of Tml’mz on by, I #1y,ls.

Lemma 14.2. Let pjm,.m, = min{27,27+™ 2iTm2}  There is a ¢ > 0 (independent of n so
that for & > ce

(14.3) HD11pm1 WTJ“;;;;:?||OPE, S min{2=< 2= Gl T Ibullzes,
#1112

and

IDil,-s T lop, S Nl TT I0ilc-
L #1112
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mi,ms2
1}711 12

lop,,- Fix l1,l2. We may assume ||b;|| L =

Proof. The bound for [[Dil -+ T}}17"*|lop,, and, equivalently, for ||

: is immediate
my,mg,g DLtz ”Opo ’

so we focus only on the bound for ||Dilp;111 s T
1, I # l,la. We distinguish the cases (i) mi,mo > 0, (ii) m; < min{0,meo}, (ili) ma <
min{0, mq }.

(i) The case mi,mg > 0. NOW pj m; ms = 2. One uses that, for m > 0, QjrmP; =27"X 4,
where X, ; f = f * gbg:]) and {¢m, ; : m > 0} is a bounded subset of C*> functions supported in
{ly| < 2}. Then the bound

IPile 77302 o, S 27™ ™ lIslls,

follows quickly. (14.3) follows in this case.

(i) The case my < min{0,ma}, that is, pjmim, = 27", Lemma 13.8 (combined with
Theorem 2.9) shows that we have

HDiIQ*j*ml Tm17m2

Gl Hops2 < 2705, -

(2j+m1 )

. 1,n+1 ~(mo—
Using that Xjfr—rlb—1 Qj-‘rmz =27 (m2 ml)Xj7m17m2fv where XJ7M17M2f = f*¢j,m1,m2 and {¢jvm17m2 :

ma > my} C C°(B%(2)) is a bounded set, the bound

| ’ Dﬂ2—j—m1 Tml 2

Gl Hopg3 S 27 tmmm) g,

follows easily. Combining these two estimates, (14.3) follows.

(iii) The case ma < min{0,my}, that is pjm,.m, = 272, Now we use an integration by
parts argument as in the proof of Proposition 13.3 to obtain

Dy T30 g, S 27 s,

Using Lemma 13.8 (combined with Theorem 2.9), as above, we have

HDﬂQ*j*mQ T;:,lbll,{;2 HOpss

S 2_6,m1n2”§j ||B€ .
Combining these two estimates yields (14.3) in this last case and the proof is complete. O
Proposition 14.3. For each m1, ms, Zjez 1}"}114_"112” converges in the strong operator topology

as operators L? — L? (with equiconvergence with respect to the {(by,...,by) : |[|billec < C})
and the estimates

(44) || DT |
JEZ
for suitable M < 1, and

o o
(14.5) PO DI DA

m1=—00Mme=—00 jEZ

n
L Smin {27 ImlHmDp M sup il sup (11} T 16ilso,
L°—L j j i1

n
< sup [l 1 log?(1 + nTe) T T 1billc-
J

212 ™
- i=1
hold.

Proof. With Lemma 14.2 in hand, (14.4) is based on almost orthogonality (Lemma 9.1) and
follows just as in the proof of Proposition 13.4. (14.5) follows after summing in my, mo. O

We combine the above results with several applications of Theorem 8.22 to prove our last
proposition.
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Proposition 14.4. For 1 <ly,ls <n+ 2,

mi,m2
H Z 1}7117l2

n
< sup [l 1 log™ (1 + nT) [T 1billoc-
J

, L2—r2 "™ ,

J,m1,mz2 =1
The sum converges in the strong operator topology, with equiconvergence with respect to {(by,...,by) :
[bill < C}.
Proof. For r € Z define

j7m17m2:
min{j,j+m1,j+ma}=r
Note that 3.7 Srin s = D mymeez Tﬁlll’:z, and Lemma 14.2 shows
. M
(14.6) Dilo—r Sty o lop, S n™ suplisglls, JT ot
J 1#11,l2
and
(14.7) Dl Sty 1l o, < 108>+ nTe)sup slle [T lorllce
J 1£1 1o

By Proposition 14.3,

|5 S

reZ
and using (14.6), (14.7), Theorem 8.22 shows

n
< sup |[j 21 log?(1 + nl2) [ [ 1billso
J

L2122 "™
i=1

n
| srmstmsal s S Gl tog’ @+ nr T il
T 1=

Here we have convergence in the strong operator topology (as operators H! — L'), with
equicontinuity with respect to by, ..., b, in bounded subsets of L>°(R%). Using the definition of
Sr.11.1,, this is equivalent to

|3 Sl SRl log 0 ) T e,
rel l#l2,n+2

with convergence in the strong operator topology (as operators H' — L') with equicontinuity
with respect to by, [ ¢ {lo,n + 2}, in bounded subsets of L>(R?%). This argument will now
be used repeatedly. Using this L' — L' result together with (14.6) and (14.7), Theorem 8.22

shows
13 S

rez

o Ssupllglizlog® (1t nle) T (Ibiflee.
- J 115,042

Taking transposes, this shows

H Z Srnt2,s

rez

Sl log (1 +nre) T ol

L2—L
I#l2,n+2

Using this, (14.6) and (14.7), Theorem 8.22 shows

| > Senson) ., Sswlltog?@+nre) T il
rez - J 115, n+2
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Using the definition of S, ;, 1,, this is equivalent to

1> Senia o Ssuplisilinlog? (400 T lbrlec:
reZ J

1#£ly,l2
Finally, using this again with (14.6) and (14.7), one last application of Theorem 8.22 completes
the proof of the proposition. O

Hl—L

15. INTERPOLATION

We use complex interpolation to show that the LP! x .. x LPn+2 estimates in Theorem 2.8
follow from the special case in Theorem 2.10, together with Theorem 2.9.

Let K =3, gj(?]) be as in the assumption of Theorem 2.8 with sup ||s;||5. < co. Define for a
permutation w of {1,...,n + 2}

AZ[K](b1, ... ,bpya) = A[K](bs(1), - - - bew(n+2))
so that AZ[K] = A[K%] with
K% =3 (tzs;)®)

J
where £, is as in Theorem 2.9. There is &’ > ¢(g), B > 1, both independent of n, such that for
all permutations [[(50o||p, < Bn?|<||s. and [0z = |ls]|f1. As a consequence we get for any

pair ly,ly € {1,...,n+ 2}, l; # I3 the estimate
|A[K](b17 s 7bn+2)|

Bn”sup;ez [|sl5, )
Supjez Iill e

Je

T Ueullo ) o, ol

< Coragn®sup ||l log*(2+n
7 I¢{l1,l2}

(15.) < A( T Worllo ) 1on o 1
1¢{l1,l2}
where 1 +6 <p <2 and
sup; .z ||s;
A :=3BCu 45n*sup ||| 11 log® (2 + nM .
JEL SuPjez ”%’HLl
Let R be the set of points (pl_l, - ,p;JlrQ) € [0,1]"*2 for which the inequality

n+2
(15.2) IA[K](br, - bns2)| < AT 110l
=1

holds for all (b1, ..., by12) € LPL(RY) x ... x LPr+2(RY).
We note that if Py = (pi(l), e ,p;}rzo) and P = (pl_&, e ,p;}rm) both belong to R then, by
complex interpolation for multilinear functionals, we also have for 0 <9 <1

n+2

ALKy, - busa)| < A T I0ill oo sron,
i=1
where [-,-]p denotes Calderon’s complex interpolation method, see Theorem 4.4.1 in [1]. By

Theorem 5.1.1 in [1] (a version of the Riesz-Thorin theorem) we have the identification of the
complex interpolation norm with the standard LP norm:

1 lpzeio oy, = 1flee, 271 = (1= 9wy +Ipiy.
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We conclude that the set R is convex. Denote by e;, i = 1,...,n + 2, the standard basis in
R™*+2. By (15.1), R contains all points in R"*2 of the form
) 1

Pi0) =154+ 1559

i £ .
Let

n+2
‘B(;:{xeR"”:in:l, 0§xj§(5+1)—1,j=1,...,n+2}.
=1

PBs is a compact convex subset of R"™2, of dimension n+1. It is easy to see that {P; ;() : i # 5}
is the set of the extreme points of 5. By Minkowski’s theorem (see e.g. Theorem 2.1.9 in [24])
every point in J; is a convex combination of (at most n + 2 of) the extreme points P; ;(9).
Thus we can conclude

‘Bé C R7
and we have verified (15.2) for all (n + 2)-tuples of exponents p;, with E;‘:‘? pi_1 = 1 and
1+ 6 < p; < oo. This completes the proof. O
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