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• New Euler limit for systems of finite temperature Bose gases.
• The Euler limit is better than the previous one: the two fluids are coupled.
• New Navier–Stokes approximation for finite temperature Bose gases.
• The hydrodynamics approximations agree with the Landau two fluid theory.
• New scaling technique for the Chapman–Enskog expansion.
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a b s t r a c t

For the quantum kinetic system modeling the Bose–Einstein Condensate that accounts for interactions
between condensate and excited atoms, we use the Chapman–Enskog expansion to derive its hydro-
dynamic approximations, include both Euler and Navier–Stokes approximations. The hydrodynamic
approximations describe not only the macroscopic behavior of the BEC but also its coupling with the
non-condensates, which agrees with the Landau two-fluid theory.
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1. Introduction

After the realization of Bose–Einstein condensations (BECs) in
trapped atomic vapors of 87Rb, 7Li, and 23Na [1,2], a new period of
intense experimental and theoretical research has been initiated.
The equilibrium properties of these novel systems have been quite
well understood, but there are still several open questions con-
cerning their nonequilibrium behavior. One of the most important
questions concerns the behavior of the condensate after cooling
a nondegenerate trapped Bose gas to a temperature below the
BEC critical temperature. While the experimental research has,
up to now, concentrated mainly on the initial formation of BECs,
their theoretical behavior at finite temperatures is a frontier of
many-body physics. The theoretical description of BECs has to
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take into account the coupled nonequilibrium dynamics of both
the condensed and noncondensed components of the gas under
investigation, and has to involve the collisional processes of atoms
between the two components. Such a quantum kinetic theory was
initiated by Kirkpatrick and Dorfman [3,4], based on the rich body
of research carried out in the period 1940–67 by Bogoliubov, Lee
and Yang, Beliaev, Pitaevskii, Hugenholtz and Pines, Hohenberg
and Martin, Gavoret and Nozi‘eres, Kane and Kadanoff and many
others. The terminology ‘‘Quantum Kinetic Theory’’ has been later
introduced in a series of papers by Gardinier, Zoller and collabo-
rators [5–8]. After that, there has been an explosion of research
on quantum kinetic theory (see [3–24], and references therein).
We refer to the review paper [25] and the books [26,27], for
more discussions and a complete list of references on this rapidly
expanding topic.

The current paper is devoted to the study of the hydrodynamic
approximations of such a quantum kinetic system. The system
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contains two equations: a quantum Boltzmann equation describ-
ing the non-condensate atoms (with two types of collisions, one
between excited atoms and one between condensate atoms and
excited atoms), and a nonlinear Schrödinger (or Gross–Pitaevskii)
equation for the condensate. The hydrodynamic limits of the sys-
tem is an interesting mathematical question, first studied in [28],
where an Euler limit has been derived. This derivation relies on
the assumption that, in the considered trapped Bose gas, the non-
condensate and condensate share the same local equilibrium. It is
known (cf. [3,4]) that the condition of complete local equilibrium
between the condensate and the thermal cloud requires the energy
of a condensate atom in the local rest frame of the thermal cloud
to be equal to the local thermal cloud chemical potential. When
the condition is satisfied, there is no exchange of particles between
the condensate and the thermal cloud (cf. [14]). As a consequence,
in the derived fluid system, the mass of each component – con-
densate and non-condensate – does not exchange. Note that the
two-fluid low-frequency dynamics of superfluid 4He was first de-
veloped by Tisza and Landau [29]. Their description accounts for
the characteristic features associated with superfluidity in terms
of the relative motion of superfluid and normal fluid degrees of
freedom, and was shown to be a consequence of a Bose broken
symmetry (cf. [30]). In the Landau two-fluid theory, the two com-
ponents superfluid and normal fluid exchange mass (cf. [28–30]).
In this paper, we revisit the derivation of the Euler hydrodynamic
limit of the system by a different point of view: following [3,4,14],
we assume that even if the thermal cloud atoms are in equilibrium
among themselves, the noncondensate and condensate parts may
not be in local equilibrium with each other. Moreover, the deriva-
tion of the Navier–Stokes approximation of the system is also
provided via the classical Chapman–Enskog expansion (cf. [31]).
In such circumstance, the Euler limit includes the mass exchange
between the condensate and the non-condensate. Our Euler and
Navier–Stokes approximations agree with the Landau two-fluid
theory (cf. [29,30]).

As an attempt to build a rigorous theory for quantum ki-
netic equations, some mathematical results have been obtained in
[32–41]). Note that quantum kinetic equations have very similar
formulationswith the so-calledwave turbulence kinetic equations.
We refer to [42–50] for more recent advances on the rigorous
theory of weak turbulence.

The plan of the paper is as follows. In Section 2 we introduce
the quantum kinetic system and the scalings that will lead to
the hydrodynamic approximation. In Section 3, we list the most
important features of the two collision operators C12 and C22. The
two-fluid Euler and Navier–Stokes limits are then derived in two
Sections 4 and 5 respectively.

2. The quantum kinetic system and scalings

2.1. The quantum kinetic system

Let us consider a trap Bose gas, whose temperature T is smaller
than the Bose–Einstein transition temperature TBEC and strictly
greater than 0 K or −273.15◦C. Denote f (t, r, p) to be the density
function of the normal fluid at time t , position r and momentum
p and Φ(t, r) be the wave function of the condensated (or super-
fluid) phase. Employing the short-handed notation fi = f (t, r, pi),
i = 1, 2, 3, 4, we first recall the quantum kinetic-Schrödinger
system describing the dynamics of a BEC and its thermal cloud. The
Schrödinger (or the Gross–Pitaevskii) equation for the condensates
reads (cf. [12]):

ih̄∂tΦ(t, r) =
(

− h̄2∆r

2m
+ g[nc(t, r) + 2nn(t, r)]

− iΛ12[f ](t, r) + V (r)
)

Φ(t, r), (t, r) ∈ R+ × R
3,

Λ12[f ](t, r) = h̄

2nc

Γ12[f ](t, r),

Γ12[f ](t, r) =
∫

R3
C12[f ](t, r, p)

dp

(2π h̄)3
,

nn(t, r) =
∫

R3
f (t, r, p)dp,

Φ(0, r) =Φ0(r),∀r ∈ R
3,

(2.1)

where nc(t, r) = |Φ|2(t, r) is the condensate density, h̄ is the
Planck constant, g is the interaction coupling constant propor-
tional to the s-wave scattering length a, V (r) is the confinement
potential, and the operator C12 can be found in the quantum Boltz-
mann equation for the non-condensate atoms (cf. [12]), written
below:

∂t f (t, r, p) + p

m
· ∇r f (t, r, p) − ∇rU(t, r) · ∇pf (t, r, p) (2.2)

= Q [f ](t, r, p) := C12[f ](t, r, p)
+C22[f ](t, r, p), (t, r, p) ∈ R+ × R

3 × R
3,

C12[f ](t, r, p1) := λ1nc(t, r)

∫∫

R3×R3
δ(mvc + p1 − p2 − p3)

× δ(Ec + Ep1 − Ep2 − Ep3 )

×[(1 + f1)f2f3 − f1(1 + f2)(1 + f3)]dp2dp3 (2.3)

−2λ1nc(t, r)

∫∫

R3×R3
δ(mvc + p2 − p1 − p3)

× δ(Ec + Ep2 − Ep1 − Ep3 )

×[(1 + f2)f1f3 − f2(1 + f1)(1 + f3)]dp2dp3,

C22[f ](t, r, p1) := λ2

∫∫∫

R3×R3×R3
δ(p1 + p2 − p3 − p4)

×δ(Ep1 + Ep2 − Ep3 − Ep4 ) ×
×[(1 + f1)(1 + f2)f3f4
−f1f2(1 + f3)(1 + f4)]dp2dp3dp4, (2.4)

f (0, r, p) = f0(r, p), (r, p) ∈ R
3 × R

3,

where λ1 = 2g2

(2π )2 h̄4
, λ2 = 2g2

(2π )5 h̄7
, m is the mass of the particles, Ep

is the Hartree–Fock energy (cf. [12])

Ep = E(p) = |p|2
2m

+ U(t, r). (2.5)

Notice that C22 is the Boltzmann–Norheim (Uehling–Ulenbeck)
quantum Boltzmann collision operator. If one writes

Φ = |Φ(t, r)|eiφ(t,r), (2.6)

the condensate velocity can be defined as

vc(t, r) = h̄

m
∇φ(t, r), (2.7)

and the condensate chemical potential is then

µc = 1
√
nc

(

− h̄2∆r

2m
+ V + g[2nn + nc]

)√
nc . (2.8)

When V = 0, the following system for the super-fluid of the
condensate can be obtained

∂tnc + ∇r · (ncvc) = − Γ12[f ]

∂tvc + ∇rv
2
c

2
= − ∇rµc .

(2.9)
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The potential U and the condensate energy Ec are written as
follows

U(t, r) = V (r) + 2g[nc(t, r) + nn(t, r)], (2.10)

and

Ec(t, r) = µc(t, r) + mv2c (t, r)

2
. (2.11)

For the sake of simplicity, we suppose that V ≡ 0 and define the
differential quantity

d̄p = dp

(2π h̄)3
. (2.12)

Notice that (2.3) describes collisions between the condensate and
the non-condensate atoms (condensate growth term) and (2.4)
describes collisions between non-condensate atoms.

Remark 2.1. At temperature T , bosons of massm can be regarded
as quantum-mechanical wavepackets which have an extent on the

order of a thermal de Brogliewavelength λdB =
(

2π h̄2

mkBT

)
1
2
, where kB

is the Boltzmann constant. The de BrogliewavelengthλdB describes
the position uncertainty associated with the thermal momentum
distribution.When the gas temperature is high T > TBEC ,λdB is very
small and the weakly interacting gas can be treated as a system of
‘‘billiard balls’’ (cf. [51,52]). The dynamics of the gas is described
by the Boltzmann–Norheim (Uehling–Ulenbeck) equation, whose
operator sometimes reads (cf. [53])

C22[f ](t, r, p1) =
∫∫∫

R3×R3×R3
δ(p1 + p2 − p3 − p4)

× δ(Ep1 + Ep2 − Ep3 − Ep4 )×
× [(1 + ϑ f1)(1 + ϑ f2)f3f4
− f1f2(1 + ϑ f3)(1 + ϑ f4)]dp2dp3dp4,

(2.13)

where ϑ is proportional to h̄3. In the semiclassical limit, as ϑ
tends to 0, the quantum Boltzmann collision operator becomes
the classical one. This means at high temperature, the behavior of
the ‘‘billiard balls’’ Bose gas is, in some sense, still very similar to
classical gases.

At the BEC transition temperature, λdB becomes comparable to
the distance between atoms. As a result, the atomic wavepackets
‘‘overlap’’ and the indistinguishability of atoms becomes impor-
tant. At this temperature, bosons undergo a quantum-mechanical
phase transition and the Bose–Einstein condensate is formed
(cf. [51,52]). When the temperature of the gas is finite TBEC > T >

0K, the trapped Bose gas is composed of two distinct components:
the high-density condensate, being localized at the center of the
trapping potential, and the low-density cloud of thermally excited
atoms, spreading over a much wider region. The dynamics of the
thermal cloud atoms is described by the kinetic equation (2.2). At
this low temperature, the de Broglie wavelength of the excited
atoms is very large, in comparison with the high temperature
boson de Broglie wavelength. As a consequence, the thermal cloud
kinetic equation cannot be treated as a system of ‘‘billiard balls’’
anymore. This explains thedifference between the formsof the two
collision operators C22 and C22.

Note that, different from classical Boltzmann collision opera-
tors, where the collision kernels are functions depending on the
types of particles considered, the derived collision kernel for the
quantum Boltzmann collision operator for bosons is 1 (cf. [54])
when T > TBEC .

2.2. Scalings

Different from the thesis [28], in which the two collision op-
erators C12 and C22 are assumed to have the same equilibrium
distribution function, we follow [14] to consider the most general
regime, where excited atoms in the condensate need not be in
local equilibrium with the condensate atoms. As a consequence,
C12 and C22 in general do not share the same equilibrium distri-
bution. A comparison between our results and the result of [28]
will be discussed in details in Section 4.2. Relying on these physical
assumptions, we propose a new approach to obtain new Euler and
Navier–Stokes approximations of the system.

It is known that the dynamics of the trappedBose gases depends
on its temperature T . Let us restrict our attention to the casewhere
T is smaller but very close to the Bose–Einstein critical temperate
TBEC . At this temperature regime, the collisions between excited
atoms are rapid to establish a local equilibrium within the non-
condensate component. As a consequence, the collision operator
C22 can be assumed to be stronger than the collision operator C12.
This regime is often called the state of partial local equilibriumwhich
arises near TBEC when the density of the condensate is small.

Following [14], we define the static equilibrium of the system

F0(p) = 1

eβ0[(p−mvn0)2/(2m)+U0−µ0] − 1
, (2.14)

where β0 is the static temperature parameter, vn0 is the static fluid
velocity, µ0 is the static chemical potential, U0 is the static mean
field. We also set the static density to be

nn0 =
∫

R3
F0(p)d̄p. (2.15)

Note that when T is sufficiently close to TBEC , the bosons are in
the particle-like regime, i.e. they behave like particles. Let us also
mention thatwhen temperature T is very close to 0, the bosonswill
be in the phonon-like regime (cf. [55]). Since we are interested in
the behavior of the particles when T is close to TBEC , let us define
the collision frequency with respect to C12

ν12(p1) = λ1nc

m2

∫∫

R3×R3
δ(mvc + p1 − p2 − p3)

× δ(Ec + Ep1 − Ep2 − Ep3 )×
× [F0(p2) + F0(p3) + 1]dp2dp3+

+ 2
λ1nc

m2

∫∫

R3×R3
δ(mvc + p2 − p1 − p3)

× δ(Ec + Ep2 − Ep1 − Ep3 )F0(p3)dp2dp3,

(2.16)

as well as the associated mean collision frequency:

ν̄12 = 1

nn0m

∫

R3
ν12(p)F0(p)d̄p. (2.17)

The inverse of ν12(p) and ν̄12 is defined to be, respectively, the free
time τ12(p) and the mean field time τ̄12:

τ12(p) = 1

ν12(p)
, τ̄12 = 1

ν̄12
. (2.18)

We now determine the average speed of the particles

c̄ = 1

nn0m

∫

R3

√

p2F0(p)d̄p, (2.19)

and the mean free path

l12 = c̄τ̄12. (2.20)
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Similarly, the collision frequency and the mean collision fre-
quency associated to C22 can be defined

ν22(p1) = λ2

nn0m

∫∫

R3×R3×R3
δ(p1 + p2 − p3 − p4)

× δ(Ep1 + Ep2 − Ep3 − Ep4 )×
× F0(p2)(1 + F0(p3))(1 + F0(p4))dp2dp3dp4,

(2.21)

and

ν̄22 = 1

nn0m

∫

R3
ν22(p)F0(p)d̄p. (2.22)

We also define the free time τ22(p), the mean field time τ̄22 and the
mean free path l22

τ22(p) = 1

ν22(p)
, τ̄22 = 1

ν̄22
, l22 = c̄τ̄22. (2.23)

Let L and θ be the reference length and time, respectively.
Following [56,57], we introduce the rescaled variables

r̃ = r

L
, t̃ = t

θ
, p̃ = p

P
, P = mc̄, ṽc = vc

c̄
. (2.24)

Note that under this scaling,

nn(t, r) =
∫

R3
f (t, r, p)dp = P3

∫

R3
f (t, r, p̃)dp̃. (2.25)

We also rescale U as Ũ = U/U0, where U0 is the reference
potential field. Define

C̃12[f ](t, r, p̃1)

:= λ̃1nc(t, r)

∫∫

R3×R3
δ(ṽc + p̃1 − p̃2 − p̃3)

× δ(Ec + Ep̃1 − Ep̃2 − Ep̃3 )

×[(1 + f1)f2f3 − f1(1 + f2)(1 + f3)]dp̃2dp̃3 (2.26)

−2λ̃1nc(t, r)

∫∫

R3×R3
δ(ṽc + p̃2 − p̃1 − p̃3)

× δ(Ec + Ep̃2 − Ep̃1 − Ep̃3 )

×[(1 + f2)f1f3 − f2(1 + f1)(1 + f3)]dp̃2dp̃3,
C̃22[f ](t, r, p̃1)

:= λ̃2

∫∫∫

R3×R3×R3
δ(p̃1 + p̃2 − p̃3 − p̃4) (2.27)

×δ(Ep̃1 + Ep̃2 − Ep̃3 − Ep̃4 ) ×
×[(1 + f1)(1 + f2)f3f4 − f1f2(1 + f3)(1 + f4)]dp̃2dp̃3dp̃4,

where

λ̃1 = P2λ1/c̄, (2.28)

and

λ̃2 = P5λ2/c̄. (2.29)

As a consequence, we can define the rescaled mean free paths and
the rescaled mean field times to be

l̃22 = l22

P5
, τ̃22 = τ̄22

P5
,

and

l̃12 = l12

P2
, τ̃12 = τ̄12

P2
.

We also set

Ĉ12[f ] := l̃12C̃12[f ], Ĉ22[f ] := l̃22C̃22[f ]. (2.30)

The following rescaled version of (2.2) then follows:
√

l̃12 l̃22

θ c̄
∂t̃ f +

√

l̃12 l̃22

L

P

mc̄
p̃ · ∇r̃ f −

√

l̃12 l̃22

L

U0

Pc̄
∇r̃ Ũ · ∇p̃f

=

√

l̃22

l̃12
Ĉ12[f ] +

√

l̃12

l̃22
Ĉ22[f ]. (2.31)

Notice that τ̃22
τ̃12

= l̃22
l̃12

is a dimensionless parameter and is

proportional to λ̃1
λ̃2
.

In this paper, we will consider two hydrodynamic approxima-
tions: Euler and Navier–Stokes.

• The Euler approximation is quite general and valid under a
general physical situation. The collisions between excited
atoms are fast to establish a local equilibrium within the
non-condensate component, and the quantity τ̃22 is smaller
than τ̃12 but the ratio between τ̃22 and τ̃12 is not necessarily
very small.

• The Navier–Stokes approximation is valid under the phys-
ical assumption that the collisions between excited atoms
are extremely rapid to establish a local equilibrium within
the non-condensate component and τ̃22 ≪ τ̃12.

We suppose τ̃22
τ̃12

= ϵ2. The Euler approximation is valid in any

physical assumption and we do not need to impose the assumption

that ϵ is small, then ϵ is just a parameter. In the Navier–Stokes

approximation, we need to impose the assumption that ϵ is small and

then we will use it as the small parameter in the usual Chapman–

Enskog expansion process.

The constants
√

l̃12 l̃22
θ c̄

,
√

l̃12 l̃22
L

can be set to be 1 by rescaling

again the space and time variables t̃ →
√

l̃12 l̃22
θ c̄

t̃ , r̃ →
√

l̃12 l̃22
L

r̃ ,
and note that P

mc̄
= 1, we obtain the following equation

∂t̃ f + p̃ · ∇r̃ f − U0

mc̄2
∇r̃ Ũ · ∇p̃f = ϵĈ12[f ] + 1

ϵ
Ĉ22[f ]. (2.32)

Notice that g is also the principle small parameter used in
the derivation of the system (2.1)–(2.2). Indeed, the derivation
starts with the usual Heisenberg equation of motion for the quan-
tum field operator. The equation for the condensate wavefunction
follows by averaging the Heisenberg equation with respect to
a broken-symmetry nonequilibrium ensemble. Taking the differ-
ence between the Heisenberg equation and the equation for the
condensatewavefunction and keeping only the terms of loworders
with respect to g , we obtain the equation of the noncondensate
field operator, which, by aWigner transform, leads to the quantum
Boltzmann equation. In this process, one computes the collision
integrals C12, C22 to second order O(g2) in g and keeps interaction
effects in the excitation energies and chemical potential only to
first order O(g). For a more detailed explanation of this procedure,
we refer to, for instance, Sections 3.1, 3.2 and 5.3 of the book [14].
Since U0 has to be chosen proportional to g, the dimensionless param-

eter
U0
mc̄2

might be considered to be small and set it to be g̃ = ϵδ0 ,

0 < δ0 < 1 in Section 5, where the Chapman–Enskog expansion is

used.

The equation then follows, as a result of the previous scaling

∂t̃ f + p̃ · ∇r̃ f − g̃∇r̃ Ũ · ∇p̃f = ϵĈ12[f ] + 1

ϵ
Ĉ22[f ]. (2.33)

Under this scaling, the Gross–Pitaevskii equation also becomes

i
h̄

θ
∂t̃Φ(t, r)

=
(

− h̄2∆r̃

2mL2
+ g[nc(t, r) + 2nn(t, r)] − i

τ̃12
Λ̃12[f ](t, r)

)

Φ(t, r),
(2.34)



S. Jin, M.-B. Tran / Physica D 380–381 (2018) 45–57 49

where

Λ̃12[f ] = h̄

2nc

∫

R3
Ĉ12[f ]d̄p.

By the same argument as above, we also obtain

i

√

l̃12 l̃22

θ c̄
∂t̃Φ(t, r) =

(

− h̄

mL

√

l̃12 l̃22∆r̃

2Lc̄

+
√

l̃12 l̃22U0

h̄c̄
Ũ∗(t, r) − i

√

l̃12 l̃22

l̃12
Λ̃12[f ](t, r)

)

Φ(t, r),

(2.35)

where Ũ∗ = U∗/U0 and U∗(t, r) = g[nc(t, r) + 2nn(t, r)], since
U∗(t, r) has the dimension of U(t, r).

Notice that h̄
mc̄

has the dimensions of a length (Compton wave-

length) and h̄
mLc̄

is dimensionless; hence the quantity h̄
mL

√
l̃12 l̃22
2Lc̄

is dimensionless. Moreover,
√

l̃12 l̃22U0
h̄c̄

is the product of the three

dimensionless parameters
√

l̃12 l̃22
L

, mLc̄
h̄

and U0
mc̄2

= g̃ . Setting all
of the dimensionless parameter to be 1 by the same rescaling
argument used for (2.32) and dropping the tilde and hat signs

i∂tΦ =
(

−∆r

2
+ gU∗ − iϵΛ12[f ]

)

Φ, (2.36)

where g stands for the dimensionless parameter g̃ = ϵδ0 . When
V = 0, the following system for the super-fluid of the condensate
can be deduced
∂tnc + ∇r · (ncvc) = − ϵΓ12[f ]

∂tvc + ∇rv
2
c

2
= − ∇rµc .

(2.37)

we then obtain the system

∂t f + p · ∇r f − g∇rU · ∇pf = ϵC12[f ] + 1

ϵ
C22[f ], (0 < δ0 < 1),

i∂tΦ =
(

−∆r

2
+ g[nc + 2nn] − iϵΛ12[g]

)

Φ.

(2.38)

We recall below the formulas for C12, C22 andΛ12

C12[f ](t, r, p1) = nc(t, r)

∫∫

R3×R3
δ(vc + p1 − p2 − p3)

× δ(Ec + Ep1 − Ep2 − Ep3 )

×[(1 + f1)f2f3 − f1(1 + f2)(1 + f3)]dp2dp3 (2.39)

−2nc(t, r)

∫∫

R3×R3
δ(vc + p2 − p1 − p3)

× δ(Ec + Ep2 − Ep1 − Ep3 )

×[(1 + f2)f1f3 − f2(1 + f1)(1 + f3)]dp2dp3,

C22[f ](t, r, p1) =
∫∫∫

R3×R3×R3
δ(p1 + p2 − p3 − p4)

× δ(Ep1 + Ep2 − Ep3 − Ep4 ) × (2.40)

×[(1 + f1)(1 + f2)f3f4 − f1f2(1 + f3)

× (1 + f4)]dp2dp3dp4,

Λ12[f ](t, r) = 1

nc(t, r)

∫

R3
C12[f ](t, r, p)dp. (2.41)

We also define the differential operators

Df = ∂t f + p · ∇r f − g∇rU · ∇pf − ϵC12[f ], (2.42)

Df = ∂t f + p · ∇r f − g∇rU · ∇pf , (2.43)

Π f = ∂t f + p · ∇r f , (2.44)

and then get

Df = ϵC12[f ] + 1

ϵ
C22[f ], (0 < δ0 < 1). (2.45)

The new constant ϵ is the small parameter that we will use in
the usual Chapman–Enskog expansion process in Section 5.

3. Properties of the collision operators

In this section,we study themain properties of the two collision
operators C12 and C22.

3.1. Collision invariants and equilibrium of C22

Let us start with C22, which can be represented as:

C22[f ] = B1[f , f ] + B2[f , f , f ], (3.1)

in which

B1[f , g] = 1

2

∫∫∫

R3×R3×R3
δ(p1 + p2 − p3 − p4)

× δ(Ep1 + Ep2 − Ep3 − Ep4 )×
× [f3g4 + f4g3 − f1g2 − f2g1]dp2dp3dp4,

(3.2)

and

B2[f , g, h] = 1

6

∫∫∫

R3×R3×R3
δ(p1 + p2 − p3 − p4)

× δ(Ep1 + Ep2 − Ep3 − Ep4 )×
× [f3g4h1 + f4g3h1 + f3g4h2 + f4g3h2

+ f1g4h3 + f1g3h4 + f2g4h3 + f3g3h4

+ f4g1h3 + f3g1h4 + f4g2h3 + f3g2h4

− f1g2h3 − f2g1h3 − f1g2h4 − f2g1h4

− f3g1h2 − f3g2h1 − f4g1h2 − f4g2h1

− f1g3h2 − f2g3h1 − f1g4h2 − f2g4h1]dp2dp3dp4,

(3.3)

where we have used the same notations f1, f2, f3, f4, g1, g2 , g3, g4,
h1, h2 , h3, h4 with the ones used in (2.2).

The operator C22 shares some important features with the
classical Boltzmann collision operator. Among these features, the
following can be proved by switching the variables (p1, p2) ↔
(p2, p1), (p1, p2) ↔ (p3, p4), in the integrals of B1 as in the classical
case (cf. [58]):
∫

R3
Ψi(p)B1[f , g](p)dp = 0, i = 0, 1, 2, 3, 4, (3.4)

where

Ψ0(p) = 1, Ψi(p) = pi, (i = 1, 2, 3), Ψ4(p) = |p|2, (3.5)

are the collision invariants and pi is the ith component of the vector
p = (p1, p2, p3).

Moreover, we also have
∫

R3
Ψi(p)B2[f , g, h](p)dp = 0, i = 0, 1, 2, 3, 4. (3.6)

Similar as the classical Boltzmann collision operator, C22 also
has a local equilibrium of the form

F(t, r, p) = 1

eβ[(p−vn)2/2+U−µ] − 1
, (3.7)

where β(t, r) is the temperature parameter, vn(t, r) is the local
fluid velocity, µ(t, r) is the local chemical potential (which is
different from the condensate chemical potential µc(t, r) defined
in (2.8)), U(t, r) is the mean field. Then

C22[F] = 0.

Let us now define the following Gaussian

M(t, r, p) = γ (t, r)e− |p−u(t,r)|2
2τ (t,r) , (3.8)



50 S. Jin, M.-B. Tran / Physica D 380–381 (2018) 45–57

where

γ (t, r) = eβ(U(t,r)−µ(t,r)), u(t, r) = vn(t, r),

τ (t, r) = 1

β(t, r)
.

(3.9)

The local equilibrium F can be expressed in terms of M as

F(t, r, p) = M(t, r, p)

1 − M(t, r, p)
. (3.10)

Note that u is a vector u = (u1, u2, u3).

3.2. Linearized operator of C22

Let L2(R3) be the space of real, measurable functions, whose
second power is integrable on R

3, with the norm ∥ · ∥L2 and inner
product (, )L2 . We consider the linearized operator of C22 around
a fixed equilibrium F(t, r, p), which, by a classical process can be
defined as

L := 2B1(F, ·) + 3B2(F,F, ·), (3.11)

or equivalently

L(F f )(t, r, p1)

=
∫

R3×R3×R3
δ(p1 + p2 − p3 − p4)δ(Ep1 + Ep2 − Ep3 − Ep4 )

× M1M2

(1 − M1)(1 − M2)(1 − M3)(1 − M4)
×

×
[

(1 − M3)f (p3) + (1 − M4)f (p4) − (1 − M2)f (p2)

− (1 − M1)f (p1)
]

dp2dp3dp4,

(3.12)

for some function f (p) and fixed values (t, r) ∈ R+ × R
3 and we

employ the shorthand notations Mi = M(t, r, pi), i = 1, 2, 3, 4.
Now, let us consider the inner product between the above lin-
earized operator and some test function ϕ. The classical argument
(cf. [58]) for the classical linearized Boltzmann collision operator
can be applied and gives:
(

M

F
ϕ,L(F f )

)

L2

= −1

4

∫

R3×R3×R3×R3
δ(p1 + p2 − p3 − p4)

× δ(Ep1 + Ep2 − Ep3 − Ep4 )

× M1M2

(1 − M1)(1 − M2)(1 − M3)(1 − M4)
×

×
[

(1 − M3)f (p3) + (1 − M4)f (p4) − (1 − M2)f (p2)

− (1 − M1)f (p1)
][

(1 − M3)ϕ(p3) + (1 − M4)ϕ(p4)

− (1 − M2)ϕ(p2) − (1 − M1)ϕ(p1)
]

dp1dp2dp3dp4,

which implies
(

M

F
f ,L(F f )

)

L2
≤ 0, (3.13)

and
(

M

F
ϕ,L(F f )

)

L2
=
(

M

F
f ,L(Fϕ)

)

L2
,

for all function ϕ and f such that the integrals arewell-defined. The
equality in (3.13) holds true if and only if M

F
f is identical to one of

the five functions defined in (3.5).

From the above observation, we are now able to define the
kernel of the linearized collision operator L of C22:

N := kerL = span

{

F2

M
Ψi : i = 0, . . . , 4

}

,

and its orthogonal space:

R := N
⊥ =

{

G ∈ L2(R3) :
(

G,
F2

M
Ψi

)

L2
= 0, i = 0, . . . , 4

}

.

On L2(R3), we also define the orthogonal projection operators
P and P

⊥ = 1 − P on to N and R. By normalizing {Ψi}i=0,...,4, we
obtain the following orthonormal basis of the space N

{

ψi√
ωi

F2

M
: i = 0, . . . , 4

}

, (3.14)

with

ψ0 = 1; ψi = pi − ui, i = 1, 2, 3; ψ4 = |p − u|2 − 6τ
Ω1(γ )

Ω0(γ )
,

ω0 =
∫

R3

F2

M
dp = 23/2πτ 3/2γΩ0(γ );

ωi =
∫

R3

F2

M
|ψi(p)|2dp = 25/2πτ 5/2γΩ1(γ ), i = 1, 2, 3;

ω4 =
∫

R3

F2

M
|ψ4(p)|2dp = 27/2πτ 7/2γΣ(Ω0(γ ),Ω1(γ ),Ω2(γ ));

where

Σ(x, y, z) = 5xz − 9y2

x
,

and

Ωk(γ ) =
∫ ∞

0

yk−1/2

ey + γ
dy, k > −1/2. (3.15)

3.3. Hydrodynamics quantities

In order to study the hydrodynamics limit of the system, let us
define the following moments of the function f (t, r, p):

nn[f ](t, r) =
∫

R3
f (t, r, p)dp, (3.16)

u[f ](t, r) = vn(t, r)[f ](t, r) = 1

nn[f ](t, r)

∫

R3
pf (t, r, p)dp, (3.17)

En[f ](t, r) = 1

2

∫

R3
f (t, r, p)|p − vn[f ](t, r)|2dp, (3.18)

Ẽn[f ](t, r) = 2En[f ](t, r)
3

, en[f ](t, r) = Ẽn[f ](t, r)
nn[f ](t, r)

. (3.19)

Replacing f by F , we obtain

nn[F] = 25/2πτ 3/2Ω1(γ ),

En[F] = 25/2πτ 5/2γΩ2(γ ),
(3.20)

where Ω1, Ω2 are defined in (3.15). For the sake of simplicity, we
denote nn[F], vn[F], u[F],En[F], Ẽn[F], en[F] by nn, vn, u,En, Ẽn,
and en.

We indeed can compute γ and τ as

γ =
(

IdΩ2

Ω
5/3
1

)−1
(

25/3π2/3
En

nn
5/3

)

, (3.21)
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and

τ =

⎛

⎜

⎜

⎜

⎜

⎝

nn

25/2πΩ1

(

(

IdΩ2

Ω
5/3
1

)−1
(

25/3π2/3En

nn5/3

)

)

⎞

⎟

⎟

⎟

⎟

⎠

2/3

. (3.22)

3.4. Computing Γ12[F]

Now, let us consider the collision operator C12. This operator
also has the collision invariant property:
∫

R3
(Ψi(p) − vci)C12[f ]dp

=
∫

R3

(

Ψ4(p) + 2U − 2µc − v2c
)

C12[f ]dp = 0, i = 1, 2, 3.

(3.23)

An important property of C12 is that F is not an equilibrium of
C12. We have:

Γ12[F] :=
∫

R3
C12[F]dp

= −nc[1 − e−β(µ−µc−(vn−vc )2/2)]

×
∫∫∫

R3×R3×R3
δ(vc + p1 − p2 − p3)×

× δ(Ec + Ep1 − Ep2 − Ep3 )(1 + F(t, r, p1))

× F(t, r, p2)F(t, r, p3)dp1dp2dp3.

(3.24)

Expanding F into Taylor series of M, we can simplify the above
integral as

Γ12[F]
= −nc[1 − e−β(µ−µc−(u−vc )2/2)]

×
∑

k2,k3∈N∪{0},k1∈N
γ 3e− |vc−u|2(k1+k2+k3)

2τ ×

× e
(−2Ec+2U+v2c )k1

2τ

×
∫

x·y= v2c
2 +U−Ec

e−(k1+k2)[|x|2+x·(vc−u)]−(k1+k3)[|y|2+y·(vc−u)]/(2τ )dxdy,

(3.25)

with the notice that from (3.21) and (3.22), γ and τ are functions
of nn and En.

4. The two-fluid Euler quantum hydrodynamic limit

In this section, we will derive a two-fluid Euler quantum hy-
drodynamic limit from (2.9)–(2.45). In this case, ϵ is a constant, so
we will set it to be ϵ = 1. Choose ϵ̃ to be any small parameter.
In order to obtain the Euler hydrodynamics limit, let us start with
the following Hilbert expansion using ϵ̃ as the small parameter
(cf. [59]):

f =
n
∑

i=0

ϵ̃ if (i) + ϵ̃ lς, (4.1)

in which n and l are positive integers. As a consequence, we can
replace f by its Hilbert expansion into

Df = C22[f ],
to get a linear systemof equations and aweakly nonlinear equation
for the remainder ς , which reads as:

B1(f
(0), f (0)) + B2(f

(0), f (0), f (0)) = 0, (4.2)

2B1(f
(0), f (1)) + 3B2(f

(0), f (0), f (1)) = Df (0), (4.3)

2B1(f
(0), f (i)) + 3B2(f

(0), f (0), f (i))

= Df (i−1) −
i−1
∑

j=1

B1(f
(i), f (i−j))

−
i−1
∑

j,k=1,0<j+k<i

B2(f
(i), f (k), f (i−j−k)), (4.4)

for i = 2, 3, . . . , n.
The equation for the remainder r is as follows:

Dς = 1

ϵ̃
Lς + 2

n
∑

i=1

ϵ̃ i−1B1(f
(i), ς )

+ ϵ̃ l−1B1(ς, ς ) + 3
n
∑

i=1

B2(F, f
(i), ς )

+ 3
n
∑

i,j=1

ϵ̃ i+j−1B2(f
(i), f (j), ς ) + 3ϵ̃(l−1)B2(F, ς, ς )

+ 3ϵ̃ l−1
n
∑

i=1

ϵ̃ iB2(f
(i), ς, ς )

+ ϵ̃2l−1B2(ς, ς, ς ) + ϵ̃n−1
Q,

(4.5)

whereQ is an operator of F, f (1), . . . , f (n).
Let us now consider each equation in the above system. From

the first equation (4.2), we deduce that f (0) has to be a Bose–
Einstein distribution:

f (0) = F . (4.6)

Eqs. (4.3) and (4.4) lead to linear integral equations for f (1), . . . , f (i).
Thanks to Fredholm’s theory, these linear integral equations are
solvable if the right hand sides are orthogonal to N in L2(R3).
As a consequence, f (1) can be solved from (4.3), if the following
condition is satisfied

PDF = 0. (4.7)

We recall that P and P
⊥ = 1 − P are the orthogonal projection

operators onto N and R in L2(R3).

4.1. The Euler quantum hydrodynamic limit of the thermal cloud

kinetic equation

Integrating Eq. (2.2) in p, we obtain

∂t

∫

R3
f (t, r, p)dp + ∇r ·

∫

R3
pf (t, r, p)dp

−
∫

R3
∇rU(t, r, p) · ∇pf (t, r, p)dp

=
∫

R3
C12[f ](t, r, p)dp +

∫

R3
C22[f ](t, r, p)dp.

(4.8)

Using the fact that
∫

R3
∇rU(t, r) · ∇pf (t, r, p)dp =

∫

R3
C22[f ](t, r, p)dp = 0,

we get

∂t

∫

R3
fdp + ∇r ·

∫

R3
pfdp = Γ12[f ]. (4.9)

Eq. (4.9) can be rewritten as

∂tnn + ∇r · (nnvn) = Γ12[f ]. (4.10)
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For an arbitrary momentum vector p = (p1, p2, p3), we choose pj,
j ∈ {1, 2, 3} as a test function for (2.2) and obtain

∂t

∫

R3
f (t, r, p)pjdp + ∇r ·

∫

R3
pf (t, r, p)pjdp

−
∫

R3
∇rU(t, r) · ∇pf (t, r, p)pjdp

=
∫

R3
pjC12[f ](t, r, p)dp +

∫

R3
pjC22[f ](t, r, p)dp.

(4.11)

Due to the conservation of momentum for C12 and C22,
∫

R3
(pj − vcj)C12[f ]dp =

∫

R3
pjC22[f ]dp = 0,

we get

∂t

∫

R3
f (t, r, p)pjdp + ∇r ·

∫

R3
pf (t, r, p)pjdp

−
∫

R3
∇rU(t, r) · ∇pf (t, r, p)pjdp

=
∫

R3
vcj(t, r)C12[f ](t, r, p)dp

= vcj(t, r)Γ12[f ](t, r).

(4.12)

Let us look at the first term on the left hand side of (4.12)

∂t

∫

R3
fpjdp = ∂t (nnvnj) = ∂tnnvnj + nn∂tvnj, (4.13)

in which vnj is the component of vn = (vn1, vn2, vn3).
By using (4.10), we can deduce from (4.13) that

∂t

∫

R3
fpjdp = Γ12[f ]vnj − vnj∇r · (nnvn) + nn∂tvnj, (4.14)

Now, let us look at the second term on the left hand side of
(4.12),

∇r ·
∫

R3
pfpjdp =

3
∑

i=1

∂ri

∫

R3
pipjfdp

=
3
∑

i=1

∂ri

∫

R3
[(pi − vni)(pj − vnj) + pivnj

+ pjvni − vnivnj]fdp

=
3
∑

i=1

∂ri

∫

R3
(pi − vni)(pj − vnj)fdp

+
3
∑

i=1

∂ri

∫

R3
(pivnj + pjvni)fdp

−
3
∑

i=1

∂ri

∫

R3
vnivnjfdp.

(4.15)

By observing that
∫

R3
(pivnj + pjvni)f (t, r, p)dp = 2vnj(t, r)vni(t, r)nn(t, r)

∫

R3
vnivnjf (t, r, p)dp = vnj(t, r)vni(t, r)nn(t, r),

(4.16)

we infer from Identity (4.15)

∇r ·
∫

R3
pfpjdp

=
3
∑

i=1

∂ri

∫

R3
(pi − vni)(pj − vnj)fdp +

3
∑

i=1

∂ri [vnjvninn].
(4.17)

The last term on the left hand side of (4.12) can be rewritten in the
following form, by integration by parts and the definition of nn

−
∫

R3
∇rU · ∇pfpjdp =

∫

R3
∂rjUfdp = nn∂rjU . (4.18)

Putting the three terms (4.14), (4.17) and (4.18) together, we find

nn (∂t + vn · ∇) vnj = −
3
∑

i=1

∂rjP[f ]ij − nn∂rjU − (vnj − vcj)Γ12[f ],

(4.19)

where

P[f ]ij =
∫

R3
(pi − vni(t, r))

(

pj − vnj(t, r)
)

f (t, r, p)dp. (4.20)

Choosing |p|2, as a test function for (2.2) yields

∂t

∫

R3
f (t, r, p)|p|2dp + ∇r ·

∫

R3
|p|2pf (t, r, p)dp

−
∫

R3
∇rU(t, r) · ∇pf (t, r, p)|p|2dp

=
∫

R3
|p|2C12[f ](t, r, p)dp +

∫

R3
|p|2C22[f ](t, r, p)dp.

(4.21)

Let us recall the conservation of energy for C12 and C22
∫

R3
|p|2C22[f ]dp = 0,

and

0 = 2

∫

R3

(

Ep − Ec

)

C12[f ]dp

=
∫

R3

(

|p|2 + 2U − 2µc − v2c
)

C12[f ]dp,

which leads to

∂t

∫

R3
f (t, r, p)|p|2dp + ∇r ·

∫

R3
|p|2pf (t, r, p)dp

−
∫

R3
∇rU(t, r) · ∇pf (t, r, p)|p|2dp

=
(

−2U + 2µc + v2c
)

Γ12[f ](t, r).

(4.22)

Similar as above, we consider each term on the right and left hand
sides of (4.22). Let us start with the first term on the left hand side

∂t

∫

R3
f |p|2dp = ∂t

(∫

R3
f |p − vn|2dp

)

+ ∂t

(∫

R3
f 2p · vndp

)

− ∂t

(∫

R3
f |vn|2dp

)

,

(4.23)

where we have used the identity

|p − vn|2 + 2p · vn − |vn|2 = |p|2. (4.24)

Since
(∫

R3
fp · vndp

)

= |vn|2nn =
(∫

R3
f |vn|2dp

)

,

we obtain from (4.23) that

∂t

∫

R3
f |p|2dp = ∂t

(∫

R3
f |p − vn|2dp

)

+ ∂t
(

|vn|2nn

)

= 2∂tE + ∂t
(

|vn|2nn

)

.

(4.25)

Expanding the second term on the right hand side of (4.25) gives
us

∂t

∫

R3
f |p|2dp = 2∂tE + 2nnvn · ∂tvn + |vn|2∂tnn, (4.26)
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which, by (4.10) and (4.19), can be rewritten as

∂t

∫

R3
f |p|2dp

= 2∂tE +
3
∑

j=1

2vnj

[

−
3
∑

i=1

∂rjP[f ]ij − nn∂rjU

− (vnj − vcj)Γ12[f ] − nnvn · ∇rvnj

]

+ |vn|2[Γ12[f ] − ∇r · (nnvn)].

(4.27)

Now, for the second term on the left hand side of (4.22), it is
straightforward that

∇r ·
∫

R3
|p|2pfdp

= ∇r ·
(∫

R3
|p − vn|2(p − vn)fdp

)

+ ∇r ·
(∫

R3
|vn|2vnfdp

)

− 3∇r ·
(∫

R3
|vn|2pfdp

)

+ 3∇r ·
(∫

R3
|p|2vnfdp

)

,

(4.28)

which, as a view of the identity
∫

R3
|vn|2vnfdp =

∫

R3
|vn|2pfdp = |vn|2vnnn,

can be expressed as

∇r ·
∫

R3
|p|2pfdp

= ∇r ·
(∫

R3
|p − vn|2(p − vn)fdp

)

− 2∇r ·
(

|vn|2vnnn

)

+ 3∇r ·
(∫

R3
|p|2vnfdp

)

.

(4.29)

Using (4.24), we can rewrite (4.29) as

∇r ·
∫

R3
|p|2pfdp

= ∇r ·
(∫

R3
|p − vn|2(p − vn)fdp

)

− 2∇r ·
(

|vn|2vnnn

)

+ 3∇r ·
(∫

R3
|p − vn|2vnfdp

+ 2|vn|2
∫

R3
pfdp − |vn|2vn

∫

R3
fdp

)

,

(4.30)

which can be reduced to

∇r ·
∫

R3
|p|2pfdp

= ∇r ·
(∫

R3
|p − vn|2(p − vn)fdp

)

− 2∇r ·
(

|vn|2vnnn

)

+ 3∇r ·
(∫

R3
|p − vn|2vnfdp + |vn|2vnnn

)

= ∇r ·
(∫

R3
|p − vn|2(p − vn)fdp

)

+ ∇r ·
(

|vn|2vnnn

)

+ 3∇r ·
(

vn

∫

R3
|p − vn|2fdp

)

,

(4.31)

The last term on the left hand side of (4.22) can be rewritten in a
straightforward manner as follows:
∫

R3
|p|2∇rU · ∇pfdp = − 2∇rU ·

∫

R3
pfdp. (4.32)

Notice that the right hand side of (4.32) can be expressed in terms
of nn and vn as

−2∇rU ·
∫

R3
pfdp = − 2∇rU · (nnvn) . (4.33)

As a consequence, we find
∫

R3
|p|2∇rU · ∇pfdp = − 2∇rU · (nnvn) . (4.34)

Combining (4.22), (4.27), (4.31) and (4.34), yields

2∂tE +
3
∑

j=1

2vnj

[

−
3
∑

i=1

∂rjP[f ]ij − nn∂rjU

− (vnj − vcj)Γ12[f ] − nnvn · ∇rvnj

]

+ |vn|2[Γ12[f ] − ∇r · (nnvn)]

+ ∇r ·
(∫

R3
|p − vn|2(p − vn)fdp

)

+ ∇r ·
(

|vn|2vnnn

)

+ 3∇r ·
(

vn

∫

R3
|p − vn|2fdp

)

− 2∇rU · (nnvn)

=
(

−2U + 2µc + v2c
)

Γ12[f ],

(4.35)

which leads to

∂tE + ∇r · (Evn)

= − ∇r · R[f ] −
3
∑

i,j=1

1

2

(

vni∂rj + vnj∂ri
)

Pij

+
(

(vn − vc)2

2
+ µc − U

)

Γ12[f ],

(4.36)

where

R[f ](t, r) =
∫

R3

|p − vn|2(p − vn)

2
f (t, r, p)dp. (4.37)

The three equations (4.10), (4.19) and (4.36) lead to the following
system of moment equations for the kinetic equation of the ther-
mal cloud:

∂tnn + ∇r · (nnvn) = Γ12[f ],

nn (∂t + vn · ∇) vnj = −
3
∑

i=1

∂rjP[f ]ij − nn∂rjU − (vnj − vcj)Γ12[f ],

∂tE + ∇r · (Evn) = −∇r · R[f ] −
3
∑

i,j=1

1

2

(

vni∂rj + vnj∂ri
)

Pij

+
(

(vn − vc)2

2
+ µc − U

)

Γ12[f ].

(4.38)

Replacing F into (4.38), we obtain R[F] = 0,

Pij(t, r) = δijẼ(t, r) ≡ δij

∫

R3

|p|2
3

f∞(t, r, p)dp. (4.39)

Moreover, we note that

E(t, r) = 3

2
Ẽ(t, r). (4.40)

As a consequence, we can close the system (4.38) to obtain

∂tnc + ∇r · (ncvc) = −Γ12[F],
nn (∂t + vn · ∇) vn = −∇r Ẽn − nn∇rU − (vn − vc)Γ12[F],

∂t Ẽn + ∇r · (Ẽnvn) = −2

3
Ẽn∇r · vn

+ 2

3

(

(vn − vc)2

2
+ µc − U

)

Γ12[F].

(4.41)
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4.2. Comparison with a previous result

Putting the two systems (2.9) and (4.41) together, one finds the
following two-fluid Euler quantum hydrodynamics

∂tnc + ∇r · (ncvc) = −Γ12[F],

∂tvc + ∇rv
2
c

2
= −∇rµc,

∂tnn + ∇r · (nnvn) = Γ12[F],
nn (∂t + vn · ∇) vnj = −∇r Ẽn − nn∇rU − (vnj − vcj)Γ12[F],

∂t Ẽn + ∇r · (Ẽnvn) = −2

3
Ẽn∇r · vn

+ 2

3

(

(vn − vc)2

2
+ µc − U

)

Γ12[F].

(4.42)

In (4.42), the condensate and non-condensate parts are coupled
through both µc and Γ12. Notice that Γ12 is already computed in
(3.24) and (3.25).

In the thesis [28], the author has derived the following hydro-
dynamic limit:

∂tnc + ∇r · (ncvc) = 0,

∂tnn + ∇r · (nnvn) = 0,

∂t (nnvn) + ∇r · (nnvn ⊗ vn + EnI3) = −gnn∇r · (2nn + nc),

∂t (ncvc) + ∇r · (ncvc ⊗ vc) = −g

2
nc∇r · (2nn + nc),

∂t (
1

2
nn|vn|2 + 1

2
nc |vc |2 + 3

2
En + g

4
(2nn + nc)

2)

+ ∇r ·
(1

2
nn|vn|2vn + 1

2
nc |vc |2vc + 5

2
Envn

+ g

2
(2nn + nc)(2nnvn + ncvc)

)

= 0,

(4.43)

where I3 is the identity 3 × 3 matrix. It is also mentioned [28] that
this is a two-phases Euler system, the second fluid (the superfluid)
being pressureless and they do not exchange mass, contrary to
what occurs in the Landau two-fluid theory [29,30].

On the contrary, our limit (4.42) agrees with the Landau two-
fluid theory [29,30]. The main reason is that, following [14], in
general excited atoms in the condensate need not be in local
equilibriumwith the condensate atoms. As a consequence, C12 and
C22, in most of the cases, do not share the same equilibrium distri-
bution. Our equilibrium distribution F is the natural equilibrium
used inmost physical contexts [14] andC22[F] = 0butC12[F] ̸= 0.
Therefore, the two fluids are coupled.

In [28], the author considers a very special choice of F

F(t, r, p) = 1

eβ[(p−vn)2/2−|vc−vn|2/2−U/2] − 1
,

where the temperature parameter β is a constant, instead of being
a function of (t, r). Moreover, the effect of the chemical potential
µ(t, r) is also ignored. This special choice of the distribution F

implies C22[F] = C12[F] = 0. The two fluids are then decoupled,
that is in contradiction with the Landau two-fluid theory [29,30],
as the author pointed out.

5. The two-fluid Navier–Stokes quantum hydrodynamic ap-

proximations

This section is devoted to the derivation of the Navier–Stokes
approximation of the system (2.37)–(2.45) through the Chapman–
Enskog expansion, under the assumption g = ϵδ0 . Similar as in

Section 4.1, we also have the expansion:

f =
n
∑

i=0

ϵ if (i) + ϵ lς, (5.1)

in which n and l are positive integers.
Arguing similarly as above, we deduce that f (0) has to be a Bose–

Einstein distribution:

f (0) = F . (5.2)

Decompose f (i) into two parts

f (i) = h(i) + k(i), (5.3)

where

h(i) ∈ R, k(i) ∈ N .

From (4.3), one has

h(1) = L
−1

DF . (5.4)

Adopting the same techniques used in [60,61], we decompose
h(1) into the sum of h′ and h′′:

h(1) = h′ + h′′,

where h′ and h′′ satisfy the following system of equations:

Lh′ = P
⊥
DF, (5.5)

PDF = −ϵPDh′, (5.6)

Lh′′ = ϵP⊥
Dk(1), (5.7)

PDk(1) = −PDh′′, (5.8)

and

Lh(i) = ϵP⊥
Dk(i) + P

⊥
Dh(i−1) −

i−1
∑

j=1

Q1(f
(j), f (i−j))

−
i−1
∑

j,k=0,0<j+k<i

Q2(f
(j), f (k), f (i−j−k)), (5.9)

PDk(i) = −PDh(i). (5.10)

By the Fredholm theory, the system (5.5)–(5.8) can be solved in
L2(R3), if

h′ = L
−1(P⊥

DF),

h′′ = L
−1(ϵP⊥

Dk(1))
(5.11)

and

h(i) = L
−1
(

ϵP⊥
Dk(i) + P

⊥
Dh(i−1) −

i−1
∑

j=1

B1(f
(j), f (i−j))

−
i−1
∑

j,k=0;0<j+k<i

B2(f
(j), f (k), f (i−j−k))

)

,

(5.12)

for i = 2, 3, . . .
Eq. (5.11) yields

PDF = −ϵPDh′ = −ϵPDL
−1

P
⊥
DF . (5.13)

Eq. (5.13) leads to the Navier–Stokes approximation, whichwill
be computed in Section 5.2.



S. Jin, M.-B. Tran / Physica D 380–381 (2018) 45–57 55

5.1. Inversion of the linearized operator of C22

Define

A(p) = p ⊗ p − 1

3
|p|2Id, B(p) = 1

2
p(|p|2 − 5), (5.14)

clearly,

Ajk ⊥ kerL, Bl ⊥ kerL, Bl ⊥ Ajk, j, k, l = 1, 2, 3. (5.15)

By the same algebraic argument as the one used for the classical
Boltzmann collision operator (cf. pp. 64–65 [57]), one can deduce
that there exist scalar-valued functions α0(|p|), α1(|p|) such that

L
−1

(

F2(p)

M(p)
A(p)

)

= α0(|p|)
F2(p)

M(p)
A(p),

L
−1

(

F2(p)

M(p)
B(p)

)

= α1(|p|)
F2(p)

M(p)
B(p).

(5.16)

A direct consequence of (5.16) is the existence of scalar-valued
functions β0(|p|) and β1(|p|) such that

L
−1

(

F2(p)

M(p)
pipj

)

= β0(|p|)
F2(p)

M(p)
Aij(p),

L
−1

(

F2(p)

M(p)

(

|p|2 − 10τΩ2(γ )

Ω1(γ )

)

pi
)

= β1(|p|)
F2(p)

M(p)
Bi(p),

(5.17)

where pi, Bi(p) are the ith component of the vectors p and B(p)
respectively. In addition, Aij(p) is the (i, j)th element of the matrix
A(p). Note that these symmetry invariances are very similar to the
ones obtained in the context of the classical Boltzmann collision
operator (cf. Equation (2.100), pp. 64–65 [57]); we then denote

Cij(p) := β0(|p|)
F2(p)

M(p)
Aij(p), Ci(p) := β1(|p|)

F2(p)

M(p)
Bi(p). (5.18)

5.2. Navier–Stokes quantum hydrodynamic approximation of the

thermal cloud

In this subsection, we will derive the Navier–Stokes system
resulting from (5.13). First, observe that

P
⊥ΠF

= F2

M

3
∑

i,j=1

{

(pi − vni)(p
j − vnj) − 1

3
|p − vn|2δi,j

}

1

τ

∂vnj

∂xi

+ F2

M

{

|p − vn|2 − 10τΩ2(γ )

3Ω1(γ )

} 3
∑

i=1

(pi − vni)
1

2τ 2
∂τ

∂ri
.

(5.19)

Classical techniques for the classical Boltzmann collision oper-
ator can be applied (cf. [31]—pp. 456–457 and [60,61]), to get

− PΠL
−1

P
⊥ΠF

= F2

M

(

3
∑

k=1

ψk

ωk

(

3
∑

i=1

∂

∂ri

(

ϖ (γ , τ )

(

∂vnk

∂ri
+ ∂vni

∂rk

))

)

− 2

3

∂

∂rk

(

ϖ (γ , τ )
3
∑

i=1

∂vni

∂ri

))

+ 2
ψ4

ω4

(

3
∑

i=1

∂

∂ri

(

ϱ(γ , τ )
∂τ

∂ri

)

− 2

3
ϱ(γ , τ )

(

3
∑

i=1

∂vni

∂ri

)2

+ϖ (γ , τ )
3
∑

i,k=1

∂vnk

∂ri

(

∂vnk

∂ri
+ ∂vni

∂rk

)))

,

(5.20)

where

ϖ (γ , τ ) = −1

τ

∫

R3
ξ1ξ2C12(ξ )dξ, (5.21)

ϱ(γ , τ ) = − 1

4τ 2

∫

R3
|ξ |2ξ1C1(ξ )dξ, (5.22)

with ξ1, ξ2 are the components of the vectors ξ = (ξ1, ξ2, ξ3) and
C1, C12 are defined in (5.18).

Notice that

DF = ΠF + O(ϵδ0 ).

The first order approximation in terms of ϵ of the quantity
ϵPDL−1

P
⊥DF is then ϵPΠL−1

P
⊥ΠF . The Navier–Stokes system

(5.13) becomes

PDF = −ϵPΠL
−1

P
⊥ΠF, (5.23)

which, thanks to the identity (5.20), leads to

∂tnn + ∇r · (nnvn) = ϵΓ12[F],
nn (∂t + vn · ∇) vnj + ∂rj (nnen)

= −nn∇rϵ
δ0U − (vnj − vcj)ϵΓ12[F]

+ ϵ

[

3
∑

i=1

∂

∂ri

(

ϖ̄ (nn, en)

(

∂vnj

ri
+ ∂vni

rj

))

− 2

3

∂

∂rj

(

ϖ̄ (nn, en)
3
∑

i=1

∂vni

ri

)]

,

∂ten + ∇r · (envn) + 2

3
en∇r · vn

= 1

nn

[2

3

(

(vn − vc)2

2
+ µc − ϵδ0U + en

)

ϵΓ12[F]
]

+ ϵ

G(nn, en)

[

3
∑

i=1

∂

∂ri

(

ϱ1(nn, en)
∂en

∂ri
+ ϱ2(nn, en)

∂nn

∂ri

)

+ ϖ̄ (nn, en)
3
∑

i,k=1

∂vnk

∂xi

(

∂vnk

∂xi
+ ∂vni

∂xk

)

− 2

3
ϖ (nn, en)

(

3
∑

i=1

∂vni

∂xi

)2
⎤

⎦ ,

(5.24)

where

ϖ̄ (nn, en) =ϖ (γ , τ ),

G(nn, en) = 25/2πτ 3/2γΩ1(γ ),

ϱ1(nn, en) = ϱ(γ , τ )
∂τ

∂en
,

ϱ2(nn, en) = ϱ(γ , τ )
∂τ

∂nn

.

(5.25)

Combining (2.9) and (5.24), we get the ‘‘closed system’’.
Moreover, the Navier–Stokes system of the excitations is very

different from the Navier–Stokes system obtained from the classi-
cal Boltzmann equation (cf. [31]) in several points:

• First, in the classical Navier–Stokes system, the viscosity
coefficient ϖ̄ and the heat conduction coefficient ϱ1 depend
only on en. In the above quantum Boltzmann system, they
depend on both en and nn.

• Second, different from the classical Navier–Stokes system,
the second derivatives of nn also appear in the system.

• Third, theNavier–Stokes systemof the excitations is coupled
with the system of the BEC super fluid via the quantity
ϵΓ12[F], computed in (3.25).
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The Navier–Stokes system for the excitations therefore has
a completely different nature in comparison with the classical
Navier–Stokes equation. And, hence, one could expect more com-
plicated behaviors, that would be a subject of our future studies.
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