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1. Introduction

After the realization of Bose-Einstein condensations (BECs) in
trapped atomic vapors of 8’Rb, 7Li, and 2*Na [1,2], a new period of
intense experimental and theoretical research has been initiated.
The equilibrium properties of these novel systems have been quite
well understood, but there are still several open questions con-
cerning their nonequilibrium behavior. One of the most important
questions concerns the behavior of the condensate after cooling
a nondegenerate trapped Bose gas to a temperature below the
BEC critical temperature. While the experimental research has,
up to now, concentrated mainly on the initial formation of BECs,
their theoretical behavior at finite temperatures is a frontier of
many-body physics. The theoretical description of BECs has to
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take into account the coupled nonequilibrium dynamics of both
the condensed and noncondensed components of the gas under
investigation, and has to involve the collisional processes of atoms
between the two components. Such a quantum kinetic theory was
initiated by Kirkpatrick and Dorfman [3,4], based on the rich body
of research carried out in the period 1940-67 by Bogoliubov, Lee
and Yang, Beliaev, Pitaevskii, Hugenholtz and Pines, Hohenberg
and Martin, Gavoret and Nozi‘eres, Kane and Kadanoff and many
others. The terminology “Quantum Kinetic Theory” has been later
introduced in a series of papers by Gardinier, Zoller and collabo-
rators [5-8]. After that, there has been an explosion of research
on quantum kinetic theory (see [3-24], and references therein).
We refer to the review paper [25] and the books [26,27], for
more discussions and a complete list of references on this rapidly
expanding topic.

The current paper is devoted to the study of the hydrodynamic
approximations of such a quantum kinetic system. The system
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contains two equations: a quantum Boltzmann equation describ-
ing the non-condensate atoms (with two types of collisions, one
between excited atoms and one between condensate atoms and
excited atoms), and a nonlinear Schrodinger (or Gross-Pitaevskii)
equation for the condensate. The hydrodynamic limits of the sys-
tem is an interesting mathematical question, first studied in [28],
where an Euler limit has been derived. This derivation relies on
the assumption that, in the considered trapped Bose gas, the non-
condensate and condensate share the same local equilibrium. It is
known (cf. [3,4]) that the condition of complete local equilibrium
between the condensate and the thermal cloud requires the energy
of a condensate atom in the local rest frame of the thermal cloud
to be equal to the local thermal cloud chemical potential. When
the condition is satisfied, there is no exchange of particles between
the condensate and the thermal cloud (cf. [ 14]). As a consequence,
in the derived fluid system, the mass of each component - con-
densate and non-condensate - does not exchange. Note that the
two-fluid low-frequency dynamics of superfluid “He was first de-
veloped by Tisza and Landau [29]. Their description accounts for
the characteristic features associated with superfluidity in terms
of the relative motion of superfluid and normal fluid degrees of
freedom, and was shown to be a consequence of a Bose broken
symmetry (cf. [30]). In the Landau two-fluid theory, the two com-
ponents superfluid and normal fluid exchange mass (cf. [28-30]).
In this paper, we revisit the derivation of the Euler hydrodynamic
limit of the system by a different point of view: following [3,4,14],
we assume that even if the thermal cloud atoms are in equilibrium
among themselves, the noncondensate and condensate parts may
not be in local equilibrium with each other. Moreover, the deriva-
tion of the Navier-Stokes approximation of the system is also
provided via the classical Chapman-Enskog expansion (cf. [31]).
In such circumstance, the Euler limit includes the mass exchange
between the condensate and the non-condensate. Our Euler and
Navier-Stokes approximations agree with the Landau two-fluid
theory (cf. [29,30]).

As an attempt to build a rigorous theory for quantum Ki-
netic equations, some mathematical results have been obtained in
[32-41]). Note that quantum kinetic equations have very similar
formulations with the so-called wave turbulence kinetic equations.
We refer to [42-50] for more recent advances on the rigorous
theory of weak turbulence.

The plan of the paper is as follows. In Section 2 we introduce
the quantum Kkinetic system and the scalings that will lead to
the hydrodynamic approximation. In Section 3, we list the most
important features of the two collision operators C;; and Cy;. The
two-fluid Euler and Navier-Stokes limits are then derived in two
Sections 4 and 5 respectively.

2. The quantum kinetic system and scalings
2.1. The quantum kinetic system

Let us consider a trap Bose gas, whose temperature T is smaller
than the Bose-Einstein transition temperature Tgec and strictly
greater than 0 K or —273.15°C. Denote f(t, r, p) to be the density
function of the normal fluid at time ¢, position r and momentum
p and &(t, r) be the wave function of the condensated (or super-
fluid) phase. Employing the short-handed notation f; = f(t, r, p;),
i = 1,2,3,4, we first recall the quantum Kkinetic-Schrodinger
system describing the dynamics of a BEC and its thermal cloud. The
Schrédinger (or the Gross—Pitaevskii) equation for the condensates
reads (cf. [12]):

2

n2A,
ihatq)(t,r):(— L glne(t. 1)+ 2m(t. )]

ARl T) + V(r))q>(t, ), (t.r) € Ry x RS,

h
AlZ[f](ta r) = ﬁ[‘lz[f](t! r)! (2 1)

dp
I’ t, = C t7 ) ’
BIFIE ) /R Culf e p) s
nﬂ(tv r) = / f(t7 ra p)dpv
R3
@0, 1) = Py(r), Vr € R?,
where n.(t,r) = |®|*(t,r) is the condensate density, f is the

Planck constant, g is the interaction coupling constant propor-
tional to the s-wave scattering length a, V(r) is the confinement
potential, and the operator Cy, can be found in the quantum Boltz-
mann equation for the non-condensate atoms (cf. [12]), written
below:

af(t,r,p) + — - Vif(t,r,p) =V, U(t, 1) - Vif(t, T, p) (2.2)
= Q[f](t’ r, p) = ClZ[f](tv r, p)
+C22[f](t7 r, p)a (tv r, p) € R+ X R3 X R39
Cialf1E, 1, p1) = Minc(t, r)// 8(mvc + p1 — p2 — p3)
R3xR3
x 8(&c + Epy — &py — €P3)
x[(1+ fi)fofs — fi(1 + f2)(1 + f3)ldp2dps  (2.3)
—21qnc(t, T)// d(mve + pa — p1 — p3)
R3xR3
X 8(Ec + Epy — Epy — Epy)
x[(1+ £)fifs — L1+ fi)(1 + f3)ldp2dps,

Az/// 8(p1 +p2 — p3 — pa)
R3 xR3 xR3

X‘S(gm + &, — &y — SP4) x

x[(1+ fi)(1 + f2)fsfa

—fif2(1 + f3)(1 + fa)ldp>dpsdpa, (2.4)
f(0,1,p) = fo(r, p), (r,p) € R> x R?,

SRR

sz[f](t’ r, p]) :

_ 2 _ 2 : ;
where A1 = Pl Ay = Gy IS the mass of the particles, &,
is the Hartree-Fock energy (cf. [12])

Ipl?
& = &(p) = — + UL, ). (2.5)
2m

Notice that Cy; is the Boltzmann-Norheim (Uehling-Ulenbeck)
quantum Boltzmann collision operator. If one writes

@ =|[P(t, )", (2.6)
the condensate velocity can be defined as
h
ve(t, ) = =Vo(t, 1), (2.7)
m
and the condensate chemical potential is then
1 h2A,
= — Vv 2n n ne. 2.8
Ihe ﬂ( STV el n+c]>ﬁ (2.8)

When V = 0, the following system for the super-fluid of the
condensate can be obtained
one + Vi -(neve) = — I'plf]

V,v? (2.9)
2 — V.

B[Uc +
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The potential U and the condensate energy & are written as
follows

Ut,r)=V(r)+ 2g[n(t, r)+ nu(t, r)l, (2.10)
and

2
Eclt, 1) = uc(t, ) + w (2.11)

For the sake of simplicity, we suppose that V = 0 and define the

differential quantity

- d

p= P
(2mh)?

Notice that (2.3) describes collisions between the condensate and

the non-condensate atoms (condensate growth term) and (2.4)
describes collisions between non-condensate atoms.

(2.12)

Remark 2.1. At temperature T, bosons of mass m can be regarded
as quantum-mechanical wavepackets which have an extent on the

order of a thermal de Broglie wavelength A3 = (fn’lzg 2 , where kg

is the Boltzmann constant. The de Broglie wavelength A 45 describes
the position uncertainty associated with the thermal momentum
distribution. When the gas temperature is high T > Tggc, Agp is very
small and the weakly interacting gas can be treated as a system of
“billiard balls” (cf. [51,52]). The dynamics of the gas is described
by the Boltzmann-Norheim (Uehling-Ulenbeck) equation, whose
operator sometimes reads (cf. [53])

CnlfIt, 1, p1) /// 8(p1 + p2 — p3 — p4)
R3 xR3 xR3

X 8 gPl + gpz 5p3 5P4)
x [(14+9f1)(1 + 0f2)f3fa
= fiL(1 + 9f3)(1 + ¥ f4)ldp2dpsdpa,

where ¢ is proportional to #%. In the semiclassical limit, as &
tends to 0, the quantum Boltzmann collision operator becomes
the classical one. This means at high temperature, the behavior of
the “billiard balls” Bose gas is, in some sense, still very similar to
classical gases.

At the BEC transition temperature, A4z becomes comparable to
the distance between atoms. As a result, the atomic wavepackets
“overlap” and the indistinguishability of atoms becomes impor-
tant. At this temperature, bosons undergo a quantum-mechanical
phase transition and the Bose-Einstein condensate is formed
(cf. [51,52]). When the temperature of the gas is finite Tgec > T >
0K, the trapped Bose gas is composed of two distinct components:
the high-density condensate, being localized at the center of the
trapping potential, and the low-density cloud of thermally excited
atoms, spreading over a much wider region. The dynamics of the
thermal cloud atoms is described by the kinetic equation (2.2). At
this low temperature, the de Broglie wavelength of the excited
atoms is very large, in comparison with the high temperature
boson de Broglie wavelength. As a consequence, the thermal cloud
kinetic equation cannot be treated as a system of “billiard balls”
anymore. This explains the difference between the forms of the two
collision operators Cy; and Cy;.

Note that, different from classical Boltzmann collision opera-
tors, where the collision kernels are functions depending on the
types of particles considered, the derived collision kernel for the
quantum Boltzmann collision operator for bosons is 1 (cf. [54])
whenT > Tgec.

(2.13)

2.2. Scalings

Different from the thesis [28], in which the two collision op-
erators Ci; and C,, are assumed to have the same equilibrium
distribution function, we follow [14] to consider the most general
regime, where excited atoms in the condensate need not be in
local equilibrium with the condensate atoms. As a consequence,
Ci12 and Cyp; in general do not share the same equilibrium distri-
bution. A comparison between our results and the result of [28]
will be discussed in details in Section 4.2. Relying on these physical
assumptions, we propose a new approach to obtain new Euler and
Navier-Stokes approximations of the system.

Itis known that the dynamics of the trapped Bose gases depends
on its temperature T. Let us restrict our attention to the case where
T is smaller but very close to the Bose-Einstein critical temperate
Tgec. At this temperature regime, the collisions between excited
atoms are rapid to establish a local equilibrium within the non-
condensate component. As a consequence, the collision operator
C,; can be assumed to be stronger than the collision operator Cy;.
This regime is often called the state of partial local equilibrium which
arises near Tggc when the density of the condensate is small.

Following [ 14], we define the static equilibrium of the system

1

eBol(p—muyo)?/2m)+Up—pol — 1’

Fo(p) =

(2.14)

where fy is the static temperature parameter, vy is the static fluid
velocity, ug is the static chemical potential, Uy is the static mean
field. We also set the static density to be

Mo = / Fo(p)dp
]R3

Note that when T is sufficiently close to Tggc, the bosons are in
the particle-like regime, i.e. they behave like particles. Let us also
mention that when temperature T is very close to 0, the bosons will
be in the phonon-like regime (cf. [55]). Since we are interested in
the behavior of the particles when T is close to Tggc, let us define
the collision frequency with respect to Cy,

)\.ﬂlc
8(mve + p1 — p2 — p3)
R3 xR3

X 8(Ec + Epy — Epy — Epy)X
x [Fo(p2) + Fo(ps) + 1]dP2dP3+

)Llnc
8(mvc 4 p2 — p1 — p3)
R3xR3

X 8(E + &y, — Epy — Epy ) Fo(p3)dp2dps,
as well as the associated mean collision frequency:
_ 1 -

e R
Mpem Jgs3

The inverse of vi5(p) and vy, is defined to be, respectively, the free
time 712(p) and the mean field time Tq5:
1 _ 1
() = ——=, Tn=—. (2.18)
vi2(p) V12

We now determine the average speed of the particles

\/>fo )dp,

and the mean free path

(2.15)

v12(p1)

(2.16)

(2.17)

(2.19)
nnom

[— (2.20)
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Similarly, the collision frequency and the mean collision fre-
quency associated to C5, can be defined

vn(p1) = . m//3 L 8(p1 +p2 —Pp3 — Pa)

no R>XR> xR
2.21

X 8(5171 + sz - gP3 - gP4)X ( )
X Fo(p2)(1 + Fo(p3))1 + Fo(p4))dp2dpsdpa,

and

_ 1 -

vy = / v22(p)Fo(p)dp. (2.22)

nnom R3

We also define the free time 75;(p), the mean field time 75, and the
mean free path I,
1 1 __
s Tn=—, lzzZszz.
v22(p) V22
Let L and 6 be the reference length and time, respectively.
Following [56,57], we introduce the rescaled variables

™(p) = (2.23)

- roo. t . p _ . v
r=z, t=§, p=E,P=mc, vcz?c. (2.24)
Note that under this scaling,
= [ ferpap = 2 [ ie.r. i (2.25)
R3 R3

We also rescale U as U = U/Up, where Uy is the reference
potential field. Define

CalfI(t, 1, P1)

= Ain tr// 8(Vc +P1 — P2 — P3)
]R3><]R3

X 8(E + &y — &, — Epy)
x[(1+ f1)fof3 _fl( + £2)(1 + f3)]1dp2dp3 (2.26)
—2Jnc(t, f)// 8(0c + p2 — P1 — P3)
R3><]R3
X 8(& + gpz 5p3)
x[(1+£)ff3 —f2(1 + f1)(1 + f3)1dp2dps,
EZZ[f](t» r, 131)
=%, / / / 8(51 + P> — Ps — a) (227)
]R3><JR3><R3
XS(f;p] + 51,2 5p4)
x[(1+f1)(1 +f2 f3f4 — fifl(1 4 f3)(1 + fa)1dp2dpsdpa,
where
= P, /C, (2.28)
and
Xy =Poay/c. (2.29)

As a consequence, we can define the rescaled mean free paths and
the rescaled mean field times to be

L by . T
22 = ﬁ’ 2 = pT’
and

i lp . 2
12 — ﬁ, T12 = Piz
We also set

Cialf1:=12Cialf 1, Coalf] := IaCoalf]. (2.30)

The following rescaled version of (2.2) then follows:

v 112_122 af + 112122 P_ Vif — v 112122 @V 0. vf
1
,/ 2¢ C12[f] +‘/ sz[f] (2.31)
Notice that 2—2 = fz—z is a dimensionless parameter and is
3 12

proportional to ;—‘
. 2 . . . .
In this paper, we will consider two hydrodynamic approxima-
tions: Euler and Navier-Stokes.

e The Euler approximation is quite general and valid under a
general physical situation. The collisions between excited
atoms are fast to establish a local equilibrium within the
non-condensate component, and the quantity 7, is smaller
than 7, but the ratio between 7, and 715 is not necessarily
very small.

e The Navier-Stokes approximation is valid under the phys-
ical assumption that the collisions between excited atoms
are extremely rapid to establish a local equilibrium within
the non-condensate component and Ty, < T13.

We suppose ?—2 = €2, The Euler approximation is valid in any
physical assumption and we do not need to impose the assumption
that € is small, then ¢ is just a parameter. In the Navier-Stokes
approximation, we need to impose the assumption that € is small and
then we will use it as the small parameter in the usual Chapman-
Enskog expansion process.

Y 11 2"‘22 v Il 2122
L

The constants Y52, can be set to be 1 by rescaling

again the space and time variables f — Y1222 "2’22 N 1222 "2’22
and note that n’:E = 1, we obtain the followmg equatlon

- Uy ~ ~ 1A
o&f +p-Vif — ?V;U - Vif = eCralf] + gczz[f]- (2.32)

Notice that g is also the principle small parameter used in
the derivation of the system (2.1)-(2.2). Indeed, the derivation
starts with the usual Heisenberg equation of motion for the quan-
tum field operator. The equation for the condensate wavefunction
follows by averaging the Heisenberg equation with respect to
a broken-symmetry nonequilibrium ensemble. Taking the differ-
ence between the Heisenberg equation and the equation for the
condensate wavefunction and keeping only the terms of low orders
with respect to g, we obtain the equation of the noncondensate
field operator, which, by a Wigner transform, leads to the quantum
Boltzmann equation. In this process, one computes the collision
integrals C;,, C; to second order O(g?) in g and keeps interaction
effects in the excitation energies and chemical potential only to
first order O(g). For a more detailed explanation of this procedure,
we refer to, for instance, Sections 3.1, 3.2 and 5.3 of the book [ 14].
Since UO has to be chosen proportional to g, the dimensionless param-
eter mT2 might be considered to be small and set it to be § = €%,
0 < dp < 1in Section 5, where the Chapman-Enskog expansion is
used.

The equation then follows, as a result of the previous scaling

- L~ A 1.
0if +p- Vif —gViU - Vif = eCpalf]1+ gczz[f]- (2.33)
Under this scaling, the Gross-Pitaevskii equation also becomes
h
igagqﬁ(t, r)
2 (2.34)

h° Az
= (—5p5 +elnee.r)+ 2n(e, 1] - T—Alz[f](t n)oe.n).
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where
~ h R _
Aplfl=-— | Culfldp.
2n; Jgs

By the same argument as above, we also obtain
\/l I} h sl A

912 () = <_ mL l;chz

(2.35)
Vil \/l 1
$ P0G ¢y VR Ay ) o ),

12
where U, = U, /Uy and Uy(t,r) = glne(t, ) + 2n,(t, r)], since
U.(t, r) has the dlmensmn of U(t, r).

Notice that = has the dimensions of a length (Compton wave-

\/ P

length) and Sie

LE is dimensionless; hence the quantity . ;
is dimensionless. Moreover, 7“’;'22% is the product of the three

dimensionless parameters 7““[22 me and % = . Setting all
of the dimensionless parameter to F‘)e 1 by the same rescaling
argument used for (2.32) and dropping the tilde and hat signs

A
0@ = (—7’ +8U. — e Anlf]) @

where g stands for the dimensionless parameter & = €%, When
V = 0, the following system for the super-fluid of the condensate
can be deduced

(2.36)

one + Vi - (neve) = — elnlf]
Vrvg (2.37)
Orve + 2 = — Vil

we then obtain the system

1
of +p-Vif —gViU - Vif =€Cplf]1+ sz[f] (0 <80 <1),
(2.38)

i0,® = (—7 +glne +2n,] — ieAu[g])cb

We recall below the formulas for Cyo, Co; and Aqp

Ci2lf1(t, 1, p1) = nc(t, T)// 8(ve +p1 — P2 — p3)
R3xR3
X 5(56 + 5p1 — 5p2 — 5p3)
(1 +f)ofs = (1 + £2)(1 + f3)]dpadps (2.39)

—2n.(t, 1 f/ 8(ve + p2 — p1 — p3)
R3 xR3

x 8(5C + gpz gpl gp3)
x[(1+ f£2)fifs = fo(1 + f1)(1 + f3)]dp2dps,

ClfI(t, 1, p1) = /// 8(p1 +p2 —p3 — pa)
R3 xR3 xR3

X 8(Ep, + Epy — Epy — Ep,) X (2.40)
x[(1+ )1+ L)fafa — fifs(1+ £3)
X (1 + fa)ldp2dpsdpa,
Aulfien = i | catfier.pidp. (241)
ne(t, r) Jps
We also define the differential operators
Df =af + p-Vif —gViU - Vif —eCoalf], (2.42)
Df = af + p- Vif —gViU - Vf, (2.43)
Inf = of + p- V.f, (2.44)
and then get
1
Df = eCalf]1+ ngz[f], (0 <8y < 1) (2.45)

The new constant € is the small parameter that we will use in
the usual Chapman-Enskog expansion process in Section 5.

3. Properties of the collision operators

In this section, we study the main properties of the two collision
operators Cy; and Cy;.

3.1. Collision invariants and equilibrium of Cy;

Let us start with Cy;, which can be represented as:

CZZU]:Bl[f$f]+BZ[f5faf]7 (31)
in which
1
Bilf.gl = *///3 , 33(191 + P2 — P3 — D4)
R>xR> xR
X 8(£p1 + &p, — £p4) (32)

X [f384 + fag3 flgz — f2811dp,dpsdpa,

and
1
B[f.g. h] =*//‘f 8(p1 +p2 — p3 — pa)
]R3><]R3><]R3

X 8(‘(:{’1 +8P2 - 51’4)

X [f38ah +f4g3h1 +f3g4h2 + fagshz

+ f18ah3 + f183ha + fo8ah3 + f3g3h4 (3.3)
+ fagihs + f3g1ha + fagahs + f2g2h4

— f1&2h3 — f2.g1h3 — fig2hs — fog1hs
— f3g1hy — f3g2h1 — fagihy — fagahy
— f1g3hy — fog3hy — fig4hy — f284h11dp,dpsdpa,

where we have used the same notations fi, f2, f3, f1, 81, 82 » €3, &4,
hi, hy , h3, hy with the ones used in (2.2).

The operator C,; shares some important features with the
classical Boltzmann collision operator. Among these features, the
following can be proved by switching the variables (p1, p2) <
(p2, p1), (P1, p2) <> (p3, P4), in the integrals of B; as in the classical
case (cf. [58]):

/ BT glp)p =0, 1=0,1,2,3,4 (3.4)
R
where

Yo(p) =1, Wi(p) =p', (i=1.2,3), u(p)=Ipf, (35)
are the collision invariants and p' is the ith component of the vector
p=(".p%p).

Moreover, we also have

/ RIS g hp)p =0, 1=0,1,2.3,4 (3.6)
R

Similar as the classical Boltzmann collision operator, C; also
has a local equilibrium of the form

1
eBlp—vn)?/24+U—p] _ 1’

F(t,r,p)= (3.7)

where (¢, r) is the temperature parameter, v,(t, r) is the local
fluid velocity, u(t,r) is the local chemical potential (which is
different from the condensate chemical potential u.(t, r) defined
in (2.8)), U(t, r) is the mean field. Then

Cp[F] =0.

Let us now define the following Gaussian

Ip=u(t.r)

M(t7 r, p) = ]/(t, r)87 2e(tr) ) (3'8)




50 S. Jin, M.-B. Tran / Physica D 380-381 (2018) 45-57

where

p(t, 1) = PUEN=mED e 1y = uy(t, 1),

1 3.9
(t,r) = . (3.9)
B(t, )
The local equilibrium F can be expressed in terms of M as
M(t, T,
F(t,r,p) = J. (3.10)
1—M(t,r,p)

Note that u is a vector u = (uq, Uy, Us3).

3.2. Linearized operator of Cx;

Let L%(R3) be the space of real, measurable functions, whose
second power is integrable on R, with the norm || - ||;2 and inner
product (, );2. We consider the linearized operator of C,, around
a fixed equilibrium F(t, r, p), which, by a classical process can be
defined as

= 2By(F, )+ 3By(F, F, ), (3.11)
or equivalently
L(FfXt, T, p1)
= / 8(p1 +p2 — p3 — Pa)(Ep, + Epy — Eps — Epy)
R3xR3xR3
MiM;
(3.12)

* A= MO = M1 = Ms)(T - Ma) |
x (1= M) (p3) + (1 = Ma¥(pa) = (1 = M2 (p2)

= (1= M)/ (py)|dpadpsdp,

for some function f(p) and fixed values (t,r) € R, x R® and we
employ the shorthand notations M; = M(t,r,p;), i = 1,2,3,4.
Now, let us consider the inner product between the above lin-
earized operator and some test function ¢. The classical argument
(cf. [58]) for the classical linearized Boltzmann collision operator
can be applied and gives:

M
(?q)v C(]:f)>l_2

1
=_Z/ 8(p1 +p2 —p3 —pa)
R3xR3 xR3xR3

X 8(€P1 +5P2 - €P3 - €P4)
MM,
X X
(1= My)(1 = Ma)(1 = M3)(1 — My)

x [ (1= M3 (p3) + (1 = Ma¥(pa) = (1 = M) (p2)
— (1= M) |[(1 = Madolps) + (1 = Mao(pa)

— (1= Ma)p(pa) — (1 = M)(py) |dp1dpadpsdps,

which implies

M
(;f, ﬁ(ff))L2 =<

and

M M
(?‘pv E(]:f))]_z <?f7 E(F(p))sz

for all function ¢ and f such that the integrals are well-defined. The
equality in (3.13) holds true if and only if %f is identical to one of
the five functions defined in (3.5).

A
o

(3.13)

From the above observation, we are now able to define the
kernel of the linearized collision operator £ of Cy;:

2

]:
N = kerL:span{!I/,-: i=0,...,4},
M

and its orthogonal space:
]_—2

R = Nt = {GELZ(R3) : (c,fzp,) =0, i:O,...,4}.
M

On L*(R?), we also define the orthogonal projection operators
P and P+ = 1 — P on to A and R. By normalizing {Witizo,...4, We
obtain the following orthonormal basis of the space

{1/4‘}'2.
Joi M’

with

Wozl; 1//'1

i:O,...,4}, (3.14)

91()/)
90()/)

pr—u, i=1,2.3; yu=Ip—uP -

)

_ L dp = 23277320, 0
wo wa\A p 7ty R2(y);
o = f 2 L p)Pdp = 2P m ey (), i = 1,2, 3

s = / 2 L p)Pdp = 272y D(520(y ), 21(y). Do)

where
5xz — 9y?
X(x,y,2) = i A
b%

and

00 yk—l/z
21(y) :/ dy, k> —1/2. (3.15)

o &+vy

3.3. Hydrodynamics quantities

In order to study the hydrodynamics limit of the system, let us
define the following moments of the function f(t, r, p):

ma[f1(¢t, ) f f(t, r, p)dp, (3.16)
1
u[f](t! T) = Un(t’ r)[f](t! T') = m A} pf(tv r, p)dpv (317)
EFIE, 1) f £t v, p)lp — valFIE, PP, (3.18)
- _ 2ElfIt, ) _ Ealfle, 1)
]En[f](t! T) - 3 ’ eﬂ[f](tv r) - nn[f](t, r) . (319)
Replacing f by F, we obtain
_95/2__3/)2
[ F] =22 mt“84(y ), (320)

Eo[F] =2°277° 2y 2,(y),
where £21, £2, are defined in (3. 15). For the sake of simplicity, we
denote n,[F1, va[ F, u[F], Eq[F], En[F], eal F1by 1tp, vy, 1, B, B,
and e,

We indeed can compute y and t as

-1
1d$2, 253 723E,
- _(215/3 1,%/3 ’

(3.21)
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and
2/3

n
T= . ) (3.22)

-1
5/2 1d2) 25/372/3E,
2 7'[.(2] <<Qf/3 npo/3

3.4. Computing 'z [F]

Now, let us consider the collision operator Cj,. This operator
also has the collision invariant property:

/ ((p) — ve)Cialf 1dp
3

= [, (o) + 20 = 2120 — ) Clfidp =0, 1= 1.2.3.
R3
(3.23)
An important property of Cy, is that F is not an equilibrium of
C12. We have:

I'p[F] = / Ci2[Fldp
R3

= —n,[1 — e Alu—nc—(en—vc)*/2))

X/f/ 8(ve +p1 — p2 — p3)x
R3xR3xR3

X 8(& + &, — — & 1+ F(t, 1, p1))
X f(t,r,pz)F(t,r,pz)dpldpzdm.

Expanding F into Taylor series of M, we can simplify the above
integral as

Ip[F]
= —n[1— e—ﬁ(u—uc—(U—uC)z/Z)]

(3.24)

3 Joe —ul?(kq+kp+k3)

X E J/ e 2T

ky k3 eNU{0},k1 eN (325)
(—2&c+2U+vd)kq

X e I

% / e (kr-Hk)I e (ve —u)l =y Iy +y-(ve —I/20) g gy
xy=—=%+U—-Ec

with the notice that from (3.21) and (3.22), ¥ and t are functions
of n, and E,,.

4. The two-fluid Euler quantum hydrodynamic limit

In this section, we will derive a two-fluid Euler quantum hy-
drodynamic limit from (2.9)-(2.45). In this case, € is a constant, so
we will set it to be ¢ = 1. Choose € to be any small parameter.
In order to obtain the Euler hydrodynamics limit, let us start with
the following Hilbert expansion using € as the small parameter
(cf. [59]):

n
f=) &M +és,
i=0

in which n and [ are positive integers. As a consequence, we can
replace f by its Hilbert expansion into

Df = Calf],

to get alinear system of equations and a weakly nonlinear equation
for the remainder ¢, which reads as:

Bi(f9, fO) + Bo(f @, 0, fOy = 0,

(4.1)

(4.2)

2B:(f, f ) + 3B, £, V) = D,

2B,(F7, 1) + 3B, £, £
i-1
— Df(i—l) _ ZBl(f(i),f(i_j))
j=1
i-1

J,k=1,0<j+k<i
fori=2,3,....n
The equation for the remainder r is as follows:

(4.3)

By(f, f10. £0771), (4.4)

1 o .
De ==Lc+2) &7'B(fD,
¢ =zLc+2) @B, <)

i=1

n
+ & Bi(c. )+ 3> Bo(F. [V, <)
i=1
e e (4.5)
+ 326&]7 By(fD, f9, )4+ 38""VBy(F, ¢, ¢)
ij=1

n

+ 3871 @B ¢ g)
i=1

+ @ By(s, 5, 5)+ €',

where 9 is an operator of F, f(V), ..., f™.

Let us now consider each equation in the above system. From
the first equation (4.2), we deduce that f(©) has to be a Bose-
Einstein distribution:

fO=r (4.6)

Egs. (4.3) and (4.4) lead to linear integral equations for f(V), ..., f®.
Thanks to Fredholm'’s theory, these linear integral equations are
solvable if the right hand sides are orthogonal to N in L?(R3).
As a consequence, f(!) can be solved from (4.3), if the following
condition is satisfied
PDF = 0. (4.7)

We recall that P and PL = 1 — P are the orthogonal projection
operators onto A and R in [2(R3).

4.1. The Euler quantum hydrodynamic limit of the thermal cloud
kinetic equation

Integrating Eq. (2.2) in p, we obtain

o f f(t.r.p)dp+V, - / pf(t. 1. p)dp
R3 R3

- /R3 V:U(t,r,p)- Vpf(t,r,p)dp (4.8)
= /}Rﬁ Cr2lfI(t, 7, p)dp + /mﬁ Ca2[f1(t, 7, p)dp.
Using the fact that
[t ropdo = [ calfice.r.pip <o
we get
o [ do+%- [ pidp = i, (49)
Eq. (4.9) can be rewritten as
oy + Vi - (npuy) = Ialf]. (4.10)
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For an arbitrary momentum vector p = (p1, p2, p3), we choose pj,
j € {1, 2, 3} as a test function for (2.2) and obtain

o / f(t.r. ppydp + ¥, - f pf(E. T, P)pidp
R3 R3

— f Vi U(t, 1) - Vpf(t, r, p)pjdp (4.11)
R3

= [ peatrie.rpip+ [ pCatrie.r. i
R R
Due to the conservation of momentum for C;; and Gy,
/ (pj — vg)Cr2lfldp = f piCa(fldp =0,
R3 R3

we get
o / f(t.r. ppydp + ¥, - / pf(E. T, P)pidp
R3 R3

— /RB V. U(t, r)- Vf(t, T, p)pidp (4.12)

= / UCj(t’ T)C]Z[f](t, r, p)dp
R3

= vg(t, r)alf1(t, ).

Let us look at the first term on the left hand side of (4.12)
O /3fpjdp = 8t(nnvnj) = O¢NyUpj + N0y, (4.13)
R

in which vy; is the component of v, = (Vn1, Un2, Un3).
By using (4.10), we can deduce from (4.13) that
0 /prjdp = FlZ[f]Unj — Uy Vy - (nyvn) + nnatvnja (4.14)
R

Now, let us look at the second term on the left hand side of
(4.12),

3
V- | pfpidp = oy, / pipifdp
/11;3 ) ; o3 ).
3
= Zari/ [(pi — Um’)(P]
i=1 R3

+ Pjvni — Univyilfdp

— Upj) + Pivnj

& (4.15)
= Z O, (131 — Ui )(Pj — vnj)fdp
Z arl / DiVUnj + P;Um)fdp
- Z arif UniUnjfdp~
) R3
i=1
By observing that
| o+ e, pMdp =20t e, e )
R (4.16)
/3 UniUnif (¢, 17, p)dp = (L, T)vni(t, (L, T),
R
we infer from Identity (4.15)
= / pfp;dp
R3
3 (4.17)

Unj)fdp + Z arl Upj UniMln].

i=1

3
= ;ari /};3 Um)(

The last term on the left hand side of (4.12) can be rewritten in the
following form, by integration by parts and the definition of n,,

—/ V.U - V,fpjdp =/ 8rjdep=nn8rjU.
R3 R3

Putting the three terms (4.14), (4.17) and (4.18) together, we find
3

My B + Vo - V) vy = — Y 3y PIf I — madyU — (v — vg)Talf 1,
i=1

(4.18)

(4.19)

where
PIfly = f (i — v(t. 1) (B — v, D) FCE. T p)p. (420)

Choosing |p|?, as a test function for (2.2) yields
o [ sie.rpipPdp-+ - [ ipipste.r pip
R3 R3

- f V(L. 1) - Vof (¢, 1. p)lpldp (4.21)
R3

= f3 IpICialf N, 7, p)dp + /3 IpI*ColfI(t, T, p)dp.
R R
Let us recall the conservation of energy for Cy; and Cy,
/ IPPColfldp = 0,
R?’
and

0= 2/ (gp - 50) Clz[f]dp
R3

/ (IpI> +2U = 2pc — v2) Cialf 1dp,
R3
which leads to

Bt/ ft, r,p)lplzdp+Vr-/ IpI?pf(t, 1, p)dp
R3 R3

- / V(L. 1) - Vof (¢, 1. p)lpldp (4.22)
]R3

= (—=2U 4 2uc + v7) Ti2[f1(t. 7).

Similar as above, we consider each term on the right and left hand
sides of (4.22). Let us start with the first term on the left hand side

/flpl dp = c(/R3f|p—vn|2dp>

(4.23)
+ at (f f2p . Undp> - at (/ f|Un|2dp> s
R3 R3
where we have used the identity
Ip — val® +2p - vn — |val® = D). (4.24)
Since
(/ - Undp> = |Un|2nn = (f f|Un|2dP) )
R3 R3
we obtain from (4.23) that
3 2dp =9 / —vzd)—i-a val’n
r/Rsflpl p r( Rgflp nl?dp ) + 3¢ (Jval®nn) (425)

=20E + 9 (Jval*ny) .

Expanding the second term on the right hand side of (4.25) gives
us

at/ flpl2dp = 20:E + 2n,vp - 8cvn + |vnl?0e0n, (4.26)
R3
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which, by (4.10) and (4.19), can be rewritten as

/ fIpl*dp

=20,E + Z 20y [—

j=1

3
> 0y PIfly — nadyU
i=1 (4.27)

- (Unj - ch)FIZ[f] — NpUp - vrvnji|
+ |Un|2[F12[f] — V- (mug)].

Now, for the second term on the left hand side of (4.22), it is
straightforward that

v, - f p|*pfdp
]R3
=V, (/ Ip — val?(p — vn)fdp)
1R3

A\ </ |Un|2Unfdp)

]R3
—3V,- (/ Ivnlzpfdp) +3V, - (/ Iplzvnfdp),

R3 R3

which, as a view of the identity

/ |vn|2vnfdp=f loupfdp = [va 2vai,
R3 R3

can be expressed as

v, - / pI*pfdp
R3

=V (/ Ip— vnl*(p — Un)fdp> -2V, - (|Un|2Unnn)
R3

+3V, - (/ Iplzvnfdp> -

Using (4.24), we can rewrite (4.29) as
f |pI*pfdp
=V, (/Rg Ip — val2(p — vn)fdp> — 2V, - (lval*vamn)
+ 3V, . (/ Ip — va|vefdp
R3

+ 2|Un|2/ pfdp — |Un|2vn/ fdp> s
R3 R3

which can be reduced to

7 / Ip|*pfdp
R3

=V;- (/3 Ip— vnl*(p — Un)fdp> =2V, - (|Un|zvnnn)
R
+ 3V, - (/ Ip — vnl*vafdp + |Un|2Unnn)

= (/ Ip — val?(p _Un)fdp>+vr (|Un| vnnn)

+ 3V, - ( /Ip—vnlzfdp)

The last term on the left hand side of (4.22) can be rewritten in a
straightforward manner as follows:

/Ipl ViU - Vpfdp = —2V,U /pfdp

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

Notice that the right hand side of (4.32) can be expressed in terms
of n, and v, as

—2V,U / pfdp = —2V,U - (nuuy) . (4.33)

As a consequence, we find

/3 PI?V:U - Vpfdp = — 2V,:U - (yvy) .
R

Combining (4.22), (4.27), (4.31) and (4.34), yields

3
20E+ ) 2vy [_

j=1

(4.34)

3
>0y PIfly — ndyU

i=1
- (vnj - vcj)FIZ[f] — Npp - Vrvnj:|

+ vl [M20f1 =

+ Vi (/ P — val*(p — “")fdp> + Ve - (Joal*van)
R3

Vr : (nnvn)] (435)

+ 3V, - (Un[ p— Un|2fdp> — 2V, U - (navy)

= (—2U + 2uc + v2) I'2lf1,
which leads to
OE + V, - (Evy)
° 1
= — Vi R[f] - Z 5 (vnidh; + vojor;) Py

ij=1
Un — v )
+<%+MC_U)FHU]’

where

(4.36)

J— 2 J—
RIFIE ) = / 2=l 0= e, pyap
R3

The three equations (4.10), (4.19) and (4.36) lead to the following
system of moment equations for the kinetic equation of the ther-
mal cloud:

0y + Vi - (muy) = Ip[f1,

(4.37)

3
Ny (0 + vy - V) Upj = — Z arjp[f]ij - nnarJU - (Unj - ch)rlz[f],
i=1

3 (4.38)
E + Vi (Bvn) = =Vy - RIfT = o (vnily + vnidy,) Py
ij=1

Y
+<w+ﬂc—u) I'p[f].

Replacing F into (4.38), we obtain R[F] = 0,

Pyi(t, T) = 8E(t, 1) = si,»/R ";'zf (t,r,p)dp. (4.39)
Moreover, we note that
E(t, 1) = %fE(t, r). (4.40)
As a consequence, we can close the system (4.38) to obtain

dne + V, - (neve) = — [ Fl,

Ny (B 4+ vy - VYvn = =V, By — 1, VU — (v — v )2 [F,

OBy + V, - (Eyup) = —%fﬁ:nv, Un (4.41)

T3 2

2 ((Un - Uc)z
3

+ e — U) I'p[F].
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4.2. Comparison with a previous result

Putting the two systems (2.9) and (4.41) together, one finds the
following two-fluid Euler quantum hydrodynamics

ne + Vi - (neve) = — I F],
V,v?
Orve + ) = —Viie,
0Ny + V- (Nvn) = Ip[Fl,
Ny (0 + vy - V) Upj = _vrfEn -, V;U — (vnj - vcj)r12[]:]v (442)

- - 2.
Ey + Vi - (Eqvy) = _gEnvr *Un

2
+ % (w + e — U) I'p[Fl.

In (4.42), the condensate and non-condensate parts are coupled
through both u. and I7,. Notice that I'y; is already computed in
(3.24) and (3.25).

In the thesis [28], the author has derived the following hydro-
dynamic limit:

one + V- (ncve) =0,
Oy + Vi - (nyvy) =0,
0(npvn) + Vi - (Mg ® vy + Eplz) = —gn, Vr - (20, +n¢),

g
0(ncve) + Vi - (neve @ ve) = _Encvr -(2ny +ne),
8t(5nn|vn| + E“c|vc| + EEn + Z(znn +nc)%)

1 2 1 2 5
+ V- <5nn|vn| U + inc|vc| Ve + EEnvn

+ %(znn + n¢)(2ngv, + ncvc)) =0,

where I3 is the identity 3 x 3 matrix. It is also mentioned [28] that
this is a two-phases Euler system, the second fluid (the superfluid)
being pressureless and they do not exchange mass, contrary to
what occurs in the Landau two-fluid theory [29,30].

On the contrary, our limit (4.42) agrees with the Landau two-
fluid theory [29,30]. The main reason is that, following [14], in
general excited atoms in the condensate need not be in local
equilibrium with the condensate atoms. As a consequence, C;; and
C,5, in most of the cases, do not share the same equilibrium distri-
bution. Our equilibrium distribution F is the natural equilibrium
used in most physical contexts [ 14] and Ca; [ F] = 0but C3[F] # 0.
Therefore, the two fluids are coupled.

In [28], the author considers a very special choice of F

1
eBlp—vn)2/2—vc—vn|?/2-U/2] _ 1’

F(t,r,p)=

where the temperature parameter § is a constant, instead of being
a function of (t, r). Moreover, the effect of the chemical potential
wu(t, r) is also ignored. This special choice of the distribution F
implies Cp;[F] = Ci2[F] = 0. The two fluids are then decoupled,
that is in contradiction with the Landau two-fluid theory [29,30],
as the author pointed out.

5. The two-fluid Navier-Stokes quantum hydrodynamic ap-
proximations

This section is devoted to the derivation of the Navier-Stokes
approximation of the system (2.37)-(2.45) through the Chapman-
Enskog expansion, under the assumption g = €%, Similar as in

Section 4.1, we also have the expansion:

n
F= Y e0 e,

i=0

(5.1)

in which n and [ are positive integers.
Arguing similarly as above, we deduce that f(®) has to be a Bose-
Einstein distribution:

fO=7F (5.2)
Decompose f® into two parts

FO B 4 ), (5.3)

where

D er, kKD en.

From (4.3), one has

W =7 pF. (5.4)

Adopting the same techniques used in [60,61], we decompose
hY into the sum of h’ and h”:

h(l) — h/ + h”,

where i’ and h” satisfy the following system of equations:

ch = PDF, (5.5)
PDF = —ePDH, (5.6)
£h” = ePpkV, (5.7)
Ppk"Y = —PpH”, (5.8)
and
i—1
ch® = Pt Dk 4+ PLDRD — 3 " Qi (9, 1)
j=1
i—1
- Z Quf D, f0, fU=i=h)y, (5.9)
J.k=0,0<j+k<i
Pk = —Pph®. (5.10)

By the Fredholm theory, the system (5.5)-(5.8) can be solved in
[2(R3), if

W = \(P*DF),

(5.11)
W = £ (ePtDkD)
and
i—1
B — 5—1(€]P>kam 1 plppi-1 _ Zgl(f(i),fu—j))
. = (5.12)
- Y B0 FT),
J.k=0;0<j+k<i
fori=2,3,...
Eq. (5.11) yields
PDF = —ePDh' = —ePDL™'PIDF. (5.13)

Eq. (5.13) leads to the Navier-Stokes approximation, which will
be computed in Section 5.2.
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5.1. Inversion of the linearized operator of Cy;

Define
Ap)=p®p— 5IpPid,  BB)= Jp(pl ~ ) (5.14)
clearly,
Aje L kerc, By Lkert, B L Ay, jkl1=1,2,3. (5.15)

By the same algebraic argument as the one used for the classical
Boltzmann collision operator (cf. pp. 64-65 [57]), one can deduce
that there exist scalar-valued functions ag(|p|), @1(|p|) such that

2 2
c (f E”i (p))=ao(|p|)f(p)A<p)

)
*(p) p)
( M) (p)) ai(lp I) M) B(p).

A direct consequence of (5.16) is the existence of scalar-valued
functions Bo(|p|) and B1(|p|) such that

2
c—l( ﬂ) Bollp |FEP; i0).
),

(5.16)

M(p

1 fz(p)< 2_10r522(y)> ) FAp
L <M(p) Ipl 20 Billpl)—— M)

where p', Bi(p) are the ith component of the vectors p and B(p)
respectively. In addition, A;(p) is the (i, j)th element of the matrix
A(p). Note that these symmetry invariances are very similar to the
ones obtained in the context of the classical Boltzmann collision
operator (cf. Equation (2.100), pp. 64-65 [57]); we then denote

F2(p) _ F(p)
M(p)Aq(m, (p) = Ailph

(5.17)
Bi(p),

€;(p) == Po(lpl) Bi(p). (5.18)

5.2. Navier-Stokes quantum hydrodynamic approximation of the
thermal cloud

In this subsection, we will derive the Navier-Stokes system
resulting from (5.13). First, observe that

PHITF
3
F2 . . 1 10v
= {(p'_vni)(pl_vnj)_3|p Uy 81]} 811]
M = Xi (5.19)

3
F2 . 10T82:(y) i 1 ot
+ ™ {|p Vn| 321(7) ?:1(17 vm)Z‘L'Z o’

Classical techniques for the classical Boltzmann collision oper-
ator can be applied (cf. [31]—pp. 456-457 and [60,61]), to get

—Prc'PrIOF
_ Vi QVng | OUn;
(D (T (o (e B
3
2 9 .
3 o1, (w(y’f);: or; ))
3
-l (z

31:
Q 31’,’
i=1

(5.20)

where
1

w(w)z——/ £16 (8 )dE (5.21)
T Jg3
1

o D)= 3 f 6P €1 (6 )de (5.22)
12 Jp3

with &, & are the components of the vectors & = (&1, &, &3) and
¢4, €1 are defined in (5.18).
Notice that

DF = IIF + 0(e%).

The first order approximation in terms of € of the quantity
ePDL'PLDF is then ePIT£~'PL 11 F. The Navier-Stokes system
(5.13) becomes

PDF = —ePI1 L 'PHITF, (5.23)
which, thanks to the identity (5.20), leads to

0y + Vy - (Mvy) = eIp[F],

My (O¢ + vp - V) Upj + 9r;(npen)

= _nnvr€50U - (Unj - vcj)EFlZ[}—]

3
d vy dup;
+ € |:IZ; ar < (nna en)( T + N
29 duni
- 3 aTJ < nny en)z >:|

2
ocen + Vi - (equn) + genvr *Un

172 — vy
zf[f W=V | e~ U + &) eral ]
n,L3 2

3
d de on
Z a. Ql Ny, en) - + Ql(nn’ en)in
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3
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w(n,,e
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(5.24)

where
@ (Mg, €n) = w(y, 7),
G(ny, ) =210y 2(y),
at
01(nn, en) = o(y, T)aTen’
ot

an,

(5.25)

02(y, ey) =o(y, 1)

Combining (2.9) and (5.24), we get the “closed system”.

Moreover, the Navier-Stokes system of the excitations is very
different from the Navier-Stokes system obtained from the classi-
cal Boltzmann equation (cf. [31]) in several points:

e First, in the classical Navier-Stokes system, the viscosity
coefficient & and the heat conduction coefficient o1 depend
only on e,. In the above quantum Boltzmann system, they
depend on both e, and n,,.

e Second, different from the classical Navier-Stokes system,
the second derivatives of n, also appear in the system.

e Third, the Navier-Stokes system of the excitations is coupled
with the system of the BEC super fluid via the quantity
eI';z[F], computed in (3.25).
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The Navier-Stokes system for the excitations therefore has
a completely different nature in comparison with the classical
Navier-Stokes equation. And, hence, one could expect more com-
plicated behaviors, that would be a subject of our future studies.
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