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ABSTRACT. We consider the population of critical points generated from the critical point
of the master function with no variables, which is associated with the trivial representation
of the twisted affine Lie algebra A(Qi) The population is naturally partitioned into an infinite
collection of complex cells C™, where m are some positive integers. For each cell we define
an injective rational map C™ — M(Agl) ) of the cell to the space M(Aéi) ) of Miura opers of
type A(zi) We show that the image of the map is invariant with respect to all mKdV flows
on M(Aéi)) and the image is point-wise fixed by all mKdV flows % with index r greater
than 4m.
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1. INTRODUCTION

Let g be a Kac-Moody algebra with invariant scalar product (, ), h C g Cartan subalgebra,

o, - . ., o, simple roots. Let Ay, ..., Ay be dominant integral weights, ko, . .., k, nonnegative
integers, k = ko +--- + k.
Consider CV with coordinates z = (z1,...,2n). Consider CF with coordinates u collected

into n 4 1 groups, the j-th group consisting of k; variables,
w=(u®, . .. u™), ) =@ u,(g))
The master function is the multivalued function on C* x C" defined by the formula

(1.1) Ou,2) = > (Ao Ap)In(za — 2) = Y (a7, Ad) In(uf) — 2,) +

a<b a,i,j

—l—ZZ(aj,aj/)ln(ugj) uld)) —i—ZZ aj, ;) In(ul? — ud)y,

<’ i i<

with singularities at the places where the arguments of the logarithms are equal to zero.
A point in C* x CV can be mterpreted as a collection of particles in C: z,,u;”’. A particle

zs has weight A,, a particle u ) has weight —a;. The particles interact pa1rw1se. The
interaction of two particles is determlned by the scalar product of their weights. The master
function is the "total energy” of the collection of particles.

Notice that all scalar products are integers. So the master function is the logarithm of a
rational function. From a "physical” point of view, all interactions are integer multiples of
a certain unit of measurement. This is important for what will follow.

The variables u are the true variables, variables z are parameters. We may think that the
positions of z-particles are fixed and the u-particles can move.
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There are "global” characteristics of this situation,
I(z,k) = /eé(“’z)/ﬁA(u, z)du,

where A(u, z) is a suitable density function, k a parameter, and there are ”local” character-
istics — critical points of the master function with respect to the u-variables,

dy®(u, z) = 0.

A critical point is an equilibrium position of the wu-particles for fixed positions of the z-
particles. In this paper we are interested in the equilibrium positions of the u-particles.

Examples of master functions associated with g = sl, were considered by Stieltjes and
Heine in 19th century, see for example [Sz]. Master functions we introduced in [SV] to
construct integral representations for solutions of the KZ equations, see also [V1, V2.

The critical points of master functions with respect to the u-variables were used to find
eigenvectors in the associated Gaudin models by the Bethe ansatz method, see [BF, RV, V3.
In important cases the algebra of functions on the critical set of a master function is closely
related to Schubert calculus, see [MTV].

In [ScV, MV1] it was observed that the critical points of master functions with respect
to the u-variables can be deformed and form families. Having one critical point, one can
construct a family of new critical points. The family is called a population of critical points.
A point of the population is a critical point of the same master function or of another
master function associated with the same g, A, ..., Ay but with different integer parameters
ko,...,k,. The population is a variety isomorphic to the flag variety of the Kac-Moody
algebra g' Langlands dual to g, see [MV1, MV2, F].

In [VW], it was discovered that the population originated from the critical point of the
master function associated with the affine Lie algebra ;[n+1 and the parameters N = 0, kg =
-+ =k, = 0is connected with the mKdV integrable hierarchy associated with ;[nﬂ. Namely,
that population can be naturally embedded into the space of 5A[n+1 Miura opers so that the
image of the embedding is invariant with respect to all mKdV flows on the space of Miura
opers. For n = 1, that result follows from the classical paper by M. Adler and J. Moser [AM],
which served as a motivation for [VW].

In this paper we prove the analogous statement for the twisted affine Lie algebra Aéi)
The special case A was considered in [VWW].

In Sections 2 - 4 we follow the paper [DS] by V. Drinfled and V. Sokolov. We review the
affine Lie algebras AS} and Aéi), the associated mKdV and KdV hierarchies, Miura maps.
For example, the Aéi) mKdV hierarchy is a sequence of commuting flows on the infinite-
dimensional space M(Aéi)) of the Agl) Miura opers.
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In Section 5 we study tangent maps to Miura maps. In Section 6 formula (6.1), we
introduce our master functions,

0 0 n n
(1.2) @(ug),...,uéo),...,ug),...,ué))

n

n—2
=4 Z In(u!"" Y — ugfl)) -2 Z Z In(u¥ — ul(.,jH))

=0 4

n—1
+8 Zln(ugn) - uf/n)) + 42 Zln(ugj) - uf,j)) +2 Zln(ugo) - ug,o)).

1<i! J=1 i<d’ 1<’

This master function is the special case of the master function in (1.1). The master function

in (1.2) is defined by formula (1.1) if g is the Langlands dual to Agi) and N = 0, see a remark
in Section 6.1.

Following [MV1, MV2, VW], we describe the generation procedure of new critical points
starting from a given one. We define the population of critical points generated from the
critical point of the function with no variables, namely, the function corresponding to the
parameters kg = --- = k, = 0. That population is partitioned into complex cells C™ labeled
by degree increasing sequences J = (ji,...,1n), see the definition in Section 6.5.

In Theorem 6.5 we deduce from [MV3] that every critical point of the master function
in (1.2) with arbitrary parameters ky, ..., k, belongs a cell of our population. Moreover, a
function in (1.2) with some parameters ko, ..., k, either does not have critical points at all
or its critical points form a cell C™ corresponding to a degree increasing sequence.

In Section 7, to every degree increasing sequence J we assign a rational injective map
p’ : C™ — M(Agi)) of the cell corresponding to J to the space M(Agi)) of Miura opers of

type Agi) We describe properties of that map.
In Section 8, we formulate and prove our main result. Theorem 8.1 says that for any

degree increasing sequence, the variety p’(C™) is invariant with respect to all mKdV flows

on M(ASL)) and that variety is point-wise fixed by all flows -2~ with index 7 greater than

ot,
4m.

Our result shows that there is a deep interrelation between the critical set of the master
functions of the form (1.2) and rational finite-dimensional submanifolds of the space M (A;i)),
invariant with respect to all flows of the Aéf} mKdV hierarchy.

Initially the critical points of the master functions were related to quantum integrable
systems of the Gaudin type through the Bethe ansatz, [SV, BF, RV, V3|. Our result shows
that the critical points are also related to the classical integrable systems, namely, the mKdV
hierarchies.

In the next papers we plan to extend this result to other affine Lie algebras.

The first author thanks MPI in Bonn for hospitality in 2015-2016.

2. KAC-MOODY ALGEBRA OF TYPE Agln)

In this section we follow [DS, Section 5.
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2.1. Definition. For n > 2, consider the (2n + 1) x (2n + 1) Cartan matrix of type Agj,

2 -1 0 ... 0 -1
apo Qo1 ---  Qp2n -1 2 -1 ... 0 0
A&): _ 0 -1 2
A2n,0 QA2n1 --- (A2p2n 0 0 0 .. 2 -1
-1 0 0 -1 2

The Kac-Moody algebra g(Agl)) of type Agg is the Lie algebra with canonical generators
E; H; F; € g(Agl)),z' =0,...,2n, subject to the relations:

[Ei7 F}] - 52,jH27
[Hi) EJ] = aivjEj, [Hu F]] = —aiijj, (ad Ei)liai’jEj = 0,
(ad F)' 0 Fy =0, [Hi Hj) =0, 3, Hi =0,

see [DS, Section 5]. The Lie algebra g(Agl)) is graded with respect to the standard grading,

degE; = 1,degF; = —1,1 =10,...,2n. Let g(ASL))] ={z € g(Agl)) | degx = j}, then
J

a(Ay) = Bjez (45, -

Notice that g(A{Y)? is the 2n-dimensional space generated by the H;. Denote b = g(A{Y)0.
Introduce elements «; of the dual space h* by the conditions (a;, H;) = a;; for i,j =

0,...,2n. For j = 0,1,...2n, we denote by n; C g(ASL)) the Lie subalgebra generated by

F;,i€{0,1,...,2n}, i # j. For example, ny is generated by Fi, Fy, ..., Fy,.

2.2. Realizations of g(ASL)) Consider the complex Lie algebra sls, 1 with standard basis
€ij) Z,j = 1,,2n+1

Let w = 2™/ Define the Coxeter automorphism C : sly, 1 — slaniq of order 2n + 1
by the formula

C(X)=5XS" §=diag(l,w,...,w*").

Denote (sly,41); = {x € sly,11 | Cx = w/z}. The twisted Lie subalgebra L(sly,11,C) C
sly,11[€, €71 is the subalgebra

L(slyp+1,C) = Bjez & ® (5l2n41); mod 2n+1-
The isomorphism 7¢ : g(AS)) = L(sly41, C) is defined by the formula, for i =1,...,2n

FEo— & ® e12n41, Ei— @ e,
—1 1
Fo—= & ® ey, Fi—= & ®ei41,
Hy— 1® (e11 — €ant1,2n+1); Hi—1® (—e;+eit1,i41)-

Under this isomorphism we have g(4$))" = ¢ @ (sl2n41);-
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The standard automorphism og : Sly,y1 — Slo,oq is the identity: oo(X) = X. The

isomorphism 7y : g(Aéln)) — L(slon11,00) is defined by the formula, for i =1,...,2n

Ey— A® e12n41, Ei = 1® e,

Fo—= A ' ®eaniia, Fi—=1® e 41,

Ho = 1® (€11 — €zns12n41),  Hi= 1® (=i + €iv1it1)-
2.3. Element A, Denote by A the element Zzn E; € g(A(l)). Then 3(AY) = {z €
g(Agl)) | [AW, 2] = 0} is an Abelian Lie subalgebra of g(A ) Denote 3(A§1)) = 3(Agn)) N

0(A45,)", then 5(Aly)) = Sjen5(A45)). We have dim(A3))7 = 1if j # 0 mod 20 + 1 and
dlmg,(Agn))J = 0 otherwise.

Let g(Agn) be realized as L(sly,11,C)) and written out as (2n + 1) x (2n + 1)-matrices.
For m € Z and 1 < j < 2n + 1 introduce the element

e 1)mesi 0 I;
A(2n+1)m+j = 6(2 Hhymts ® < j) € L<5[2n+17 C)a

Iy 0
where I; is the j x j identity matrix. We have A, q1ym; = (Ap)EHmts,

If g(A n) is realized as L(sly,41, 00), introduce the element

0 A" ® I
B(2n+1)m+j = <>\m ® IZn-l—l—j 0 ’ S L(5[2n+1a 0-0)‘

We have Bont1ym+j = (By)@ntmti,
Lemma 2.1. For any m E Z,1<j<2n+1, the elements (7¢) " (A@nt1)m+s)s
(70) " (Bant1ym+j) of 3(A ))(zn“)mﬂ are equall. n

Denote by A (@nt1)mtj the elements (7¢ )*1(A(2n+1)m+j) and (7 )*1(B(Qn+1)m+]) of g(Aé}j)

Notice that Agl = Z?ZO E; =AW, For any m € Z,1 < j < 2n + 1, the element A
2n+1)m+j‘

(2n+1)m+j
generates 5(A$3)(
Let T'= 7" T; be a formal series with T} € g(A(l)) Denote T+ =377 (Tj, T~ =

> jco Ty Let g(AQn) be realized as sly, ;1 [\, A7!]. Consider A = By asa (2n+1) x (2n+1)
matrix depending on the parameter A. By [DS, Lemma 3.4], we may represent 7" uniquely
in the form T = Z]__oo (AW)7 b, € Diag, where Diag C gl,,,; is the space of diagonal
(2n 4 1) x (2n 4 1) matrices. Denote (T}, = Z?:o by (AY, (T) 5y = 220 b5 (AW).
Lemma 2.2. We have (T){,, =T, (T) 0 =T, by = T°.
Proof. The isomorphism ¢ : sly,1[A\, A7'] = L(sly,41,CW) is given by the formula \™ ®
ekl > 5(2”“)””’“*’@6“ We have t(bo) = t(1®(bger s+ -+ -+ b3”+162n+172n+1)) =1® (bjer1 +
+bgn+162n+1’2n+1) & g(A ) (blA ) = L((b%el’l +b%6272+' . '+b%n+1€2n+172n+1)(62,1+' <+
Cont1ontA€1ont1)) = L(lb IXerans1+biea s+ b7 eani1on) = R (bleroni +b2ear +- -+
b eant1on) € Q(ASL)) s t(Do (AT = (e 4+ b2 jean + - 4 b2 eanp nta) (€12 +
© €. 9n41 +)\_1€2n+1,1)) = 0(51,161,24—' : '+52,"1€2n,2n+1 +b2_n1+1)\_1€2n+1,1) =¢® (51,161,2 +
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o b egn oni1 + 2 ean 1) € g(Agln))_l. Similarly one checks that +(b; (A)7) € g(A{LY’

for any j. 0
We have (A(l))f1 =32 eiir1 + A leanin,

Ey = A(1)€2n+1,2n+17 E; = A(1)€z‘,z‘, Fo = 62n+1,2n+1(A(1))_17 by = eiﬂ'(A(l)Yl’

fort=1,...,2n.

Lemma 2.3. Consider the elements Fo, F; + Fopiq_i,2(F, + Fyyq) fori=1,....,n—1 as
(2n + 1) x (2n+ 1) matrices. Let g € C. Then

(2.1) 9 =1+ geanir o (AM) 7
eI FitFmiis) = 1 4 g(e;s + eanp1-ignr1-i) (AD) 7,

e92(FntFni1) _ 1 + 29(€n,n + en+1,n+1)(A(1)>71 + 492€n,n(/\(1))72.

O
Lemma 2.4. We have
(2.2) eirriri A = AWe;;, eii(AM) ™ = (AD) ey i,
for all ©, where we set egp199n4+2 = €11. O

3. KAC-MOODY ALGEBRA OF TYPE Agi)

In this section we follow [DS, Section 5.

3.1. Definition. For n > 2, consider the (n + 1) x (n 4 1) Cartan matrix of type Agfj,

2 -1 0 ... ... ... 0
-2 2 -1 0
Cl07() Cl071 Cl,om O -1 9 -1

e e .2 -1 0

o ... ... ... 0 =2 2

The Kac-Moody algebra g(Agi)) of type Agff is the Lie algebra with canonical generators
e, hi, fi € g(A;i)),z' =0,...,n, subject to the relations
lei, fi] = Gijhi,  [hiseg] = aigej, [l fi] = —ai;fj,
(ade;)!"%ie; =0, (ad f;)' 7 f; = 0, [hi, h;] =0,
2(ho +h1+ -+ hno1) + hy =0,
see [DS, Section 5.
The Lie algebra g(A(;L)) is graded with respect to the standard grading, dege; = 1,deg f; =
~1,i=0,....n. Let g(4y) = {x € g(A3)) | degx = j}, then g(A5) = ez 0(45)
Notice that g(ASB)O is the n-dimensional space generated by the h;. Denote h = g(Agi))O.
Introduce elements «; of the dual space h* by the conditions (o, h;) = a;; fori,j =0,...,n.
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3.2. Realizations of g(A(;L)) Consider the complex Lie algebra sls,; with standard basis
€ijs Z,] = ]_,,2’['L+1
Let w = 2™/(4n+2)  Define the Coxeter automorphism C': sly, 11 — slo, 41 of order 4n + 2
by the formula
C(X)=-SXT's™t §=diag(l, —w,w? ..., w2 —w? 1 w™),

where the {}7 denotes transposition across the antidiagonal. Denote (sly,11); = {z €
sly,y1 | Cr = w/z}. The twisted Lie subalgebra L(sly, 1, C) C sly,1[¢, 7] is the subalge-
bra

L(sly,11,C) = ®jez & ® (5l241); mod dn+2-
The isomorphism 7¢ : g(Agl)) — L(slyp11,C) is defined by the formula

eo > § @ e19n41, en > €@ (ent1n + Entant1)

fors €1 ® eanyi, for €@ 2(enni1 + nting2)

e+ £ ® (€it1,i + Cont2—i2nt1—i) fir &1 @ (€41 + €ant1—i,2n42—i),
ho = 1® (e11 — €ant12n+1), By = 1®2(—epn+ €ntonta),

hi = 1® (—€i; + €it1,i41 — €2nt1—i2n+1—i + €2n42—i2m+2—i)-

Under this isomorphism we have g(Agi))J = @ (slany1);. Define the standard automorphism
09 : Slop1 — slo, 1 of order 2 by the formula

0o(X) = —QXTQ ' = - X", Q=diag(1,—1,...,—1,1).

Where the {}* is again transposition across the antidiagonal. Let (sly,41)0; = {2 €
slyyi1 | 0oz = (—1)7x}. Then the twisted Lie subalgebra L(sly,1,00) C slo,1[X, A7Y is
the subalgebra

L(slyp41,00) = @jez N ® (50204+1)0, j mod 2-
The isomorphism 7y : g(Agi)) — L(sla,11,00) is defined by the formula

e — A @ el 241, e = 1 ® (€41, + €ant2—i2nt1-i);

for A 1l® €an+1,1, fi = 1® (€541 + €2nt1-i2n+2-i),

Jn = 1@ 2(ennt1 + engims2),

ho = 1® (€11 — €ant12n+1), hyp = 1® 2(—enn + entonta),

hi = 1® (=€ + €it1,i+1 — Contl—i2nt1—i T €2nt2—i2nt+2—i)-

3.3. Element A®. Denote by A® the element Y27 e; € g(AS)). Then 3(AY)) = {z
g(Agi)) | [A® 2] = 0} is an Abelian Lie subalgebra of g(Agi)) Denote 3’ (Agi)) = 5(Agi)) N
g(Agi))], then 3(A£Z)) = @jezg(Aéi))j. We have dimg(Aéi))j =0ifjisevenor j =2n+1
mod 4n + 2 , and dim3(A)) = 1 otherwise.

For example, dim 3j(A52)) =11if j=1,5 mod 6 and the dimension equals zero otherwise;

dim 3j(A512)) =1ifj=1,3,7,9 mod 10 and the dimension equals zero otherwise.
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If 9(A2n> is realized as L(sla,+1, C') and written out as (2n + 1) x (2n + 1) matrices, then
for odd j, 1 < j < 2n + 1, introduce the element:
; 0 I; 0 I
4n+2)m An+2)m— 2n+1—
. . .. . . 4y (@n+2)ym=tj
where I; is the j x j identity matrix. We have A ioym+; = A3 .

If g(A ) is realized as L(sla,11,00) and written out as (2n+ 1) X (2n + 1) matrices, then
for odd j, 1 < 7 < 2n + 1, introduce the elements:

0 Nt @ T 0 N @ Dypi1j

We have Bni2)m+j = BYmH)mij )

Lemma 3.1. For any m € Z, odd j, 1 < j < 2n+ 1, the elements
(TO)_I(A(4n+2)m¢j), (TO)_I(B(4n+2)mij)a
of 3(ADYUn+2m=i gre equal, O

Denote the elements (Tc)_l(A(4n+2)m+j), and (79)~ (A(4n+2)m ;) of g(AgL)) by A

(4n+2)m+j
and Ag; +2)m—i respectively. Notice that A(2) =Y, = A®) . We set A§. = 0 if j is even

or j =2n+1 mod 4n + 2. The element A® (4n+2)mkj

2
(n+2)m; generates 3(14;71) )

3.4. Lie algebra g(Agn) as a subalgebra of g(A2n) The map p : g(A( )) — g(ASL)),

eo — Fo, ei — B + Eopti1-4, en — By + Epia,
fo = Fo, fir= Fi+ Fopti, fo—=2(F+ Foga),
ho — Hy, hi — H; + Hopy1-4, hy, — 2(Hy, + Hytq),

where ¢ = 1,...,n — 1, realizes the Lie algebra g(A(i)) as a subalgebra of g(A ) This em-

bedding preserves the standard grading and p(A®) = A®. We have p(3(A2)7) c (A

4. MKDV EQUATIONS

In this section we follow [DS].

4.1. mKdV equations of type Agl) Denote by B the space of complex-valued functions
of one variable x. Given a finite dimensional vector space W, denote by B(W') the space of

W-valued functions of x. Denote by 0 the differential operator %.

Consider the Lie algebra g(A ()Y of the formal differential operators of the form c0 +
S piceC,p € B(g (AL ) ). Let U=>,_ U, Uy € B(g (AN ) ). If £ € §(AL)), define

Lo, £ +

V(L) = L+ [U L]+ 5
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The operator ¢V (L) belongs to §(AY). The map ¢V is an automorphism of the Lie

algebra Q(ASL)) The automorphisms of this type form a group. If elements of g(Agl)) are
realized as matrices depending on a parameter as in Section 2.2, then eV (L) = eV Le7 Y.

A Miura oper of type Agln) is a differential operator of the form
(4.1) L=0+AY+V,

0
where A = 32" F; € g(Agz)) and V € B(g(ASL)) ). Any Miura oper of type Agg is an
element of g(Aé}j) Denote by M(ASL)) the space of all Miura opers of type A;l)

Proposition 4.1 ([DS, Proposition 6.2]). For any Miura oper L of type Aéﬁ} there exists an
element U =3, _U;, U; € B(g(Agl))l), such that the operator Loy = eV (L) has the form

Lo=0+AY+ 0,
where H = 37, H;, H; € BG(AS)Y). IfU,U are two such elements, then ¢*Ve2d0 = gadT
where T'=% ", T, T} 63(14%2)]'. O

Let £, U be as in Proposition 4.1. Let 7 # 0 mod 2n41. The element ¢(ALY) = e=240 (AM)
does not depend on the choice of U in Proposition 4.1. '

The element ¢(A$1)) is of the form Zf:_oo gb(As«l))i, ¢(A§al))i € B(g(Aéﬁ}) ). We set
OA) = 080 dA) S(AY) = 2 B(A)Y

Let r € Z~¢ and r # 0 mod 2n + 1. The differential equation
oL
ot,

is called the r-th mKdV equation of type Aé}j

Equation (4.2) defines vector fields %

For all r, s, the vector fields (%, a% commute, see [DS, Section 6].

Lemma 4.2 ([DS]). We have

(4.2) [P(AP)*, L]

on the space M(ASB) of Miura opers of type ASB

(4.3)

O

4.2. mKdV equations of type Aéi) A Miura oper of type Agi) is a differential operator
of the form

(4.4) L=0+A2 1V,

where A® = >0 e € g(AP) and V € B(g(Agi))O). Denote by M(AS?) the space of all
Miura opers of type Agi)

Proposition 4.3 ([DS, Proposition 6.2]). For any Miura oper L of type Agi) there exists an
element U =>"._ U;, U; € B(g(A;i))"), such that the operator Ly = eV (L) has the form

£0:8+A(2)+H,

1<0
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where H = Hj, H; e B(g(ASl))j). IfU, U are two such elements, then e*Ue=2d0 = gadT
where T = 5T € 3(Agi))j. O
Let £,U be as in Proposition 4.3. Let r be odd, r # 2n 4+ 1 mod 4n + 2. The element
qﬁ(A?)) = e2dU (Aq@) does not depend on the choice of U in Proposition 4.3.
The element gb(A@) is of the form Zfzfoo ¢(A£2))i, ¢(A§?))i € B(g(Aéf})l). We set
O = T oAP), 9(LPar)” = T d(A)

Let r € Z~g, r odd and r # 2n + 1 mod 4n + 2. The differential equation

oL
ot,

is called the r-th mKdV equation of type Agi)
Equation (4.5) deﬁnes vector fields ;2 on the space M(Agz)) of Miura opers. For all r, s,

7<0

]<0

(4.5) = [o(AP)*, L]

the vector fields at , a? commute, see [DS Section 6.

Lemma 4.4 ([DS]). We have

oL d
4.6 = ——¢(A@)0
(4.6 = o)
O
4.3. Comparison of mKdV equations of types A( ) and A . Consider g(A(n) ) as a

Lie subalgebra of g(A ) see Section 3.4. If Lis a Mlura oper of type A2n, then it is also a
Miura oper of type ASY. We have M(AZ) ¢ M(AL),

2n+1 2n-+1
(A7) MAZ) ={L=0+AD + 3 Twiers | Y v =0},
=1 =1
2n+1 2n+1

MASH) ={L=0+AD +> wiei; | > v =0, vj+ V20425 =0,j =1,....2n+ 1},

Lemma 4.5. Let r be odd, r # 2n + 1 mod 4n + 2, r > 0. Let LA (t.) be the solution of
the r-th mKdV equation of type A with initial condition LA (0) = L. Let LA (t.) be the
solution of the r-th mKdV equation of type ASB with initial condition LA (0) = L. Then
EA(2)( t,) = LA (t.) for all values of t,. O

Proof. The element U in Proposition 4.3 which is used to construct the mKdV equation of
type Agi) can be used also to construct the mKdV equation of type Aéﬁ} O

4.4. KdV equations of type A(an) Let B((07')) be the algebra of formal pseudodifferential
operators of the form a = Y. , a;0", with a; € B and finitely many terms with 7 > 0. The
relations in this algebra are

1€EL

OFu — ud* = Zk -1) —z+1)d—“a’“
dz*
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for any k € Z and w € B. For a =, a;0° € B((07")), define a* =7, a;0".
Denote B[d] C B((0~!)) the subalgebra of differential operators a = 1", a;0" with m €
Z=o. Denote D C B[0] the affine subspace of differential operators of the form
2n—1
L =94+ 3 w0
i=0
For L € D, there exists a unique Lonst = O+ 100" € B((07")) such that (L#H)Q”Jrl =
L. For r € N, we have Lz#1 = 9" + 37— b,0', b; € B. We set (LzF1)+t = 0" + 30— b0
For r € N, the differential equation

oL
ot,

(4.8) = [L, (L751) "]

is called the r-th KdV equation of type ASL)
Equation (4.8) defines flows % on the space D. For all r,s € N the flows 8% and
commute, see [DS].

0
Ots

4.5. Miura maps. Let £ = 0+AM 4V be a Miura oper of type ASI) with V' = Zi’:{l V€l ks
S22 e = 0. For i = 0,...,2n 4 1, define the scalar differential operator L; = 92! 4
Z?gl u;;07 € D by the formula:
(49) LO = L2n+1 = (8 — U2n+1>(8 - ’U2n> e (8 — UQ)(@ - U1>,

L,L' = (8 — Ul)(a — ’Ui,l) e (8 — Ul)(a — 1}2”+1) e (8 — Ui+2>(a — Ui+1>,

fort=1,...,2n.

Theorem 4.6 ([DS, Proposition 3.18|). Let a Miura oper L satisfy the mKdV equation
(4.2) for some r. Then for every i =0,...,2n the differential operator L; satisfies the KdV
equation (4.8).

Fori=0,...,2n + 1, we define the i-th Miura map by the formula
m; M(ASL)) — D, L — L;

see (4.9).
For i =0,1,...,2n, an i-oper is a differential operator of the form

L=0+AY+V 4+ W,

0

with V € B(g(AY)) and W € B(n;). For w € B(n;) and an i-oper L, the differential
operator €*¥ (L) is an i-oper. The i-opers £ and e*3*(L) are called i-gauge equivalent. A
Miura oper is an ¢-oper for any <.

Theorem 4.7 ([DS, Proposition 3.10]). If Miura opers £ and L are i-gauge equivalent, then
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5. TANGENT MAPS TO MIURA MAPS

5.1. Tangent spaces Consider the spaces of Miura opers /\/l( ) C /\/l( ) The tan-
gent space to M (AS ) at a point L is

(5.1)
2n+1 2n+1
TﬁM(Agn)) = {X = Z Xiem» | Z Xz = O, X]‘ + X2n+2—j = O, ] = ]_, ey 2n + 1},

=1 i=1

2n—1
where X; are functions of variable z. Recall D = {L = 9*"*' + >~ u;0'}. The tangent space
i=0

to D at a point D is TpD = {Z = 32", " Z:0'}, Where Z; are functions of x.
Consider the restrictions of Miura maps to M(A )) and the corresponding tangent maps

(5.2) T./\/l( )—)T()D, 1=1,....2n+ 1.

By definition, if £ = 9 + A® + 32" M ye,; € M(AP), X = S22 Xeis € T M(AD),
dm;(X) = 2" = 33" Zi07, then

(5.3) 7' = (=X) 0 —vii1) ... (0—v1)(0 = voni1) ... (O —vig1)
+ (0 —vi)(=Xiz1) ... (0 = v1)(0 = vany1) ... (O — vig1) +
+ (0 = v:)(0 —vie1) ... (=X1)(9 — vant1) - - - (O — vita)
+ (0 =)0 —vi—1) ... (0 —v)(—Xopt1) .- (O —vig1) +
+ (0 —v) (0 —vi1) ... (0 —v1)(0 — vaps1) .- (—Xig1)-

In what follows we study the intersection of kernels of these tangent maps when ¢ runs
through certain subsets of {1,...,2n 4 1}.

5.2. Formula for the first coefficient.

Proposition 5.1. Let L = 0—|—A(1)—|—anfl vie;; € M( ) X = ZQ"H Xiei; € TLM(A%)),
dmy(X) = 2" =330 Zi97. Then

2n+1 2n+1
(5.4) Z;n_1:—<ZUka+Zz— )Xp+ > ( z+2n+1—k)Xk>.

k=1 k=1 k=i+1
Proof. The proof uses only the identity ZQTILI v; = 0 and is straightforward. O

5.3. Intersection of kernels of dm;.
Lemma 52 Let L = 8—1— A(l) + Ei:il_ VkCk k € M(Agi) X = ZQH—H Xkek k€ TgM(Agi))
dm;(X)=2"= 232151 Z:07. Assume that Z3, | =0 fori=1,...,2n, then

2n
(5.5) X =20 X =) Xy,  X[=0, i=2..2n
k=2
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Proof. By assumption we have the system of equations

2n+1
(5.6) by +2X0, o+ (20— D)X] + 20X, + > Xy, =0,
k=1
2n+1
Xbpo+2X5 g4+ (20— 1)Xh, . +20X5, + > wXp =0,
k=1

2n+1
Xy g +2X), 4+ -+ (20— DX}, +20X),  + Y o Xp =0,
k=1
2n—+1
X[ 42X+ + (20— DX+ 20X5+ 30X =0,
k=1
2n—+1
Xy -4 (20— 1) X5+ 2nX5 + ) 0 X = 0.
k=1

By subtracting the first equation from the second we get 2nX), — X, | — X}, o — - —
X| — X3, = 0, equivalently (2n + 1)X5, — 32" X7 = 0. Since Y24 X, = 0, we get
X3, = 0. By subtracting the second from the third we get X}, ; = 0. Similarly we obtain

(5.7) X/=0, i=2,...,2n.

Applying (5.7) to the last equation in (5.6) yields X3, ., + Zi’:{l v X, = 0. By pulling

out the terms for k = 1,2n 4+ 1 we obtain X3, ., + v1.X1 + vony1Xont1 = —(X] — 201 X4) =
=3, vk X O

Lemma 5.3. Let j € {1,...,n—1}. Let £L = 0+ AV + X7 ge, € M(AD), X =
2 Xpern € TeM(AD)), dmy(X) = 70 = 23261 Z:07. Assume that Z3, | = 0 for all
i ¢{j,2n+1—j}, then

X]/ +0; X5 + 011 X401 = — Z v Xk, XJI + X]/‘-H =0, Xi=0
k=1,k#j,j+1
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Proof. By assumption we have the system of equations

2n+1
Xp +2X5, 4+ (20— D)X+ 20X] + Y 0 Xy =0,
k=1
2n+1
Xb +2X5, 54+ (2n = DX +20X5,,, + > e Xi =0,
k=1

Xoprj -+ Cn+1-)X]+@2n+2—5)X5,,1 +...
2n+1
R 2nX§n+3,j + Z Uka = 0,
k=1
2n+1
Xén—l—j +oee (27’L —1- j)X{ + (2% - .])Xén—l—l +oee 2nXén+1—j + Z Uka: = 07
k=1

2n+1
Xjt e+ X 4 G+ DX+ 20X+ ) 0Xy =0,
k=1

Subtracting the second line from the first gives Xj, ., = 0, cf. the proof of Lemma 5.2.
Similarly, for i ¢ {j,j+1,2n+1—7j,2n+2—j} considering the difference Z4. ', —Zi |, =0
we obtain X/ = 0. ’ .
Considering the difference Zy" ">~/ — Z3"~] = 0 we obtain
2n+1
bor o @nA L= X+ @+ 2= )X, 420X, Y uX
k=1

2n+1
_< én—lfj +-+ (2n -1- j)Xi + (277, - j)Xén+1 +- T+ anénJrl*j + Z Uka)
k=1

2n—+1
= —(2n+ )Xoy + Xonip ) +2 Z X, =0.
k=1

/ / _ / / _ : : 2n+1 __
Hence X5, 1_; + X5, ; =0 and X; + X ., = 0. Now we can rewrite equation Zy"; =0
as

2n+1

(= D Xppay + 5 Xppry + 20— X1y + o+ 1- )X+ 30X = 0.
k=1
Or equivalently
2n+1 n n
2X) 4+ > Xy =2X) 42 wXy =2(X) + 0, X; + v Xjn + Y, nXy) =0
k=1 k=1 k=1,k#j,j+1
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Lemma 5.4. Let L = 8—}- A(l) + el Uker € M(AD), X = S Xpern € T, M(AD),
dm;(X)=2"= 23261 Z;0°. Assume that Zy, | =0 for alli ¢ {n,n + 1}, then
n—1

X;—kann:—kaXk, X =0, i¢{n,n+2}.
k=1

Proof. By assumption we have the system of equations

2n+1
Xby +2X3, g+ + (20— DX, + 20) X1 + Y uXy =0,
k=1
2n+1
Xy +2X5 54+ (20— DX] + (20) X}y + Y Xk =0,
k=1
2n+1
X+ (- DX+ (04 2)Xg 00+ + 20X 5+ > Xy =0,
k=1
2n+1
Xy o+ (n=2)X[ + (n= DX+ + 20X, + > 0 Xy =0,
k=1
2n+1
Xy +2X5, 4+ 2nX5+ ) Xy, = 0.
k=1

Subtracting the second line from the first gives X ., = 0, cf. the proof of Lemma 5.2.
Similarly, for i ¢ {n,n + 1,n + 2} considering the difference Z. ', — Zi | = 0 we obtain
X] = 0. Notice that X,, 11 = 0 by assumption.

Now we can rewrite equation Z3""| = 0 as

2n+1 n—1
(=X, 5+ n+ DX, + > 0Xp=2(X], + v, X, + > 0pXy) = 0.
k=1 k=1
]
6. CRITICAL POINTS OF MASTER FUNCTIONS AND GENERATION OF TUPLES OF
POLYNOMIALS
In this section we follow [MV1]. For functions f(x), g(x), we denote
Wr(f.9) = f(x)g'(z) — f'(x)g(x)
the Wronskian determinant, and f'(z) := %(w).
6.1. Master function. Choose nonnegative integers k = (ko, k1, ..., k). Consider variables

u= (uz(.j)), where j =0,1,...,nand i = 1,..., k;. The master function ®(u; k) is defined by
the formula:

(6.1) B(u, k) = =43, n(u"™ —uf) = 23700 5, In(u? — u ™)
82 i ln(ugn) - UETL)) +4 27;11 D i< hl(uz(j) - UE/J)) +2 ln(ul(.o) - UE'O)>-
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The product of symmetric groups ¥y = X, X X, X - -+ X Xy, acts on the set of variables by
permuting the coordinates with the same upper index. The function ® is symmetric with
respect to the Yg-action. A point w is a critical point if d® = 0 at u. In other words, u is a
critical point if and only if the following expressions equal zero:

k1
(6.2) (1)+Z j=1,..., ko,
=1 u' Uy s#j Ui T US
ki—1 kit1 4
Z +Z B H_l)—i‘Zm, Zzl,...,n—Q,]Zl,...,ki,
=1 U’] =1 “ Ul s#j Uj Us
kn_—2 k
-2 = —4 4
+2 ) C i ke,
n—1 n—2 n—1 n n—1 n—1
— u( ) (n—2) — (n—1) ul( ) oy u( ) g )
kn—l
—4 8 .
T T Ty = Lk

All the orbits have the same cardinality [[;_, k! . We do not make distinction between
critical points in the same orbit.

Remark. The definition of master functions can be found in [SV], see also [MV1, MV2]. The
master functions ®(u, k) in (6.1) are associated with the Kac-Moody algebra with Cartan
matrix of type

2 =2 0 0 ... .. 0
-1 2 -1 0
0 -1 2 —1 ... ... ...
(6.3) A=(a)=|0 0o =1 ... ... ... ... |,
2 -1 0
-1 2 =2
0 ... ... ... 0 —1 2

which is dual to the Cartan matrix A;j , see this Langlands duality in [MV1, MV2 VWW].

6.2. Polynomials representing critical points. Let u = (ul(-j)) be a critical point of the
master function ®. Introduce the (n 4 1)-tuple of polynomials y = (yo(x), ..., y.(x)),

(6.4 w@) = [ )

This tuple of polynomials defines a point in the direct product (Clz])"™!. We say that the
tuple represents the critical point.
Each polynomial of the tuple will be considered up to multiplication by a nonzero number.
It is convenient to think that the (n + 1)-tuple y° = (1,...,1) of constant polynomials
represents in (C[z])"*!, the critical point of the master function with no variables. This
corresponds to the case k = (0,...,0).
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We say that a given tuple y € (C[x])"™! is generic if each polynomial y;(x) has no multiple
roots and for ¢ = 0,...,n — 1 the polynomials y;(z) and y;11(z) have no common roots. If
a tuple represents a critical point, then it is generic, see (6.2). For example, the tuple Y is
generic.

6.3. Elementary generation. An (n + 1)-tuple is called fertile if there exist polynomials
gOa SR 73771 € (C[x])n—H such that

(65) y]’y] Hyiaza j:0717"'7na
i#]
where a; ; are the entries of the Cartan matrix of type Agi), that is,
(66) Wl“(?im yO) = y%; Wr(gia yl) = Yi—1Yi+1, 1= ]-7 - = 27
WE(Gn-1,Yn-1) = Yn—20ps  WE(Tns Yn) = Yn1-

For example, 4? is fertile and y; = x + ¢, where the ¢; are arbitrary numbers.
Assume that an (n + 1)-tuple of polynomials y = (yo, ..., y,) is fertile. Equations (6.5)
give us first order inhomogeneous differential equations with respect to ;. The solutions are

N 2
(6.7) Jo="1o [ z—%dx + Yo,
(6.8) @i:yz’fyi_;#dx+ciyi, 1=1,...,n—2,
~ 2
(6.9) U1 = Yn—1 [ 2 d + cnayn,
(6 10) Yn = Yn f yzg_lldx + Cn¥n,

where cg, ..., c, are arbitrary numbers. For each ¢ = 0, ..., n, the tuple

(6.11) ¥z ) = (wol), .,y (2), Gil@, i) Yina (), ya(2)) € (Cla])™

forms a one-parameter family. This family is called the generation of tuples from y in the i-th
direction. A tuple of this family is called an immediate descendant of y in the i-th direction.

Theorem 6.1 ([MV1]).

(i) A generic tuple y = (yo, ..., Yn), degy; = k;, represents a critical point of the master
function ®(u; k) if and only if y is fertile.
(ii) If y represents a critical point, then for any c¢ € C the tuple y9) (x,c), j =0,...,n is
fertile.
(iii) Ify is generic and fertile, then for almost all values of the parameter ¢ € C the tuple
y9)(x,c) is generic. The exceptions form a finite set in C.
(iv) Assume that a sequence yy, £ = 1,2, ..., of fertile tuples has a limit yjog in (Clz])"
as ¢ tends to infinity.
(a) Then the limiting tuple yj is fertile.
(b) For j = 0,...,n, let y[(])] be an immediate descendant of Yoo]- Then for allj

there exist immediate descendants y[z] of yjg such that y[ ] 15 the limat of y
{ tends to infinity.
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6.4. Degree increasing generation. Let y = (yo,...,¥y,) be a generic fertile (n+ 1)-tuple
of polynomials. Define k; = degy; for 7 =0,...,n.

The polynomial g in (6.7) is of degree kg or ko = 2k1 +1 — ko. We say that the generation
(Yos - - -+ Yn) = (To, - - ., Yn) is degree increasing in the 0-th direction if kg > ko. In that case
deg o = ko for all c.

For i =1,...,n — 2, the polynomial g; in (6.8) is of degree k; or ki = ki1 + kivi+1—k;.
We say that the generation (yo,...,Yis---,Yn) = (Yo, - Uis-- -, Yn) 1S degree increasing in
the i-th direction if /;:Z > k;. In that case degy; = ]NCZ for all c.

The polynomial g, in (6.9) is of degree k,_; or kpo1 = kn_o + 2kn + 1 — kn_y. We say
that the generation (yo, ..., Yn—1,Yn) = (Yo,- - -, Un—1,Yn) iS degree increasing in the n — 1-st
direction if l~€n—1 > k,_1. In that case degy,_1 = l;:n_l for all c.

The polynomial 7, in (6.10) is of degree k, or l%n = k,_1+1— £k, We say that the
generation (Yo, ..., Yn—1,Yn) —> (Yo, -+, Yn—1,Un) is degree increasing in the n-th direction if
l;:n > k,. In that case degy, = l%n for all c.

For ¢« = 0,...,n, if the generation is degree increasing in the i-th direction we normalize
family (6.11) and construct a map Y, ; : C — (C[z])"*! as follows. First we multiply the
polynomials yg, . . . , ¥, by numbers to make them monic. Then we choose a monic polynomial
;0 satisfying the equation Wr(y;0,v:) = € [ [ i yj_aj’i, for some nonzero integer €, and such
that the coefficient of 2% in y; o equals zero. Set

(6.12) Yi(z,c) = yiolz) + cyi(z),

and define

(6.13) Y,; : C — (C[z))"™, c— yD(x,c) = (yo(x), ..., 7z, ¢), ..., yn(x)).
The polynomials of this (n + 1)-tuple are monic.

6.5. Degree-transformations and generation of vectors of integers. The degree-
transformations

(6.14) k= (ko,..., kn) — kO =k +1—ko, ..., kn),
k’I:(ko,...,kn) — k(i):(k0a'~->ki—1+ki+l+1_ki>--'7kn)>

k= (Ko, ko1, kn) — K" = (ko, ... kneg + 2kn + 1 — kn_1, kn),

k= (koy... kn) — K™ = (ko... koot +1—k,),
correspond to the shifted action of reflections wy, ..., w, € W, where W is the Weyl group
associated with the Cartan matrix A in (6.3) and wy, ..., w, are the standard generators,

see [MV1, Lemma 3.11] for more detail.
We take formula (6.14) as the definition of degree-transformations:

(6.15)  wo :k — kO =2k +1—ko,... k),
w; ko= KD = (ko ki ki +1 =k .. k), i=1,...,n—2,
Wy k= K™Y = (ko, .. kpo + 2kn + 1 —ky_1, ky),
wy ko= K = (ko,. .. ka1 + 1 — k),
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acting on arbitrary vectors k = (ko, ..., ky).

We start with the vector k% = (0,...,0) and a sequence J = (j1,ja,...,jm) of integers
such that j; € {0,...,n} for all .. We apply the corresponding degree transformations to K?
and obtain a sequence of vectors k°, KUV = w; k0, kU132) = w; KD, .

(616) ]{/‘J = Wy, --- wj2’lUj1k®.
We say that the vector k7 is generated from (0, ...,0) in the direction of J.

We call a sequence J degree increasing if for every i the transformation w;, applied to
wj,_, ... w;, kY increases the j-th coordinate.

*

6.6. Multistep generation. Let J = (ji, ..., Jn) be a degree increasing sequence. Starting
from y® = (1,...,1) and J, we construct a map

Y7 . C™ — (Clz])"
by induction on m. If J = (), the map Y? is the map C° = (pt) +~ ¢ If m = 1 and
J = (j1), the map YU1) : C — (C[x])"*" is given by formula (6.13) for y = y? and j = ji.
More precisely, equation (6.5) takes the form Wr(g;,,1) = 1. Then g;, o = x and
YU . C (Cla])™ c—(1,...,x+¢,...,1).

By Theorem 6.1 all tuples in the image are fertile and almost all tuples are generic (in
this example all tuples are generic). Assume that for J = (J1y- -+ Jm—1), the map v/ is
constructed. To obtain Y~/ we apply the generation procedure in the j,-th direction to
every tuple of the image of Y/. More precisely, if

(6.17) Y/ i e=(ct,.. ema1) = (o(z,8),...,yn(2, ),
then
(6.18) Y7 (& em) = (Yo(2,6), oo, Y 0(2,8) + ey (2,8), .. - yn(, 6)).

The map Y is called the generation of tuples from y° in the J-th direction.

Lemma 6.2. All tuples in the image of Y’ are fertile and almost all tuples are generic. For
any ¢ € C™ the (n+ 1)-tuple Y7 (c) consists of monic polynomials. The degree vector of this
tuple equals k7. [l

Lemma 6.3. The map Y’ sends distinct points of C™ to distinct points of (Clx])" .
Proof. The lemma is easily proved by induction on m. O

6.7. Critical points and the population generated from y”. The set of all tuples
(Y0, - -, Yn) € (C[z])"*! obtained from y” = (1,...,1) by generations in all directions J =
(J15-+-+Jm), m = 0, (not necessarily degree increasing) is called the population of tuples
generated from 3, see [MV1, MV2].

Theorem 6.4 ([MV3]). If a tuple of polynomials (yo, ..., yn) represents a critical point of
the master function ®(u,k) defined in (6.1) for some parameters k = (ko,..., k), then
(Yo, - - - Yn) 1S a point of the population generated from y? by a degree increasing generation,
that is, there ezist a degree increasing sequence J = (ji1,...,Jm) and a point ¢ € C™ such
that (yo(z),...,yn(z)) = Y7 (x,¢). Moreover, for any other critical point of that function



CRITICAL POINTS AND MKDV HIERARCHY OF TYPE Afn) 21

(u, k) there is a point ¢ € C™ such that the tuple Y7 (x,c') represents that other critical
point.

By Theorem 6.4 a function ®(u, k) either does not have critical points at all or all of its
critical points form one cell C™.

Proof. Theorem 3.8 in [MV?2] says that (yo, . .., y,) is a point of the population generated from
y?. The fact that (yo,...,%,) can be generated from 4° by a degree increasing generation is
a corollary of Lemmas 3.5 and 3.7 in [MV2]. The same lemmas show that any other critical
point of the master function ®(u,k) is represented by the tuple Y”/(x,¢) for a suitable
deCm. O
7. CRITICAL POINTS OF MASTER FUNCTIONS AND MIURA OPERS
7.1. Miura oper associated with a tuple of polynomials, [MV2]. We say that a Miura
oper of type Agi), L =0+ A2 4V, is associated to the (n + 1)-tuple of polynomials y if

V=—=>",In'(y;) hi, where In'(f(x)) = ’;((j)). If £ is associated to y and V = 3" e,
then

4 2
(7.1) v; =1’ yi = —VUgpyo_i, G=1,....,n—1, wv,=In yy—” = —Upi2, Upyi1=0.
i—1 n—1

We also have

n

(7.2) (g, Vy=1' (]Tw ™),

1=0

where a; ; are entries of the Cartan matrix of type Agi) More precisely,

2 . .
(7.3) (g, V) =T (z—é), (a;, V) =In' (yz_;‘gzﬂ), i=1,...,n—2,
2
(1, V) =Int (y’;;fn), (O, V) = T (yzj).

For example,
(7.4) £ =04+A®

is associated to the tuple ? = (1,...,1).
Define the map

e (Cl\ o))" — M(AR),
which sends a tuple y = (v, ..., yn) to the Miura oper £ = 9 + A® + V associated to .

7.2. Deformations of Miura opers of type Aéi), MV2].

Lemma 7.1 ((MV2]). Let L = 9+ A® +V be a Miura oper of type Agi) Let g € B and
j€{0,...,n}. Then

(7.5) 9L =9+ AP LV —gh; — (¢ — (0, Vg + ) ;.
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Corollary 7.2 ([MV2]). Let L =0+ A® +V be a Miura oper of type Aéi) Then e 975
1s @ Miura oper if and only if the scalar function g satisfies the Riccatli equation

(7.6) g —(;,V)g+g°=0.
0

Let £ =0+ A® 4V be a Miura oper. For j € {0,...,n}, we say that £ is deformable in
the j-th direction if equation (7.6) has a nonzero solution g, which is a rational function.

Theorem 7.3 ([MV2]). Let L = 0 + A® +V be the Miura oper associated to the tuple of
polynomials y = (Yo, ..., Yn). Let 7 €{0,...,n}. Then L is deformable in the j-th direction
if and only if there exists a polynomial §; satisfying equation (6.5). Moreover, in that case
any nonzero rational solution g of the Riccati equation (7.6) has the form g = In'(y;/y;)
where g; is a solution of equation (6.5). If g = In'(y;/y;), then the Miura oper

(7.7) edalip — 94 AN@) +V —gh;
is associated to the tuple y\9), which is obtained from the tuple y by replacing y; with g;.

7.3. Miura opers associated with the generation procedure. Let J = (ji,...,jmn) be
a degree increasing sequence, see Section 6.5. Let Y7/ : C™ — (C[x])"*™! be the generation of
tuples from ¢? in the J-th direction. We define the associated family of Miura opers by the
formula:

p o C s MAD), e e u(Y ().

The map p” is called the generation of Miura opers from L£? in the J-th direction, see £? in
(7.4).

For ¢ = 1,...,m, denote J; = (j1,...,J¢) the beginning f-interval of the sequence .J.
Consider the associated map Y7 : C* — (C[x])"*!. Denote

Y% (e, ..o c0) = (wolz,er, .oy ), yn(z, ey 0)).
Introduce
(7.8)  gi(z,c1,. . 0m) = In'(y; (2, 0151)),
ge(x,cry. o) = W'y (z, e e0) —In'(y,(x, 1, oo con; € — 1)),

for ¢ =2,...,m. For ¢ € C™, define U’(c) = >, _,(U’(c));, (U(c)); € B(g(A2))?), depend-
ing on ¢ € C™, by the formula

(79) e adU‘](c) _ eadgm(x7c)fjm . eadgl (a},c)fj1 )

Lemma 7.4. For c € C™, we have

(7.10) pe) = el
(7.11) pl(c) = 0+AD = gi(x,c)hy,.
/=1

Proof. The lemma follows from Theorem 7.3. U
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Corollary 7.5. Let r > 0, odd and r # n+ 1 mod 4n + 2. Let ¢ € C™. Let g_u 29 (0) be
the value at 1’ (¢) of the vector field of the r-th mKdV flow on the space M(AS)), see (4.5).
Then

0 0 J 0
7.12 _( —adU"’(c) A(Q) r) )
(7.12) =g ()
Proof. The corollary follows from (4.6) and (7.10). O

We have the natural embedding M(A%)) — M(ASL)), see Section 3.4. Let J = (41, jo,
..y Jjm)- Denote J=(h,... , jm—1). Consider the associated family ;Lj :Cm M(Agi))
Denote ¢ = (¢1,...,Cm_1).
2| o
ot It (c) — oty
for some scalar functions ui(x,c), us(x,c), us(x,c):
(i) if jm €1{1,2,...,n — 1}, then
0 0
a_tr}/ﬂ(c) N a_tr}uj(é)

Proposition 7.6. For any r > 0 the difference has the following form

(7.13)

= u(z, C)(ejm+1,jm+1 - ejm,jm)

+ u2(@, ) (€2nt2—jn 2042 — E2n41—jm 2015 )
(ii) if jm = 0, then
oo = 31
ot, w(c) 8t 1 (e)
(iii) of jm = n, then
5o = 3]
ot ') ot 1w @
Proof. We will write A for A®® = A, Denote
A, = eIm=1lim 1 e9tfin N\Tem 9 i e Im—1Tim 1

Expand A, = >, ALA" where Al = Z2n+1 Alle, with scalar coefficients A%, Then -2- i) =
—2 A% Assume that jn, € {1,...,n — 1}. Then

(7.14)

= U1 (l’, C)(€2n+1,2n+1 - 61,1)7

(715) = ux (l’, C>en,n + Uz ($, C)enJrl,nJrl + U3<£E, C)en+2,n+2-

0 0 _

5wt = "5 L1+ 9m(Cinnn + 2nt1j 20015 ) AT Ar
1— o , YA = _QAO

x( I (€ jm T €20t 1—jim 2041 ) )} T T or

0 _ 0
" or [gm(ejm,jm + €2n 41— jm 201 ) A 1Ar]

0 170
+a_x |:A7’gm<€]m’.7m + 62n+17]’m,2n+17]’m)A 1]

-1 ~110
+3_x [Qm(ejm,jm + €2n 11— jm2nt1-jm )N Argin (€4 g + €204 1—ji 2014 ) A ] :
The last term is zero since
1 —110
[gm(ejm,jm + €ont1—jm2nt1—jm )N A (€, g T+ €2001— i 201 ) A }

2 —1 —170 _
= I (€ iim T €201 2nt1—j )IAT A AT (€141 + €2n02— g 20t 2—4m) = 0,
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and we get
0 0 ;
_ — AbdmtL(o. . — e .
atr },LJ(C) 8tr uj(é) gm T ( Jm+1,7m+1 ]m,]m)
1,2n4+2—j
+ gnA, I (€2n42— jom 20+ 2— . — E2nt1—jm 2n+1—jom ) -
The cases j,, = 0,n are proved similarly. 0

Let m; : M(A;l)) — D, L+ L;, be the Miura maps defined in Section 4.5 for i = 0, ..., 2n.
Below we consider the composition of the embedding M(Aéz)) — M(A;l)) and a Miura map.

n

Lemma 7.7. If j,, = 0, we have m; o i’ (¢, cp) = m, ou (&) for alli #£0. If ju=1,...,n,
we have m; o u’ (¢, ¢,,) = my o u? (¢) for all i # jpm,2n +1 — jp,.

Proof. The lemma follows from formula (7.10) and Theorem 4.7. O
Lemma 7.8. If j,, = 0, then
ou’ yi(x,é,m —1)3

(7.16) — (¢, cm) = —a ho

aCm Yo (SC, 67 Cms m>2
for some positive integer a. If j,, =1,...,n — 2, then
o’ P c,m — 1)y, c,m — 1
(7.17) O (o ) = —q Ynmt@EM— Dyjnl@em 1), -
acm y]m (‘ra C, Cm, TTL)2
or some positive integer a. If 7, =n — 1, then
g J
(7 18) aluJ(é N ) — —a yn72<x7é7m_ 1)y121(x767m_ 1) h
. acm o ynfl(ma 67 Cm, m)2 nl
for some positive integer a. If j,, = n, then
0 7 n— ) ~7 —1
(7.19) L(g, tn) = —a Yy 1(ﬂc~c m >hn
dcm Yn (2, ¢, Cppy m)?

for some positive integer a.

Notice that the right-hand side of these formulas can be written as

(7.20) —a H yi(x, c,m)” " hy;.

i=0
Proof. Let j,, = 0. Then yo(x, ¢, cm,m) = yoo(z, ) + cmyo(z, ¢, m — 1), where yoo(z, ¢) is
such that

Wr(y(),()(ﬁ,é),yo(fb,é,m - ]-)) = a y1($,5,m — 1)2,

for some positive integer a, see (6.12). We have g,,, = In’(yo(z, ¢, ¢, m)) —In'(yo(x, ¢, m—1)).
By formula (7.11), we have
o’ oG, 0 0oz, e) + epyo(z,e,m —1
L(é7 Cm) - _ g (6, Cm)ho _ y0,0( ~) y(]( ~ ) h()
9cm \Yoo(2,¢) + cmyo(z,¢;m — 1

e, e,
Wr(y070(.z1:,6),yo(a:,é,m— 1)) yl(xaéam_ 1)2h
yO(xaéy Cmam)Q

= — hOZ—CL

Yoo (@, ) + Cmyo(, & m — 1))2 .
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This proves formula (7.16). The other formulas are proved similarly. 0

7.4. Intersection of kernels of dm;. Let J = (j1,...,jn) be a degree increasing sequence
and p/ : C™ — M(Agi)) the generation of Miura opers from £° in the J-th direction. We
have p’(c) = @ + AW + 327" oy (2, ¢)exx, where

2n+1

Z /Uk(*fa C) = 07 ’Ui(.f, C) + v2n+27i($7 C) = 07 L= 17 s 72n + L

k=1
Let X(c¢) = 2" Xy (2, ¢)epn € TNJ(C)M<A$3> be a field of tangent vectors to M(Agi)) at
the points of the image of ;7

2n+1

Z Xi(z,0) =0, Xi(z,¢)+ Xopio_i(x,c)=0,i=1,...,2n+ 1.

k=1
Our goal is to show that under certain conditions we have

B J

(7.21) X(c) = A() 2 (e)
Oc,
for some scalar function A(c) on C™.

Proposition 7.9. Let j,, =0 and X(c) € TMJ(C)M(A%)). Assume that dmi‘u_,(c) (X(c))=0
for alli = 1,...,2n and all ¢ € C™. Assume that X(c) has the form indicated in the
right-hand side of formula (7.14). Then equation (7.21) holds.

Proof. Since Xy (z,¢) =0 for k = 2,...,2n, equation (5.5) takes the form X| — 2v;X; = 0,
or more precisely, X] = 21n’ (%)Xl Hence Xi(x,¢) = —Xo,41 = A(C)%
for some scalar A(c). Lemma 7.8 implies equation (7.21). O
Proposition 7.10. Let j, € {1,...,n — 1} and X(c) € T”J(C)M(Ag,zn)). Assume that
dmi‘uJ(c)(X(c)) =0 for all i ¢ {jm,2n + 1 — jnu} and all ¢ € C™. Assume that X (c)
has the form indicated in the right-hand side of formula (7.13). Then equation (7.21) holds.
Proof. By Lemma 5.3 we have X} + (vj,, — vj,,+1)Xj,, = 0. Then for j,, =1,...,n — 2, we
have

(Z’, 67 m — 1)yjm+1<x7 67 m — 1)

Yjm (l’, 6a Cm,y m)2

y‘m_
XJ = _X]m+1 = X2n+1_jm = _X2n+2_jm - A(C) ’ :

and for j,, =n — 1, we have
Yn_o(z,e,m — 1)y2(z,é,m — 1)
Yn—1(x, ¢,y m)?
Lemma 7.8 yields equation (7.21). O

Xpaa=—-X, = Xn+2 = TAn43 = A(C)

Proposition 7.11. Let j,, = n and X(c) € TMJ(C)M(AQ?). Assume that dmi‘;ﬂ(c) (X(e)=0
for alli #n,n+1, and c € C™. Assume that X (c) has the form indicated in the right-hand
side of formula (7.15). Then equation (7.21) holds.
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Proof. By assumptions we have X,,,; = 0 as well as X; = 0 for ¢ # n,n+1,n+2. By Lemma
5.4 we have X! + v,X,, = 0 where v,, = ln/ y" . Hence X,, = —X,10 = A(@M for

Yn (2,6,¢m,m)
some scalar function A(c). Lemma 7.8 ylelds equatlon (7.21). O

8. VECTOR FIELDS

8.1. Statement. Let r > 0 be odd, and r # 2n + 1 mod 4n + 2. Recall that we denote by
8 the r-th mKdV vector field on the space M(ASL)) of Miura opers of type Agi) We also

denote by -2 3 the r-th mKdV vector field of type A2n on the space /\/l( ) of Miura opers

of type Aén) We have a natural embedding M(A n) — M(A(an)) Under this embedding
the vector 5~ on M(A ) equals the vector filed 5~ on M(Agfj) restricted to M(A;i)), see
Section 4.3. We also denote by -2 ETe the r-th KdV vector field on the space D, see Section 4.4.
For a Miura map m; : M — D, L — L;, denote by dm,; the associated derivative map
TM(A 2n) — T'D of tangent spaces. By Theorem 4.6 we have dm; : 5~ | L % I
Fix a degree increasing sequence J = (jy,...,jm). Consider the associated family u’ :
C"™ — M(A(Q)) of Miura opers. For a vector field I' on C™, we denote by Lru’ the derivative

of u” along the vector field. The derivative is well-defined since M(A ) is an affine space.

i

Theorem 8.1. Let r > 0 be odd, r # 2n + 1 mod 4n + 2. Then there exists a polynomaial
vector field T, on C™ such that

0
ot,

(8.1) = &r,1’(c)

(<)

m o) _
Jorallce C™. If r > 4m, then 5~ W) = 0.
Corollary 8.2. The family u’ of Miura opers is invariant with respect to all mKdV flows
of type ASL) and is point-wise fixed by flows with r > 4m.

In other words, every mKdV flow corresponds to a flow on the space of integration
parameters ¢ € C™. Informally speaking, we may say, that the integration parameters
c¢=(c1,...,cp) are times of the mKdV flows.

8.2. Proof of Theorem 8. 1 for m = 1. Let J = (j;). Then p’/(c;) = e9/n L0 9/ =

0+ A —gihj,, where g; = HC , see formula (7.9). We have

) _ 0 et e glfu] .

p? (c1) oz

(8.2)

Assume j; € {1,...,n—1}. Then e/ = 1+ gy(ej, jy +€2n+1-41 2011—5 ) A" If 7 is odd and

r > 1, then the right-hand side of (8.2) is zero, hence z-|,s(,) = I = 0. Let r = 1, then
0 0 o 9 1 o’
| = e ] = gy, = — s hy = — (),
81&1 (1) ox ox (ZE + C1)2 801
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Hence I'; = —8%1. Assume j; = n, then by formula (7.12),

(8.3) 0 e = —% [(1 + 201 (nm + €niinen) N+ dgie, ,AT?)

x A"(1—2g1(enn+ en+17n+1)A_1 + Zl‘ngen’n/\_2 "
It follows from (8.3) and Lemma 2.4 that % ey = 0 for rodd and r > 1, hence I'. = 0.
For r = 1 we have % ey = 2%9; (Enn — €ntont2) = %hn = _ﬁhn = —%%(cl).

Hence I'y = —%. Similarly, if 7; = 0, then I'} = —8%1 and I', = 0 for » > 1. Theorem 8.1 is
proved for m = 1.

8.3. Beginning of proof of Theorem 8.1 for m > 1. We prove the first statement of
Theorem 8.1 by induction on m. Let J = (ji,...,Jm). Assume that the statement is proved
for J = (jl, .. ,jm_l). Let

Y7o el S (€)™Y, = (e emet) = (902, 0), . yn(, ©))

be the generation of tuples in the J-th direction. Then the generation of tuples in the J-th
direction is

Y/ €™ (Cla)™ . (Gen) = (Wo(2,0),- - Yjo(2,€) + €0y, (2,0), - - Y, ),

see (6.17) and (6.18). We have g,, = In'(y;,, o(z,¢) + ¢ny;,. (z,¢)) — In'(y;,. (,¢)), see (7. 8)
By the induction assumption, there exists a polynomial vector field T', ; = > 7" Yyi(e) 2 Be;
on C™! such that for all ¢ € C™! we have

0

4 = e 17 (&)
(8.4) Ot i (o) Lr, H (c)

Proposition 8.3. There exists a scalar polynomial 7y, (¢, cp) on C™ such that the vector
field ', =T, 5 4+ vm(C, cm)ﬁ satisfies (8.1) for all (¢,¢,,) € C™.

8.4. Proof of Proposition 8.3.

(8
u (é,em)

for alli & {jm,2n +1— j,}.

Proof. The proof is the same as the proof of Lemma 5.5 in [VW]. Namely, by Theorem 4.7
we have m; o u/ (¢, ¢,,) = my o u’(¢) for all i & {j,2n + 1 — j,,}. Hence,

(8.6) dmi’w(a,cm) (SFM 1 (¢, cm)> =Lr ;(m;o u)(E ) = Lr, ;(m;o 1) (@).

By Theorems 4.6 and 4.7, we have
0
(¢,em) 81&

(8
wl(Eem)

Lemma 8.4. We have

J(&,em)

0

m;oud (&,cm) 8t m;op )
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By the induction assumption, we have

0
ot,

(8.8)

mlo'u,

:211‘
(@

These three formulas prove the lemma.

Lemma 8.5. The difference

side of formula (7.14) if j,, =
(7.15) if jm = n.
Proof. We have

0
3_1%’#"(0)
hand side of formula (7.13) if j,, € {1,...,n

— &’
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Lm0 p?)(@).

U
(¢,¢m) has the form indicated in the right-

— 1}, has the form indicated in the right-hand
0, has the form indicated in the right-hand side of formula

-l )
N 8(27« e 8% w7 (@) + 82 (@) srr,j’uj(é’ Cm)
B ai, e air W + SFT,jMJ(é) — L1 (Eem)
B a(?fr W 6(2 e Lr, ;9m (2, ¢, cm) hy,,,
see formula (7.11). If j,, € {1,.. — 1}, then at, e % S has the form indicated in

the right-hand side of formula (7.13) by Proposition 7.6 and £r _gm(z, ¢, ¢) by, has that
form since hj,, = =€, i + €t 1jmtl = €2n41—jm2n+1—jm T €2042—jm.2n4+2—jr - L his proves the
lemma for j,, € {1,...,n — 1}. The other two cases of the lemma are proved similarly. [

Let us finish the proof of Proposition 8.3. By Lemmas 8.4 and 8.5 the difference a% ‘u ey~
Lr (¢ ¢m) has the form indicated in the right-hand side of one of the formulas (7.13)-
(7.15) and lies in the kernels of the differentials of Miura maps m; for all i ¢ {j,,,2n+1—7,,}.

By Propositions 7.9, 7.10, 7.11 we conclude that the difference has the form ~,,(¢, ¢,,) gCJ for

) W‘ uw! (Gem) ’SF ﬂ (C Cm)+
, then the Vector field T', will satisfy

some scalar function v, (¢, ¢,,,) on C™. Therefore

Y (€, cm)g“ (¢, ¢m). If we set T,
formula (8.1).

We need to prove that ,,(¢, ¢,,) is a polynomial. The proof of that fact is the same as the
proof of [VW, Proposition 5.9]. Proposition 8.3 is proved.

- FT‘J +’7m(C Cm)

8.5. End of proof Theorem 8.1 for m > 1. Proposition 8.3 implies the first statement

of Theorem 8.1. The second statement says that if » > 4m, then = (0. But that

W 1 ()

follows from Corollary 7.5 and Lemma 2.3.
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